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ABSTRACT

The advancement in large language models (LLMs) and large vision models has
fueled the rapid progress in multi-modal vision-language reasoning capabilities.
However, existing vision–language models (VLMs) remain challenged by com-
positional visual reasoning. This paper presents VLAgent, a neuro-symbolic ap-
proach to developing a Vision-Language Agent system for efficient compositional
visual reasoning with three novel features. First, VLAgent develops an inter-
pretable visualization-enhanced two-stage neuro-symbolic reasoning system. The
first stage is managed by a front-end engine that generates a structured visual rea-
soning plan (symbolic program script) for each compositional visual reasoning
task by utilizing a pre-trained LLM powered with few-shot chain-of-thought in-
context learning. The second stage is managed by a high-performance back-end
engine. It transforms the planning script into executable code based on visual
input (image or video) and the combination of neural models and symbolic func-
tions and then performs a sequence of actions for the compositional visual reason
task. Second, to ensure and enhance the quality of mapping the logic plan to
a sequence of executable instructions, VLAgent introduces the SS-parser, which
examines the syntax and semantic correctness of the planning script, detects and
repairs the logic errors found in the LLM-generated logic plan before generat-
ing the executable program. Third, VLAgent introduces the execution verifier in
critical reasoning steps to validate and refine its compositional reasoning results
in a stepwise manner, for example, ensemble methods for critical visual reason-
ing and caption analysis for low-confidence compositional reasoning. Extensive
experiments were conducted on six visual benchmarks and compared to a dozen
SoTA visual reasoning models. The results show that VLAgent outperforms exist-
ing representative approaches to compositional visual reasoning, while enabling
self-interpretable visualization for human-in-the-loop debugging. Our code and
runtime logs are available at https://anonymous.4open.science/r/VLAgent.

1 INTRODUCTION

Compositional visual reasoning tasks often involve a sequence of heterogeneous visual reasoning
subtasks, and demand for multiple independently trained vision models or vision-language models
(VLMs) to perform different subtask-specific visual reasoning. Furthermore, different visual reason-
ing tasks tend to require different compositions of multiple vision models in order to generate correct
visual reasoning output. Hence, learning to perform diverse compositional visual reasoning tasks
poses significant challenges to advanced large vision-language models, including GPT-4o, GPT-5.
In this paper, we present VLAgent, a vision-language agent system that explores the neuro-symbolic
approach to automatically breakdown each compositional visual reasoning task from end-users into
a sequence of task-specific neuro-symbolic instructions in two stages. We argue that a neurosym-
bolic approach to compositional visual reasoning could be viewed as an attractive complementary
representational learning framework to the advanced large vision-language models. Furthermore, we
argue that to ensure high performance and high accuracy in reasoning output, a robust integration
of neuro-symbolic learning for compositional reasoning requires the following four critical func-
tional components to work in concert: plan generation, plan debugging and repair, verifiable plan
execution with stepwise auditing, and output verification. By self-validation and self-refinement of
neuro-symbolic instructions generated for compositional reasoning, prior to generating the final out-
put, will notably fortify the generalization performance of VLAgent for complex visual reasoning.
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To date, research activities have been engaged towards complex visual reasoning along two inter-
related threads. Neural Module Networks (NMN) Andreas et al. (2016b); Hu et al. (2018; 2017);
Johnson et al. (2017); Andreas et al. (2016a) are pioneering in the model training category. This
line of work aims to tackle the challenges of end-to-end visual reasoning models by decomposing
complex reasoning tasks into modular compositional subroutines through supervised learning with
large labeled training datasets. NMN development shows that neural modular networks can sig-
nificantly improve the interpretability of visual reasoning. Inspired by the ideas of neural modular
networks, recent approaches are centered on zero-shot learning, instead of training with supervised
learning. Pre-trained LLMs (open source or close source) are utilized to generate structured pro-
grams for performing end to end compositional reasoning. For example, ProgPrompt Singh et al.
(2023a) generates executable programs to help robots perform vision-related tasks. ViperGPT Surı́s
et al. (2023) and VisProg Gupta & Kembhavi (2023) aim to solve visual question & answer (VQA)
problems with zero-shot learning. ViperGPT formulates Python programs based on existing Python
libraries and VisProg uses LLM to generate program template embedding calls to external modules
(pretrained models or preconfigured Python functions , more detailed related work in Appendix F).
However, existing visual reasoning methods suffer from a number of limitations. First, LLM gen-
erated programs often produce non-existent modules or logically flawed execution program steps.
Second, existing methods lack of capability for checking the validity of LLM generated program
w.r.t. both the feasibility of generating runnable code and the correctness of reasoning steps. As
a result, existing methods tend to fail miserably when the LLM generated program is ill-formatted
or logically incorrect due to unwanted hallucination. Finally, existing approaches often hard-wire
a pre-defined external module for each reasoning step, making their performance bounded to the
performance of the weakest external module(s) in the end-to-end reasoning process.

