

A NEUROSYMBOLIC AGENT SYSTEM FOR COMPOSITIONAL VISUAL REASONING

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

The advancement in large language models (LLMs) and large vision models has fueled the rapid progress in multi-modal vision-language reasoning capabilities. However, existing vision-language models (VLMs) remain challenged by compositional visual reasoning. This paper presents VLAgent, a neuro-symbolic approach to developing a Vision-Language Agent system for efficient compositional visual reasoning with three novel features. *First*, VLAgent develops an interpretable visualization-enhanced two-stage neuro-symbolic reasoning system. The first stage is managed by a front-end engine that generates a structured visual reasoning plan (symbolic program script) for each compositional visual reasoning task by utilizing a pre-trained LLM powered with few-shot chain-of-thought in-context learning. The second stage is managed by a high-performance back-end engine. It transforms the planning script into executable code based on visual input (image or video) and the combination of neural models and symbolic functions and then performs a sequence of actions for the compositional visual reason task. *Second*, to ensure and enhance the quality of mapping the logic plan to a sequence of executable instructions, VLAgent introduces the SS-parser, which examines the syntax and semantic correctness of the planning script, detects and repairs the logic errors found in the LLM-generated logic plan before generating the executable program. *Third*, VLAgent introduces the execution verifier in critical reasoning steps to validate and refine its compositional reasoning results in a stepwise manner, for example, ensemble methods for critical visual reasoning and caption analysis for low-confidence compositional reasoning. Extensive experiments were conducted on six visual benchmarks and compared to a dozen SoTA visual reasoning models. The results show that VLAgent outperforms existing representative approaches to compositional visual reasoning, while enabling self-interpretable visualization for human-in-the-loop debugging. Our code and runtime logs are available at <https://anonymous.4open.science/r/VLAgent>.

1 INTRODUCTION

Compositional visual reasoning tasks often involve a sequence of heterogeneous visual reasoning subtasks, and demand for multiple independently trained vision models or vision-language models (VLMs) to perform different subtask-specific visual reasoning. Furthermore, different visual reasoning tasks tend to require different compositions of multiple vision models in order to generate correct visual reasoning output. Hence, learning to perform diverse compositional visual reasoning tasks poses significant challenges to advanced large vision-language models, including GPT-4o, GPT-5. In this paper, we present VLAgent, a vision-language agent system that explores the neuro-symbolic approach to automatically breakdown each compositional visual reasoning task from end-users into a sequence of task-specific neuro-symbolic instructions in two stages. We argue that a neurosymbolic approach to compositional visual reasoning could be viewed as an attractive complementary representational learning framework to the advanced large vision-language models. Furthermore, we argue that to ensure high performance and high accuracy in reasoning output, a robust integration of neuro-symbolic learning for compositional reasoning requires the following four critical functional components to work in concert: plan generation, plan debugging and repair, verifiable plan execution with stepwise auditing, and output verification. By self-validation and self-refinement of neuro-symbolic instructions generated for compositional reasoning, prior to generating the final output, will notably fortify the generalization performance of VLAgent for complex visual reasoning.

To date, research activities have been engaged towards complex visual reasoning along two inter-related threads. Neural Module Networks (NMN) Andreas et al. (2016b); Hu et al. (2018; 2017); Johnson et al. (2017); Andreas et al. (2016a) are pioneering in the model training category. This line of work aims to tackle the challenges of end-to-end visual reasoning models by decomposing complex reasoning tasks into modular compositional subroutines through supervised learning with large labeled training datasets. NMN development shows that neural modular networks can significantly improve the interpretability of visual reasoning. Inspired by the ideas of neural modular networks, recent approaches are centered on zero-shot learning, instead of training with supervised learning. Pre-trained LLMs (open source or close source) are utilized to generate structured programs for performing end to end compositional reasoning. For example, ProgPrompt Singh et al. (2023a) generates executable programs to help robots perform vision-related tasks. ViperGPT Surís et al. (2023) and VisProg Gupta & Kembhavi (2023) aim to solve visual question & answer (VQA) problems with zero-shot learning. ViperGPT formulates Python programs based on existing Python libraries and VisProg uses LLM to generate program template embedding calls to external modules (pretrained models or preconfigured Python functions , more detailed related work in Appendix F). However, existing visual reasoning methods suffer from a number of limitations. *First*, LLM generated programs often produce non-existent modules or logically flawed execution program steps. *Second*, existing methods lack of capability for checking the validity of LLM generated program w.r.t. both the feasibility of generating runnable code and the correctness of reasoning steps. As a result, existing methods tend to fail miserably when the LLM generated program is ill-formatted or logically incorrect due to unwanted hallucination. *Finally*, existing approaches often hard-wire a pre-defined external module for each reasoning step, making their performance bounded to the performance of the weakest external module(s) in the end-to-end reasoning process.

Motivated by the above observations, we present VLAgent, a vision-language agent system for efficient end-to-end visual reasoning with three novel characteristics. *First*, the VLAgent develops a two-stage neuro-symbolic visual reasoning agent framework. Stage-1 managed by a front-end engine will utilize few-shot and Chain of Thought (CoT) in-context learning to finetune a pretrained LLM to learn to create a stepwise visual reasoning plan in the form of a structured logic program for any visual reasoning request from end-users. Stage-2 managed by a backend engine will support the mapping of each planning script to executable code and perform runtime execution to generate final reasoning output. *Second*, the VLAgent optimizes the two-stage neurosymbolic framework by developing the VLAgent SS-Parser, geared to improve the quality and correctness of LLM-generated planning scripts prior to generating executable code for runtime execution. This SS-Parser will inspect and repair syntactic and semantic errors detected in the planning program script. *Next*, the VLAgent enhances the generalization performance of the VLAgent by incorporating an output verifier to validate and refine compositional visual reasoning steps during runtime execution.

Video					
Question	Did the woman from the driving seat get back in the car after dancing?	How are the identities of the people shown?	What did he do at the end of the video?	What did the lady with green headband do before she released the catapult?	Why does the person wearing braces swipe the food away from the baby in the middle of the video?
GPT-5	✗	✗	○	✗	✗
GPT-5-Thinking	○	✗	○	✗	✗
LLaVA-Video-7B-Qwen2	○	✗	✗	✗	✗
LLaVA-NeXT-Video-7B	○	○	○	✗	✗
LLaVA-NeXT-Video-34B	○	○	✗	✗	✗
InterVL-3.5-8B	○	✗	✗	✗	✗
InterVL-3.5-38B	○	✗	✗	✗	✗
VideoLAMA3-7B	○	✗	○	✗	✗
VLAgent	○	○	○	○	✗

Figure 1: Examples illustrating performance of eight VLMs on NeXT-QA compared with VLAgent.

Figure 1 illustrates by examples the effectiveness of VLAgent compared with eight popular VLMs, including GPT-5 and GPT-5-Thinking on NeXT-QA benchmark Xiao et al. (2021). VLAgent correctly solves four out of five cases. Extensive experiments are performed on six representative visual reasoning benchmarks. The results demonstrate that VLAgent consistently outperforms existing zero-shot learning methods by 3%-40% in terms of accuracy on image QA benchmarks and surpasses the representative zero-shot methods on video QA benchmarks by a margin of 7%-19%.

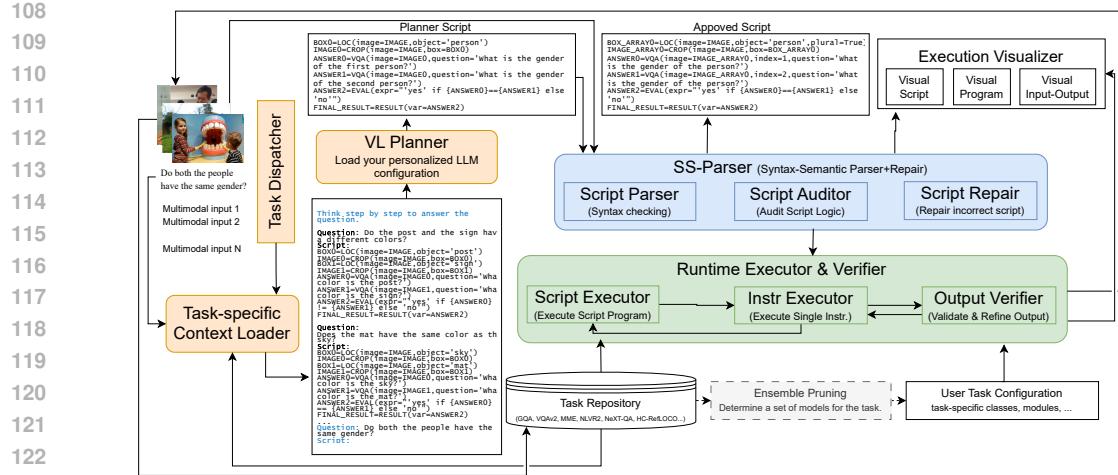


Figure 2: A two-stage Neurosymbolic architecture of the VLAgent system with front-end engine and backend engine working in concert.

2 METHODOLOGY

We give an architectural overview of the VLAgent design methodology in **Figure 2**. The front-end engine of VLAgent is shown on the left, consisting of task dispatcher, task-specific context loader, and visual reasoning planner (aka script generator). When VLAgent receives a visual QA query task (e.g., “*Do both the people have the same gender?*”), the task-dispatcher will instruct the context-loader to compose the task-specific context with few-shot examples and CoT instructions as the prefix context for the visual reasoning planner to finetune a LLM with in-context learning (ICL). The LLM is either by default or chosen by the user of VLAgent in her configuration. Concretely, the planner will first prefix the visual QA query with the ICL context to compose a prompt query (see the middle rectangle under the planner by magnifying Figure 2) and then finetune the LLM via few-shot CoT in-context learning to generate a task-specific planning program script (an example in the top-middle rectangle). The planning script consists of a sequence of declarative program instructions, each is expressed as an assignment statement with output variable, per-instruction-specific visual reasoning module with module name and input parameters. All modules are either **external pre-trained models**, which can be by default or by user-choice in VLAgent configuration, or **internal modules** from the VLAgent Python library. **Figure 3** shows a list of core modules supported in the alpha version of VLAgent and used in the experiments reported in this paper. The first six rows are external pre-trained models marked in blue. The remaining modules marked in green, each corresponds to an internal module in the VLAgent Python library. LOC, VQA, CAP, CROP to GET, and RESULT are used for GQA, VQAv2, MME workloads.

The backend engine is the backbone of VLAgent. It takes both text input and visual input of each visual reasoning task, and examines the LLM-generated planning script through the SS-Parser (blue rectangle) and the Executor and Verifier (green rectangle). The **SS-Parser** (blue) consists of three main VLAgent modules: It first invokes the *Script Parser* and *Script Auditor* to examine the generated planning script and detect syntax errors and incorrect program logic. The *Script Repair* module is triggered to fix errors and generate the correct planning script. Once the SS-Parser completes the syntax-semantic checking and repairing, it will forward the correctness approved script to the next VLAgent backbone subsystem: the **Runtime Executor and Verifier**. It takes the SS-Parser-refined planning script with both text input and visual input and maps logic program script to the executable code, and then performs runtime execution with stepwise verification of reasoning correctness. It has three core modules. First, it invokes the *Script Executor* to generate executable codes to call external modules or internal library functions. Next, it runs each executable instruction by the *Instruction Executor*. By running the executable instructions corresponding to the sequence of declarative program steps contained in the planning script, the executor will summarize and generate the final answer. To ensure the robustness and generalization performance of compositional reasoning of VLAgent, we validate the output from the executor through the VLAgent output verifier, which performs inconsistency resolution with statistical confidence scores. The result with the highest score is returned as the final answer that is returned to the user. The task repository and execution visualizer are shared by both front-end and backend engines of VLAgent. The task repos-

162
 163
 164
 165
 166
 167
 168
 itory stores not only the ICL examples and CoT instructions, but also the backend neurosymbolic
 modules and configuration for different types of visual reasoning tasks. For example, users can add
 a new task by registering new modules and corresponding ICL examples and CoT instructions. The
 execution visualizer utilizes human-interpretable visual API for debugging and human-in-the-loop
 feedback analysis in both stages of the neurosymbolic reasoning process, configurable in VLAgent
 through the configuration manager. With page limit, below we focus on the SS-Parser and the Plan
 Executor & Verifier to describe the VLAgent design methodology.

