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Abstract

Flicker artifacts in short-exposure images are caused by the interplay between the
row-wise exposure mechanism of rolling shutter cameras and the temporal intensity
variations of alternating current (AC)-powered lighting. These artifacts typically
appear as non-uniform brightness distribution across the image, forming noticeable
dark bands. Beyond compromising image quality, this structured noise also impacts
high-level tasks, such as object detection and tracking, where reliable lighting is
crucial. Despite the prevalence of flicker, the lack of a large-scale, realistic dataset
has been a significant barrier to advancing research in flicker removal. To address
this issue, we present BurstDeflicker, a scalable benchmark constructed using
three complementary data acquisition strategies. First, we develop a Retinex-
based synthesis pipeline that redefines the goal of flicker removal and enables
controllable manipulation of key flicker-related attributes (e.g., intensity, area, and
frequency), thereby facilitating the generation of diverse flicker patterns. Second,
we capture 4,000 real-world flickering images from different scenes, which help
the model better understand the spatial and temporal characteristics of real flicker
artifacts and generalize more effectively to wild scenarios. Finally, due to the
non-repeatable nature of dynamic scenes, we propose a green-screen method to
incorporate motion into image pairs while preserving real flicker degradation.
Comprehensive experiments demonstrate the effectiveness of our dataset and its
potential to advance research in flicker removal.

1 Introduction

Flicker artifacts commonly arise in images captured under alternating current (AC)-powered light
sources [1, 2, 3]. This phenomenon is especially prevalent in high-speed photography [4, 5, 6],
high dynamic range (HDR) imaging [7, 8, 9], and slow-motion video recording [10, 11, 12], where
short exposures are either required or frequently used. We provide a schematic overview of flicker
formation as shown in Figure 1(a). Flicker artifacts arise primarily from two reasons. First, since the
intensity of AC varies periodically, AC-powered light sources inherently exhibit periodic fluctuations
in brightness [1, 3, 13]. Although these fluctuations are generally imperceptible to the human eye due
to the persistence of vision [14], they become visible in images captured with short exposure times,
which may sample only a narrow temporal slice of the flicker cycle. Second, most consumer-grade
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Figure 1: (a) Illustration of flicker formation. The moving object is illuminated by stable light and
AC-powered flickering sources. The intensity of the flickering component changes over time (purple
area), and each row is exposed at a slightly different moment, leading to a non-uniform brightness
distribution across the captured image. (b) Capturing short-exposure images under artificial lighting
often results in flicker degradation (red box in the left). Although increasing the exposure time can
mitigate flicker artifacts, it introduces motion blur [17, 18, 19] (red box in the middle). Our method
effectively removes flicker while preserving fine image details (green box in the right).

digital cameras utilize rolling shutter and line-scan exposure mechanisms [1, 15, 16], in which
different rows of the image sensor are exposed at slightly different times. This temporal offset
introduces spatial inconsistencies in illumination. Flicker artifacts degrade visual quality, potentially
ruining valuable moments for users, especially in scenes with abundant artificial lighting, such as
amusement parks, lantern festivals, and cinemas. In addition, flicker impairs the performance of
downstream computer vision tasks such as detection, tracking, and recognition [20, 21, 22].

Traditional approaches for flicker mitigation primarily rely on sensor-level solutions, such as integrat-
ing flicker detection circuits into camera hardware [23]. Upon detecting flicker, these systems often ex-
tend the exposure time to mitigate its effects. However, this introduces motion blur [24, 25, 26, 27, 28],
as presented in Figure 1(b). Owing to the adaptability and scalability of deep learning [29, 30], data-
driven methods have become the dominant paradigm in image restoration tasks [31, 32, 33]. Their
effectiveness heavily depends on the diversity and realism of training datasets. Wong et al. [1]
propose simulating flicker by superimposing sinusoidal intensity variations onto static images to
emulate periodic illumination fluctuations. However, their synthetic data is primarily intended for
geo-tagging tasks, rather than for flicker removal. Besides, unlike globally consistent dimness in
low-light scenarios [34], flicker artifacts are spatially localized and temporally dynamic. Therefore,
single-image flicker removal (SIFR) methods [2, 35] struggle to differentiate flicker from similar
dark regions (e.g., shadows), and cannot recover the severely degraded areas due to the lack of pixel
context [36]. The intrinsic ambiguity of spatial-only observations results in unreliable restoration.