Motivated by the above observations, we present VLAgent, a vision-language agent system for ef-
ficient end-to-end visual reasoning with three novel characteristics. First, the VLAgent develops a
two-stage neuro-symbolic visual reasoning agent framework. Stage-1 managed by a front-end en-
gine will utilize few-shot and Chain of Thought (CoT) in-context learning to finetune a pretrained
LLM to learn to create a stepwise visual reasoning plan in the form of a structured logic program for
any visual reasoning request from end-users. Stage-2 managed by a backend engine will support the
mapping of each planning script to executable code and perform runtime execution to generate final
reasoning output. Second, the VLAgent optimizes the two-stage neurosymbolic framework by de-
veloping the VLAgent SS-Parser, geared to improve the quality and correctness of LLM-generated
planning scripts prior to generating executable code for runtime execution. This SS-Parser will in-
spect and repair syntactic and semantic errors detected in the planning program script. Next, the
VLAgent enhances the generalization performance of the VLAgent by incorporating an output ver-
ifier to validate and refine compositional visual reasoning steps during runtime execution.

Figure 1: Examples illustrating performance of eight VLMs on NeXT-QA compared with VLAgent.

Figure 1 illustrates by examples the effectiveness of VLAgent compared with eight popular VLMs,
including GPT-5 and GPT-5-Thinking on NeXT-QA benchmark Xiao et al. (2021). VLAgent cor-
rectly solves four out of five cases. Extensive experiments are performed on six representative
visual reasoning benchmarks. The results demonstrate that VLAgent consistently outperforms ex-
isting zero-shot learning methods by 3%-40% in terms of accuracy on image QA benchmarks and
surpasses the representative zero-shot methods on video QA benchmarks by a margin of 7%-19%.
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Think step by step to answer the
question.

Question: Do the post and the sign hav
a different colors?
Script:
BOX0=LOC(image=IMAGE,object='post')
IMAGE0=CROP(image=IMAGE,box=BOX0)
BOX1=LOC(image=IMAGE,object='sign')
IMAGE1=CROP(image=IMAGE,box=BOX1)
ANSWER0=VQA(image=IMAGE0,question='Wha
color is the post?')
ANSWER1=VQA(image=IMAGE1,question='Wha
color is the sign?')
ANSWER2=EVAL(expr="'yes' if {ANSWER0}
!= {ANSWER1} else 'no'")
FINAL_RESULT=RESULT(var=ANSWER2)

Question:
Does the mat have the same color as th
sky?
Script:
BOX0=LOC(image=IMAGE,object='sky')
IMAGE0=CROP(image=IMAGE,box=BOX0)
BOX1=LOC(image=IMAGE,object='mat')
IMAGE1=CROP(image=IMAGE,box=BOX1)
ANSWER0=VQA(image=IMAGE0,question='Wha
color is the sky?')
ANSWER1=VQA(image=IMAGE1,question='Wha
color is the mat?')
ANSWER2=EVAL(expr="'yes' if {ANSWER0}
== {ANSWER1} else 'no'")
FINAL_RESULT=RESULT(var=ANSWER2)
...
Question: Do both the people have the
same gender?
Script:

VL Planner
Load your personalized LLM

configuration

BOX_ARRAY0=LOC(image=IMAGE,object='person',plural=True)
IMAGE_ARRAY0=CROP(image=IMAGE,box=BOX_ARRAY0)
ANSWER0=VQA(image=IMAGE_ARRAY0,index=1,question='What
is the gender of the person?')
ANSWER1=VQA(image=IMAGE_ARRAY0,index=2,question='What
is the gender of the person?')
ANSWER2=EVAL(expr="'yes' if {ANSWER0}=={ANSWER1} else
'no'")
FINAL_RESULT=RESULT(var=ANSWER2)

Script Parser
(Syntax checking)

Script Executor
(Execute Script Program)

SS-Parser (Syntax-Semantic Parser+Repair)

Instr Executor
(Execute Single Instr.)