Module Name	Pre-trained models/ Python Modules	Input	Output	Description
LOC	owlvit-large-patch14 owlv2-large-patch14 owlv2-large-patch14-ensemble grounding-dino-base TimeZero-Charades-7B (video)	Image/video, object name/event	A list of bounding boxes sorted in descending order of scores, or start and end frame of described event	Object detection given an object class, or event location given a description.
VQA	blip-vqa-cupfile-large vilt-b32-finetuned-vqa palignema-3b-ft-vqa2-448	Image, question	Answer	Answer visual attributes like color of objects in an image.
VIDQA	llava-video-7b-qwen2 VideoLLaMA3-7B InternVL3_5-8B	Video, question	Answer	Answer questions given a video.
CAP	Florence-2	Image/video	Caption/Per-frame captions	Image captioning. When the input is a video, do per- frame captioning.
FIND	clip-vit-large-patch14	Image, bounding box list, name	Bounding box	Select a bounding box whose content matches the name best. This allows to select a celebrity.
SELECT	gpt-4,1-mini	Question, answers from QA modules, choices	Choice index	Given a question and information collected from QA modules, select the best choice. Scores for each choice is also generated and recorded.
CROP	PIL.crop()	Image, bounding box list	Image	Crop at the first bounding box in the list. If the list is empty, return the original image.
CROP_LEFTOF	PIL.crop()	Image, bounding box list	Image	Get the image to the left of the first bounding box. If the list is empty, return the left part of the image.
CROP_RIGHTOF	PIL.crop()	Image, bounding box list	Image	Get the image to the right of the first bounding box. If the list is empty, return the right part of the image.
CROP_ABOVE	PIL.crop()	Image, bounding box list	Image	Get the image region above first bounding box. If the list is empty, return the top part of the image.
CROP_BELOW	PIL.crop()	Image, bounding box list	Image	Get the image region below first bounding box. If the list is empty, return the bottom part of the image.
EVAL	eval()	Expression	Result	Evaluate an expression written in Python syntax.
COUNT	len()	Bounding box list	Integer	Count the number of bounding boxes in the list.
GET	PIL.Image.size	Image	Bounding box list with one element	Get the bounding box (border) of an image.
VOTE	list()	Bounding box lists	Voted bounding box	Given lists of bounding boxes, select a bounding box with highest intersection.
CLIP	Video.clip()	Video, start and end time of an event	Clipped video	Clip a video. Here Video is a class in VLAgent to store a video.
LENGTH	cv2.VideoCapture.get()	Video	Duration of the video	Get the duration of the video in secs.
CLIP_BEFORE	Video.clip()	Video, start and end time of an event	Clipped video	Clip the video before the starting frame.
CLIP_AFTER	Video.clip()	Video, start and end time of an event	Clipped video	Clip the video after the starting frame.
CLIP_AROUND	Video.clip()	Video, time to clip around	Clipped video	Clip the video around the designated time.
RESULT	dict()	Variable name	Value of the variable	Return the value of a runtime variable as the result.

198
 199
 200
 Figure 3: Core Modules in VLAgent α release. NLVR2 uses VQA, EVAL and RESULT. VideoQA uses
 modules taking video input plus SELECT and EVAL. HC-RefLOCO (referring expression) uses LOC, CAP,
 FIND, VOTE.

2.1 SS PARSER

201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 We describe the design of three core components of our SS-Parser in this section with illustrative
 examples. First, the *Script Parser* examines the LLM-generated planning script line by line to flag
 all syntax errors. The *Script Auditor* performs the semantic-level examination to detect semantically
 incorrect parameters and semantically incorrect logic sequence of the planning steps. The *Script
 Repair* is designed to fix the errors and generate a logically consistent sequence of instructions.
 Typical syntax errors are the cases where a non-existent module name or false input parameters
 were used in the function call to external modules or internal modules. A frequent logic failure that
 many LLMs suffer is to make up some input parameter(s) in the LOC module: such as locating an
 object of “standing” or “smiling”, and alike. We provide auto-scanner and auto-fixer to spot error
 type and error location in the planning script, and correct those errors accordingly, including type-
 checking of all external and internal modules w.r.t. module names, module input parameter types
 and output variable names, plus some error types for domain-dependent visual reasoning tasks, e.g.,
 video vs image. **Figure 4** illustrates by example the effect of SS-Parser on the overall performance
 of VLAgent. Consider the example user query “*Do both the people have the same gender*” with the
 visual image (the top left). The ground truth answer for this zero-shot VQA is given under the image
 in green color. The planning script generated by LLM (GPT-3.5 in this case) is given at the top with

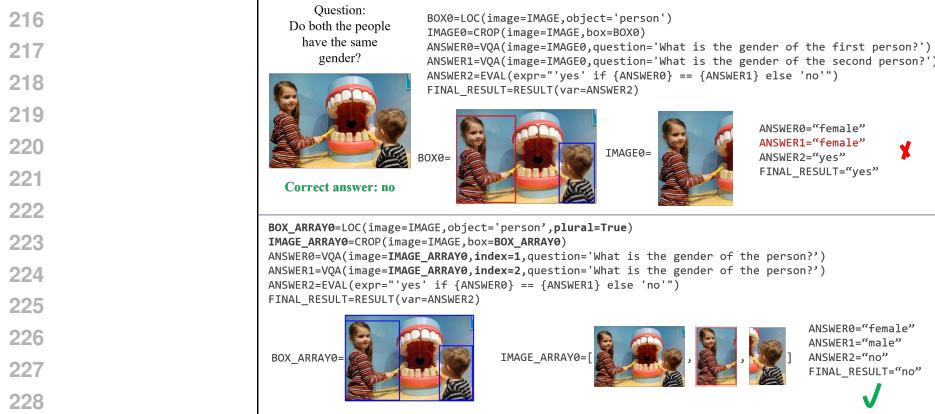


Figure 4: VLAgent SS-Parser corrects the reasoning error detected in the LLM-generated planning script.

six lines, calling `LOC`, `CROP`, `VQA`, `EVAL` and `RESULT` modules. The correct logic is to locate all the people in the image, crop them, ask the gender of each person and compare. Our SS-Parser spotted a logical error in the 4th line of the LLM-generated program, and fixed the error with the SS-Parser refined script (shown in the bottom rectangle) prior to generating the executable. This results in correct final answer by VLAgent. In contrast, without using our SS-Parser, the execution of the LLM-generated script (in the top rectangle) resulted in a wrong answer. Concretely, by examining the script at the top, although the intention of the script looks correct, there is a critical logical error: `IMAGE0` is obtained by `CROP` of only the bounding box with the highest confidence score, which is the girl in the cropped image. Hence, the girl's gender is asked twice. Given two people are asked for comparison in this visual reasoning query, our SS-Parser fixed this problem by explicitly using an array as the output variable for `LOC` instruction and considering the bounding boxes with the top two highest scores, followed by performing `CROP` for each of the two bounding boxes in the output array of `LOC` respectively, it will capture two people. Followed by using `VQA` to ask the gender question on each of the two cropped images in `IMAGE_ARRAY0`. This enables the `EVAL` module to compare the gender of the two people. The execution visualizer provides intuitive interpretation of the sequence of instructions performed for VLAgent to produce the correct final answer. Although we utilize this example to illustrate the SS-Parser's impact on VLAgent performance, the methodology of SS-Parser design, as we outlined earlier, involves a user-configurable set of pre-defined type-checking rules for both syntax and semantic errors w.r.t. external and internal module calls and the sequence of instruction steps with respect to the task-specific semantic context.

2.2 RUNTIME EXECUTOR & OUTPUT VERIFIER

Recall the green rectangle in the right middle of **Figure 2**, this VLAgent subsystem consists of three core components. The *Script Executor* takes as the input an SS-parser approved planning script and maps it into executable instructions line by line, preserving the sequence of planning steps. The *Instruction Executor* is called interatively to locate and run the corresponding external module or internal Python module. The output verifier performs stepwise evaluation of each visual reasoning instruction to determine whether and how ensemble methods are employed to verify and refine the per-instruction result, and caption-analysis is employed when the low confidence score is produced for an instruction-level visual-resoning subtask.

Caption Verifier. In image QA or video QA tasks, for each image or video frame being processed, if the result is in low confidence, we trigger the Caption-Verifier optimization to obtain the caption of the input image/video frame as a reference point for checking output consistency before generating our final answer. In the first prototype of VLAgent, we set Florence-2 Xiao et al. (2024) as the default external module to implement our caption verifier, reconfigurable in VLAgent initialization. The caption-verifier first generates a detailed caption of the image or the given video frame, which includes the key elements and their states. Next, it utilizes a pretrained LLM like GPT-3.5 (chat model) to assess whether the caption provides sufficient clues to infer the correct answer. If the caption contains the necessary information, the comparison of the caption-inferred answer is made with the script executor's output. If the comparison results in a match, indicating the consistency between the execution output and the caption-inferred answer, the final answer is regarded as highly reliable. Otherwise, VLAgent will analyze explicit details in the caption and the caption-derived answer is chosen as the final result if explicit and accurate clues are found in the caption analysis. Our ablation

study in Experiments section shows the improvement brought by the caption verification. We also provide a video QA example (Figure 7 of Appendix B) to show the detailed procedure of how our caption-verifier corrects a wrong result produced by our script executor.

Ensemble Verifier. VLAgent improves external-module reliability (e.g., LOC, VQA) by leveraging the fusion of multiple independently pre-trained models but develops ensemble selection algorithm to prune a pool of N candidate models to a small subset of M models for efficiency ($M << N$) Tekin et al. (2024). Let P number of model calls to evaluate an ensemble, e.g., $P = 100$, each model j returns B_{ij} for LOC. We fuse all candidates per call to obtain B_i . The agreement and score are

$$I_{ij} = \frac{|Area(\cup B_{ij}) \cap Area(\cup B_i)|}{|Area(\cup B_{ij}) \cup Area(\cup B_i)|}, \quad s_j = \frac{1}{P} \sum_{i=1}^P I_{ij}.$$

For VQA, set $I_{ij} = \mathbb{I}[A_{ij} \cap A_i \neq \emptyset]$; for VIDQA, set $I_{ij} = \mathbb{I}[choice_{ij} = choice_i]$. We cluster $\{s_j\}_{j=1}^N$ with K-Means MacQueen (1967), choose the number of clusters via the Silhouette criterion Rousseeuw (1987), and iteratively add the cluster(s) with the largest scores until reaching M models for inference Chen et al. (2025). A detailed algorithm and notation is in Appendix E.2.

