
Low-Dimension-to-High-Dimension Generalization
And Its Implications for Length Generalization

Yang Chen 1 Long Yang 1 Yitao Liang 2 3 Zhouchen Lin 1 2 4

Abstract
Low-Dimension-to-High-Dimension (LDHD)
generalization, a subset of Out-of-Distribution
(OOD) generalization, involves training on
a low-dimensional subspace and testing in a
high-dimensional space. Assuming instances
are generated from latent variables reflecting
problem scale, LDHD generalization captures
the inherent scaling challenge of length gener-
alization. We theoretically show that LDHD
generalization is unattainable without appropriate
inductive bias. Focusing on Boolean functions,
we demonstrate that different architectures
trained with (S)GD converge to min-degree
interpolators w.r.t. different linearly independent
sets, achieving LDHD generalization only when
the target function aligns with this bias. From the
perspective of LDHD generalization for length
generalization, we explain the success of CoT in
restructuring latent space for improved LDHD
generalization. We further propose a principle for
designing position embeddings to address both
LDHD generalization and data format nuisances
separately. Following the principle, we introduce
RPE-Square, a novel embedding that enhances
RPE to better handle data formats.

1. Introduction
Learning to reason has gained significant popularity in the
machine learning community due to its impressive perfor-
mance in reasoning tasks such as natural language process-
ing (OpenAI, 2023a;b), mathematics (Frieder et al., 2023;
Jelassi et al., 2023), coding (Zhang et al., 2022a), symbolic

1State Key Lab of General Artificial Intelligence, School of
Intelligence Science and Technology, Peking University 2Institute
for Artificial Intelligence, Peking University 3Beijing Institute
for General Artificial Intelligence 4Pazhou Laboratory (Huangpu),
Guangzhou, Guangdong, China. Correspondence to: Zhouchen
Lin <zlin@pku.edu.cn>, Yitao Liang <yitaol@pku.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

logic (Abbe et al., 2023; Garcez et al., 2022), and planning
(Zhao et al., 2023; Valmeekam et al., 2023). One of the most
significant challenges in learning to reason is length gen-
eralization (Anil et al., 2022; Zhang et al., 2022b), where
models trained on small-scale instances must generalize
to large-scale instances. Length generalization is crucial
because the size of sample spaces often increases exponen-
tially with the complexity of reasoning problems, leading to
intractable sample complexity and computational costs for
models that do not achieve length generalization.

Numerous works have investigated various techniques for
length generalization, including modifications to model ar-
chitectures (Shaw et al., 2018; Jelassi et al., 2023; Kazemne-
jad et al., 2024), transformations in data formats (Lee et al.,
2023; Zhou et al., 2023), prompt engineering for Large Lan-
guage Models (LLMs) (Wei et al., 2022; Feng et al., 2024).
Although some of the above techniques work uniformly well
across a wide class of problems, many are fragile and even
ad-hoc, applicable only to specific problems with certain
formats (Zhou et al., 2024). This is due to the mismatch
between the inherent problem scale and the length of the
input string. We illustrate it in the next Example 1.
Example 1. Consider the addition learning problem where
the input is a string. For an N -digit-plus-N -digit (written
as N -addition) addition of two numbers x and y, where
x = xN−1 . . . x0, y = yN−1 . . . y0, xi, yi ∈ {0, . . . , 9}
(xN−1 > 0 or yN−1 > 0), consider two formats: the
Aligned and Reverse Format (ARF), where the instance is
represented as “x0 . . . xn−1 + y0 . . . yn−1 =”; and the Un-
aligned and Reverse Format (URF), where the instance
is represented as “x0 . . . xnx−1 + y0 . . . yny−1 =”, nc =
argmaxi{ci ̸= 0}, c ∈ {x, y}. However, the length of the
input strings in neither format faithfully reflects the prob-
lem scale: in ARF, the length of the input strings is always
invariant; in URF, a shorter string may correspond to a
larger scale than a longer string (e.g., s1 =“1 + 1234 =”
is 4-addition, s2 =“123 + 123 =” is 3-addition; s1 is of
larger scale than s2 but length(s1) < length(s2)).
Example 1 demonstrates the sensitivity of length generaliza-
tion to the data format. Developing robust and transferable
methods for scalable models requires a formulation that cap-
tures the inherent scaling challenge of length generalization
and is invariant to the data format nuisance.

1

Low-Dimension-to-High-Dimension Generalization And Its Implications for Length Generalization

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

Train Class 0
Train Class 1
Test Class 0
Test Class 1

(a) In-Distribution Generalization.

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

Train Class 0
Train Class 1
Test Class 0
Test Class 1

(b) (Typical) OOD Generalization.

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4

Train Class 0
Train Class 1
Test Class 0
Test Class 1

(c) LDHD Generalization.

Figure 1. Illustrative comparison of in-distribution generalization, typical OOD generalization, and LDHD generalization. (a) In-
distribution generalization assumes identical training and testing distributions. (b) Typical OOD generalization involves a shift between
training and testing distributions, which remain relatively “close” (e.g., sharing support or having small distributional distances). (c) LDHD
generalization features a training distribution restricted to a low-dimensional subspace and a testing distribution on a high-dimensional
space, often vastly different. While LDHD is a type of OOD generalization, its structured shift poses unique challenges, as training data
provide no clues about the additional dimensions’ contribution to the label.

1.1. Our Main Works

Low-Dimension-to-High-Dimension Generalization Per-
spective for Length Generalization. We propose Abstrac-
tion 1 that disentangles the problem scale and the data for-
mat, which provides a more precise formulation for the
analysis of length generalization.
Abstraction 1 (Data Generation in Length Generalization).
The data generation process of an instance of scale n with
the concept c is as follows:

1. A latent variable h is sampled from a subspace Σn of
dimension n;

2. The label y is determined by the concept c and the latent
variable h, i.e., y = c(h);

3. The latent variable h is transformed to an input sequence
by the data format mapping ϕ.

In Abstraction 1, the scale of the instance is captured by the
dimension of the latent space from which the instance is sam-
pled. The scale shift in length generalization is characterized
by Low-Dimension-to-High-Dimension (LDHD) general-
ization in the latent space. In other words, the generalization
from “short” instances to “long” instances corresponds to
the generalization from the low-dimension latent subspace
of the training data to the high-dimension latent subspace.
The computation of the task is represented by the concept c,
which is defined on the latent space and independent of the
data format. The data format decides how a hidden variable
is mapped to an actual input sequence. The next Example 2
illustrates the abstraction in the addition.
Example 2 (Addition). Let Σ = {0, . . . , 9}2. The instance

of n-addition xn−1 . . . x0 + yn−1 . . . y0 can be represented
by the latent vector hn = [(x0, y0) , . . . , (xn−1, yn−1)].
The k-th dimension of hn corresponds to the (k − 1)-th
digits of the two addenda (i.e., xk−1 and yk−1). The expan-
sion of the state vector in the dimension corresponds to the
increase in the addendum digits. In the length generaliza-
tion of the addition task, the scale shift from N0-addition
to N -addition can be seen as a generalization from the
low-dimensional latent space ΣN0 to the high-dimensional
latent space ΣN . The label, i.e., the sum of the addenda,
is determined by the computation of the addition task. The
input string is determined by both the latent variable and
the data format (e.g., ARF or URF).

Example 2 demonstrates that each instance of n-addition is
generated from an n-dimension latent variable via a data for-
mant mapping. Length generalization of addition requires
addressing both LDHD generalization in the latent space,
which captures the computation of addition as the scale in-
creases, and the data format, which may hinder the model in
learning the addition operator. In general, from the LDHD
generalization perspective, length generalization involves
two key aspects: LDHD generalization in the latent space
and the nuisance of the data format. LDHD generalization
reflects the scale shift between the training and test data,
which is the inherent challenge of length generalization.

No-Free-Lunch Theorem of LDHD Generalization. The
main challenge of LDHD generalization is that the testing
space has extra dimensions compared to the training space.
As a result, the testing space contains instances with orthog-
onal components to the training space. The training samples
cannot reveal any information about how these components

2

Low-Dimension-to-High-Dimension Generalization And Its Implications for Length Generalization

contribute to the results. For instance, in Example 2, learn-
ing with N0-addition solely does not tell how (N0 + 1)-th
digits to N -th digits contribute to the result unless we have
the prior knowledge that the addition of each digit shares
the same process. Figure 1 shows an intuitive illustration for
the challenge of LDHD generalization of linear models on
R2, compared to in-distribution generalization and typical
OOD generalization settings. When learning a linear de-
cision boundary from the low-dimension training data, we
need to know the slope of the decision boundary as a prior;
otherwise, we will fail to achieve LDHD generalization:
While all the three solid lines in Figure 1c perfectly sepa-
rate the low-dimension training data, only the true decision
boundary can achieve LDHD generalization.

We formalize the above challenge as No-Free-Lunch Theo-
rem (Wolpert & Macready, 1997; Wolpert, 2002) of LDHD
Generalization. Theorem 1 shows that no algorithm could
achieve LDHD generalization uniformly for all tasks, which
necessitates the use of prior knowledge in the learning pro-
cess in order to achieve LDHD generalization.

Inductive Bias of Models and Algorithms for LDHD
Generalization. In practice, the prior knowledge is usually
incorporated via the inductive bias of the learning algorithms
and the models. To develop LDHD generalizable models,
we investigate the inductive bias of different architectures
trained by (S)GD. While random feature models are shown
to be min-degree interpolators (Abbe et al., 2023), Theo-
rem 2 shows that random feature models with projections,
where inputs are transformed by projections before fed to
the random feature models, converge to min-degree interpo-
lators w.r.t. different linearly independent sets. Furthermore,
we consider Position-Only Linear Attentions with Advice
(PLAA), i.e., linear attentions whose attention scores are de-
termined only by positions, with additional hints about the
scales of the instances. This model can be seen as a simpli-
fied abstraction of decoder-only transformers with a special
focus on positional relations that are considered crucial for
length generalization. Theorems Theorem 3 and Theorem 4
show that PLAA with Absolute Position Embedding (APE)
and PLAA with Relative Position Embedding (RPE) con-
verge to min-degree interpolators w.r.t. different linearly
independent sets. The results illustrate the limitation of
PLAA with APE in LDHD generalization and the potential
of PLAA with RPE to overcome the limitation.