Output Verifier
(Validate & Refine Output)

Script Auditor
(Audit Script Logic)

Script Repair
(Repair incorrect script)

Ta
sk
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is

pa
tc

he
r

Task-specific
Context Loader

Do both the people
have the same gender?

Multimodal input 1
Multimodal input 2

Multimodal input N

Task Repository
(GQA, VQAv2, MME, NLVR2, NeXT-QA, HC-RefLOCO...)

User Task Configuration
task-specific classes, modules, ...

Runtime Executor & Verifier

Ensemble Pruning
Determine a set of models for the task.

Execution Visualizer
Visual
Script

Visual
Program

Visual
Input-Output

BOX0=LOC(image=IMAGE,object='person')
IMAGE0=CROP(image=IMAGE,box=BOX0)
ANSWER0=VQA(image=IMAGE0,question='What is the gender
of the first person?')
ANSWER1=VQA(image=IMAGE0,question='What is the gender
of the second person?')
ANSWER2=EVAL(expr="'yes' if {ANSWER0}=={ANSWER1} else
'no'")
FINAL_RESULT=RESULT(var=ANSWER2)

Appoved ScriptPlanner Script

Figure 2: A two-stage Neurosymbolic architecture of the VLAgent system with front-end engine and backend
engine working in concert.

2 METHODOLOGY
We give an architectural overview of the VLAgent design methodology in Figure 2. The front-end
engine of VLAgent is shown on the left, consisting of task dispatcher, task-specific context loader,
and visual reasoning planner (aka script generator). When VLAgent receives a visual QA query
task (e.g., “Do both the people have the same gender”), the task-dispatcher will instruct the context-
loader to compose the task-specific context with few-shot examples and CoT instructions as the
prefix context for the visual reasoning planner to finetune a LLM with in-context learning (ICL).
The LLM is either by default or chosen by the user of VLAgent in her configuration. Concretely, the
planner will first prefix the visual QA query with the ICL context to compose a prompt query (see the
middle rectangle under the planner by magnifying Figure 2) and then finetune the LLM via few-shot
CoT in-context learning to generate a task-specific planning program script (an example in the top-
middle rectangle). The planning script consists of a sequence of declarative program instructions,
each is expressed as an assignment statement with output variable, per-instruction-specific visual
reasoning module with module name and input parameters. All modules are either external pre-
trained models, which can be by default or by user-choice in VLAgent configuration, or internal
modules from the VLAgent Python library. Figure 3 shows a list of core modules supported in the
alpha version of VLAgent and used in the experiments reported in this paper. The first six rows
are external pre-trained models marked in blue. The remaining modules marked in green, each
corresponds to an internal module in the VLAgent Python library. LOC, VQA, CAP, CROP to GET,
and RESULT are used for GQA, VQAv2, MME workloads.