Long Video Optimization. Another critical optimization is resource-aware development of efficient neurosymbolic reasoning agent. Consider video QA tasks, we first develop video sampling methods through video partitioning into several chunks and then identifying important chunks via sampling. When using LOC module to locate an event in time dimension and use VIDQA module to perform video question answering, VLAgent feeds into these modules only a sequence of sampled frames rather than the entire video as input. For long videos, the sampling rate is usually much lower than the video frame rate. Therefore, we employ some optimizations to reduce or minimize the information loss from a low sampling rate. Suppose that we sample at most f frames in these models, and we wish the sampling rate is at least v fps. For a video of length l (seconds), we uniformly divide it into $\lceil vl/f \rceil$ chunks. Note that $\lceil vl/f \rceil > 1$ in most scenarios under low sampling rate f , say 4 or 6 frames per video or per video chunk, we perform the following preprocessing: For each video, we sample f frames uniformly and use a video QA model to generate the caption of the video. Then according to the question, an ensemble of multiple LLMs (e.g., GPT-4.1-mini) is used to judge whether only part of the video needs to be watched and leverages the sampled frame inference results to produce statistical scores on which chunks are more relevant to answering the question. We resample another f frames from the video or from each chunk to perform the same procedure when the ensemble result is undesirable, e.g., no chunk is highly relevant or the entire video should be watched. We constrain this iterative procedure by at most t iterations (e.g., $t = 3$). Given a small number of selected chunks needs to be watched for the visual reasoning question, we concatenate the selected chunks following their inherent temporal sequence and send it to the visual reasoning planner to follow the neurosymbolic procedure of VLAgent for compositional reasoning. Figure 7 in Appendix B illustrates this optimization with an example.

3 EXPERIMENTS

We report the evaluation of VLAgent and the comparison with the SOTA representative visual reasoning methods on six popular benchmarks: GQA Hudson & Manning (2019), NLVR2 Suhr et al. (2018), VQAv2 Goyal et al. (2017), MME Fu et al. (2024) (existence, position, color category), NeXT-QA Xiao et al. (2021) and HC-RefLOCO Wei et al. (2025). All experiments are conducted with H100/H200 GPU in a Python 3.9 environment.

3.1 EXPERIMENTAL COMPARISON RESULTS

Table 1 compares VLAgent with representative image QA approaches in VLMs category and zero-shot methods on 4 popular ImageQA benchmarks. We observe that existing zero-shot methods, represented by ViperGPT Surís et al. (2023) and Visprog Gupta & Kembhavi (2023), exhibit a significant performance gap compared to supervised fine-tuning approaches on all 4 benchmarks. In comparison, VLAgent (zero-shot) achieves superior performance for NLVR2 and MME by 0.3 ~ 29.7% and 1.0 ~ 30.3% respectively, comparable performance for GQA and VQAv2. For VQAv2, VLAgent outperforms the three SOTA zero-shot methods (ViperGPT, VisProg and GENOME) and 10 VLM methods by 1.6 ~ 39.5%. Compare against the supervised model BLIP-VQA-Capfilt Li et al. (2022) (directly finetuned on VQAv2), VLAgent achieves 76.9% accuracy compared to the best VLM of 75.3%, reducing the gap to about 4%. For GQA, VLAgent achieves an accuracy of 61.9%, which outperforms all 3 zero-shot methods by 7.6 ~ 26.4%, and outperforms BLIP-VQA-Capfilt

(supervised) and 4 other VLMs by $3.8 \sim 17.4\%$. VLAGent offers on-par performance to InternVL3, and narrows the gap of all zero-shot methods to LLaVA-1.5-7B (70.3%), MiniCPM-V-4.5 (70.8%), Kimi-VL-A3B (71.1%) and Phi-3.5 (72.7%) by a large margin (61.9% vs 35.5 \sim 54.3%).

Table 1: Comparing VLAGent with 14 representative methods (VLMs and Zero-Shot) on 4 benchmarks. Improvement min and max are the lower and upper bound on improvement over 3 ZS and 10 VLMs methods.

Method	NLVR2	GQA	VQAv2	MME
BLIP-VQA-Capfilt Li et al. (2022) (sup)	44.8%	54.5%	81.2%	82.8%
Vilt-b32 Kim et al. (2021) (VLM)	46.6%	51.4%	73.6%	74.8%
PaliGemma2 Steiner et al. (2024) (VLM)	44.4%	44.5%	46.5%	61.6%
Gemma3-12B Sellergren et al. (2025) (VLM)	73.8%	60.5%	66.5%	82.4%
SmolVLM Marafioti et al. (2025) (VLM)	51.0%	58.1%	71.0%	84.7%
InternVL3 Chen et al. (2024) (VLM)	50.6%	61.9%	61.4%	84.1%
Idefics2 Laurençon et al. (2024) (VLM)	50.2%	63.2%	74.0%	86.6%
LLaVA-1.5-7B Liu et al. (2023a) (VLM)	50.3%	70.3%	71.0%	85.0%
MiniCPM-V-4.5 Yao et al. (2025) (VLM)	51.2%	70.8%	68.9%	85.7%
Kimi-VL-A3B Team et al. (2025) (VLM)	51.0%	71.1%	75.3%	87.4%
Phi-3.5 Abdin et al. (2024) (VLM)	64.5%	72.7%	65.5%	86.0%
ViperGPT Surís et al. (2023) (ZS)	—	35.5%	37.4%	58.1%
VisProg Gupta & Kembhavi (2023) (ZS)	69.3%	54.3%	72.3%	85.3%
GENOME Chen et al. (2023) (ZS)	—	44.7%	60.5%	77.9%
VLAGent (ZS)	74.1%	61.9%	76.9%	88.4%
Improvement on ZS (min)	+4.8%	+7.6%	+4.6%	+3.1%
Improvement on ZS (max)	+4.8%	+26.4%	+39.5%	+30.3%
Improvement (min)	+0.3%	—	+1.6%	+1.0%
Improvement (max)	+29.7%	+26.4%	+39.5%	+30.3%

We next evaluate the generalization capability of VLAGent on two recent video benchmarks: NeXT-QA Xiao et al. (2021) and HC-RefLOCO Wei et al. (2025). For NeXT-QA video understanding benchmark, we sample 200 questions per-type from the test set, resulting in a test set of 1493 questions. **Table 2** shows the comparison result of VLAGent with six VLMs and five VideoQA specific agent-based methods (zero-shot). VLAGent exhibits a high accuracy on all hard splits and achieves an overall accuracy of 76.0%, surpassing all 11 methods compared with the gain margin of $2.0 \sim 19.1\%$. For HC-RefLOCO Wei et al. (2025), representing the complex referring expres-

Table 2: Performance of VLAGent compared with 11 representative methods in VLMs category (top 6 rows) and zero-shot agent methods (middle 5 rows). Hard Split-T means temporal reasoning questions and Hard Split-C means causal reasoning questions. "Overall" represents for the overall accuracy of all types of questions.

Method	Hard Split-T	Hard Split-C	Overall
LLaVA-Video-7B-Qwen2 Zhang et al. (2024b)	60.4%	69.5%	70.9%
LLaVA-NeXT-Video-7B Zhang et al. (2024a)	54.8%	65.3%	65.8%
LlaVA-NeXT-Video-34B Zhang et al. (2024a)	55.0%	63.8%	61.8%
InternVL-3.5-8B Wang et al. (2025)	58.6%	66.5%	68.1%
InternVL-3.5-38B Wang et al. (2025)	61.1%	65.8%	68.8%
VideoLLaMA3-7B Zhang et al. (2025)	66.3%	68.0%	72.2%
ViperGPT Surís et al. (2023) (ZS)	48.7%	56.2%	56.9%
SeViLA Yu et al. (2023) (ZS)	59.6%	58.5%	64.0%
VideoAgent Wang et al. (2024) (ZS)	60.0%	68.3%	66.1 %
TravellER Shang et al. (2024) (ZS)	56.9%	65.4%	66.0%
MoReVQA Min et al. (2024) (ZS)	64.6%	70.2%	69.2%
VLAGent	67.3%	74.8%	76.0%
Improvement on ZS (min)	+2.7%	+4.6%	+6.8%
Improvement on ZS (max)	+18.6%	+18.6%	+19.1%
Improvement (min)	+1.0%	+4.6%	+2.0%
Improvement (max)	+18.6%	+18.6%	+19.1%

tion benchmark on long descriptions, we sampled 1400 referring expressions from the test set to test VLAGent. Unlike traditional referring expression datasets like RefCOCO Kazemzadeh et al. (2014), which are already saturated in terms of performance due to the emergence of expression-based grounding models (e.g., OWLV2 Minderer et al. (2023) and Grounding Dino Liu et al. (2023b)

used in this paper), HC-RefLOCO grounds a person with fine-grained description of appearance, position, movement, and so forth, posing a greater challenge to grounding models. For each grounding task in HC-RefLOCO, we perform the caption-verification as follows: we first use the LLM to identify the person whose caption best matches the description; if no match is found, then we skip the verification, otherwise check whether the bounding box of this person substantially overlaps with the predicted result. If yes, the prediction is considered correct. Otherwise, we compare the caption of the predicted bounding box with the description to make the reasoning for the final alignment. We correct the bounding box only when it aligns significantly worse than the caption of the originally selected person. **Table 3** shows the performance of VLAgent on HC-RefLOCO compared to the 13 representative methods, of which SPHINX-v2-1K Lin et al. (2023) is the well-known SOTA method. Following the metrics in HC-RefLOCO, Acc0.5, Acc0.75, Acc0.9 and mAcc are used to measure and compare the performance. AccX means the ratio of test cases where the IoU between the predicted box and the ground truth is greater than X, and mAcc is the average value of Acc0.5 through Acc0.95 with a step size of 0.05. We observe that VLAgent surpass the 13 SOTA approaches compared in Acc0.75, Acc0.9 and mAcc, while using lightweight object detection models for inference time efficiency, and a performance gain over SPHINX-v2 (the best at Acc0.9) by about 7%.

Table 3: Comparison of VLAgent on HC-RefLOCO with 13 SOTA methods (zero-shot or VLMs).

Model	Acc0.5	Acc0.75	Acc0.9	mAcc
GPT-4V OpenAI (2023)	17.4%	2.6%	0.3%	5.5%
GroundingGPT Li et al. (2024)	56.6%	27.2%	5.3%	29.8%
Ferret 13B You et al. (2023)	52.9%	38.5%	15.6%	35.7%
KOSMOS-2 Peng et al. (2024)	45.3%	38.0%	20.0%	34.1%
Qwen-VL Bai et al. (2023)	67.9%	56.8%	34.8%	52.8%
OFA-Large Wang et al. (2022)	70.5%	61.6%	44.0%	58.1%
SPHINX Lin et al. (2023)	77.5%	61.0%	27.0%	55.4%
SPHINX-1K Lin et al. (2023)	80.7%	68.6%	41.1%	63.0%
SPHINX-v2-1K Lin et al. (2023)	84.1%	77.1%	56.2%	71.7%
PixelLM 13B Ren et al. (2024)	63.6%	46.6%	25.8%	44.6%
LISA Lai et al. (2024)	52.4%	42.1%	31.3%	41.1%
PSALM Zhang et al. (2024c)	61.7%	53.6%	40.2%	51.1%
GlaMM Rasheed et al. (2024)	66.1%	56.9%	44.2%	55.0%
VLAgent	82.6%	77.4%	63.2%	73.9%
Improvement (min)	-	+0.3%	+7.0%	+2.2%
Improvement (max)	+65.2%	+74.8%	+62.9%	+68.4%

3.2 ABLATION STUDY

We compare the naive VLAgent (without SS-Parser+Caption-verifier+Ensemble verifier) with VLAgent+SS-Parser+Caption-verifier, and the full fledged VLAgent on four popular LLMs: gpt-3.5-turbo-instruct OpenAI (2023), Mistral-Small-24B-Base-2501 Jiang et al. (2023), GLM4-9B GLM et al. (2024), and Llama3-8B Grattafiori et al. (2024). **Table 4** reports the results on GQA. The performance of VLAgent improves progressively with the addition of SS-Parser and caption-verifier (row 2) and the addition of ensemble-verifier (row 3), compared to the naive version of VLAgent without SS-parser and output verifiers. The performance gains of VLAgent powered by our SS-Parser and Output Verifiers are consistent across the 4 popular LLMs for generating the planning scripts. Similar observations are made on other benchmarks as well (see Appendix D.1). An ablation study on inference latency is provided in Appendix D.2.