Implications of the LDHD Generalization Perspective
for Practical Length Generalization Techniques. The
LDHD generalization perspective further provides insights
into practical length generalization techniques. In Sec-
tion 5.1, we discuss the role of Chain-of-Thought (CoT)
(Wei et al., 2022) in length generalization. We show that
CoT can be seen as a change of the hidden space, where
each dimension of the latent space is augmented with an

additional middle state. This transformation could facilitate
LDHD generalization in the latent space for some prob-
lems. Additionally, in Section 5.2, we propose a principle
of position embedding design for length generalization with
Transformers: We need to handle both the inherent LDHD
generalization and the nuisances such as the data format
in the design of the position embeddings. Following this
principle, we propose a novel position embedding named
RPE-Square. Our experiments show that the RPE-Square
evidently enhances the RPE with the ability to handle the
nuisance of the unaligned data format.

The next sections of the paper are organized as follows: In
Section 3, we introduce the formal definition and No-Free-
Lunch Theorem of LDHD generalization; in Section 4, we
present the results of the inductive bias of different mod-
els trained by gradient and how the inductive bias influ-
ences LDHD generalization; in Section 5, we show how the
LDHD perspective helps to understand and design practical
techniques for length generalization.

1.2. Notations

We use [n] to represent the set of numbers {1, . . . , N}. We
denote the set of all functions from the set X to the set
Y as FX ,Y . We define Proj(x, V) as the coordinate of
the projection of x onto the space spanned by V with the
basis V = [v1, . . . , vr], i.e., [Proj(x, V)]i = ⟨x, vi⟩ for all
i = 1, . . . , r. We use A∗ to denote the Kleene closure of the
set A, i.e., A∗ =

⋃∞
k=0 A

k. We use deg(p) to denote the
degree of the polynomial p. We represent the set of N ×N
upper triangular matrix as UN .

2. Related Work
Length generalization in reasoning problems. Length
generalization is a key challenge in learning to reason, typi-
cally interpreted as the ability to learn with small-scale in-
stances of a task and generalize to unseen large instances of
the same task (Anil et al., 2022; Zhou et al., 2023). Various
reasoning tasks are considered to investigate length gener-
alization, including arithmetic (Jelassi et al., 2023; Feng
et al., 2024), Boolean logic (Abbe et al., 2023; d’Ascoli
et al., 2023), symbolic reasoning (Zhang et al., 2022b), etc.
Despite the rich literature on length generalization on spe-
cific reason tasks, few works have considered challenges
and overconditions of length generalization for general prob-
lems. The existing works that analyze general length gener-
alization mainly focus on the change of the input sequence
length (Xiao & Liu, 2023; Ahuja & Mansouri, 2024; Huang
et al., 2024). This formulation conflates the inherent scaling
challenges with the effects of data format, making it difficult
to precisely capture the challenges of length generalization.
To address this, our work proposes disentangling length gen-
eralization into two distinct aspects: LDHD generalization

3

Low-Dimension-to-High-Dimension Generalization And Its Implications for Length Generalization

in the latent space, which characterizes the challenges asso-
ciated with increasing scale, and the data format nuisance.

Inductive Bias of Model Architectures and Algorithms.
In the situation of learning with overparatermization or in-
complete information, proper inductive bias is essential to
select the true model from the hypothesis (Neyshabur, 2017;
Bartlett et al., 2021; Teney et al., 2024). One of the most
studied scenarios is the inductive bias of different model
architectures under (S)GD. Previous research shows (S)GD
combined with different model architectures lead to differ-
ent effects of implicit regularization, such as different norms
of the learnable parameters Gunasekar et al. (2017); Bartlett
et al. (2021) and different complexity characterizations of
the models (Razin & Cohen, 2020; Razin et al., 2021; Abbe
et al., 2023). We specially mention Abbe et al. (2023), which
proposes that models trained with (S)GD are biased towards
min-degree profile interpolators in the context of Boolean
functions, which do not achieve general LDHD general-
ization. Our results show that the min-degree profile bias
does not hold for all models. We further show that models
with different architecture can converge to min-degree pro-
file interpolators under different linearly independent sets
when trained with (S)GD. This partially explains how model
architectures can affect length generalization in reasoning.

3. LDHD Generalization
Definition 1 (Low-Dimension-to-High-Dimension Gener-
alization). Suppose that X is a sample space and X1,X2

are two subspaces such that X1 ⊂ X2 ⊂ X and dim(X1) <
dim(X2). Consider a concept class C ⊂ FX ,Y , two distribu-
tions D1,D2 where supp(D1) = X1 and supp(D2) = X2,
and a learning algorithm A : (X × Y)

∗ 7→ FX ,Y . We say
low-dimension-to-high-dimension generalization of the con-
cept class C from D1 to D2 is achieved by the algorithm A
with m samples and ϵ error if

EXm∼Dm
1 ,Xm+1∼D2

[
ℓ
(
f̂Xm,c(Xm+1), c(Xm+1)

)]
≤ ϵ,

where f̂Xm,c is the function learned by the algorithm A
from the training samples Xm labeled by the concept c and
ℓ : Y × Y 7→ R is the loss function.

Definition 1 extends the Independent Identical Distribution
(IID) assumption in PAC learning theory and considers a
special shift between the training data and the testing data.
This shift is particularly challenging because the testing
space is of strictly higher dimension than the training space.
Generally, it is impossible to fully capture the structure of
the training space from the testing data as the training data
reveal no information on how components in the orthogonal
subspace contribute to the output. Therefore, there is no
algorithm that can always guarantee to learn the concept
from the training data. Theorem 1 formally states the nonex-

istence of universal algorithms for LDHD generalization.

Theorem 1 (No-Free-Lunch Theorem of LDHD Gener-
alization). Suppose that the two sets X and Y are fi-
nite. For some N > N0, consider two subsets XN0

,
XN of X such that XN0 ⊊ XN ⊆ X and dim(XN0) =
N0 < N = dim(XN). Let c1, c2 ∈ F(:= FXN ,Y) be
two concepts such that c1(x) = c2(x) for all x ∈ XN0

.
For any c ∈ F and X ′ ⊆ X , define F/ (c | X ′) :=
{f ∈ F | f(x) = c(x) for all x ∈ X ′}. Let ℓ : Y×Y 7→ R
be the loss function. For any distribution D(XN) such that
supp (D(XN)) = XN :∑

f∈F/
(
c1|XN0

)Ex∼D(XN) [ℓ (c1(x), f(x))]

=
∑

f∈F/
(
c2|XN0

)Ex∼D(XN) [ℓ (c2(x), f(x))] .

Theorem 1 necessitates the consideration of structural as-
sumptions on the concept class such that a learning algo-
rithm could identify the target concept from the hypoth-
esis with the imperfect information provided by the low-
dimensional training data. For example, the concept class
of linear classifiers with fixed weight vector on X = Rd,
i.e., C = {sgn (w⊺

0x+ b) | w0 ∈ Rd, b ∈ R} with the d′-
dimensional training sample space X1 = Rd′ ×{0}d−d′

and
the d-dimensional testing sample space where d′ < d. For
any concept c ∈ C, a learning algorithm could not identify
the true concept c solely from the training data from X1 and
the hypothesis of all linear classifiers. However, if a learning
algorithm exploits the structure of the concept class, i.e., by
fixing the weight vector to w0 in prior, it can compute the
target bias from the training data in X1 and then identify the
target concept c.

We further investigate how model structures can affect
LDHD generalization. We show in Section 4 that differ-
ent models trained with (S)GD can be seen as min-degree
interpolators under different functional bases in the context
of Boolean functions, which is a joint inductive bias of the
model structures and (S)GD. This insight suggests a prin-
ciple for model design to achieve LDHD generalization:
ensure the concept class is “low-degree” under the linearly
independent set induced by the model structure.

LDHD generalization captures the challenge of scale shift
in length generalization. Intuitively, length generalization
means that a model trained with small-scale instances of a
reasoning problem can perform well on large-scale instances
of the problem. To formalize the intuition, we consider a
typical instance being generated from a hidden variable h
that represents the “core” of the instance and is transformed
to the model input by a data format mapping. The hidden
space is of the form Σ∗ for some domain Σ. The dimension

4

Low-Dimension-to-High-Dimension Generalization And Its Implications for Length Generalization

n of the subspace from which the hidden variable is sampled,
n = argmaxk{h ∈ Σk, h ̸∈ Σk+1} , reflects the increase
in the scale of the problem. Besides, we define the concept
class on the hidden space, depicting that the change of the
data format does not change the computation of the concepts.
Abstraction 1 describes the pipeline of the data generation
in length generalization.

Remark 1. Some works observe length generalization on
certain tasks without domain-specific priors, using only a
small fraction of large-scale data during pretraining. This
does not contradict our No-Free-Lunch Theorem, as “no”
and “few” large-scale examples are fundamentally different.
Prior work (Jelassi et al., 2023) shows that exposure to a tiny
fraction of long sequences in pre-training, which is called
priming, can significantly improve length generalization.
From our perspective, this is because the presence of long
sequences, even in small quantities, prevents the model
from learning an overly simple interpolator that fails to
extrapolate. For example, in the addition task, training
only on 3-digit numbers may lead the model to ignore digits
beyond the third, while including just a few 5-digit examples
compels it to process later digits, enhancing extrapolation.

4. Main Results
We show theoretically how different models succeed or
fail to achieve LDHD generalization as the effect of the
inductive bias of the architectures under (S)GD. We focus
on Boolean functions. More specifically, in the context of
Boolean functions, we have Σ = {±1}, X = ΣN , Xn =
Σn × {1}N−n for n = 1, . . . , N . The set of all Boolean
functions potentially considered is F = FX ,R. Our analysis
can be naturally extended to tasks over finite alphabets by
considering their binary representations.

We consider LDHD generalization from N0 to N for some
N0 < N . Define I(f) as the minimal set I of indices
that the function f can be represented as a function of xI ,
i.e., I(f) := argminI⊂[N] |I| such that f(x) = f̃(xI) for
some function f̃ and all x ∈ X . A function f is k-sparse if
|I(f)| ≤ k.

Before presenting the theoretical results, we introduce two
concepts degree profile w.r.t. linearly independent set and
min-degree interpolator w.r.t. linearly independent set,
which extend the concept degree profile and the concept
min-degree interpolator, respectively. We use the two con-
cepts to characterize the inductive bias of different model
architectures under (S)GD.