The backend engine is the backbone of VLAgent. It takes both text input and visual input of each
visual reasoning task, and examines the LLM-generated planning script through the SS-Parser (blue
rectangle) and the Executor and Verifier (green rectangle). The SS-Parser (blue) consists of three
main VLAgent modules: It first invokes the Script Parser and Script Auditor to examine the gener-
ated planning script and detect syntax errors and incorrect program logic. The Script Repair module
is triggered to fix errors and generate the correct planning script. Once the SS-Parser completes
the syntax-semantic checking and repairing, it will forward the correctness approved script to the
next VLAgent backbone subsystem: the Runtime Executor and Verifier. It takes the SS-Parser-
refined planning script with both text input and visual input and maps logic program script to the
executable code, and then performs runtime execution with stepwise verification of reasoning cor-
rectness. It has three core modules. First, it invokes the Script Executor to generate executable codes
to call external modules or internal library functions. Next, it runs each executable instruction by
the Instruction Executor. By running the executable instructions corresponding to the sequence of
declarative program steps contained in the planning script, the executor will summarize and gen-
erate the final answer. To ensure the robustness and generalization performance of compositional
reasoning of VLAgent, we validate the output from the executor through the VLAgent output veri-
fier, which performs inconsistency resolution with statistical confidence scores. The result with the
highest score is returned as the final answer that is returned to the user. The task repository and
execution visualizer are shared by both front-end and backend engines of VLAgent. The task repos-
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itory stores not only the ICL examples and CoT instructions, but also the backend neurosymbolic
modules and configuration for different types of visual reasoning tasks. For example, users can add
a new task by registering new modules and corresponding ICL examples and CoT instructions. The
execution visualizer utilizes human-interpretable visual API for debugging and human-in-the-loop
feedback analysis in both stages of the neurosymbolic reasoning process, configurable in VLAgent
through the configuration manager. With page limit, below we focus on the SS-Parser and the Plan
Executor & Verifier to describe the VLAgent design methodology.

Figure 3: Core Modules in VLAgent α release. NLVR2 uses VQA, EVAL and RESULT. VideoQA uses
modules taking video input plus SELECT and EVAL. HC-RefLOCO (referring expression) uses LOC, CAP,
FIND, VOTE.

2.1 SS PARSER

We describe the design of three core components of our SS-Parser in this section with illustrative
examples. First, the Script Parser examines the LLM-generated planning script line by line to flag
all syntax errors. The Script Auditor performs the semantic-level examination to detect semantically
incorrect parameters and semantically incorrect logic sequence of the planning steps. The Script
Repair is designed to fix the errors and generate a logically consistent sequence of instructions.
Typical syntax errors are the cases where a non-existent module name or false input parameters
were used in the function call to external modules or internal modules. A frequent logic failure that
many LLMs suffer is to make up some input parameter(s) in the LOC module: such as locating an
object of “standing” or “smiling”, and alike. We provide auto-scanner and auto-fixer to spot error
type and error location in the planning script, and correct those errors accordingly, including type-
checking of all external and internal modules w.r.t. module names, module input parameter types
and output variable names, plus some error types for domain-dependent visual reasoning tasks, e.g.,
video vs image. Figure 4 illustrates by example the effect of SS-Parser on the overall performance
of VLAgent. Consider the example user query “Do both the people have the same gender” with the
visual image (the top left). The ground truth answer for this zero-shot VQA is given under the image
in green color. The planning script generated by LLM (GPT-3.5 in this case) is given at the top with
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Figure 4: VLAgent SS-Parser corrects the reasoning error detected in the LLM-generated planning script.

six lines, calling LOC, CROP, VQA, EVAL and RESULT modules. The correct logic is to locate
all the people in the image, crop them, ask the gender of each person and compare. Our SS-Parser
spotted a logical error in the 4th line of the LLM-generated program, and fixed the error with the SS-
parser refined script (shown in the bottom rectangle) prior to generating the executable. This results
in correct final answer by VLAgent. In contrast, without using our SS-Parser, the execution of the
LLM-generated script (in the top rectangle) resulted in a wrong answer. Concretely, by examining
the script at the top, although the intention of the script looks correct, there is a critical logical error:
IMAGE0 is obtained by CROP of only the bounding box with the highest confidence score, which is
the girl in the cropped image. Hence, the girl’s gender is asked twice. Given two people are asked for
comparison in this visual reasoning query, our SS-Parser fixed this problem by explicitly using an
array as the output variable for LOC instruction and considering the bounding boxes with the top two
highest scores, followed by performing CROP for each of the two bounding boxes in the output array
of LOC respectively, it will capture two people. Followed by using VQA to ask the gender question on
each of the two cropped images in IMAGE ARRAY0. This enables the EVAL module to compare the
gender of the two people. The execution visualizer provides intuitive interpretation of the sequence
of instructions performed for VLAgent to produce the correct final answer. Although we utilize
this example to illustrate the SS-Parser’s impact on VLAgent performance, the methodology of SS-
Parser design, as we outlined earlier, involves a user-configurable set of pre-defined type-checking
rules for both syntax and semantic errors w.r.t. external and internal module calls and the sequence
of instruction steps with respect to the task-specific semantic context.