Modern handheld devices typically capture multiple frames in a single shot, inherently providing
rich temporal cues and inter-frame correlations [37]. These cues are highly beneficial for accurate
flicker localization and removal, effectively reducing the reliance on explicit priors such as masks in
deshadowing [38, 39]. Leveraging this property, multi-frame flicker removal (MFFR) emerges as a
more promising and practical solution, particularly under dynamic conditions. However, building
a large-scale and high-quality MFFR dataset for dynamic scenes remains highly challenging. On
the one hand, capturing a large number of real-world flickering image pairs is labor-intensive and
time-consuming [40]. Even with sufficient manpower, the quantity and diversity of flickering patterns
that can be collected through real-world capture remain limited. On the other hand, the non-repeatable
nature of dynamic scenes makes it nearly impossible to acquire aligned flickering and flicker-free
pairs with motion. The lack of such dynamic paired data leads to a critical issue: models tend to
misinterpret motion-induced pixel variations as flicker artifacts.

To address these challenges, we construct a comprehensive dataset from three complementary
perspectives. First, we propose a flicker synthesis method grounded in Retinex theory [41], capable
of generating an unlimited number of flickering images across different scenes. The method explicitly
models the interplay between ambient lighting and flickering light sources and supports diverse flicker
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patterns caused by common light sources with different rectification modes. Second, to bridge the
domain gap between synthetic and real-world datasets, we collect real-world flickering sequences
from various static scenes. These sequences serve as a foundation for understanding the spatial and
temporal characteristics of real flicker artifacts. Finally, to overcome the inherent non-repeatability of
dynamic scenes, we introduce a novel green-screen compositing method. Specifically, we extract
foreground subjects with motion from green-screen footage and composite them onto the previously
captured flickering backgrounds. This results in a set of flickering image pairs that preserve real flicker
degradation while introducing realistic motion dynamics. By integrating these three complementary
data sources, we introduce the first MFFR dataset, named BurstDeflicker. It comprises an unlimited
number of synthetic images, 4,000 real-world flickering image pairs across diverse scenes, and 3,690
green-screen dynamic image pairs generated from the real images.

Our main contributions are summarized as follows: (1) We present BurstDeflicker, the first dataset
for multi-frame flicker removal (MFFR), consisting of synthetic, real-world captured, and manually
constructed dynamic data. (2) We propose a Retinex-based flicker synthesis method that jointly
models ambient and flickering illumination. This enables the scalable generation of synthetic images
with diverse and realistic flicker patterns. To overcome the difficulty of acquiring dynamic flickering
image pairs, we introduce a green-screen compositing method, which helps mitigate motion ghosting
artifacts in multi-frame restoration. (3) Extensive quantitative and qualitative experiments validate
the effectiveness of our proposed MFFR dataset. We believe that it will provide a strong foundation
for future research in flicker removal.

2 Related work

Hardware-based methods. Early efforts in flicker removal commonly rely on specialized hardware
components, such as photodiodes, to monitor periodic brightness fluctuations in the environment.
These systems dynamically adjust camera exposure settings in response, thereby reducing the visibility
of flicker artifacts [42]. For instance, Park et al. [43] proposed a basic flicker detection and avoidance
strategy using a lookup table combined with PID control to modulate exposure timing. Poplin [23]
introduced an automatic flicker detection approach optimized for embedded camera systems, aiming
for real-time deployment. More recently, neuromorphic vision sensors [44, 45, 46] have opened up
new avenues in flicker detection by capturing event-based brightness changes, offering significantly
higher temporal resolution than traditional frame-based acquisition. For example, Wang et al. [47]
proposed a linear comb filter that effectively exploits the high temporal resolution of event-based
sensors for flicker removal. Despite their technical advantages, the high cost, limited accessibility, and
complex calibration requirements of these methods hinder deployment in consumer-level applications.