Definition 2 (Degree Profile w.r.t. Linearly Independent Set
B). Suppose that B = {b1, . . . , bR} is a linearly indepen-
dent set of functions in F and D = maxb∈B deg(b). Let
f ∈ F be a function in the subspace spanned by B, i.e., f =∑R

i=1 f̂B(bi)bi for some f̂B(bi) ∈ R, i = 1, . . . , R. The de-

gree profile of the function w.r.t. B, denoted by DegPB(f),
is a (D+1)-tuple where Di =

∑
b∈B,deg(b)=D+1−i f̂B(b)

2

for i = 1, . . . , D + 1. The order of degree profiles is identi-
cal to the lexicographic order of the corresponding D-tuples.

Definition 3 (Min-Degree Interpolator w.r.t. Linearly In-
dependent Set B). Suppose that B = {b1, . . . , bR} is a
linearly independent set of functions in F . Let X ′ be a
subset of the sample space X = {±1}N . Denote the set
of all interpolators on X ′ for the concept c by GX ′,c, i.e.,
GX ′,c = {g ∈ F | g(x) = c(x) for all x ∈ X ′}. A function
g is called the min-degree interpolator w.r.t. B on X0 for
the concept c if g ∈ GX ′,c and DegP(g) ≤ DegP(g′) for
all g′ ∈ GX ′,c.

4.1. Random Feature Model with Projection

We first consider the random feature model (RFM) and a
class of its variants, i.e., Random Feature Models with Pro-
jection (RFMP; see Definition 4). RFM is widely employed
as approximations of practical neural network models in
theoretical studies. By comparing the inductive biases in-
troduced by RFM and RFMP under various projections, we
demonstrate the importance of incorporating prior knowl-
edge to achieve LDHD generalization and this prior knowl-
edge can be effectively embedded through model design.

Definition 4 (Random Feature Model with Projection). Sup-
pose that V = [v1, . . . , vr] ∈ RN×r satisfies V ⊺V = Ir. A
random feature model with projection w.r.t. V is

fV,K
RFMP(x; a) =

1√
K

K∑
k=1

akσ (⟨wk,Proj (x, V)⟩+ bk) ,

where K is the number of random features, σ is the ac-
tivation function, a = [a1, . . . , aK]

⊺ is the learnable pa-
rameter, and wk ∼ N (0, Ir/r), bk ∼ N (0, 1/r) for all
k = 1, . . . ,K.

The original RFM can be seen as a special instance of RFMP
with V = IN . Technically, we follow the strongly expres-
sive condition (Abbe et al., 2023) for the activation function
σ. Abbe et al. (2023) shows that the RFM converges to the
min-degree interpolator when initialized at 0 and trained
with GD. However, this is not the case for all RFMP models.
We show in Theorem 2 that an RFMP model converges to
a min-degree interpolator w.r.t. a linearly independent set
determined by the set V .

Theorem 2. Suppose that V = [v1, . . . , vr] ∈ RN×r satis-
fies V ⊺V = Ir. Define the set B(V) of independent func-
tions as

B(V) :=
{
χV
T (x)

}
T⊆[r]

,

where

χV
T (x) =

∏
t∈T

N∑
n=1

(vt)nxn.

5

Low-Dimension-to-High-Dimension Generalization And Its Implications for Length Generalization

Let at be the learnable parameter at the timestep t in the
training process where the learnable parameter a is initial-
ized at a0 = 0 and optimized with gradient descent/gradient
flow under ℓ2 loss on XN0

. Let GN0,c,V be the set of all in-
terpolators on XN0

for the concept c∗(x) = c (Proj(x, V))
that is ON (1)-sparse. Then we have, as K → ∞, t → ∞,

fV,K
RFMP(x; at) → arg min

g∈GN0,c,V

DegPB(V)(g).

When V = IN , the linearly independent set B(V) is the
Fourier basis of the Boolean functions, and Theorem 2 im-
plies that the RFM converges to the min-degree interpolator.
From Theorem 2, we see that an RFMP model with the pro-
jection matrix V can achieve LDHD generalization only if
the target concept coincides with the min-degree interpolator
w.r.t. B(V). Specially, for the RFM, we have:

Corollary 1. For any f ∈ F such that I(f) ̸⊂ [N0], the
min-degree interpolator does not achieve LDHD general-
ization from XN0 to XN and thus the RFM initialized at 0
and trained with GD does not achieve LDHD generalization
from XN0

to XN .

Corollary 1 shows that the min-degree interpolator and thus
the RFM model can only achieve LDHD generalization for
a very restricted set of functions that are only dependent on
x[N0]. Achieving LDHD generalization with RFMP models
requires prior knowledge of the concept class to design the
projection. Example 3 illustrates how LDHD generalization
is possible for the target function with dependence beyond
x[N0] by choosing a proper projection.

Example 3. Consider the target function f(x) = 4x1+3x2,
N0 = 1, and N = 2. The min-degree interpolator on XN0 is
f1(x) = 4x1, which does not achieve LDHD generalization
on XN . In the RFMP model, if we choose

V =

[
0.8 0.6
0.6 −0.8

]
,

then we have

B(V) = {1, 0.8x1 + 0.6x2, 0.6x1 − 0.8x2,

(0.8x1 + 0.6x2)(0.6x1 − 0.8x2)}.

The min-degree interpolator w.r.t. the linearly independent
set B(V) on XN0

is f2(x) = 4x1 + 3x2 = f(x), which
achieves LDHD generalization on XN .

4.2. Position-Only Linear Attention with Advice

In this subsection, we investigate Position-Only Linear At-
tention with Advice (PLAA), which can be seen as a simpli-
fication of decoder-only Transformers (Definition 5), with a
special focus position embeddings that are considered pivot
to the length generalization of the Transformers (Shaw et al.,
2018; Jelassi et al., 2023).

Definition 5 (PLAA). Define the advice function n : X 7→
{0, . . . , N} such that n(x) = argmaxn{xn = −1} if there
exists k ∈ [N] such that xk = −1 and n(x) = 0 otherwise.
We additionally define e0 := 0. A PLAA model is

fPLAA(x;A) = x⊺Aen(x),

where A ∈ UN is the learnable parameter and en denotes
the vector with a 1 in the n-th coordinate and 0’s elsewhere.

We further elaborate on the intuition behind the PLAA
models. In the generation process of a decoder-only (lin-
ear) Transformer with position embeddings given input
s = s1 . . . sn, the attention is computed by the query at
the position n and the keys at the positions i ≤ n. The
position of the query is special, advising the length of the
input and reflecting the scale of the instance ideally. The
PLAA model captures this feature and introduces the no-
tation n(x) to reflect the dimension of the subspace that x
belongs to. To further simplify and focus on the position
embeddings, we assume that the value of each xi is identical
to itself (i.e., we fix the value matrix in the attention to I
and thus WV xi = xi) since the value head is not central to
length generalization: the interpolator is expected to learn a
suitable value head. We reasonably suppose a correct value
head to focus on the specific challenge in length generaliza-
tion. Additionally, we assume the attention is only related to
positions, highlighting the standalone impact of position em-
beddings on inductive bias and length generalization. The
contribution of the interaction between the position embed-
dings is [e1, . . . , en]

⊺
A[n],[n]en = A[n],n for some upper

triangle matrix A. When the input is embedded to length N
but the query is still made at the position n, the output of
the model is x⊺Aen(x), i.e., the output of the PLAA model.
Therefore, the PLAA model is a simplification of decoder-
only Transformers focusing on the impact of the position
embeddings on length generalization. For a more detailed
elaboration on PLAA, see Appendix B.

In Definition 5, we directly parameterize the PLAA model
directly with the attention matrix. In practice, however,
the attention matrix is typically computed by the interac-
tion between the position embeddings. Therefore, we con-
sider the PLAA models with the Absolute Position Embed-
ding (APE) and the Relative Position Embedding (RPE),
respectively. See Definitions 6 and 7. Note that we con-
sider Generalized RPE (GPRE) in Definition 7 because the
RPE can be seen as a special instance of the GRPE with
U = URPE = {D1, . . . , DN}, where Dk is a k-th upper
diagonal matrix such that (Dk)ij is 1 if j = i+ k − 1 and
0 otherwise. We seek a more general result applicable to all
similar parameterization methods to the RPE.

Definition 6 (PLAA with APE). A PLAA model with APE
is

fAPE
PLAA(x;P) = x⊺ (Mu

N ◦ P ⊺P) en(x),

6

Low-Dimension-to-High-Dimension Generalization And Its Implications for Length Generalization

where Mu
N ∈ RN×N is the upper triangle mask, i.e.,

(Mu
N)ij is 1 if i ≤ j and 0 otherwise, and P ∈ RdP×N

is the learnable parameter of the model.

Definition 7 (PLAA with GRPE). For U = {U1, . . . , Ur},
a PLAA moodel with GRPE is

fGRPE,U
PLAA (x; p) = x⊺

(
r∑

i=1

Uipi

)
en(x),

where Ui ∈ UN , i = 1, . . . , r are upper triangle matri-
ces that satisfy ⟨Ui, Ui⟩ = 1 for all i = 1, . . . , r and
(Ui)kl (Uj)kl = 0 for all i ̸= j and 1 ≤ k, l ≤ N , and
p = [p1, . . . , pr]

⊺ ∈ Rr is the learnable parameter.

Remark 2. The condition (Ui)kl (Uj)kl = 0 for all i ̸= j
and 1 ≤ k, l ≤ N in Definition 7 means each element in
the position-only attention is characterized by at most one
parameter. This condition generalizes the property of RPE
that Ai,j(i ≤ j) is only parameterized by pj−i.

For the PLAA model with APE, Theorem 3 shows that it
converges to the min-degree interpolator w.r.t. the linearly
independent set BPLAA

N .

Theorem 3. Define the set BPLAA
N as

BPLAA
N := {bPLAA

ij (x)}1≤i≤j≤N ,

where

bPLAA
ij (x) =

{
− 1−xj

2

∏N
k=j+1

1+xk

2 , i = j,

xi
1−xj

2

∏N
k=j+1

1+xk

2 , i < j.

Suppose that dP ≥ N . Let Pt(α) be the learnable pa-
rameter at the timestep t in the training process where the
learnable parameter P is initialized at P0(α) such that
P ⊺
0 (α)P0(α) = αIN (α > 0), and optimized with gradi-

ent descent/gradient flow under ℓ2 loss (denoted by L(P))
on XN0 . Define P∞(α) := limt→∞ Pt(α). Let GPLAA

N0,A∗ be
the set of all interpolators on XN0 for the concept c(x) =
fPLAA(x;A

∗). If L ((P∞(α)) = 0 for all 0 < α ≤ α0

(α0 > 0 is some constant) and P̂ := limα→0 P∞(α), then

fAPE
PLAA(x; P̂) = arg min

g∈GPLAA
N0,A∗

DegPBPLAA
N

(g).