2.2 RUNTIME EXECUTOR & OUTPUT VERIFIER

Recall the green rectangle in the right middle of Figure 2, this VLAgent subsystem consists of three
core components. The Script Executor takes as the input an SS-parser approved planning script and
maps it into executable instructions line by line, preserving the sequence of planning steps. The
Instruction Executor is called interatively to locate and run the corresponding external module or
internal Python module. The output verifier performs stepwise evaluation of each visual reasoning
instruction to determine whether and how ensemble methods are employed to verify and refine the
per-instruction result, and caption-analysis is employed when the low confidence score is produced
for an instruction-level visual-resoning subtask.

Caption Verifier. In image QA or video QA tasks, for each image or video frame being processed,
if the result is in low confidence, we trigger the Caption-Verifier optimization to obtain the caption
of the input image/video frame as a reference point for checking output consistency before gener-
ating our final answer. In the first prototype of VLAgent, we set Florence-2 Xiao et al. (2024) as the
default external module to implement our caption verifier, reconfigurable in VLAgent initialization.
The caption-verifier first generates a detailed caption of the image or the given video frame, which
includes the key elements and their states. Next, it utilizes a pretrained LLM like GPT-3.5 (chat
model) to assess whether the caption provides sufficient clues to infer the correct answer. If the cap-
tion contains the necessary information, the comparison of the caption-inferred answer is made with
the script executor’s output. If the comparison results in a match, indicating the consistency between
the execution output and the caption-inferred answer, the final answer is regarded as highly reliable.
Otherwise, VLAgent will analyze explicit details in the caption and the caption-derived answer is
chosen as the final result if explicit and accurate clues are found in the caption analysis. Our ablation
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study in Experiments section shows the improvement brought by the caption verification. We also
provide a video QA example (Figure 7 of Appendix B) to show the detailed procedure of how our
caption-verifier corrects a wrong result produced by our script executor.

Ensemble Verifier. VLAgent improves external-module reliability (e.g., LOC, VQA) by leveraging
the fusion of multiple independently pre-trained models but develops ensemble selection algorithm
to prune a pool of N candidate models to a small subset of M models for efficiency (M <<
N ) Tekin et al. (2024). Let P number of model calls to evaluate an ensemble, e.g., P = 100, each
model j returns Bij for LOC. We fuse all candidates per call to obtain Bi. The agreement and score
are

Iij =
|Area(∪Bij) ∩Area(∪Bi)|
|Area(∪Bij) ∪Area(∪Bi)|

, sj =
1

P

P∑
i=1

Iij .

For VQA, set Iij = I[Aij ∩ Ai ̸= ∅]; for VIDQA, set Iij = I[choiceij = choicei]. We cluster
{sj}Nj=1 with K-Means MacQueen (1967), choose the number of clusters via the Silhouette criterion
Rousseeuw (1987), and iteratively add the cluster(s) with the largest scores until reaching M models
for inference Chen et al. (2025). A detailed algorithm and notation is in Appendix E.2.

Long Video Optimization. Another critical optimization is resource-aware development of efficient
neurosymbolic reasoning agent. Consider video QA tasks, we first develop video sampling methods
through video partitioning into several chunks and then identifying important chunks via sampling.
When using LOC module to locate an event in time dimension and use VIDQA module to perform
video question answering, VLAgent feeds into these modules only a sequence of sampled frames
rather than the entire video as input. For long videos, the sampling rate is usually much lower
than the video frame rate. Therefore, we employ some optimizations to reduce or minimize the
information loss from a low sampling rate. Suppose that we sample at most f frames in these
models, and we wish the sampling rate is at least v fps. For a video of length l (seconds), we
uniformly divide it into ⌈vl/f⌉ chunks. Note that ⌈vl/f⌉ > 1 in most scenarios under low sampling
rate f , say 4 or 6 frames per video or per video chunk, we perform the following preprocessing: For
each video, we sample f frames uniformly and use a video QA model to generate the caption of
the video. Then according to the question, an ensemble of multiple LLMs (e.g., GPT-4.1-mini) is
used to judge whether only part of the video needs to be watched and leverages the sampled frame
inference results to produce statistical scores on which chunks are more relevant to answering the
question. We resample another f frames from the video or from each chunk to perform the same
procedure when the ensemble result is undesiable, e.g., no chunk is highly relevant or the entire
video should be watched. We constrain this iterative procedure by at most t iterations (e.g., t = 3).
Given a small number of selected chunks needs to be watched for the visual reasoning question, we
concatenate the selected chunks following their inherent temporal sequence and send it to the visual
reasoning planner to follow the neurosymbolic procedure of VLAgent for compositional reasoning.
Figure 7 in Appendix B illustrates this optimization with an example.