Single image flicker removal. The term “flicker” is sometimes used to describe brightness disconti-
nuities across video frames [48, 49], such as those found in old films [50]. Restoring such flicker
in videos, typically referred to as photometric stabilization [51], is a distinct task from ours. In
this paper, we focus on image degradation caused by flicker of AC-powered lights. Several meth-
ods [52, 53, 54] have been proposed to suppress flicker, assuming prior knowledge of the lighting
conditions. However, the unavailability of such prior information in most real-world scenarios
significantly limits their practicality. Yoo et al. [35] presented a wide dynamic range system for
flicker removal, leveraging long-exposure frames to recover flicker degradation in short-exposure
frames. Kim et al. [55] introduced a multiplicative model that estimates spatial illumination variations
from uniform reflectance areas, which experiences a significant drop in performance when dealing
with complex backgrounds. More recently, Lin et al. [2] have introduced DeflickerCycleGAN, the
first learning-based approach for single-image flicker removal (SIFR). By designing tailored loss
functions, Flicker Loss and Gradient Loss, they effectively harness the translation capabilities of
CycleGAN [56] to suppress flicker artifacts.

Flicker removal dataset. The success of learning-based flicker removal models is heavily dependent
on the availability of high-quality paired datasets [57, 58, 59]. However, acquiring a large-scale
dataset consisting of both flicker-corrupted and flicker-free image pairs is challenging and labor-
intensive, especially for dynamic scenes. Wong et al. [1] proposed a flicker synthesis method based on
electric network frequency and the rolling shutter mechanism of cameras, primarily for geo-tagging
purposes. Then, Lin et al. [2] directly used it to construct a flicker removal dataset. As this synthesis
approach is originally intended for the geo-tagging task rather than flicker removal, the resulting
flickering images lack sufficient variability and realism. Moreover, these synthetic pairs model
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flicker removal as the complete elimination of flicker-induced illumination, whereas in reality, the
illumination should be adjusted to its effective value rather than entirely removed. As a result, models
trained on such data struggle to generalize well to real-world flicker removal tasks.

To address these limitations, we propose a Retinex-based flicker synthesis method tailored for flicker
removal. Our method models the interaction between flickering and stable light sources and covers
diverse flicker patterns and intensities, better reflecting the variability found in real-world scenarios.
We also collect many real-world flickering images and employ a green-screen compositing technique
to address the lack of dynamic paired data.

3 BurstDeflicker

Large-scale

Realistic

Dynamic

High-quality

(I) Retinex-based synthetic data

(II) Captured static data

(III) Green-screen data

BurstDeflicker

Figure 2: A visual illustration of the three-stage
growth of the BurstDeflicker dataset.

To the best of our knowledge, there is no pub-
licly available dataset specifically designed for
flicker removal, which presents a major obstacle
for training and evaluating deep-learning mod-
els. To tackle this issue, we present the Burst-
Deflicker dataset, which is composed of three
subsets: synthetic data, static data captured from
the real world, and dynamic green-screen data
derived from real static data. These three subsets
respectively address the challenges of acquiring
large-scale, realistic, and dynamic data, as illus-
trated in Figure 2. We believe this dataset will
serve as a valuable benchmark for the multi-frame flicker removal (MFFR) task and foster further
research in this underexplored yet practically important domain.

3.1 Retinex-based synthetic flicker

The previous flicker synthesis theory [2] treats the brightness caused by flickering light as harmful.
The purpose of this method is to remove the brightness changes caused by flickering illumination. We
argue that the flickering illumination should not be completely removed. Instead, the instantaneous
flicker illumination should be adjusted to an effective value.

The light in a scene can be categorized into two components: flickering light and ambient light [35], as
shown in Figure 1(a). According to the Retinex theory [41], the flickering image Iflicker ∈ RH×W×3

can be expressed as:
Iflicker = R⊙ (La + Lf ) (1)

where ⊙ is the element-wise multiplication. R ∈ RH×W×3 represents the reflectance, and La ∈
RH×W and Lf ∈ RH×W are the illumination maps of the ambient light and the flickering light,
respectively.

The goal of flicker removal is to obtain a flicker-free image Iclean ∈ RH×W×3. In contrast to
previous work [2], which model Iclean = R⊙ La, we propose that the correct formulation should be
Iclean = R⊙ (La + Lf ), where Lf denotes the effective value of the flickering light illumination.
To derive the relationship between the flickering and flicker-free images, we rewrite Equation (1) as
follows:

Iflicker = R⊙ (La + Lf − Lf + Lf ) (2)

We assume that the ambient light intensity is k times the flickering light intensity. The flickering
images can be derived:

Iflicker = (k + 1)R⊙ Lf ·
(
1 +

Lf/Lf − 1

k + 1

)
= Iclean ·

(
1 +

Lf/Lf − 1

k + 1

)
(3)

By changing the background, flicker modes, and the ratio of ambient light to flickering light, we can
synthesize flickering images with diverse patterns.