For any function f that can be represented by a PLAA
model, there exists a matrix Af ∈ RN0×N0 such that
f(x) =

∑
1≤i≤j≤N0

Af
ijb

PLAA
ij (x) for all x ∈ XN0

. Con-
sequently, for fAPE

PLAA(x)(x; P̂) =
∑

1≤i≤j≤N Âijb
PLAA
ij (x),

we have Âij = 0 for all j ≥ i > N0. This implies that
the PLAA with APE cannot achieve LDHD generalization
for the concept c(x) = fPLAA(x;A

∗) if A∗
ij ̸= 0 for some

j ≥ i > N0, which partially explains the limitation of APE
for length generalization.

The PLAA with GRPE can overcome the aforementioned
limitation of the PLAA with APE in length generalization.

Theorem 4 characterizes that the PLAA with GRPE con-
verges to the interpolator that minimizes the degree-profile
w.r.t. the linearly independent set BGRPE,U

PLAA .

Theorem 4. For the U = {U1, . . . , Ur}, define

BGRPE,U
PLAA :=

 ∑
1≤i≤j≤N

(Uk)ijb
PLAA
ij (x)


1≤k≤r

.

Let pt be the learnable parameter at the timestep t in the
training process where the learnable parameter p is initial-
ized at p0 = 0 and optimized with gradient descent/gradient
flow under ℓ2 loss on XN0

. Let GGRPE,U
N0,p∗ be the set of all in-

terpolators on XN0
for the concept c(x) = fGRPE,U

PLAA (x; p∗).
Then we have, as t → ∞,

fGRPE,U
PLAA (x; pt) → arg min

g∈GGRPE,U
N0,p∗

DegPBGRPE,U
PLAA

(g).

With the inductive bias of the PLAA with GRPE, Corollary 2
states that LDHD generalization can be achieved if and only
if the target concept can be represented by the elements in
BGRPE,U

PLAA that have a dependence on XN0
.

Corollary 2. Consider the concept c(x) = fGRPE,U
PLAA (x; p∗):

r∑
k=1

ck
∑

1≤i≤j≤N

(Uk)ijb
PLAA
ij (x).

Under the conditions of Theorem 4, the PLAA with GRPE
achieves LDHD generalization from XN0

to XN if and only
if {

k | (Uk)[N0],[N0] = 0
}
⊆ {k | ck = 0} .

Remark 3. While the projection in the RFM and the position
embeddings in the PLAA may introduce an inductive bias
that benefits LDHD generalization, they can reduce the ex-
pressiveness of the models. The point is to align the models
with the concept class, incorporating a strong inductive bias
while maintaining sufficient expressiveness.

5. Further Implications
We discuss further implications of the LDHD generalization
perspective for practical length generalization techniques.

5.1. Chain-of-Thought for Length Generalization

While the Chain-of-Thought (CoT) can lead to more vari-
ety in the length of testing samples, it is widely used as an
effective technique to improve the length generalization in
various reasoning tasks. This seems contradictory if consid-
ered in the original space of the input sequence. However,
from the LDHD generalization perspective, we can see that
CoT intrinsically changes the underlying hidden space by

7

Low-Dimension-to-High-Dimension Generalization And Its Implications for Length Generalization

200 400 600 800 1000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(a)

200 400 600 800 1000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(b)

2500 5000 7500 10000 12500 15000 17500 20000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

RPE
RPE-Square

(c)

25000 50000 75000 100000 125000 150000 175000 200000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy accuracy

0-th
1-th
2-th
3-th
4-th
5-th

(d)

Figure 2. Length generalization of Transformer with RPE and RPE-Square in the unaligned copy and the URF addition tasks. Unaligned
Copy: Transformers with RPE (a) and RPE-Square (b) are trained on lengths 1–5 for 1000 steps and tested on lengths 1–10. While both
models generalize in-distribution, only RPE-Square achieves out-of-distribution generalization for lengths 6–10. URF Addition: Models
are trained on URF 4-addition and tested on URF 5-addition. (c) Both the models are trained for 20000 steps. The comparison result
shows that the RPE fails while the RPE-Square succeeds in achieving length generalization. (d) RPE-Square trained for 200,000 steps
achieves nearly perfect accuracy, with digitwise accuracy shown for each zk.

extending each dimension with a “middle” variable and
does not lead to the dimensional increase in the hidden
space. For example, consider the n-addition without CoT
and the n-addition with CoT. In the case without CoT, the
instance xn−1 . . . x0 + yn−1 . . . y0 = zn . . . z0 corresponds
to the latent state hn = [(x0, y0) , . . . , (xn−1, yn−1)] ∈ Σn

for Σ = {0, . . . , 9}2. In the case with CoT, one step of
predicting zt corresponds to the latent state

hn = [(x0, y0, z0) , . . . , (xt−1, yt−1, zt−1) ,

(xt, yt, ∗) . . . , (xn−1, yn−1, ∗)] ∈ Σ̄n

for Σ̄ = Σ × {∗, 0, . . . , 9}, where ∗ is a special element
indicating undetermined values. CoT does not cause the
LDHD generalization challenge but extends the domain Σ,
leading to a more easily learnable target concept.

5.2. Position Embeddings for Length Generalization

Position embeddings are considered closely related to the
length generalization in Transformers. Our analysis sug-
gests a principle for position embedding design: consider
the inherent LDHD generalization and the data format nui-
sance separately. To further elaborate, consider the length
generalization of the URF addition with CoT. While RPE
can capture the recursive structure of the addition problem
and could lead to LDHD generalization in the latent space
(Zhou et al., 2023; Jelassi et al., 2023), it fails to work for
the URF addition with CoT, due to the nuisance of the URF.

Following the principle, we design a novel position em-
bedding called RPE-Square to handle the nuisance of the
unaligned data format. On the one hand, we keep the RPE
structure for the inherent LDHD generalization. On the
other hand, we deal with the unalignment by considering
the distances to several special tokens (e.g., [BOS], +, and
=). These considerations lead to the RPE-Square, in which
we compute the relative values between the distances to the
special tokens. More concretely, the RPE-Squarei,j for the

query at j and the key at i is∑
1≤k≤j,1≤l≤i

exp ((WQxj)
⊺(WKxl))∑

1≤l′≤j exp ((WQxj)⊺(WKxl′))

× exp ((WQxi)
⊺(WKxk))∑

1≤k′≤i exp ((WQxi)⊺(WKxk′))
R(j−l)−(i−k),

where WQ and WK are the weight matrices for the
query and the key, respectively. We replace RPEj−i with
RPE-Squarei,j in the Transformer.

RPE-Square incorporates prior knowledge of LDHD gen-
eralization and unaligned data formats by combining RPE
with a mechanism to handle unaligned formats. The posi-
tion embedding for a query j and a key i is determined
by the relative distance of relative distances–the differ-
ence between the relative distance of j to the position of
some token xl, and i to the position of some token xk, pa-
rameterized by R(j−l)−(i−k). This design, which inspires
the name RPE-Square, uses a weighted average over all
1 ≤ l ≤ j, 1 ≤ k ≤ i, where the weights are derived
from the product of attention scores between xj and xl, and
xi and xk. This approach enables automatic learning of
special tokens and is particularly suited for tasks involv-
ing unaligned data formats, such as URF addition. Further
illustration is provided in Appendix D.1.

We compare the length generalization performance of RPE
and RPE-Square in two tasks: Unaligned Copy and URF
Addition. In the unaligned copy, the input is a string whose
length is not aligned to a fixed length, and the target is
one copy of the input string. An unaligned copy instance
of scale n is like “[BOS] x0 . . . xn−1 = x0 . . . xn−1 [EOS]”.
The URF addition is illustrated in Example 1. To examine
length generalization, the models are trained only on small-
scale instances but evaluated on instances of larger scales.
More details of the experiments are in Appendix D.2. The
experiment results are presented in Figure 2. In the experi-
ments, RPE-Square, the position embedding derived accord-
ing to the LDHD generalization perspective, can achieve

8

Low-Dimension-to-High-Dimension Generalization And Its Implications for Length Generalization

length generalization in both tasks, while RPE fails. The ex-
periment shows that RPE-Square effectively improves over
RPE in handling the unalignment in the data format.

6. Conclusion and Discussion
We propose the LDHD generalization perspective for length
generalization, which disentangles the problem into two as-
pects: LDHD generalization in the latent space and handling
data format nuisances. From this perspective, we introduce
the No-Free-Lunch Theorem of LDHD generalization, high-
lighting the necessity of inductive bias for achieving length
generalization. Using Boolean functions, we investigate the
inductive biases of different model architectures trained with
(S)GD and how these inductive biases contribute to LDHD
generalization. Our perspective on LDHD generalization
further elucidates the role of CoT and leads to the principle
of position embedding design in length generalization.

For future work, while our theory is established with sim-
plified models, it is crucial to investigate inductive bias in
more practical and complex models. Additionally, develop-
ing a paradigm for position embedding design based on the
proposed principles is a valuable avenue.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements
Z. Lin and Y. Liang were supported by National Key R&D
Program of China (2022ZD0160300). Z. Lin was also sup-
ported by the NSF China (No. 62276004). Y. Liang was
additionally supported by CCF Baidu Open Fund.

References
Abbe, E., Bengio, S., Lotfi, A., and Rizk, K. Generalization

on the unseen, logic reasoning and degree curriculum.
In International Conference on Machine Learning, pp.
31–60. PMLR, 2023.

Ahuja, K. and Mansouri, A. On provable length and compo-
sitional generalization. arXiv preprint arXiv:2402.04875,
2024.

Anil, C., Wu, Y., Andreassen, A., Lewkowycz, A., Misra,
V., Ramasesh, V., Slone, A., Gur-Ari, G., Dyer, E., and
Neyshabur, B. Exploring length generalization in large
language models. Advances in Neural Information Pro-
cessing Systems, 35:38546–38556, 2022.

Bartlett, P. L., Montanari, A., and Rakhlin, A. Deep learning:
a statistical viewpoint. Acta numerica, 30:87–201, 2021.

d’Ascoli, S., Bengio, S., Susskind, J., and Abbé, E. Bool-
former: Symbolic regression of logic functions with trans-
formers. arXiv preprint arXiv:2309.12207, 2023.