3 EXPERIMENTS

We report the evaluation of VLAgent and the comparison with the SOTA representative visual rea-
soning methods on six popular benchmarks: GQA Hudson & Manning (2019), NLVR2 Suhr et al.
(2018), VQAv2 Goyal et al. (2017), MME Fu et al. (2024) (existence, position, color category),
NeXT-QA Xiao et al. (2021) and HC-RefLOCO Wei et al. (2025). All experiments are conducted
with H100/H200 GPU in a Python 3.9 environment.

3.1 EXPERIMENTAL COMPARISON RESULTS

Table 1 compares VLAgent with representative image QA approaches in VLMs category and zero-
shot methods on 4 popular ImageQA benchmarks. We observe that existing zero-shot methods,
represented by ViperGPT Surı́s et al. (2023) and Visprog Gupta & Kembhavi (2023), exhibit a
significant performance gap compared to supervised fine-tuning approaches on all 4 benchmarks. In
comparison, VLAgent (zero-shot) achieves superior performance for NLVR2 and MME by 0.3 ∼
29.7% and 1.0 ∼ 30.3% respectively, comparable performance for GQA and VQAv2. For VQAv2,
VLAgent outperforms the three SOTA zero-shot methods (ViperGPT, VisProg and GENOME) and
10 VLM methods by 1.6 ∼ 39.5%. Compare against the supervised model BLIP-VQA-Capfilt Li
et al. (2022) (directly finetuned on VQAv2), VLAgent achieves 76.9% accuracy compared to the best
VLM of 75.3%, reducing the gap to about 4%. For GQA, VLAgent achieves an accuracy of 61.9%,
which outperforms all 3 zero-shot methods by 7.6 ∼ 26.4%, and outperforms BLIP-VQA-Capfilt
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(supervised) and 4 other VLMs by 3.8 ∼ 17.4%. VLAgent offers on-par performance to InternVL3,
and narrows the gap of all zero-shot methods to LLaVA-1.5-7B (70.3%), MiniCPM-V-4.5 (70.8%),
Kimi-VL-A3B (71.1%) and Phi-3.5 (72.7%) by a large margin (61.9% vs 35.5 ∼ 54.3%).
Table 1: Comparing VLAgent with 14 representative methods (VLMs and Zero-Shot) on 4 benchmarks.
Improvement min and max are the lower and upper bound on improvement over 3 ZS and 10 VLMs methods.

Method NLVR2 GQA VQAv2 MME

BLIP-VQA-Capfilt Li et al. (2022) (sup) 44.8% 54.5% 81.2% 82.8%
Vilt-b32 Kim et al. (2021) (VLM) 46.6% 51.4% 73.6% 74.8%

PaliGemma2 Steiner et al. (2024) (VLM) 44.4% 44.5% 46.5% 61.6%
Gemma3-12B Sellergren et al. (2025) (VLM) 73.8% 60.5% 66.5% 82.4%

SmolVLM Marafioti et al. (2025) (VLM) 51.0% 58.1% 71.0% 84.7%
InternVL3 Chen et al. (2024) (VLM) 50.6% 61.9% 61.4% 84.1%

Idefics2 Laurençon et al. (2024) (VLM) 50.2% 63.2% 74.0% 86.6%
LLaVA-1.5-7B Liu et al. (2023a) (VLM) 50.3% 70.3% 71.0% 85.0%
MiniCPM-V-4.5 Yao et al. (2025) (VLM) 51.2% 70.8% 68.9% 85.7%
Kimi-VL-A3B Team et al. (2025) (VLM) 51.0% 71.1% 75.3% 87.4%