Table 4: Ablation study (GQA)

Method	GPT 3.5	Llama	Mistral	GLM
VLAgent naive	54.4%	54.1%	55.2%	54.7%
VLAgent +parser+cap-verf	58.9%	56.9%	58.6%	58.2%
VLAgent +parser+cap+ensemble	61.9% +7.5%	58.7% +4.6%	60.7% +5.5%	60.4% +5.7%

3.3 PERFORMANCE COMPARISON BY VISUALIZATION

Figure 5 illustrates the comparison results of **Table 1** with two examples per benchmark from GQA (columns 2 3), VQAv2 (columns 4 5) and MME (columns 6 7). Each example gives a non-trivial

432	Image						
433	Question	Do both the people have the same gender?	Does the stove top have the same color as the stove?	What is the name on the front of the train?	Are the girls sitting on a railing?	Is there a brown surf in the image? Please answer yes or no.	Is the monitor on top of a person? Please answer yes or no.
434	Answer	no	no	trimet	no	no	yes
435	BLIP	✗ (yes)	✗ (yes)	✗ (first)	✗ (yes)	✗ (yes)	✗ (no)
436	VisProg	✗ (yes)	✗ (yes)	✗ (first)	✗ (yes)	✗ (yes)	✗ (no)
437	InternVL-3	○(no)	✗ (yes)	○(TriMet Max)	✗ (yes)	✗ (yes)	✗ (no)
438	Phi-3.5	○(no)	✗ (yes)	✗ (TRIMET MAX)	✗ (yes)	○(no)	○(yes)
439	GPT-4o	✗ (unknown)	✗ (yes)	○(TriMet Max)	○(no)	○(no)	✗ (no)
440	GPT-5	✗ (unknown)	✗ (yes)	✗ (EXPO CENTER)	○(no)	○(no)	✗ (no)
441	GPT-5-Thinking	○(no)	○(no)	✗ (MAX)	○(no)	○(no)	✗ (no)
442	VLAGent	○(no)	○(no)	○(TriMet Max)	○(no)	○(no)	○(yes)
443							

Figure 5: Visual comparison on six image QA examples

Figure 6: Two video QA examples comparing VLAGent with four selected approach in detail.

text-visual reasoning query. In all six cases, standard VQA models (incl. ensemble VQA method) fail to produce the correct answers, exposing their limitations in performing compositional visual reasoning tasks. Even with a massive amount of training data, GPT-4o failed on 3 out of the 6 queries. GPT-5 failed on 4 out of the 6 queries. Even GPT-5-Thinking only achieves good performance in 4 out of 6 cases. Consider the query in Column 7, the visual image shows clearly where the monitor is. However, GPT-5-Thinking failed on this visual reasoning. In comparison, VLAGent succeeds on all 6 cases by only utilizing lightweight pretrained models, empowered by its neuro-symbolic modularity design for robust compositional visual reasoning. **Figure 6** illustrate the effectiveness of VLAGent with two VideoQA examples in NeXT-QA. For each example, we provide the question, choices, answer, and output to compare VLAGent with 4 STOA methods. For Example-1 (top 2-rows), VLAGent succeeds by conducting compositional visual reasoning to make the correct choice. In comparison, the other four models (GPT-5, GPT-5-Thinking, VideoLLAMA3-7B, InternVL-3.5-38B) all failed to find visual clues to produce the correct inference results. For Example-2 (bottom 2-rows), VLAGent is able to make the correct choice of E (squat down). However, the other four models (GPT-5, GPT-5-Thinking, VideoLLAMA3-7B, InternVL-3.5-38B) all made the wrong choice B (pull) due to the failure to capture/identify the squatting body position.

4 CONCLUSION

We have presented VLAGent, a neurosymbolic approach to developing a visual-language agent system for compositional visual reasoning with three original contributions: (1) A novel two-stage neurosymbolic architectural design of VLAGent. (2) The use of SS-parser to empower VLAGent to detect and correct logic errors in the LLM-generated planning script. (3) The output evaluation via caption verifier and ensemble verifier to fortify the generalization performance of compositional reasoning. Extensive experiments conducted on 6 visual benchmarks show the effectiveness of VLAGent in comparison with over 30 representative VLM/ZS methods.

486 REFERENCES
487

- 488 Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
489 Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A
490 highly capable language model locally on your phone. *arXiv preprint arXiv:2404.14219*, 2024.
- 491 Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Learning to compose neural
492 networks for question answering. In Kevin Knight, Ani Nenkova, and Owen Rambow (eds.),
493 *Proceedings of the 2016 Conference of the North American Chapter of the Association for Com-
494 putational Linguistics: Human Language Technologies*, pp. 1545–1554, San Diego, California,
495 June 2016a. Association for Computational Linguistics. doi: 10.18653/v1/N16-1181. URL
496 <https://aclanthology.org/N16-1181/>.
- 497 Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In *Pro-
498 ceedings of the IEEE conference on computer vision and pattern recognition*, pp. 39–48, 2016b.
- 499 Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zit-
500 nick, and Devi Parikh. Vqa: Visual question answering. In *Proceedings of the IEEE international
501 conference on computer vision*, pp. 2425–2433, 2015.
- 502 William T Freeman Antonio Torralba, Phillip Isola. Foundations of computer vision. *MIT Press*,
503 2024.
- 504 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
505 Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
506 ization, text reading, and beyond. *arXiv preprint arXiv:2308.12966*, 2023.
- 507 Boyu Chen, Zhengrong Yue, Siran Chen, Zikang Wang, Yang Liu, Peng Li, and Yali Wang. Lvagent:
508 Long video understanding by multi-round dynamical collaboration of mllm agents. *arXiv preprint
509 arXiv:2503.10200*, 2025.
- 510 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
511 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
512 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer
513 Vision and Pattern Recognition*, pp. 24185–24198, 2024.
- 514 Zhenfang Chen, Rui Sun, Wenjun Liu, Yining Hong, and Chuang Gan. Genome: generative neuro-
515 symbolic visual reasoning by growing and reusing modules. *arXiv preprint arXiv:2311.04901*,
516 2023.
- 517 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
518 Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation
519 benchmark for multimodal large language models, 2024. URL <https://arxiv.org/abs/2306.13394>.
- 520 Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan Zhang, Diego Rojas,
521 Guanyu Feng, Hanlin Zhao, et al. Chatglm: A family of large language models from glm-130b to
522 glm-4 all tools. *arXiv preprint arXiv:2406.12793*, 2024.
- 523 Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
524 matter: Elevating the role of image understanding in visual question answering. In *Proceedings
525 of the IEEE conference on computer vision and pattern recognition*, pp. 6904–6913, 2017.
- 526 Aaron Grattafiori, Abhimanyu Dubey, and et.al. Abhinav Jauhri. The llama 3 herd of models, 2024.
527 URL <https://arxiv.org/abs/2407.21783>.
- 528 Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
529 without training. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
530 Recognition*, pp. 14953–14962, 2023.
- 531 Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko. Learning to
532 reason: End-to-end module networks for visual question answering. In *Proceedings of the IEEE
533 International Conference on Computer Vision (ICCV)*, Oct 2017.

- 540 Ronghang Hu, Jacob Andreas, Trevor Darrell, and Kate Saenko. Explainable neural computation
 541 via stack neural module networks. In *Proceedings of the European conference on computer vision*
 542 (*ECCV*), pp. 53–69, 2018.
- 543 Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
 544 and compositional question answering. In *Proceedings of the IEEE/CVF conference on computer*
 545 *vision and pattern recognition*, pp. 6700–6709, 2019.
- 546 Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. The platonic representation
 547 hypothesis. In *ICML*, 2024.
- 548 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
 549 lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 550 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
 551 Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.
- 552 Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Judy Hoffman, Li Fei-Fei,
 553 C Lawrence Zitnick, and Ross Girshick. Inferring and executing programs for visual reason-
 554 ing. In *Proceedings of the IEEE international conference on computer vision*, pp. 2989–2998,
 555 2017.
- 556 Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. ReferItGame: Referring to
 557 objects in photographs of natural scenes. In Alessandro Moschitti, Bo Pang, and Walter Daele-
 558 mans (eds.), *Proceedings of the 2014 Conference on Empirical Methods in Natural Language*
 559 *Processing (EMNLP)*, pp. 787–798, Doha, Qatar, October 2014. Association for Computational
 560 Linguistics. doi: 10.3115/v1/D14-1086. URL <https://aclanthology.org/D14-1086>.
- 561 Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convo-
 562 lution or region supervision. In *International conference on machine learning*, pp. 5583–5594.
 563 PMLR, 2021.
- 564 Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. Lisa: Rea-
 565 soning segmentation via large language model. In *Proceedings of the IEEE/CVF Conference on*
 566 *Computer Vision and Pattern Recognition*, pp. 9579–9589, 2024.
- 567 Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building
 568 vision-language models?, 2024.
- 569 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 570 training for unified vision-language understanding and generation. In *International conference on*
 571 *machine learning*, pp. 12888–12900. PMLR, 2022.
- 572 Zhaowei Li, Qi Xu, Dong Zhang, Hang Song, YiQing Cai, Qi Qi, Ran Zhou, Junting Pan, Ze-
 573 feng Li, Vu Tu, Zhida Huang, and Tao Wang. GroundingGPT: Language enhanced multi-modal
 574 grounding model. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of*
 575 *the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long*
 576 *Papers)*, pp. 6657–6678, Bangkok, Thailand, August 2024. Association for Computational Lin-
 577 *guistics*. doi: 10.18653/v1/2024.acl-long.360. URL <https://aclanthology.org/2024.acl-long.360/>.
- 578 Ziyi Lin, Chris Liu, Renrui Zhang, Peng Gao, Longtian Qiu, Han Xiao, Han Qiu, Chen Lin, Wenqi
 579 Shao, Keqin Chen, et al. Sphinx: The joint mixing of weights, tasks, and visual embeddings for
 580 multi-modal large language models. *arXiv preprint arXiv:2311.07575*, 2023.
- 581 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 582 tuning, 2023a.
- 583 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
 584 Yang, Hang Su, Jun Zhu, and Lei Zhang. Grounding dino: Marrying dino with grounded pre-
 585 training for open-set object detection, 2023b.
- 586 J MacQueen. Multivariate observations. In *Proceedings of the 5th Berkeley Symposium on Mathe-
 587 matical Statistics and Probability*, volume 1, pp. 281–297, 1967.