Feng, G., Zhang, B., Gu, Y., Ye, H., He, D., and Wang, L.
Towards revealing the mystery behind chain of thought: a
theoretical perspective. Advances in Neural Information
Processing Systems, 36, 2024.

Frieder, S., Pinchetti, L., Griffiths, R.-R., Salvatori, T.,
Lukasiewicz, T., Petersen, P. C., Chevalier, A., and
Berner, J. Mathematical capabilities of ChatGPT. arXiv
preprint arXiv:2301.13867, 2023.

Garcez, A. d., Bader, S., Bowman, H., Lamb, L. C., de Pen-
ning, L., Illuminoo, B., Poon, H., and Zaverucha, C. G.
Neural-symbolic learning and reasoning: A survey and in-
terpretation. Neuro-Symbolic Artificial Intelligence: The
State of the Art, 342(1):327, 2022.

Gunasekar, S., Woodworth, B. E., Bhojanapalli, S.,
Neyshabur, B., and Srebro, N. Implicit regularization
in matrix factorization. Advances in neural information
processing systems, 30, 2017.

Huang, X., Yang, A., Bhattamishra, S., Sarrof, Y., Krebs,
A., Zhou, H., Nakkiran, P., and Hahn, M. A formal
framework for understanding length generalization in
transformers. arXiv preprint arXiv:2410.02140, 2024.

Jelassi, S., d’Ascoli, S., Domingo-Enrich, C., Wu, Y., Li,
Y., and Charton, F. Length generalization in arithmetic
transformers. arXiv preprint arXiv:2306.15400, 2023.

Kazemnejad, A., Padhi, I., Natesan Ramamurthy, K., Das,
P., and Reddy, S. The impact of positional encoding on
length generalization in transformers. Advances in Neural
Information Processing Systems, 36, 2024.

Lee, N., Sreenivasan, K., Lee, J. D., Lee, K., and Papail-
iopoulos, D. Teaching arithmetic to small transformers.
arXiv preprint arXiv:2307.03381, 2023.

McLeish, S., Bansal, A., Stein, A., Jain, N., Kirchenbauer,
J., Bartoldson, B., Kailkhura, B., Bhatele, A., Geiping,
J., Schwarzschild, A., et al. Transformers can do arith-
metic with the right embeddings. Advances in Neural
Information Processing Systems, 37, 2024.

Neyshabur, B. Implicit regularization in deep learning.
arXiv preprint arXiv:1709.01953, 2017.

O’Donnell, R. Analysis of boolean functions. Cambridge
University Press, 2014.

9

Low-Dimension-to-High-Dimension Generalization And Its Implications for Length Generalization

OpenAI. ChatGPT. https://chat.openai.com,
2023a.

OpenAI. GPT-4 technical report. arXiv preprint
arXiv:2303.08774, 2023b.

Press, O., Smith, N. A., and Lewis, M. Train short, test
long: Attention with linear biases enables input length
extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Razin, N. and Cohen, N. Implicit regularization in deep
learning may not be explainable by norms. Advances in
neural information processing systems, 33:21174–21187,
2020.

Razin, N., Maman, A., and Cohen, N. Implicit regulariza-
tion in tensor factorization. In International Conference
on Machine Learning, pp. 8913–8924. PMLR, 2021.

Shaw, P., Uszkoreit, J., and Vaswani, A. Self-attention
with relative position representations. arXiv preprint
arXiv:1803.02155, 2018.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y.
Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024.

Teney, D., Nicolicioiu, A. M., Hartmann, V., and Abbas-
nejad, E. Neural redshift: Random networks are not
random functions. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
4786–4796, 2024.

Valmeekam, K., Marquez, M., Sreedharan, S., and Kamb-
hampati, S. On the planning abilities of large language
models-a critical investigation. Advances in Neural Infor-
mation Processing Systems, 36:75993–76005, 2023.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
et al. Transformers: State-of-the-art natural language
processing, 2020.

Wolpert, D. H. The supervised learning no-free-lunch theo-
rems. Soft computing and industry: Recent applications,
pp. 25–42, 2002.

Wolpert, D. H. and Macready, W. G. No free lunch theo-
rems for optimization. IEEE transactions on evolutionary
computation, 1(1):67–82, 1997.

Xiao, C. and Liu, B. Conditions for length general-
ization in learning reasoning skills. arXiv preprint
arXiv:2311.16173, 2023.

Zhang, S., Chen, Z., Shen, Y., Ding, M., Tenenbaum, J. B.,
and Gan, C. Planning with large language models for code
generation. In The Eleventh International Conference on
Learning Representations, 2022a.

Zhang, Y., Backurs, A., Bubeck, S., Eldan, R., Gu-
nasekar, S., and Wagner, T. Unveiling transformers
with lego: a synthetic reasoning task. arXiv preprint
arXiv:2206.04301, 2022b.

Zhao, Z., Lee, W. S., and Hsu, D. Large language models as
commonsense knowledge for large-scale task planning.
In RSS 2023 Workshop on Learning for Task and Motion
Planning, 2023.

Zhou, H., Bradley, A., Littwin, E., Razin, N., Saremi, O.,
Susskind, J., Bengio, S., and Nakkiran, P. What algo-
rithms can transformers learn? a study in length general-
ization. arXiv preprint arXiv:2310.16028, 2023.

Zhou, Y., Alon, U., Chen, X., Wang, X., Agarwal, R., and
Zhou, D. Transformers can achieve length generalization
but not robustly. arXiv preprint arXiv:2402.09371, 2024.

10

https://chat.openai.com

Low-Dimension-to-High-Dimension Generalization And Its Implications for Length Generalization

A. Background on Boolean Analysis
In this section, we include a brief background on Boolean analysis essential to this work. We refer to O’Donnell (2014) for
further details and comprehensive coverage of Boolean analysis.

Fourier Expansion. A Boolean function f : {−1, 1}n 7→ R can always be represented by

f(x) =
∑

T⊂[n]

f̂(T)χT (x), (1)

where χT (x) = πi∈[T]xi. The polynomial in (1) is called the Fourier expansion of the Boolean function f . The number
f̂(T) is the Fourier coefficient of f on T . The set {χT (x)}T⊂[n] forms a basis, named Fourier basis, for the product space
w.r.t the inner product defined by

⟨f, g⟩ = Ex∼U({−1,1}n) [f(x)g(x)] .

Degree and Degree Profile. The degree of a Boolean function f is the degree of its Fourier expansion, which is a polynomial.
The degree profile of f , denoted by DegP(f), is a (n+ 1)-tuple where DegPi(f) =

∑
T⊂[n],|T |=n+1−i f̂

2(T). The order
between two degree profiles is lexicographic. The degree profile can be roughly seen as the distribution of the degrees
of the monomials in the polynomial. Intuitively, the degree profile reflects the “complexity” of the Boolean function. A
lower-degree-profile Boolean function uses fewer variables or combines them more simply than a higher-degree-profile one.

B. Detailed Explanation of PLAA
In this section, we illustrate how PLAA and its variants abstract the effect of position embedding on the LDHD generalization
of decoder-only Transformers.

B.1. Construction of PLAA

A typical linear attention at query n can be expressed as

fLA (x;WQ,WK ,WV , B) =
∑
i≤n

[(WQxn)
⊺
(WKxi) +Bi,n]WV xi, (2)

where WQ,WK ,WV are the query, key, value matrices, respectively, and B ∈ RN×N is the position bias. To focus on the
impact of the position embeddings, we fix WV = I and consider position-only attention score. Then we have

fPLA (x;B) =
∑
i≤n

Bi,nxi =
∑
i≤n

e⊺i Benxi.

Rewriting B as A and restricting A to an upper triangular matrix, we have

fPLA (x;A) =

n∑
i=1

e⊺i Aenxi = x⊺Aen, where A ∈ UN .

In the computation of attention, the query position is asymmetric to other positions and can reflect the scale of the instance.
To formalize the intuition, we introduce the notation n(x) := argmaxi∈[N]{xi = −1}, which represents the last dimension
where xi = −1. In the LDHD generalization framework, n(x) can be interpreted as the lowest dimension of the subspaces
containing x, reflecting the dimension of x. We take n(x) as the query position of x. Specifically, when x is all-ones, it is
treated as an ”empty” sequence. In this case, we fix its output to align with the definition of PLAA. By the above derivation,
we obtain Definition 5.

B.2. Construction of PLAA with APE

The expression of the linear attention with APE is slightly different from (2). In practice, APE is commonly added to the
token embeddings. Therefore, we omit the position bias and add APE to each xi when computing the attention score (we
slightly abuse the notation of xi to denote the token embedding), i.e.,

fAPE
LA

(
x;WQ,WK ,WV , {pi}i∈[N]

)
=
∑
i≤n

[WQ (xn + pn)]
⊺
[WK (xi + pi)]WV xi,

11

Low-Dimension-to-High-Dimension Generalization And Its Implications for Length Generalization

where pi is the position embedding for the position i.

Similar to the derivation in Appendix B.1, we have

fAPE
PLAA (x;WQ,WK) =

∑
i≤n(x)

p⊺n(x)W
⊺
QWKpixi =

∑
i≤n(x)

e⊺n(x)P
⊺W ⊺

QWKPeixi,

where P is the learnable position embedding matrix such that pi = Pei for all i ∈ [N]. Without loss of generality, we
absorb the learnable parameters WQ,WK into P , obtaining

fAPE
PLAA (x;P) =

∑
i≤n

x⊺
i e

⊺
i P

⊺Pen(x) = x⊺ (Mu
N ◦ P ⊺P) en(x).

B.3. Construction of PLAA with GRPE

RPE can be seen as a reparameterization of the position bias matrix such that the entries on the same diagonals share
learnable parameters, i.e.,

B =

N∑
i=1

Dipi,

where Dk is the k-th upper diagonal matrix and pi is the learnable parameter for all 1 ≤ k ≤ N .

We generalize RPE so that our model can cover more general position biases. A natural extension is to choose general
upper triangular matrices, denoted by UGRPE = {U1, . . . , Ur}, instead of URPE = {D1, . . . , DN}. To normalize, we suppose
⟨Ui, Ui⟩ = 1 for all i = 1, . . . , r. (This condition does not hold for URPE. We can slightly modify the matrices by replacing
Dk with 1

N+1−kDk to satisfy the condition.) We further require (Ui)kl(Uj)kl = 0 for all i ̸= j and 1 ≤ k, l ≤ N , i.e., each
Bi,j is characterized by at most one learnable parameter. Using the reparameterization

B =

r∑
i=1

Uipi

in the derivation of PLAA, we obtain PLAA with GRPE in Definition 7.