Light source rectification modes. In the real world, different light sources have different rectification
modes, including full-wave rectified fluorescent lights, half-wave rectified incandescent bulbs, and
PWM-rectified LED lights [60, 61]. The sinusoidal alternating current, after undergoing different
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Figure 3: Flicker synthesis results based on the proposed Retinex-based method. Background images
are sourced from the indoorCVPR dataset [63]. A pre-training is conducted using the synthetic data,
providing a strong initialization for subsequent training on real data.

rectification methods, results in distinct patterns. The flicker caused by light with different rectification
modes can be denoted as:

Lf∼full = Ac

∣∣∣∣cos(2πfenf
y

frow
+ φ

)∣∣∣∣
Lf∼half = Ac max

(
0, cos

(
2πfenf

y

frow
+ φ

))
Lf∼pwm =

{
Ac, if cos

(
2πfenf

y
frow

+ φ
)
> cos(πD)

0, otherwise

(4)

where Lf∼full, Lf∼half and Lf∼pwm represent the flicker intensity distributions under full-wave,
half-wave, and PWM rectification modes, respectively. fenf denotes the electric network frequency
and frow represents the row scanning frequency of the camera. y represents the y-th row of pixel
points along the scanning direction of the sensor. φ is the initial phase when capturing images. D
is the duty cycle of the PWM rectification mode, with a range of values from 0 to 1. Ac represents
the intensity of each RGB channel, which depends on the spectra of the light source [62]. Specific
solutions for Lf in Equation 3 including full-wave rectification, half-wave rectification, and PWM,
which are derived in Equation 4 using Lf∼full, Lf∼half , and Lf∼pwd, respectively.

Following Lin et al. [2], we select the images from the indoorCVPR dataset [63] as background
images. We synthesize flicker with the same pattern on each burst sequence, only changing φ of the
AC power. The range of the intensity ratio k between ambient light and flicker light is set from 0 to 1.
According to [1], fenf is 50 or 60 Hz. We use the same frow between 100 kHz and 160 kHz as in [2]
for 512×512 resolution. Representative visualizations of the synthetic data are provided in Figure 3.
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Figure 4: Illustration of the real captured dataset. (a) Example images from our dataset, which include
a diverse range of common artificial lighting scenarios. (b) The intensity distributions of flicker and
non-flicker frames. (c) The area ratio of flicker degradation per image. (c) The luminance distribution
of flickering and clean images across different scenes.

3.2 Collection of real-world flickering image pairs

To construct a high-quality dataset containing real-world flickering images, we design a data acquisi-
tion pipeline that ensures spatial alignment, high resolution, and scene diversity. A key challenge lies
in accurately capturing flicker artifacts while minimizing misalignment between flickering frames
and their corresponding ground truth (GT) references.

To address this, we employ a Canon EOS R7 with a 15–150mm f/2.8 lens and a Canon EOS R6
Mark II paired with a 24–105mm f/4–7.1 STM lens, both securely mounted on tripods. To minimize
vibration, a remote shutter release is used, and the cameras operate in electronic shutter burst mode to
eliminate mechanical jitter during high-speed capture. All recordings are made in manual mode to
ensure consistent imaging conditions. First, we reduce the shutter speed to 1/1000-1/2000 seconds to
capture flicker artifacts in static scenes. These short exposures capture the high-frequency luminance
variations caused by artificial light sources. Second, we capture a clean, flicker-free image using a
slow shutter speed of 1/50 or 1/60 seconds, depending on the local electric network frequency [1].
The ISO is adjusted accordingly to ensure that the clean long-exposure image receives the same
amount of light as flickering images. This long exposure integrates multiple flicker cycles, effectively
suppressing temporal luminance variations and producing an ideal illumination reference.

We capture 10 consecutive frames in a single burst sequence, preserving visible flickering artifacts
with precise spatial alignment. We collect flickering sequences across 369 different real-world scenes,
including indoor (e.g., offices, supermarkets, subway stations) and outdoor (e.g., LED billboards,
parking lots) environments. Since all the flickering images in this subset are captured under static
scenes, we refer to this set of 4,000 images as BurstDeflicker-S. Its distribution characteristics and
representative sequences are illustrated in Figure 4.