- 594 Andrés Marafioti, Orr Zohar, Miquel Farré, Merve Noyan, Elie Bakouch, Pedro Cuenca, Cyril Za-
 595 kka, Loubna Ben Allal, Anton Lozhkov, Nouamane Tazi, Vaibhav Srivastav, Joshua Lochner,
 596 Hugo Larcher, Mathieu Morlon, Lewis Tunstall, Leandro von Werra, and Thomas Wolf. Smolvlm:
 597 Redefining small and efficient multimodal models. *arXiv preprint arXiv:2504.05299*, 2025.
- 598 Juhong Min, Shyamal Buch, Arsha Nagrani, Minsu Cho, and Cordelia Schmid. Morevqa: Exploring
 599 modular reasoning models for video question answering. In *Proceedings of the IEEE Conference*
 600 *on Computer Vision and Pattern Recognition (CVPR)*, 2024.
- 601 Matthias Minderer, Alexey Gritsenko, and Neil Houlsby. Scaling open-vocabulary object detection.
 602 *Advances in Neural Information Processing Systems*, 36:72983–73007, 2023.
- 603 OpenAI. Gpt-3.5 turbo instruct. <https://platform.openai.com/docs/models/gpt-3.5-turbo-instruct>, 2023.
- 604 OpenAI. Gpt-4 technical report. Technical report, OpenAI, 2023.
- 605 OpenAI. Gpt-4.1. <https://platform.openai.com/docs/models/gpt-4.1>, 2025.
- 606 Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, Qixiang Ye, and
 607 Furu Wei. Grounding multimodal large language models to the world. In *The Twelfth Interna-*
 608 *tional Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=1LmqxkfsIw>.
- 609 Hanoona Rasheed, Muhammad Maaz, Sahal Shaji, Abdelrahman Shaker, Salman Khan, Hisham
 610 Cholakkal, Rao M Anwer, Eric Xing, Ming-Hsuan Yang, and Fahad S Khan. Glamm: Pixel
 611 grounding large multimodal model. In *Proceedings of the IEEE/CVF Conference on Computer*
 612 *Vision and Pattern Recognition*, pp. 13009–13018, 2024.
- 613 Zhongwei Ren, Zhicheng Huang, Yunchao Wei, Yao Zhao, Dongmei Fu, Jiashi Feng, and Xiaojie
 614 Jin. Pixellm: Pixel reasoning with large multimodal model. In *Proceedings of the IEEE/CVF*
 615 *Conference on Computer Vision and Pattern Recognition*, pp. 26374–26383, 2024.
- 616 Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analy-
 617 sis. *Journal of computational and applied mathematics*, 20:53–65, 1987.
- 618 Andrew Sellergren, Sahar Kazemzadeh, Tiam Jaroensri, Atilla Kiraly, Madeleine Traverse, Timo
 619 Kohlberger, Shawn Xu, Fayaz Jamil, Cían Hughes, Charles Lau, et al. Medgemma technical
 620 report. *arXiv preprint arXiv:2507.05201*, 2025.
- 621 Chuyi Shang, Amos You, Sanjay Subramanian, Trevor Darrell, and Roei Herzig. Traveler: A mod-
 622 ular multi-lmm agent framework for video question-answering, 2024. URL <https://arxiv.org/abs/2404.01476>.
- 623 Pratyusha Sharma, Tamar Rott Shaham, Manel Baradad, Stephanie Fu, Adrian Rodriguez-Munoz,
 624 Shivam Duggal, Phillip Isola, and Antonio Torralba. Ta vision check-up for language models. In
 625 *CVPR*, 2024.
- 626 Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
 627 Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
 628 large language models. In *2023 IEEE International Conference on Robotics and Automation*
 629 (*ICRA*), pp. 11523–11530, 2023a. doi: 10.1109/ICRA48891.2023.10161317.
- 630 Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, Carina Negreanu, and Gust Verbruggen.
 631 Codefusion: A pre-trained diffusion model for code generation. In *Proceedings of the 2023*
 632 *Conference on Empirical Methods in Natural Language Processing*, pp. 11697–11708, 2023b.
- 633 Andreas Steiner, André Susano Pinto, Michael Tschannen, Daniel Keysers, Xiao Wang, Yonatan
 634 Bitton, Alexey Gritsenko, Matthias Minderer, Anthony Sherbondy, Shangbang Long, et al.
 635 Paligemma 2: A family of versatile vlms for transfer. *arXiv preprint arXiv:2412.03555*, 2024.
- 636 Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang, Huajun Bai, and Yoav Artzi. A corpus for
 637 reasoning about natural language grounded in photographs. *arXiv preprint arXiv:1811.00491*,
 638 2018.

- 648 Dídac Surís, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for
 649 reasoning. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
 650 11888–11898, 2023.
- 651
 652 Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin
 653 Zhang, Chenzhuang Du, Chu Wei, Congcong Wang, Dehao Zhang, Dikang Du, Dongliang Wang,
 654 Enming Yuan, Enzhe Lu, Fang Li, Flood Sung, Guangda Wei, Guokun Lai, Han Zhu, Hao Ding,
 655 Hao Hu, Hao Yang, Hao Zhang, Haoning Wu, Haotian Yao, Haoyu Lu, Heng Wang, Hongcheng
 656 Gao, Huabin Zheng, Jiaming Li, Jianlin Su, Jianzhou Wang, Jiaqi Deng, Jiezhong Qiu, Jin Xie,
 657 Jinhong Wang, Jingyuan Liu, Junjie Yan, Kun Ouyang, Liang Chen, Lin Sui, Longhui Yu, Meng-
 658 fan Dong, Mengnan Dong, Nuo Xu, Pengyu Cheng, Qizheng Gu, Runjie Zhou, Shaowei Liu,
 659 Sihan Cao, Tao Yu, Tianhui Song, Tongtong Bai, Wei Song, Weiran He, Weixiao Huang, Weixin
 660 Xu, Xiaokun Yuan, Xingcheng Yao, Xingzhe Wu, Xinxing Zu, Xinyu Zhou, Xinyuan Wang,
 661 Y. Charles, Yan Zhong, Yang Li, Yangyang Hu, Yanru Chen, Yejie Wang, Yibo Liu, Yibo Miao,
 662 Yidao Qin, Yimin Chen, Yiping Bao, Yiqin Wang, Yongsheng Kang, Yuanxin Liu, Yulun Du,
 663 Yuxin Wu, Yuzhi Wang, Yuzi Yan, Zaida Zhou, Zhaowei Li, Zhejun Jiang, Zheng Zhang, Zhilin
 664 Yang, Zhiqi Huang, Zihao Huang, Zijia Zhao, and Ziwei Chen. Kimi-VL technical report, 2025.
 665 URL <https://arxiv.org/abs/2504.07491>.
- 666 Selim Furkan Tekin, Fatih Ilhan, Tiansheng Huang, Sihao Hu, and Ling Liu. LLM-TOPLA: Ef-
 667 ficient LLM ensemble by maximising diversity. In Yaser Al-Onaizan, Mohit Bansal, and Yun-
 668 Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024*,
 669 pp. 11951–11966, Miami, Florida, USA, November 2024. Association for Computational Lin-
 670 guistics. doi: 10.18653/v1/2024.findings-emnlp.698. URL [https://aclanthology.org/2024.findings-emnlp.698/](https://aclanthology.org/2024.findings-emnlp.698).
- 671 Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai, Zhikang Li, Jianxin Ma, Chang Zhou,
 672 Jingren Zhou, and Hongxia Yang. Ofa: Unifying architectures, tasks, and modalities through a
 673 simple sequence-to-sequence learning framework. *CoRR*, abs/2202.03052, 2022.
- 674 Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
 675 Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3.5: Advancing open-source multimodal
 676 models in versatility, reasoning, and efficiency. *arXiv preprint arXiv:2508.18265*, 2025.
- 677 Xiaohan Wang, Yuhui Zhang, Orr Zohar, and Serena Yeung-Levy. Videoagent: Long-form video
 678 understanding with large language model as agent. *European Conference on Computer Vision
 679 (ECCV)*, 2024.
- 680 Fangyun Wei, Jinjing Zhao, Kun Yan, Hongyang Zhang, and Chang Xu. A large-scale human-
 681 centric benchmark for referring expression comprehension in the lmm era. In *Proceedings of the
 682 38th International Conference on Neural Information Processing Systems, NIPS '24*, Red Hook,
 683 NY, USA, 2025. Curran Associates Inc. ISBN 9798331314385.
- 684 Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai, Houdong Hu, Yumao Lu, Michael Zeng, Ce Liu,
 685 and Lu Yuan. Florence-2: Advancing a unified representation for a variety of vision tasks. In
 686 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 687 pp. 4818–4829, June 2024.
- 688 Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa: Next phase of question-
 689 answering to explaining temporal actions. In *Proceedings of the IEEE/CVF Conference on Com-
 690 puter Vision and Pattern Recognition (CVPR)*, pp. 9777–9786, June 2021.
- 691 Zhengyuan Yang, Zhe Gan, Jianfeng Wang, Xiaowei Hu, Yumao Lu, Zicheng Liu, and Lijuan Wang.
 692 An empirical study of gpt-3 for few short knowledge-based vqa. *AAAI*, 2022.
- 693 Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
 694 Weilin Zhao, Zihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. *Nat Commun* 16,
 695 5509 (2025), 2025.
- 696 Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du, Bowen Zhang, Zirui Wang, Liangliang Cao,
 697 Shih-Fu Chang, and Yinfei Yang. Ferret: Refer and ground anything anywhere at any granularity.
 698 *arXiv preprint arXiv:2310.07704*, 2023.

- 702 Shoubin Yu, Jaemin Cho, Prateek Yadav, and Mohit Bansal. Self-chained image-language model
703 for video localization and question answering. In *NeurIPS*, 2023.
- 704
- 705 Boqiang Zhang, Kehan Li, Zesen Cheng, Zhiqiang Hu, Yuqian Yuan, Guanzheng Chen, Sicong
706 Leng, Yuming Jiang, Hang Zhang, Xin Li, Peng Jin, Wenqi Zhang, Fan Wang, Lidong Bing, and
707 Deli Zhao. Videollama 3: Frontier multimodal foundation models for image and video under-
708 standing. *arXiv preprint arXiv:2501.13106*, 2025. URL <https://arxiv.org/abs/2501.13106>.
- 709
- 710 Yuanhan Zhang, Bo Li, haotian Liu, Yong jae Lee, Liangke Gui, Di Fu, Jiashi Feng, Ziwei Liu, and
711 Chunyuan Li. Llava-next: A strong zero-shot video understanding model, April 2024a. URL
712 <https://llava-vl.github.io/blog/2024-04-30-llava-next-video/>.
- 713
- 714 Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video instruc-
715 tion tuning with synthetic data, 2024b. URL <https://arxiv.org/abs/2410.02713>.
- 716
- 717 Zheng Zhang, Yeyao Ma, Enming Zhang, and Xiang Bai. Psalm: Pixelwise segmentation with large
718 multi-modal model. In *European Conference on Computer Vision*, pp. 74–91. Springer, 2024c.
- 719
- 720
- 721
- 722
- 723
- 724
- 725
- 726
- 727
- 728
- 729
- 730
- 731
- 732
- 733
- 734
- 735
- 736
- 737
- 738
- 739
- 740
- 741
- 742
- 743
- 744
- 745
- 746
- 747
- 748
- 749
- 750
- 751
- 752
- 753
- 754
- 755

756	APPENDIX CONTENTS	
757		
758	A. Statements	16
759	A.1 Reproducibility Statement	16
760	A.2 Large Language Models (LLMs) Usage Statement	16
761		
762		
763	B. Additional Examples with Visualization	16
764	Figure 7: VLAgent Example on Video QA	17
765	Figure 8: Ensemble Verifier Example	17
766	Figure 9: Failure Case Due to Insufficient Attribute Check	18
767		
768	Figure 10: Failure Case Due to Blur Image	18
769		
770		
771	C. Detailed Experimental Settings	18
772		
773		
774	D. Additional Ablation of VLAgent	19
775		
776	D.1 Ablation of Task Planner LLM	19
777	D.2 Latency Test	20
778		
779		
780	E. Implementation Detail	21
781	E.1 Script Parser & Script Auditor	21
782	E.2 Ensemble Pruning	21
783		
784		
785	F. Related Works	24
786		
787		
788		
789		
790		
791		
792		
793		
794		
795		
796		
797		
798		
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		

810 A STATEMENTS
811812 A.1 REPRODUCIBILITY STATEMENT
813814 We make every effort to ensure the results in this paper are reproducible.
815

- 816 • We provide a link of anonymous GitHub repository where the source code and runtime logs
817 of VLAgent can be downloaded from.
- 818 • We provide details of modules used in VLAgent in Figure 3. In Appendix C, we provide
819 the detailed settings of datasets and LLMs. In Appendix E, we provide full implementation
820 details.
- 821 • Both in main paper and appendix, we provide figures as examples containing input, proce-
822 dure and output to show how exactly VLAgent works.