C. Proofs
C.1. Proof for Theorem 1

Let D1 := D (XN | x ∈ XN0
) be the conditional distribution given that x ∈ XN0

and D2 := D (XN | x ̸∈ XN0
) be the

conditional distribution given that x ̸∈ XN0∑
f∈F/

(
c1|XN0

)Ex∼D(XN) [ℓ (c1(x), f(x))]

=PD(XN)(x ∈ XN0
)

∑
f∈F/

(
c1|XN0

)Ex∼D1
[ℓ (c1(x), f(x))]

+ PD(XN)(x ̸∈ XN0
)

∑
f∈F/

(
c1|XN0

)Ex∼D2
[ℓ (c1(x), f(x))]

=PD(XN)(x ∈ XN0
)V1(c1) + PD(XN)(x ̸∈ XN0

)V2(c1),

where
V1(c) :=

∑
f∈F/

(
c|XN0

)Ex∼D1
[ℓ (c(x), f(x))] ,

V2(c) :=
∑

f∈F/
(
c|XN0

)Ex∼D2 [ℓ (c(x), f(x))] .

12

Low-Dimension-to-High-Dimension Generalization And Its Implications for Length Generalization

Similarly, we have∑
f∈F/

(
c2|XN0

)Ex∼D(XN) [ℓ (c2(x), f(x))] = PD(XN)(x ∈ XN0)V1(c2) + PD(XN)(x ̸∈ XN0)V2(c2).

To prove the theorem, it remains to show that V1(c1) = V1(c2) and V2(c1) = V2(c2).

By the definition of F/
(
c|XN0

)
, we have

V1(c1) =
∑

f∈F/
(
c1|XN0

)Ex∼D1
[ℓ (c1(x), f(x))]

=
∑

f∈F/
(
c1|XN0

)Ex∼D1
[ℓ (c1(x), c1(x))]

(a)
=

∑
f∈F/

(
c2|XN0

)Ex∼D1 [ℓ (c2(x), c2(x))]

=
∑

f∈F/
(
c2|XN0

)Ex∼D1
[ℓ (c2(x), f(x))] = V1(c2),

where the equality (a) is due to that c1(x) = c2(x) for all x ∈ XN0 .

By the no-free-lunch theorem (Wolpert & Macready, 1997; Wolpert, 2002) for XN \ XN0 , Y , and FXN\XN0
,Y , we have∑

f∈FXN\XN0
,Y

Ex∼D2
[ℓ (c1(x), f(x))] =

∑
f∈FXN\XN0

,Y

Ex∼D2
[ℓ (c2(x), f(x))] .

Then we have
V2(c1) =

∑
f∈F/

(
c1|XN0

)Ex∼D2
[ℓ (c1(x), f(x))]

=
∑

f∈FXN\XN0
,Y

Ex∼D2
[ℓ (c1(x), f(x))]

=
∑

f∈FXN\XN0
,Y

Ex∼D2 [ℓ (c2(x), f(x))]

=
∑

f∈F/
(
c2|XN0

)Ex∼D2
[ℓ (c2(x), f(x))] = V2(c2).

C.2. Proof for Theorem 2

Let z = z(x) = Proj(x, V) and ZN0
= {Proj(x, V) | x ∈ XN0

}. Let G′
N0,c

be the set of all RFM interpolators on ZN0
for

the concept c(z), i.e.,
G′
N0,c = {fRFM(z; a) | fRFM(z; a) = c(z) for all z ∈ ZN0

},

where

fRFM(z; a) =
1√
K

K∑
k=1

akσ(⟨wk, z⟩+ bk).

According to the proof of Theorem 3.8 in Abbe et al. (2023), the RFM model fRFM(z; a) converges to the min-degree
interpolator (w.r.t. the variable z) in G′

N0,c
, i.e.,

fRFM(z; at) → argmin
g′∈G′

N0,c

DegPB′(g′), as K → ∞, t → ∞,

13

Low-Dimension-to-High-Dimension Generalization And Its Implications for Length Generalization

where B′ = {χT (z)}T⊆[r].

By the definition of z = z(x) = Proj(x, V), we have

fV,K
RFMP(x; at) = fRFM(z; at) → argmin

g′∈G′
N0,c

DegPB′(g′) = arg min
g∈GN0,c,V

DegPB(V)(g),

as K → ∞, t → ∞.

C.3. Proof for Corollary 1

Lemma 1. For any f ∈ F , the min-degree interpolator f∗ on XN0
satisfies I(f∗) ⊂ [N0].

Proof for Lemma 1. Assume that there exist some f ∈ F such that the min-degreee interpolator f̂ of f on XN0
does not

satisfy I(f̂) ⊂ [N0].

Let f̃(x) be the function constructed by fixing all xi, i ̸∈ [N0] to 1 in f̂(x). By the construction, we have f̃(x) = f̂(x) for
all x ∈ XN0

and thus f̃(x) is also an interpolator of f on XN0
.

Since I(f̂) ̸⊂ [N0], we have DegP(f̃) < DegP(f̂). This contradicts the assumption that f̂ is the min-degree interpolator.

By Lemma 1, for any f ∈ F such that I(f) ̸⊂ [N0], the min-degreee interpolator f̂ is not identical to f on XN and thus
does not achieves LDHD generalization from XN0

to XN .

C.4. Proof for Theorem 3

Let U(XN0) be the uniform distribution over XN0 . The loss function is

L(P) = Ex∼U(XN0)

[
1

2

(
fAPE

PLAA(x;P)− fPLAA(x;A
∗)
)2]

= Ex∼U(XN0)

[
1

2

(
x⊺ (Mu

N ◦ P ⊺P) en(x) − x⊺A∗en(x)
)2]

= Ex∼U(XN0)

[
1

2

(〈
xe⊺n(x),M

u
N ◦ P ⊺P

〉
−
〈
xe⊺n(x), A

∗
〉)2]

(a)
= Ex∼U(XN0)

[
1

2

(〈
xe⊺n(x),M

u
N ◦ P ⊺P

〉
−
〈
xe⊺n(x),M

u
NA∗

〉)2]
= Ex∼U(XN0)

[
1

2

(〈
Mu

N ◦ xe⊺n(x), P
⊺P −A∗

〉)2]
,

where (a) follows from the fact that A∗ is upper triangular.

Lemma 2. For any matrix Z ∈ RN×N , it holds that

Ex∼U(XN0)

[
1

2

(〈
Mu

N ◦ xe⊺n(x), Z
〉)2]

=
1

2
∥QN0

◦ Z∥2F ,

where

QN0 =



2−
N0
2 · · · · · · 2−

1
2 0 · · · 0

0 2−
N0−1

2 · · · 2−
1
2 0 · · · 0

...
. . .

. . . 2−
1
2 0 · · · 0

0 · · · 0 2−
1
2 0 · · · 0

0 · · · · · · 0 0 · · · 0
...

...
...

... 0 · · · 0
0 · · · 0 0 0 · · · 0


∈ RN×N ,

14

Low-Dimension-to-High-Dimension Generalization And Its Implications for Length Generalization

that is,

(QN0
)ij =

{
2

N0−j+1
2 , 1 ≤ i ≤ j ≤ N0,

0, otherwise.

Proof for Lemma 2. Note that

Ex∼U(XN0)

[
1

2

(〈
Mu

N ◦ xe⊺n(x), Z
〉)2]

=
1

2N0

N0∑
k=1

∑
x:n(x)=k

1

2
(⟨Mu

N ◦ xe⊺k, Z⟩)2

=
1

2N0

N0∑
k=1

∑
x:n(x)=k

1

2

(
k−1∑
i=1

xiZik − Zkk

)2

=
1

2N0

N0∑
k=1

∑
x:n(x)=k

1

2

k∑
i=1

Z2
ik

(a)
=

1

2N0

N0∑
k=1

2k−1

2

k∑
i=1

Z2
ik

=
1

2

N0∑
k=1

k∑
i=1

(
2−

N0−k+1
2 Zik

)2
=

1

2
∥QN0

◦ Z∥2F ,

where (a) follows from the fact that |{x | n(x) = k}| = 2k−1.

According to Lemma 2, we have

L(P) =
1

2
∥QN0 ◦ (P ⊺P −A∗)∥2F . (3)

For any 0 < α ≤ α0, we have L (P∞(α)) = 0 and thus

(Mu
N ◦ P∞(α)⊺P∞(α))[N0],[N0]

= A∗
[N0],[N0]

. (4)

Let pi ∈ RdP denote the i-th column of P . According to (3), we have

∂L

∂pi
= 0,

for all i = N0 + 1, . . . , N . Therefore, (pi)t = (pi)0 for all t and i = N0 + 1, . . . , N .

Define

Ã∗ :=

{
(A∗)ij , 1 ≤ i ≤ j ≤ N0,

0, otherwise.

Let pαi be the i-th column of P∞(α). We have∥∥∥Mu
N ◦ P ⊺

∞(α)P∞(α)− Ã∗
∥∥∥2
F
=

∑
1≤i≤j≤N

(
(pαi)

⊺
pαj − Ã∗

ij

)2
(a)
=

N∑
j=N0+1

j∑
i=1

(
(pαi)

⊺
pαj
)2

≤
N∑

j=N0+1

j∑
i=1

∥pαi ∥
2
2

∥∥pαj ∥∥22
=

N∑
j=N0+1

N0∑
i=1

∥pαi ∥
2
2

∥∥pαj ∥∥22 + N∑
j=N0+1

j∑
i=N0+1

∥pαi ∥
2
2

∥∥pαj ∥∥22 .
15

Low-Dimension-to-High-Dimension Generalization And Its Implications for Length Generalization

where (a) follows from (4) and the definition of Ã∗.

Note that ∥pαi ∥
2
2 = A∗

ii ≤ ∥A∗∥∞ for all 1 ≤ i ≤ N0 and ∥pαi ∥
2
2 = α for all N0 + 1 ≤ i ≤ N . Then we have

0 ≤
∥∥∥Mu

N ◦ P ⊺
∞(α)P∞(α)− Ã∗

∥∥∥2
F
≤ N(N −N0)α ∥A∗∥∞ +

(N −N0 + 1)(N −N0)

2
α2.