3.3 Green-screen compositing flickering image

Since dynamic motion in the real world cannot be exactly replicated, real-world flickering image
pairs can only be captured in static scenes. Insufficient exposure to dynamic data may lead the model
to misinterpret motion-related pixel variations as flicker, thereby introducing ghosts or misaligned
artifacts in the restored images. To address this challenge, we draw inspiration from green-screen
compositing techniques widely used in the film industry and propose a novel green-screen approach
to simulate realistic motion in flickering sequences. We present a schematic illustration of the motion
synthesis process, as shown in Figure 5(a). The synthesis phase takes a group of real-world flickering
image pairs as background, and overlays green-screen foregrounds selected from the VideoMatte240K
dataset [64]. For each scene, we manually select foreground clips that are semantically and spatially
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Figure 5: The motion synthesis process and training pipeline. (a) The green-screen footage is selected
from the VideoMatte240K dataset [64]. The compositing of green-screen foregrounds with the
backgrounds is manually performed using Adobe After Effects. (b) Given a sequence of flickering
frames, we select three frames as input to form a training batch, with the target being a single clean
reference image. The synthetic dataset and BurstDeflicker-S also follow this pipeline.

compatible with the background, and use the corresponding alpha masks to perform high-quality
compositing. Since the clean GT image is a single frame, we replicate it ten times and overlay the
same ten foreground clips used in the flickering sequence. This compositing strategy allows us to
simulate realistic dynamic content while preserving authentic flicker artifacts in the background,
effectively addressing the lack of dynamic scenes in the dataset. Using this approach, we construct
a semi-synthetic green-screen dataset consisting of 3,690 images with motion, which we denote as
BurstDeflicker-G. It serves as a crucial step toward improving the robustness and generalization
of flicker removal models in dynamic, real-world scenarios. More details can be found in the
supplementary materials.

We obtain 4,000 real-world static flickering images (referred to as BurstDeflicker-S) along with their
corresponding dynamic green-screen image pairs (referred to as BurstDeflicker-G). These datasets
are partitioned into training and testing splits using an 8/2 ratio. To simulate natural handheld motion,
we introduce synthetic camera shake by applying random rotations in the range of [−3◦, 3◦] and
translations within [−5, 5] pixels to the burst sequences. Besides, to facilitate model training, input
images are often cropped into small patches in burst image super resolution [36, 65, 66]. However,
flicker artifacts are localized and exhibit periodic patterns along the line-scan direction. To preserve
this periodicity, we resize the images during training instead of cropping them.

Training pipeline. We present the MFFR training pipeline in Figure 5(b). For each training iteration,
we randomly sample three frames at intervals of 1 to 3 to simulate different varying camera capture
rates. These three frames are augmented and concatenated, then fed into different MFFR networks for
restoration. Note that the final output is a single image, corresponding to one of the three flickering
frames. Owing to the significant expense and effort involved in collecting paired MFFR data, training
a model from scratch with a large real dataset is impractical [67]. Following the previous burst
super-resolution work [36], we use the proposed Retinex-based synthesis method to generate a large
dataset for pre-training the network. The pre-trained model acts as a strong initialization, then
undergoes fine-tuning on our BurstDeflicker dataset for real-world flicker removal.

4 Experiments

4.1 Comparison with previous work

Experimental settings. Low-light enhancement is similar to the flicker removal task, so we use
the pre-trained model of the representative Retinexformer [68] for flicker removal. We also test the
performance of the state-of-the-art SIFR method, DeflickerCycleGAN, proposed by Lin et al. [2].
We conduct a benchmark using three baselines trained on our dataset: Burstormer [69] for burst
image restoration, HDRTransformer [70] for HDR imaging, and Restormer [71] for single-image
restoration. Specifically, we change Restormer’s input channels from 3 to 9 and concatenate the input
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Figure 6: Visual results of flicker removal on the static test data. Our results are obtained by training
the Restormer on our dataset. It demonstrates the best performance across diverse flickering scenes.

frames along the channel dimension to achieve multi-frame fusion. Due to the memory limitation
(24 GB) of the RTX 3090, we reduce the parameters of Restormer [71]. Specifically, we reduce the
number of refinement blocks in Restormer [71] from 4 to 2, and set the feature channel dimension to
32 instead of the default 48. Besides, since Burstformer [69] originally takes 8-frame inputs while
Restormer [71] is designed for single-frame inputs, we modify both models to take 3-frame inputs
for consistency. More experimental details, settings, and qualitative comparisons are presented in the
supplementary materials.