824 A.2 LARGE LANGUAGE MODELS (LLMs) USAGE STATEMENT
825826 During the process of writing this paper, LLMs are used and only used for grammar checking and
827 polishing of certain paragraphs.
828829 B ADDITIONAL EXAMPLES WITH VISUALIZATION
830831 In this supplementary section, we provide additional examples with visualization to illustrate the
832 main optimizations introduced by VLAgent in its backend engine, such as SS-Parser, Per-instruction
833 output verifier via Caption Analysis and Ensemble based Visual Reasoning.
834835 We first present an example video QA task, where the long video optimization and caption analysis
836 plays the most important role in producing a correct answer. Then we use one example of image-
837 based visual reasoning task to show how ensemble verifier contributes to the overall performance.
838 In addition, we also include two failure cases as well as our analysis.

839 **Figure 7** illustrates a representative text-video reasoning task with the query “*Why did the girl start*
840 *to shake her container horizontally after filling it up with water?*”. The ground truth provided by
841 NeXT-QA is given below the query with A as the correct answer (highlighted in green) out of the
842 five multiple choice answers. In this example, the movement of the girl is fast, such that we can
843 only infer it from the overall movement in the entire video. We use the four VLMs smaller than
844 8B in Table 2 to construct the model pool of the VIDQA module, which is used to answer questions
845 based on a video. During ensemble pruning of the video QA task, we run VLAgent on 150 samples
846 from the task dataset, and run the ensemble pruning process in Algorithm 2 to select three models.
847 Finally, LLaVA-Video-7B-Qwen2 Zhang et al. (2024b), InternVL-3.5-8B Wang et al. (2025) and
848 VideoLLaMA3-7B Zhang et al. (2025) are selected to construct the VIDQA module. Since the
849 original video is too long, we divide the video into 5 chunks, with each chunk containing roughly
850 15 seconds, and use LLaVA-Video-7B-Qwen2 Zhang et al. (2024b) to get a detailed caption of
851 each chunk. Then GPT-4.1-mini OpenAI (2025) is used to select chunks which may be relevant to
852 the question. Chunks 2, 3 and 5 are selected, and they are concatenated together to form variable
853 VIDEO. Meanwhile, our task planner generates a script to solve the problem. The script is then run
854 with an initial variable VIDEO. In the figure, we divide the script execution process into two stages:
855 keyframe locating and question answering. In the first stage, LOC is called to locate the timestamp
856 where the girl has filled her container with water, and then clips the video after the starting frame.
857 The clipped video is shown on the right of VIDEO0 in Figure 7, with keyframes annotated with red
858 border. We can already see the girl is washing the container. In question answering stage, VIDQA
859 is called to ask a bunch of questions on VIDEO0 and SELECT is called to choose the best answer.
860 Unfortunately, video QA models do not provide enough information to distinguish A with C, and
861 mistakenly votes C as the most possible answer. In verification step, we use per-frame caption model
862 on VIDEO1, and answer A is clearly supported. Therefore, the answer is modified to answer A and
863 VLAgent generates the correct final answer to this question.

864 **Figure 8** illustrates the effect of ensemble-verifier by an example from GQA with visualization. It
865 shows that with ensemble verification, VLAgent can further improve the LOC performance using
866 three external object detection models chosen by our ensemble-verifier. The cutting board bounding
867

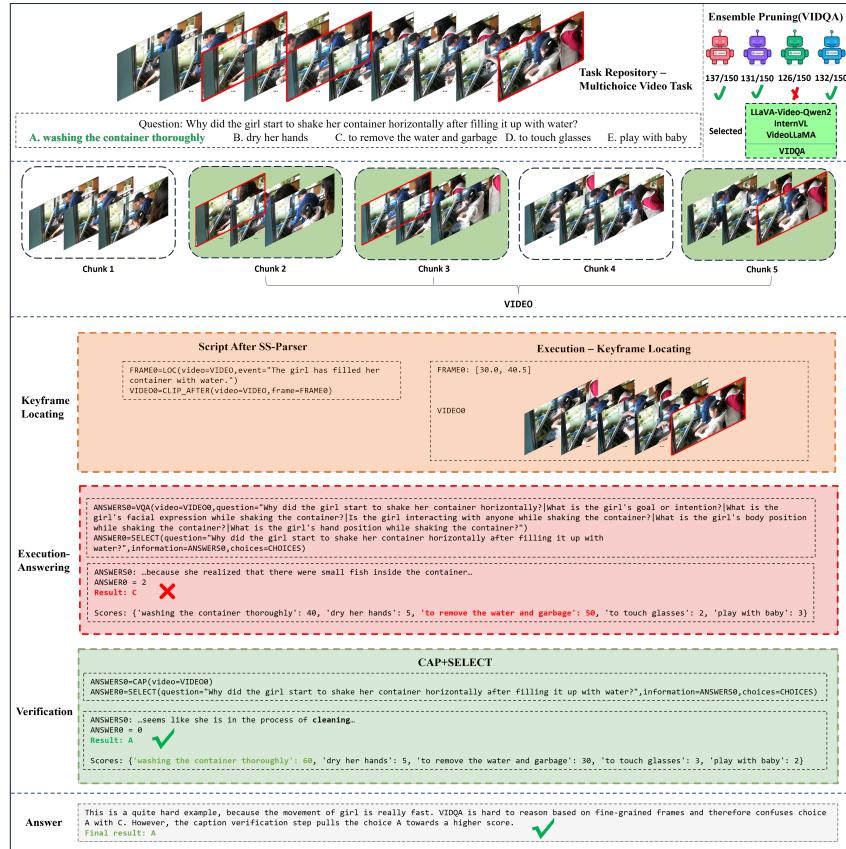


Figure 7: VLAgent example on video QA.

Figure 8: A GQA example illustrates the effectiveness of ensemble verification in VLAgent.

box in BOX1 gets the highest ensemble confidence score based on inconsistency resolution and fusion analysis. As we can see from the figure, the script locates the serving tray and cutting board, and then queries and compares their colors, which is correct. However, the default LOC module in VLAgent returns a wrong bounding box when it performs inference to locate the cutting board, making IMAGE1 remains to be a serving tray, and thus outputs a wrong result. By leveraging two other LOC modules, VLAgent can verify the output of the original LOC module. As shown in the bottom of Figure 8, both of the additional LOC modules can successfully locate the cutting board. As a result, the cutting board is the top-1 bounding box ranked by the fusion confidence score instead of the serving tray, delivering the correct final result by VLAgent with ensemble boosting.

We also provide two failure scenarios from GQA in **Figure 9**, and **Figure 10**.

918		BOX0=LOC(image=IMAGE,object='bus') BOX1=LOC(image=IMAGE,object='truck') ANSWER0=COUNT(box=BOX0) ANSWER1=COUNT(box=BOX1) ANSWER2=EVAL(expr="yes" if {ANSWER0} > 0 or {ANSWER1} > 0 else 'no') FINAL_RESULT=RESULT(var=ANSWER2)	BOX0=	
919	Question: Are there any red buses or trucks?	SS-Parser: replace the script with following: BOX_ARRAY0=LOC(image=IMAGE,object='bus',plural=True) BOX_ARRAY1=LOC(image=IMAGE,object='truck',plural=True) ANSWER0=COUNT(box=BOX_ARRAY0) ANSWER1=COUNT(box=BOX_ARRAY1) ANSWER2=EVAL(expr="yes" if {ANSWER0} > 0 or {ANSWER1} > 0 else 'no') FINAL_RESULT=RESULT(var=ANSWER2)	ANSWER0=0 ANSWER1=2 ANSWER2="yes" FINAL_RESULT="yes"	BOX1=
920	Correct answer: no			

921
922
923
924
925
926
927
928
Figure 9: The script should examine the color of buses/trucks, but the SS-Parser fails to detect this
type of error.

929		BOX0=LOC(image=IMAGE,object='person') IMAGE0=CROP(image=IMAGE,box=BOX0) ANSWER0=VQA(image=IMAGE0,question='What is the gender of the first person?') ANSWER1=VQA(image=IMAGE0,question='What is the gender of the second person?') ANSWER2=EVAL(expr="yes" if {ANSWER0} == {ANSWER1} else 'no') FINAL_RESULT=RESULT(var=ANSWER2)	BOX_ARRAY0=	
930	Question: Do both the people have the same gender?	SS-Parser: replace the script with following: BOX_ARRAY0=LOC(image=IMAGE,object='person',plural=True) IMAGE_ARRAY0=CROP(image=IMAGE,box=BOX_ARRAY0) ANSWER0=VQA(image=IMAGE_ARRAY0,index=1,question='What is the gender of the first person?') ANSWER1=VQA(image=IMAGE_ARRAY0,index=2,question='What is the gender of the second person?') ANSWER2=EVAL(expr="yes" if {ANSWER0} == {ANSWER1} else 'no') FINAL_RESULT=RESULT(var=ANSWER2)	IMAGE_ARRAY0=[
931	Correct answer: no			

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Figure 10: An example where VLAgent fails because the image is blurred.

In **Figure 9**, the script neglects to examine the color of the buses and trucks because the 20 in-context examples do not cover similar questions. Consequently, the SS-Parser fails to detect this type of logical error. This failure case motivates our future work in developing a more advanced semantic parser. For example, our revised SS-Parser can detect the error by judging the adjective word "red" in the question is not checked in the script.

Finally, in **Figure 10**, the VLAgent successfully corrects the errors in LLM-generated planning script via its SS-Parser and script-repair module. Unfortunately although the ensemble reasoning is leveraged, it fails when all of the three VQA models produce incorrect answers for the second person due to the fact that the image is too blurred and dark. This indicates that a more robust output verification method would improve the solution.