As α → 0, we have

0 ≤
∥∥∥Mu

N ◦ P̂ ⊺P̂ − Ã∗
∥∥∥2
F
≤ 0,

which means Mu
N ◦ P̂ ⊺P̂ = Ã∗.

It remains to show that fAPE
PLAA(x; P̂) is the min-degree interpolator w.r.t. BPLAA

N on XN0 . Notice that

bPLAA
ij (x) =

〈
xe⊺n(x), Eij

〉
.

Then we have
fAPE

PLAA(x; P̂) =
∑

1≤i≤j≤N

Ã∗
ijb

PLAA
ij (x) =

∑
1≤i≤j≤N0

A∗
ijb

PLAA
ij (x).

For any g =
∑

1≤i≤j≤N Aijb
PLAA
ij (x) ∈ GPLAA

N0,A∗ , we have Aij = A∗
ij for all 1 ≤ i ≤ j ≤ N0. Since A2

ij ≥ Ã2
ij for all

1 ≤ i ≤ j ≤ N , we have

DegPBPLAA
N

(
fAPE

PLAA(x; P̂)
)
≤ DegPBPLAA

N
(g) .

Hence, fAPE
PLAA(x; P̂) is the min-degree interpolator w.r.t. BPLAA

N on XN0
.

C.5. Proof for Theorem 4

Note that

fGRPE,U
PLAA (x; p) = x⊺

(
r∑

k=1

pkUk

)
en(x) =

〈
xe⊺n(x),

r∑
k=1

pkUk

〉
.

Let DN0 be the size of the training set in XN0 . Then the loss can be represented as

L(p) =
1

2DN0

∑
x∈XN0

(〈
xe⊺n(x),

r∑
k=1

pkUk

〉
− c∗(x)

)2

.

Without loss of generality, we use the notation of gradient flow in this proof. Then we have

Ȧ = − 1

DN0

∑
x∈XN0

(〈
xe⊺n(x), A

〉
− c∗(x)

) r∑
k=1

〈
xe⊺n(x), Uk

〉
Uk.

Since p(0) = 0, we have A(0) = 0 and thus A(t) ∈ span
{∑r

k=1

〈
xe⊺n(x), Uk

〉
Uk

}
x∈XN0

. Then the convergence point Â

can be represented as Â =
∑

x∈XN0
â(x)

∑r
k=1

〈
xe⊺n(x), Uk

〉
Uk. The convergence function f̂ is

f̂(x) =
∑

x′∈XN0

â(x′)

r∑
k=1

〈
x′e⊺n(x′), Uk

〉〈
xe⊺n(x), Uk

〉

=

r∑
k=1

∑
x′∈XN0

â(x′)
〈
x′e⊺n(x′), Uk

〉〈
xe⊺n(x), Uk

〉
16

Low-Dimension-to-High-Dimension Generalization And Its Implications for Length Generalization

Lemma 3. For any upper triangle matrix U ∈ RN×N , we have

⟨xe⊺n(x), U⟩ =
∑

1≤i≤j≤N

Uijb
PLAA
ij (x).

Proof for Lemma 3. We first prove that ⟨xe⊺n(x), Emn⟩ = bPLAA
ij (x) for any 1 ≤ i ≤ j ≤ N . Notice that

⟨xe⊺n(x), Eij⟩ =

{
xi xj = −1 ∧ xj+1 = 1 ∧ · · · ∧ xN = 1,

0 otherwise.

Therefore, we have

⟨xe⊺n(x), Eij⟩ = xi ·
1− xj

2
· 1 + xj+1

2
· · · · · 1 + xN

2

=

{
− 1−xj

2

∏N
k=j+1

1+xk

2 , i = j,

xi
1−xj

2

∏N
k=j+1

1+xk

2 , i < j.

= bPLAA
ij (x).

For any upper triangle matrix U =
∑

1≤i≤j≤N UijEij , we have

⟨xe⊺n(x), U⟩ = ⟨xe⊺n(x),
∑

1≤i≤j≤N

UijEij⟩ =
∑

1≤i≤j≤N

Uij⟨xe⊺n(x), Eij⟩ =
∑

1≤i≤j≤N

Uijb
PLAA
ij (x).

Define bk(x) := ⟨xe⊺n(x), Uk⟩. By Lemma 3, we have bk(x) =
∑

1≤i≤j≤N (Uk)ijb
PLAA
ij (x). Then the convergence function

f̂ can be represented as

f̂(x) =

r∑
k=1

∑
x′∈XN0

â(x′)bk(x
′)bk(x) =

r∑
k=1

p̂kbk(x),

where p̂k =
∑

x′∈XN0
â(x′)bk(x

′).

For any interpolator g(x) =
∑r

k=1 pkbk(x) on XN0
:

• If bk(x) = 0 for all x ∈ XN0
, we have p̂k = 0 and p2k ≥ 0 = p̂2k;

• If bk(x) ̸= 0 for some x ∈ XN0
, we have p̂k = pk and thus p̂2k = p2k. To show this, without loss of generality, we suppose

that for 1 ≤ k ≤ m, there exists some x ∈ XN0
such that bk(x) ̸= 0, and for m+ 1 ≤ k ≤ r, bk(x) = 0 for all x ∈ XN0

.
It suffices to show that the following equation has a unique solution: b1(x1) . . . bm(x1)

...
...

...
b1(xM) . . . bm(xM)


 p1...
pm

 =

 c∗(x1)
...

c∗(xM)

 ,

where M = |XN0
| and XN0

= {x1, . . . , xM}. Since p1 = p̂1, . . . , pm = p̂m is a solution, it remains to prove the
uniqueness. Let

Bm =

 b1(x1) . . . bm(x1)
...

...
...

b1(xM) . . . bm(xM)

 .

It suffices to show rank(Bm) = m. Note that (B⊺
mBm)ii =

∑
x∈XN0

bi(x)
2 > 0 and (B⊺

mBm)ij =∑
x∈XN0

bi(x)bj(x) = 0. We have rank(B⊺
mBm) = m and thus rank(Bm) = m.

17

Low-Dimension-to-High-Dimension Generalization And Its Implications for Length Generalization

Hence, for any interpolator g on XN0
, we have

DegPBGRPE,U
PLAA

(f̂) ≤ DegPBGRPE,U
PLAA

(g),

or equivalently,

fGRPE,U
PLAA (x; pt) → arg min

g∈GGRPE,U
N0,p∗

DegPBGRPE,U
PLAA

(g), as t → ∞.

C.6. Proof for Corollary 2

By Theorem 4, the PLAA with GRPE achieves LHDH generalization from XN0 to XN if and only if the target concept
c(x) is the min-degree interpolator w.r.t. the linearly independent set BGRPE,U

PLAA . Therefore, it is equivalent to prove the target
concept c(x) is the min-degree interpolator w.r.t. the linearly independent set BGRPE,U

PLAA if and only if{
k | (Uk)[N0],[N0] = 0

}
⊆ {k | ck = 0} .

We denote
{
k | (Uk)[N0],[N0] = 0

}
by K1 and {k | ck = 0} by K2 in this proof.

We first show the sufficiency. Assume that c(x) is not the min-degree interpolator w.r.t. the linearly independent set BGRPE,U
PLAA

on XN0 . In other words, there exists an interpolator c̃(x) =
∑r

k=1 c̃k
∑

1≤i≤j≤N (Uk)ijb
PLAA
ij (x) on XN0 such that

DegPBGRPE,U
PLAA

(c̃) < DegPBGRPE,U
PLAA

(c).

Since both c(x) and c̃(x) are interpolators on XN0
, we have

r∑
k=1

ck(Uk)[N0],[N0] =

r∑
k=1

c̃k(Uk)[N0],[N0],

or equivalently, ∑
k ̸∈K1

ck(Uk)[N0],[N0] =
∑
k ̸∈K1

c̃k(Uk)[N0],[N0].

Since (Ui)kl(Uj)kl = 0 for all i ̸= j and 1 ≤ k, l ≤ N , we have
{
(Uk)[N0],[N0]

}
k ̸∈K are linearly independent. This implies

ck = c̃k for all k ̸∈ K1.

Since K1 ⊆ K2, we have ck = 0 and thus c2k ≤ c̃2k for all k ∈ K1. Hence, we have

DegPBGRPE,U
PLAA

(c) ≤ DegPBGRPE,U
PLAA

(c̃),

which contradicts the assumption.

We then prove the necessity. Assume that K1 ̸⊆ K2. Then there exists some k0 ∈ K1 but k0 ̸∈ K2. Define ˜̃c(x) =∑r
k=1

˜̃ck
∑

1≤i≤j≤N (Uk)ijb
PLAA
ij (x) where

˜̃ck =

{
0, k = k0,

ck, k ̸= k0.

By the definition of K1, ˜̃c(x) = c(x) for all x ∈ XN0 and thus ˜̃c(x) is also an interpolator on X0. Note that ck0 ̸= 0. By the
definition of ˜̃c(x), we have

DegPBGRPE,U
PLAA

(˜̃c) ≤ DegPBGRPE,U
PLAA

(c),

which contradicts that the target concept c(x) is the min-degree interpolator w.r.t. the linearly independent set BGRPE,U
PLAA on

XN0 .

18

Low-Dimension-to-High-Dimension Generalization And Its Implications for Length Generalization

D. Experiments
D.1. Detailed Explanation of RPE-Square

The design of RPE-Square follows the principle: when devising position embeddings for length generalization, one needs to
consider both the LDHD generalization in the latent space and the nuisance of the data format in the input sequence space.
This principle is derived from the LDHD generalization perspective for length generalization, illustrating the insights of
LDHD generalization for practical models.

To further elaborate, we show how RPE-Square is constructed in the guidance of the proposed principle to achieve length
generalization of the URF addition (with CoT).

• LDHD generalization in the latent space. For the addition, the LDHD generalization in the latent space can be handled
by RPE.

• The data format nuisance of URF. To handle the data format, we need to consider the
mapping between a latent variable and its URF string, i.e., how the latent variable hn =
[(x0, y0, z0), . . . , (xt−1, yt−1, zt−1), (xt, yt, ∗), . . . , (xn−1, yn−1, ∗)] can be recovered from the corresponding
URF string “[BOS]x0 . . . xnx−1 + y0 . . . yny−1 = z0 . . . zt−1” (to predict zt). The URF mapping can be described as
follows: concatenate “[BOS]”, the first elements of the dimensions (up to the “highest” nonzero element), a “+”, the
second elements of the dimensions (up to the “highest” nonzero element), a “=”, and the third elements of the dimensions
(up to the “highest” non-“*” element).