Qualitative comparison. We show the visual comparison of flicker removal on the test data of
BurstDeflicker-S in Figure 6. The low-light image enhancement method, Retinexformer [68], globally
brightens the image and introduces color shifts, which is undesirable for the goal of flicker removal.
The SIFR method of Lin et al. [2] has little effect on flicker removal, especially in cases of severe
flicker and insufficient lighting. Restormer, trained on our dataset, demonstrates effective flicker
removal in dealing with mild indoor flicker and strong nighttime flicker.

Quantitative comparison. We evaluate the performance of different methods on the static test set
using three full-reference metrics, including PSNR, SSIM [72], and LPIPS [73]. Since the test set and
training set come from the same domain, the overfitted model may achieve better results. Therefore,
we capture 50 dynamic test sequences using various mobile devices and consumer cameras to evaluate
the model’s performance and robustness in real-world dynamic scenarios. Since the ground truths of
real dynamic images are unavailable, we employ MUSIQ [74], BRISQUE [75], and PIQE [76] as
no-reference evaluation metrics.

The flicker removal results of different methods are shown in Table 1. Retinexformer performs
poorly in flicker removal, indicating that training on a low-light dataset alone is insufficient to
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Table 1: Quantitative results of different methods. Note that ‘*’ indicates models that are not trained
on our dataset but directly tested using their original versions. To ensure a fair comparison of dataset
effectiveness, we retrain Retinexformer [68] and the model of Lin et al. [2] on our dataset using
single-frame input, following the same setup as in their original work.

Method Flops
(G)

Params
(M)

Static test data Dynamic test data
PSNR ↑ SSIM ↑ LPIPS ↓ MUSIQ ↑ PIQE ↓ BRISQUE ↓

*Retinexformer [68] 69.23 1.61 15.704 0.707 0.213 53.596 50.269 30.242
*Lin et al. [2] 509.80 92.08 20.358 0.838 0.134 55.228 43.875 25.121
Lin et al. [2] 509.80 92.08 26.408 0.875 0.102 58.131 35.710 22.102
Retinexformer [68] 69.23 1.61 27.212 0.885 0.081 58.249 35.942 21.648
Burstormer [69] 141.05 0.17 29.439 0.910 0.056 58.527 37.014 20.451
HDRTransformer [70] 272.12 1.04 30.031 0.914 0.054 59.069 37.292 21.588
Restormer [71] 149.01 7.92 30.634 0.918 0.045 59.097 34.896 19.324

Table 2: Ablation study of Restormer trained on different parts of the dataset. The synthetic dataset
enhances the model’s robustness and overall performance. In particular, the green-screen data
(BurstDeflicker-G) significantly improves the model’s effectiveness in real-world dynamic scenarios.

Training data Static test data Dynamic test data
Synthetic data BurstDeflicker-S BurstDeflicker-G PSNR ↑ SSIM ↑ LPIPS ↓ MUSIQ ↑ PIQE ↓ BRISQUE ↓

✓ 24.483 0.862 0.122 57.096 39.726 23.755
✓ ✓ 30.481 0.915 0.053 58.011 37.498 21.523

✓ ✓ 30.645 0.916 0.052 58.431 36.259 20.338
✓ ✓ ✓ 30.634 0.918 0.045 59.097 34.896 19.324

(a) Input (b) w/o BurstDeflicker-G (c) Full data

Figure 7: The visual comparison on the dynamic test data of Restormer trained with/without
BurstDeflicker-G. The introduction of BurstDeflicker-G helps reduce motion ghosting artifacts
(red boxes) without compromising the flicker removal performance (green boxes).

address the flicker problem. We re-train Retinexformer [68] and Lin [2]’s network on our dataset,
achieving significant improvements, which demonstrates the effectiveness of the BurstDeflicker
dataset. Additionally, we train three representative networks using a burst size of three, all of which
demonstrate strong flicker removal performance, with Restormer achieving the best results.