C DETAILED EXPERIMENTAL SETTINGS

In our experiments, we evaluate the performance of VLAgent and the baselines on six distinct datasets, each corresponding to a specific task. The datasets are described below:

- **GQA** Hudson & Manning (2019): A large-scale dataset for real-world visual reasoning and compositional question answering. GQA challenges models to understand complex scenes and answer questions that require multi-step reasoning. For example, a question might ask whether there is a boy to the left of a standing girl. For fair comparison, following the Visprog settings, we test VLAgent on a subset of the test_dev set by randomly selecting 20 questions per type, resulting in 1460 QA pairs.
- **NLVR2** Suhr et al. (2018): A dataset designed for natural language visual reasoning, consisting of paired images and textual statements. The task is to determine whether a statement accurately describes the visual content, thereby assessing both language understanding and visual grounding. We adopt the same setting as Visprog by evaluating on the entire balanced test set. After filtering out expired image links, 2316 samples remain.
- **VQAv2** Goyal et al. (2017): An improved version of the original VQA Antol et al. (2015) dataset, VQAv2 provides balanced question-answer pairs to mitigate language biases and foster deeper visual understanding. Widely used for benchmarking visual question answering models, we randomly sample 20 QA pairs per type from the validation set (the test set is not used as it lacks answer annotations). With 65 question types, this yields a total of 1300 QA pairs.

- **MME** Fu et al. (2024): A comprehensive benchmark designed to evaluate various aspects of multimodal reasoning, including math reasoning, code understanding, chart QA, existence, position, color, and more. In this work, we focus on a representative subset of the dataset—specifically the existence, position, and color categories—which require direct image-level reasoning. This selection aligns with our objective of evaluating visual reasoning capabilities independent of external components such as OCR or symbolic math engines. Categories heavily reliant on textual extraction or LLM-based arithmetic fall outside the scope of our image-centric evaluation. Our subset includes 580 QA pairs sampled from the official test set, providing a robust and targeted assessment of image-level reasoning performance.
- **NeXT-QA** Xiao et al. (2021): A large-scale *video* question answering benchmark targeting *temporal* and *causal* reasoning about human activities and events. Questions are multiple-choice and often require cross-frame understanding of before/after relations, intentions, and cause/effect. We evaluate on a subset of its test set, where we randomly sample 200 QAs per type, forming a subset of 1493 QAs.
- **HC-RefLOCO** Wei et al. (2025): A human-centric referring expression comprehension dataset with *long*, attribute-rich descriptions that combine appearance, pose, spatial relations, and actions. The task is to localize the target person (bounding box) that best matches the natural-language description, emphasizing fine-grained grounding over long sentences. We sample 1400 referring expressions from the official test split to form a subset to test VLAGent and other approaches.

Our experiments are conducted on a single H100 or H200 GPU in a Python 3.9 environment. We evaluate four LLM models for script generation:

- **GPT-3.5** OpenAI (2023): `gpt-3.5-turbo-instruct` API from OpenAI is employed to assess GPT’s performance. For fair comparison, we change the LLM models of zero-shot baselines to GPT-3.5 as well if they are using older models.
- **Llama3-8B** Grattafiori et al. (2024): This model is loaded from HuggingFace at `meta-llama/Meta-Llama-3-8B`. Developed by Meta, it is a completion model with 8B parameters, a vocabulary size of 128K, and a context window of 8K - meeting the basic requirements for script generation.
- **GLM4-9B** GLM et al. (2024): This model is loaded from HuggingFace at `THUDM/glm-4-9b-hf`. It is a more advanced model, featuring 9B parameters, a vocabulary size of 152K, and a context window of 128K.
- **Mistral-Small-24B-Base-2501** Jiang et al. (2023): From HuggingFace at `mistralai/Mistral-Small-24B-Base-2501`, this model is loaded. Among the four LLMs, Mistral offers the best performance, with a parameter size of 24B (even larger than GPT-3.5, which has a reported parameter size of 20B Singh et al. (2023b)). Its vocabulary size is 131K, and its context window is 32K.

D ADDITIONAL ABLATION OF VLAGENT

D.1 ABLATION OF TASK PLANNER LLM

Table 5 reports the comparison results of full-fledged VLAGent with its naive version with only LLM-generated script and its runtime executor (w/o parsers and verifiers) with four popular LLMs as the LLM-script generator respectively and tested on all four ImageQA benchmarks. VLAGent consistently outperforms its naive version by a significant margin. In particular, for NLVR2 with GLM, the combo performs poorly with only an accuracy of 19.2% due to incorrect generation of LLM programs. In comparison, VLAGent achieves an accuracy of 58.6% with 39.4% gain margin. Similarly, for VQAv2, VLAGent significantly improves the accuracy with Llama by 14.3%, Mistral by 6.4%, GPT-3.5 by 4.6%, and GLM by 3.9%. For MME, the full-fledged VLAGent remains the top performer with 3.5% improvement on average. Given that the questions in the selected categories of MME are significantly simpler compared to those in GQA, the naive VLAGent can achieve very good accuracy. The improvement brought by the combo of SS-Parser and Output verifier is about 1.4 ~ 7.6%.

1026
 1027 Table 5: Accuracy Comparison on 4 benchmarks (GQA, VQAv2, MME, NLVR2). Each benchmark is tested
 1028 using four different LLMs as the corresponding initial task plan generators for both VLAgent naive (with
 1029 only LLM script planner and executor) and VLAgent (the full fledged version with SS-Parser and caption and
 1030 ensemble Verifiers). A total of 16 combos for VLAgent to compare with 16 combos of VLAgent naive, showing
 1031 the consistent gain of SS-Parser and Output Verifiers.

Agent Framework	Benchmark	GPT 3.5	Llama	Mistral	GLM
VLAgent naive	GQA	54.4%	54.1%	55.2%	54.7%
	GQA	61.9%	58.7%	60.7%	60.4%
	GQA	+7.5%	+4.6%	+5.5%	+5.7%
VLAgent	VQAv2	72.3%	61.0%	70.8%	74.2%
	VQAv2	76.9%	75.3%	77.2%	78.1%
	VQAv2	+4.6%	+14.3%	+6.4%	+3.9%
Improvement	MME	86.9%	81.0%	85.3%	86.0%
	MME	88.4%	88.6%	88.8%	87.4%
	MME	+1.5%	+7.6%	+3.5%	+1.4%
VLAgent	NLVR2	69.3%	65.9%	67.6%	19.2%
	NLVR2	73.2%	70.0%	74.1%	58.6%
	NLVR2	+3.9%	+4.1%	+6.5%	+39.4%
Improvement					

D.2 LATENCY TEST

1048
 1049 The third experiment we want to report as a part of the ablation study is the latency of each core
 1050 component and each optimization, especially the cost of ensemble verifier and caption verifier.
 1051 **Table 6** reports the per-sample inference time of VLAgent on GQA, including its naive version
 1052 (planner+executor only), and the individual core components within VLAgent. It is observed that
 1053 empowered with all the SS-parser checking, repairing, and verifying mechanisms, VLAgent runs
 1054 at 7.54 seconds per sample. Compared to the VLAgent naive which takes 3.24 seconds, the full-
 1055 fledged VLAgent offers the inference latency at an acceptable range in practice. Also the breakdown
 1056 of the components reveals that a majority of the added latency stems from the caption verifier, which
 1057 invokes both an image captioning model and an LLM. In comparison, the ensemble fusion of vision
 1058 models introduces only a modest overhead and the SS-Parser incurs negligible additional cost.

1059 Table 6: Inference time per sample. VLAgent w. parallel means part of the caption verifier runs in
 1060 parallel with the other VLAgent components.

Component	Time Cost (s)
VLAgent Naive	3.24
VLAgent (all) Sequential	7.54
VLAgent (all) Parallel	5.10
Task Planning	1.50
LOC w/o ensemble verifier	0.23
LOC w/ ensemble verifier	0.88
VQA w/o ensemble verifier	0.17
VQA w/ ensemble verifier	0.23
SS-Parser	0.00 (0.0016)
Caption Verifier	4.01

1075 Important to note is that the captioning and its analysis are independent of script generation and
 1076 script execution, we can process them in parallel. For parallel implementation of caption-verifier,
 1077 the total inference time of VLAgent can be reduced to 5.10 seconds per sample (a gain margin
 1078 of 2.44 seconds). This also indicates that the checking and verifying mechanism only adds a tiny
 1079 latency increase (less than 2s), while offering substantially improved visual compositional reasoning
 capability and improved interpretability.

1080 **E IMPLEMENTATION DETAIL**
10811082 **E.1 SCRIPT PARSER & SCRIPT AUDITOR**
1083

1084 Before passing the script to the executor, VLAgent checks for potential errors. The *script parser*
 1085 looks for syntax errors; for example, it flags any script that uses a module name not supported by
 1086 VLAgent. The *script auditor* checks for semantic-level errors. For instance, if the script attempts to
 1087 locate “standing” in a cropped bird image to check whether a bird is standing, the auditor will note
 1088 that the object name passed to the LOC module should be a noun or a phrase describing a noun. The
 1089 auditor can detect such an error and return a corrected script.

1090 **Table 7** summarizes the representative *detected conditions* and the *automatic repairs* applied by
 1091 our two safeguards: the *script parser* and *script auditor*. For the script auditor, an expression like
 1092 `== 'yes'` must be replaced with `== True` because we omit explicit type conversion in the tem-
 1093 plate for simplicity. Instead, all variables are converted to their appropriate types inside the EVAL
 1094 module: digit strings become numbers, “yes” and “no” become `True` or `False`, and other formats
 1095 remain unchanged. However, the LLM is unaware of this and may still produce statements like
 1096 `{ANSWER0} == 'yes'` to determine if a variable is “yes” or “no.”

1097 The script auditor may also add a `plural=True` flag in the LOC call if the object name is plural
 1098 or corresponds to a plural word in the question. For example, if the question is “Are both people
 1099 the same gender?” and LOC identifies a person, the auditor can detect that “person” corresponds
 1100 to “people,” meaning the bounding box should encompass a group of people. In such a case, the
 1101 script auditor adds `plural=True` to the LOC call, and the bounding box of the entire image is
 1102 returned if any person is detected. In implementation, the script parser and the script auditor can be
 1103 implemented together, with a line-by-line check of the script, as shown in Algorithm 1.

1104 **Table 7:** Representative issues and automatic repairs applied by the script parser and script auditor.
1105

1106 Module	1107 Detected Condition	1108 Strategy
1109 Script parser	Wrong script format	Replace with direct VQA call
	Non-existent module names	Replace with direct VQA call
	Non-existent variables	Replace with direct VQA call
	Syntax error in EVAL’s expression	Replace with direct VQA call
1111 Script Auditor	LOC: Strange object names	Replace with direct VQA call
	LOC: plural object name	Add “ <code>plural=True</code> ” in LOC call
	LOC: corresponding plural noun in question found	Add “ <code>plural=True</code> ” in LOC call
	EVAL contains “ <code>== 'yes'</code> ”	Replace it with “ <code>== True</code> ”
	EVAL contains “ <code>== 'no'</code> ”	Replace it with “ <code>== False</code> ”

1116 On video QA task, SS-Parser adds the syntax check for VIDQA, LENGTH, CLIP, CLIP_AROUND,
 1117 CLIP_BEFORE, CLIP_AFTER, SELECT modules, while for LOC, the input is changed to question
 1118 along with a video. The script auditing part extracts the temporal keywords from the question and
 1119 checks whether the usage of CLIP family models is correct. For referring expression, SS-Parser
 1120 only does syntax check on supported modules.

1122 **E.2 ENSEMBLE PRUNING**
1123

1125 Consider LOC as an example. Suppose we have N models to consider as candidate external modules.
 1126 Instead of designing an ensemble of N models, we consider only a small subset of M models by
 1127 ensemble pruning method Tekin et al. (2024) to avoid computation overhead.