According to the URF mapping, we notice that the “position” of an element in the latent variable can be identified by its
relative distances to “[BOS]”, “+”, and “=”. (Here, the relative distance from the position i to the position j is i − j.).
Denote the tuple of the relative distances from some token s to “[BOS]”, “+”, “=” by (n1(s), n2(s), n3(s)). Then we have

s =


xn1(s)−1, n1(s) > 0, n2(s) < 0, n3(s) < 0,

yn2(s)−1, n1(s) > 0, n2(s) > 0, n3(s) < 0,

zn3(s)−1, n1(s) > 0, n2(s) > 0, n3(s) > 0.

Note that zk can be determined by xk−1, xk, yk−1, yk, and zk (we ignore the boundary cases in this discussion for
simplicity). To predict the next token of some s where n1(s) > 0, n2(s) > 0, n3(s) > 0, we need to identify the elements
s1, s2, s3, s4, s5 such that 

n1(s1) = n3(s)− 1, n2(s1) < 0, n3(s1) < 0,
n1(s2) = n3(s), n2(s2) < 0, n3(s2) < 0,

n2(s3) = n3(s)− 1, n1(s3) > 0, n3(s3) < 0,
n2(s4) = n3(s), n1(s4) > 0, n3(s4) < 0,

n3(s5) = n3(s)− 1, n1(s5) > 0, n2(s5) > 0.

Therefore, to address the URF data format nuisance, the position embedding can consider the relative distances to some
tokens.

D.2. Experiment Details

D.2.1. UNALIGNED COPY

An instance of the unaligned copy task is like

b x0 . . . xn−1 = x0 . . . xn−1 e.

The model is given the input bx0 . . . xn−1 = and expected to output the copy of x0 . . . xn−1. We use “b” and “e” instead of
“[BOS]” and “[EOS]” for a simpler implementation with the GPT-2 tokenizer.

We sample 2000 n-length instances for each n = 1, . . . , 5 as the training data. In the evaluation, we examine the learned
models on instances of length 1 − 10. We train GPT-2 with key-only RPE and RPE-Square, respectively. The model is
trained by AdamW with the cosine scheduler, where the initial learning rate is 0.0005, the weight decay is 1.0, the warmup
ratio is 0.05, the gradient accumulation step is 2, and the per-device training batch size is 256. We set the training steps to

19

Low-Dimension-to-High-Dimension Generalization And Its Implications for Length Generalization

10000 but early stop at step 1000 as the model with RPE-Square has achieved nearly perfect length generalization while the
model with RPE shows almost no length generalization then.

From the perspective of LDHD generalization, the latent variable corresponding to the input bx0 . . . xn−1 = x0 . . . xk is

[(x0, x0), . . . , (xk, xk), (xk+1, ∗), . . . , (xN , xN)] .

The LDHD generalization in the latent space can be effectively addressed by RPE. The data format mapping can be handled
by considering the relative distance to the tokens “b” and “=”. Therefore, RPE-Square is expected to work for the length
generalization of the unaligned copy. RPE does not properly deal with the unaligned data format and thus could fail to
achieve length generalization in this scenario.

D.2.2. URF ADDITION

For the URF n-addition training data, we first sample the lengths of two addends uniformly from {1, . . . , n} × {1, . . . , n}.
For two addends of lengths (n1, n2), we then samples from [10n1−1, 10n1 − 1] × [10n2−1, 10n2 − 1] (If ni = 0, then
the corresponding sample interval is [0, 9]). This is to guarantee the addends are length-uniform. For the addition
xn1−1 . . . x0 + yn2−1 . . . y0 = zn3

zn3−1 . . . z0, the training instance is

b x0 . . . xn1−1 + y0 . . . yn2−1 = z0 . . . zn3−1 zn3 e.

Here, we add spaces between the characters to ensure each is tokenized separately. In our experiments, we train with 10000
URF 4-addition samples.

We choose GPT-2 with key-only position embeddings as our model. For the RPE and RPE-Square settings, we augment
the GPT-2 model with RPE and RPE-Square, respectively. The implementation is adapted from HuggingFace (Wolf et al.,
2020).

We train the models by AdamW, with the initial learning rate 0.0005, the weight decay 1.0, and the cosine scheduler. The
warmup ratio is 0.05. The gradient accumulation step is 2. The per-device training batch size is 128. We train the models for
20000 steps and 200000 steps. The experiments are run on a server with Ubuntu. The models are trained on two NVIDIA
GeForce RTX 3090 GPUs.

E. Additional Experiments
E.1. Additional Evaluations of RPE-Square

We present more evaluation results of RPE-Square by comparing it against more different position embeddings in additional
tasks. Concretely, we consider three extra tasks: ParityCoT, Multiplication (1 * N), and Division (1 * N). Across all tasks
(including Addition and Copy), we compare RPE-Square with five position embeddings: RPE (Shaw et al., 2018), RoPE
(Su et al., 2024), NoPE (Kazemnejad et al., 2024), ALiBi (Press et al., 2021), and Abacus (McLeish et al., 2024). We keep
the hyperparameter setting for the addition position embeddings in Addition and Copy: the model is trained by AdamW
with the cosine scheduler, the initial learning rate is 0.0005, the weight decay is 1.0, the warmup ratio is 0.05, the gradient
accumulation step is 2, and the per-device training batch size is 256. In the three extra tasks, we choose the initial learning
rate as 0.0005 and keep the other hyperparameters the same.

Figures 3-7 presents the experimental results. Both RPE-Square and Abacus achieve non-trivial length generalization
performance in the five tasks, and the overall evaluation results of RPE-Square are better than those of Abacus. The other
four position embeddings do not achieve good length generalization performance. The reason, from our LDHD perspective,
is that RPE-Square and Abacus succeed in handling the unaligned data format, while the others do not.

20

Low-Dimension-to-High-Dimension Generalization And Its Implications for Length Generalization

2500 5000 7500 10000 12500 15000 17500 20000

Step

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

RPE-Square
RPE
RoPE
NoPE
ALiBi
Abacus

Figure 3. Addition. The models are trained on URF 4-addition and tested on URF 5-addition

0 2 4 6 8

Step (×100)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(a) RPE-Square

0 2 4 6 8

Step (×100)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(b) RPE

0 2 4 6 8

Step (×100)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(c) RoPE

0 2 4 6 8

Step (×100)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(d) NoPE

0 2 4 6 8

Step (×100)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(e) ALiBi

0 2 4 6 8

Step (×100)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(f) Abacus

Figure 4. Copy. The models are trained on scales 1-5 and tested on scales 1-10.

21

Low-Dimension-to-High-Dimension Generalization And Its Implications for Length Generalization

0 2 4 6 8

Step (×200)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(a) RPE-Square

0 2 4 6 8

Step (×200)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(b) RPE

0 2 4 6 8

Step (×200)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(c) RoPE

0 2 4 6 8

Step (×200)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(d) NoPE

0 2 4 6 8

Step (×200)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(e) ALiBi

0 2 4 6 8

Step (×200)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(f) Abacus

Figure 5. ParityCoT. The models are trained on scales 1-5 and tested on scales 1-10. An instance is like
“[BOS]x0 . . . xn−1 = y0 . . . yn−1[EOS]”, where y0 = x0 and yk = xk ⊕ yk−1 for k = 1, . . . , n− 1.

0 2 4 6 8

Step (×1000)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(a) RPE-Square

0 2 4 6 8

Step (×1000)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(b) RPE

0 2 4 6 8

Step (×1000)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(c) RoPE

0 2 4 6 8

Step (×1000)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(d) NoPE

0 2 4 6 8

Step (×1000)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(e) ALiBi

0 2 4 6 8

Step (×1000)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(f) Abacus

Figure 6. Multiplication (1 ∗ N). The models are trained on scales 1-5 and tested on scales 1-10. An instance is like
“[BOS]x ∗ y0 . . . yn−1 = z0 . . . zn[EOS]”.

22

Low-Dimension-to-High-Dimension Generalization And Its Implications for Length Generalization

0 2 4 6 8

Step (×1000)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(a) RPE-Square

0 2 4 6 8

Step (×1000)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(b) RPE

0 2 4 6 8

Step (×1000)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(c) RoPE

0 2 4 6 8

Step (×1000)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(d) NoPE

0 2 4 6 8

Step (×1000)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(e) ALiBi

0 2 4 6 8

Step (×1000)

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

1
2
3
4
5
6
7
8
9
10

(f) Abacus

Figure 7. Division (N/1). The models are trained on scales 1-5 and tested on scales 1-10. An instance is like
“[BOS]x \ yn−1 . . . y0 = zn−1 . . . z0[EOS]”, where z = y//x.

23

Low-Dimension-to-High-Dimension Generalization And Its Implications for Length Generalization

E.2. Additional Application of the Position Embedding Design Principle

In this subsection, we present another application of the position embedding design principle besides RPE-Square. We
consider a task called AdditionMod10, which computes the sum of the addends modulo 10, in the unaligned format. An
instance takes the form

[BOS]x0 . . . xn−1 + y0 . . . yn−1 = z[EOS],

where z = (x+ y) mod 10. Due to the modulo operation, the output depends solely on the first digits of the addends. This
means the positional embedding need to capture the absolute relative distances to specific tokens (namely, “[BOS]” and
“+”). The “absolute value” handles the LDHD generalization in the latent space, and “the relative distances to some special
tokens” deals with the unaligned data format. Following the same design principle used in RPE-Square, we introduce a new
position embedding called RPE-Absolute to encode “the absolute value of the relative distances to some special tokens”.
The expression of RPE-Absolutei,j is∑

1≤k≤i

exp ((WQxi)
⊺(WKxk))∑

1≤k′≤i exp ((WQxi)⊺(WKxk′))
Ri−k,

where WK ,WQ, R are the learnable parameters.

The results are shown in Figure 8. We compare GPT-2 with RPE-Absolute against GPT-2 with RPE. The training
hyperparameters are identical to those in the experiments of RPE-Square with the initial learning rate 0.0001. The results
demonstrate that RPE-Absolute achieves length generalization, while RPE only generalizes within the training lengths. This
finding further supports the effectiveness of our position embedding design principle.

0 2 4 6 8

Step (×200)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(a) RPE-Absolute

0 2 4 6 8

Step (×200)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

1
2
3
4
5
6
7
8
9
10

(b) RPE

Figure 8. AdditionMod10. The models are trained on scales 1-5 and tested on scales 1-10.

24