4.2 Ablation study

Parts of BurstDeflicker. Synthetic data helps reduce the risk of overfitting and enhances the model’s
robustness, as demonstrated in the second and fourth rows of Table 2. The BurstDeflicker-G subset
helps improve the model’s performance on the dynamic test set, as shown in the third and fourth
rows of Table 2. To intuitively explain the improvement caused by green-screen data, we present a
visual comparison of flicker removal on the handheld-captured data in Figure 7. The model without
green-screen data may introduce motion ghosts. The essence of the green-screen method is to allow
the model to “see” flickering image pairs with motion. By training on such data, the model learns to
distinguish whether pixel value changes are caused by motion or flicker.
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Table 3: The test results with different numbers of burst image inputs. Multi-frame flicker removal
achieves better performance compared to single-image restoration. Due to the redundancy between
adjacent frames, the performance gain from increasing the input from two to three frames is smaller
than that from one to two frames, which indicates the marginal effect of adding more input frames.

Input Flops
(G)

Static test data Dynamic test data
PSNR ↑ SSIM ↑ LPIPS ↓ MUSIQ ↑ PIQE ↓ BRISQUE ↓

Single image 148.55 27.310 (+0.000) 0.891 (+0.000) 0.069 (-0.000) 58.664 35.821 20.010
Burst-2 148.78 30.264 (+2.594) 0.915 (+0.024) 0.048 (-0.021) 58.786 35.277 19.798
Burst-3 149.01 30.634 (+3.324) 0.918 (+0.027) 0.045 (-0.024) 59.097 34.896 19.324

Input Single image

Input

Input Single image

Burst-2 Burst-3Burst-2 Burst-3 Input

Figure 8: The visual comparison of flicker removal using different numbers of input frames. As the
number of input frames increases, the model exhibits progressively better restoration performance
for banding artifacts (left). Moreover, when the number of input frames reaches three, the model
successfully restores the originally extinguished light source (right).

Number of input frames. Following previous multi-frame restoration tasks [36, 57], we train
Restormer with varying numbers of input frames to validate the effectiveness of the MFFR strategy.
We present the performance of Restormer [71] under varying numbers of input frames, as shown
in Table 3. The PSNR improvement from 2 to 3 input frames (0.730 dB) is less significant than that
from 1 to 2 input frames (2.594 dB), which can be attributed to the overlapping clean regions among
multiple input frames. We provide a visual comparison of restoration results using different numbers
of input frames, as depicted in Figure 8.

5 Conclusion

In this paper, we introduced the first multi-frame flicker removal (MFFR) dataset, BurstDeflicker,
which consists of large-scale synthetic images, 4,000 real-world captured image pairs, and 3,690
manually created image pairs with motion. The synthetic method simulated the interaction between
ambient light and flicker light, considering various flicker patterns for pretraining the flicker removal
model. The real-world captured dataset was used to fine-tune the model for improved performance.
Furthermore, since paired motion images are difficult to capture, we proposed a motion embedding
method based on the green-screen technique, which helped mitigate motion ghosting issues in multi-
frame fusion. Comprehensive experiments demonstrated the effectiveness of our MFFR method and
dataset, which can facilitate future research in flicker removal.

Limitation. When an AC-powered light source serves as the sole illumination source, the resulting
flicker degradation can be particularly severe, potentially leading to noticeable color shifts in the
restoration results, as illustrated in the fourth row of Figure 6. Although MFFR methods can leverage
multi-frame information for more accurate restoration, they still struggle when the available frames
lack complete scene content. Besides, when there is significant misalignment between frames (e.g.,
strong handheld jitter), the performance of multi-frame restoration may degrade to that of single-
frame methods. To address these challenges, future work could focus on designing more efficient
network architectures that are specifically tailored to the unique features and priors of flicker.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Refer to Section 1 for details.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are discussed in the Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Theoretical result is implemented in Section 3.1.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In Section 3, we clearly describe the steps taken to make our datasets re-
producible, including a detailed data acquisition pipeline and data processing methods.
In Section 4, training details are clearly provided to make the results verifiable.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our dataset and code are provided in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The training and test details are specified at Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Error bars or other statistical significance are unnecessary in our experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The main model parameters and computational complexity are in Section 4.
More computer resources are provided in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Every aspect of the experimental paper complies with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The societal impacts are discussed in the supplementary material.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This question is unrelated to the research topic of this article.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The existing technologies used have clear references and mentions.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The details about training and limitations for our newly-introduced dataset
are described in the paper at Section 3 and Section 5 respectively. The license and other
documentation are provided alongside the dataset in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This question is unrelated to the research topic of this article.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: Yes.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This question is unrelated to the research topic of this article.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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