1128 We run our VLAgent on a small sample from the task dataset. Suppose we totally run LOC for P
 1129 times. Our ensemble pruning step consists of **three stages**: (i) Compute a score for each model to
 1130 represent its overall performance; (ii) Use K-Means MacQueen (1967) to group models with similar
 1131 performance together. Before clustering, we use Silhouette distance Rousseeuw (1987) to compute
 1132 the best K . (iii) The models of the cluster with the highest scores are put to our candidate model
 1133 list. If the number of candidate models is smaller than our desired M , go through (ii) and (iii) on
 remaining models.

1134 **Algorithm 1:** High-Level Algorithm for SS-Parser. For simplicity, this algorithm only includes
 1135 modules in GQA.
 1136

1137 **Input:** program: multiline script; question: user query; module_list: allowed module
 1138 names; var_dict: runtime variable values (e.g. {"IMAGE":None})
 1139 **Output:** approved_program: adjusted script or fallback

1140 **begin**

1141 Split program into lines; Set num_box_arrays=0 and num_image_arrays=0;
 1142 **foreach** i, ℓ in enumerate(lines) **do**
 1143 Parse ℓ with parse_step into (s, o, a) ; **if** s not in module_list **then**
 1144 **return** fallback_script;
 1145 **switch** s **do**
 1146 **case** EVAL **do**
 1147 Let $expr_fmt = a["expr"]$;
 1148 **if** $expr_fmt$ syntax error found in $expr_fmt$ **then**
 1149 **return** fallback_script;
 1150 Set $var_dict[o] = eval(expr_fmt)$; In ℓ , replace == 'yes' \rightarrow ==
 1151 True and == 'no' \rightarrow == False;
 1152 **case** LOC **do**
 1153 Set $var_dict[o] = [[0,0,100,100]]$;
 1154 **if** $a["image"]$ not in var_dict **then**
 1155 **return** fallback_script;
 1156 Let $obj = eval(a["object"])$;
 1157 **if** obj is not noun OR obj not mentioned in question **then**
 1158 **return** fallback_script;
 1159 **if** obj is plural or corresponds to a plural noun in question **then**
 1160 $a["plural"] = True$;
 1161 **if** question contains any of {all, every, both, each} **then**
 1162 $k \leftarrow num_box_arrays++$;
 1163 $o \leftarrow "BOX_ARRAY_{k}"$;
 1164 For each CROP line using the bounding box: update bounding box
 1165 name as new o ; for each related VQA call:
 1166 $m \leftarrow num_image_arrays++$, update image argument name to be
 1167 IMAGE_ARRAY_m, add increasing index argument starting from 1;
 1168 **case** VQA **do**
 1169 **if** $a["image"]$ not in var_dict **then**
 1170 **return** fallback_script;
 1171 Set $var_dict[o] = '0'$;
 1172 **case** CROP/COUNT/RESULT/GET **do**
 1173 Run ℓ , updating var_dict ; **if** exception occurs **then**
 1174 **return** fallback_script;
 1175 **else**
 1176 **return** fallback_script;
 1177 Replace line i of lines with the updated ℓ ;
 1178 Let approved_program = join(lines, "\n");
 1179 **return** approved_program;

1181 For each of the P LOC instructions, we get the bounding box list of M models, denoted as B_{ij} ,
 1182 where $1 \leq i \leq P$, $1 \leq j \leq M$. Let B denote the final list of the M bounding boxes produced by
 1183 the ensemble fusion of M external LOC models, which serves as a *pseudo label*. Let $Area(B) :=$
 1184 $\{(x, y) | \exists b \in B, (x, y) \in b\}$ denote the union region of bounding boxes in bounding box list B .
 1185 Hence, we can compute the confidence score I_{ij} for each bounding box list B_{ij} ($1 \leq i \leq P$,
 1186
 1187

1188 $1 \leq j \leq M$), as follows:

$$1190 \quad I_{ij} = \frac{|Area(\cup B_{ij}) \cap Area(\cup B)|}{|Area(\cup B_{ij}) \cup Area(\cup B)|} \quad (1)$$

1192 which is the Intersection of Union (IoU) between the M bounding boxes in B_{ij} and pseudo label.
 1193 $|\cdot|$ is the area. We then use the average IoU of the j th model as its score:
 1194

$$1195 \quad s_j = \frac{1}{P} \sum_{i=1}^P I_{ij} \quad (2)$$

1198 After getting $\{s_j\}_{j=1}^N$, we go through stage (ii) and (iii) to iteratively select M models to construct
 1199 the model set for LOC. Refer to **Algorithm 2** for a detailed selection pseudo code. In Algorithm 2,
 1200 line 2 to line 6 runs the VLAgent on m samples from the task dataset. Line 7-10 goes through stage
 1201 (i) to get a score of each model. Line 11-22 uses Silhouette distance Rousseeuw (1987) to select the
 1202 best K , where $C(s_j)$ is the cluster s_j belongs to, $a(j)$ is the intra-cluster distance for s_j , $b(j)$ is the
 1203 inter-cluster distance for s_j , and $s(j)$ is the Silhouette distance of s_j . Line 23-26 runs K -Means
 1204 clustering, and adds the models in cluster C^* which contains largest s_j s to the candidate model set
 1205 \mathcal{S} , meanwhile removing them from the model pool \mathcal{R} .
 1206

Algorithm 2: Model Selection via IoU-based Scoring and K-Means Clustering

Input: N models; m samples from dataset; minimum number of models M

Output: \mathcal{S} : set of selected model indices

```

1198 1 Initialize  $\mathcal{S} \leftarrow \emptyset$ ,  $\mathcal{R} \leftarrow \{1, 2, \dots, N\}$ 
1199 2 Sample  $m$  data points and run LOC for  $P$  total lines
1200 3 for  $i = 1$  to  $P$  do
1201 4   for  $j \in \mathcal{R}$  do
1202 5      $\downarrow$  Get bounding box list  $B_{ij}$  from model  $j$ 
1203 6   Run ensemble algorithm to get pseudo label  $B_i$ 
1204 7 for  $j \in \mathcal{R}$  do
1205 8   for  $i = 1$  to  $n$  do
1206 9      $\downarrow$   $I_{ij} = \frac{|Area(\cup B_{ij}) \cap Area(\cup B_i)|}{|Area(\cup B_{ij}) \cup Area(\cup B_i)|}$ 
1207 10     $s_j = \frac{1}{P} \sum_{i=1}^P I_{ij}$ 
1208 11 while  $|\mathcal{S}| < M$  and  $\mathcal{R} \neq \emptyset$  do
1209 12   for  $K = 1$  to  $|\mathcal{R}|$  do
1210 13     Run K-Means clustering on  $\{s_j\}_{j \in \mathcal{R}}$  to get clusters  $\{C_r\}_{r=1}^K$ 
1211 14     for  $j \in \mathcal{R}$  do
1212 15       if  $|C(s_j)| = 1$  then
1213 16          $s(j) = 0$ 
1214 17       else
1215 18          $a(j) = \frac{1}{|C(s_j)|-1} \sum_{s_k \in C(s_j), k \neq j} |s_j - s_k|$ 
1216 19          $b(j) = \min_{r \neq C(s_j)} \frac{1}{|C_r|} \sum_{s_k \in C_r} |s_j - s_k|$ 
1217 20          $s(j) = \frac{b(j) - a(j)}{\max\{a(j), b(j)\}}$ 
1218 21        $S(K) = \frac{1}{|\mathcal{R}|} \sum_{j \in \mathcal{R}} s(j)$ 
1219 22      $K^* = \arg \max_{K \in \{1, 2, \dots, |\mathcal{R}|\}} S(K)$ 
1220 23     Run  $K^*$ -Means clustering on  $\{s_j\}_{j \in \mathcal{R}}$ 
1221 24      $C^* = \arg \max_{r \in \{1, \dots, K^*\}} \max_{j: C(s_j) = r} s_j$ 
1222 25      $\mathcal{S} \leftarrow \mathcal{S} \cup \{j : C(s_j) = C^*\}$ 
1223 26      $\mathcal{R} \leftarrow \mathcal{R} \setminus \{j : C(s_j) = C^*\}$ 
1224 27 return  $\mathcal{S}$ 

```

1241 For other external modules like VQA, we run the same algorithm. The only difference is how I_{ij} is
 1242 computed. For VQA, $I_{ij} = \mathbb{I}[|A_{ij} \cap A_i| > 0]$, where A_{ij} is the set of words generated by model j

1242 on i -th data, and A_i is the set of words in the ensembled answer. For VIDQA, $I_{ij} = \mathbb{I}[choice_{ij} =$
 1243 $choice_i]$, where $choice_{ij}$ is the choice supported by model j on i -th data, and $choice_i$ is the majority
 1244 voted choice. The effectiveness of ensemble verifier is measured in the Ablation study in Section 3.2.
 1245

1246 F RELATED WORKS

1247 Our work is inspired by several pioneering projects in Neural Module Networks (NMNs) Andreas
 1248 et al. (2016b); Hu et al. (2018; 2017); Johnson et al. (2017). NMNs were introduced to improve
 1249 interpretability by decomposing visual reasoning into explicit sub-tasks. In NMN frameworks, a
 1250 question is parsed into a layout of modular operations (e.g., find, filter, count), each of which is
 1251 handled by specialized neural units, and the results are composed to produce the answer. This
 1252 compositional design yields a step-by-step reasoning trace that is more transparent than monolithic
 1253 end-to-end models. However, NMNs require supervised learning to train the module selection or
 1254 layout predictor, often relying on ground-truth programs or strong annotations. Consequently, their
 1255 generalization is constrained by the quality and quantity of training data, and hard to extend to
 1256 new tasks without additional supervision. The recent progress in Neural Module Networks includes
 1257 ViperGPT Surís et al. (2023), VisProg Gupta & Kembhavi (2023) and GENOME Chen et al. (2023).
 1258 These recent projects formulate Python programs that invoke external trained models and Python
 1259 library modules to obtain answers in visual reasoning tasks.
 1260

1261 Our research is also inspired by recent research in LLM enhancement for visual reasoning Singh
 1262 et al. (2023a); Surís et al. (2023); Yang et al. (2022); Gupta & Kembhavi (2023) without task-specific
 1263 model training or supervised finetuning of foundation models Antonio Torralba (2024); Sharma et al.
 1264 (2024); Huh et al. (2024). The visual inference methods prompt an LLM to output an explicit
 1265 sequence of operations that can invoke pre-built executable modules. ProgPrompt Singh et al. (2023a)
 1266 uses an LLM to produce robot task plans as executable code given high-level instructions. PICa Yang
 1267 et al. (2022) introduces the representation of visual information as text via objects and their attributes
 1268 detected, and it improves the in-context learning with the additional textual data to GPT-3 to obtain
 1269 answer to a visual question. ViperGPT Surís et al. (2023) formulates visual questions as Python
 1270 programs calling vision APIs to generate answers via code execution. VisProg Gupta & Kembhavi
 1271 (2023) introduced a well-structured program instruction template for visual reasoning and an inter-
 1272 preter is to execute the external pre-trained vision moddel or a Python module in Python library.
 1273 GENOME Chen et al. (2023) extends Visprog to unseen task scenarios by adding a process to create
 1274 new modules and new in-context learning examples. However, most existing zero-shot approaches
 1275 suffer from the problem of blindly entrusting LLM generated programs, instead of integrating error
 1276 checking and repairing with result verification as the preconditions for invoking program execution,
 1277 minimizing the detrimental effect of logical errors in LLM-generated programs, such as incorrect
 1278 planning steps, non-existent external modules due to undesirable LLM hallucination.
 1279

1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295