Phi-3.5 Abdin et al. (2024) (VLM) 64.5% 72.7% 65.5% 86.0%

ViperGPT Surı́s et al. (2023) (ZS) − 35.5% 37.4% 58.1%
VisProg Gupta & Kembhavi (2023) (ZS) 69.3% 54.3% 72.3% 85.3%

GENOME Chen et al. (2023) (ZS) − 44.7% 60.5% 77.9%

VLAgent (ZS) 74.1% 61.9% 76.9% 88.4%
Improvement on ZS (min) +4.8% +7.6% +4.6% +3.1%
Improvement on ZS (max) +4.8% +26.4% +39.5% +30.3%

Improvement (min) +0.3% - +1.6% +1.0%
Improvement (max) +29.7% +26.4% +39.5% +30.3%

We next evaluate the generalization capability of VLAgent on two recent video benchmarks: NeXT-
QA Xiao et al. (2021) and HC-RefLOCO Wei et al. (2025). For NeXT-QA video understanding
benchmark, we sample 200 questions per-type from the test set, resulting in a test set of 1493
questions. Table 2 shows the comparison result of VLAgent with six VLMs and five VideoQA
specific agent-based methods (zero-shot). VLAgent exhibits a high accuracy on all hard splits and
achieves an overall accuracy of 76.0%, surpassing all 11 methods compared with the gain margin
of 2.0 ∼ 19.1%. For HC-RefLOCO Wei et al. (2025), representing the complex referring expres-

Table 2: Performance of VLAgent compared with 11 representative methods in VLMs category (top 6 rows)
and zero-shot agent methods (middle 5 rows). Hard Split-T means temporal reasoning questions and Hard Split-
C means causal reasoning questions. ”Overall” represents for the overall accuracy of all types of questions.

Method Hard Split-T Hard Split-C Overall

LLaVA-Video-7B-Qwen2 Zhang et al. (2024b) 60.4% 69.5% 70.9%
LLaVA-NeXT-Video-7B Zhang et al. (2024a) 54.8% 65.3% 65.8%
LlaVA-NeXT-Video-34B Zhang et al. (2024a) 55.0% 63.8% 61.8%

InternVL-3.5-8B Wang et al. (2025) 58.6% 66.5% 68.1%
InternVL-3.5-38B Wang et al. (2025) 61.1% 65.8% 68.8%

VideoLLaMA3-7B Zhang et al. (2025) 66.3% 68.0% 72.2%

ViperGPT Surı́s et al. (2023) (ZS) 48.7% 56.2% 56.9%
SeViLA Yu et al. (2023) (ZS) 59.6% 58.5% 64.0%

VideoAgent Wang et al. (2024) (ZS) 60.0% 68.3% 66.1 %
TravelLER Shang et al. (2024) (ZS) 56.9% 65.4% 66.0%
MoReVQA Min et al. (2024) (ZS) 64.6% 70.2% 69.2%

VLAgent 67.3% 74.8% 76.0%
Improvement on ZS (min) +2.7% +4.6% +6.8%
Improvement on ZS (max) +18.6% +18.6% +19.1%

Improvement (min) +1.0% +4.6% +2.0%
Improvement (max) +18.6% +18.6% +19.1%

sion benchmark on long descriptions, we sampled 1400 referring expressions from the test set to
test VLAgent. Unlike traditional referring expression datasets like RefCOCO Kazemzadeh et al.
(2014), which are already saturated in terms of performance due to the emergence of expression-
based grounding models (e.g., OWLV2 Minderer et al. (2023) and Grounding Dino Liu et al. (2023b)
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used in this paper), HC-RefLOCO grounds a person with fine-grained description of appearance, po-
sition, movement, and so forth, posing a greater challenge to grounding models. For each grounding
task in HC-RefLOCO, we perform the caption-verification as follows: we first use the LLM to iden-
tify the person whose caption best matches the description; if no match is found, then we skip the
verification, otherwise check whether the bounding box of this person substantially overlaps with
the predicted result. If yes, the prediction is considered correct. Otherwise, we compare the caption
of the predicted bounding box with the description to make the reasoning for the final alignment. We
correct the bounding box only when it aligns significantly worse than the caption of the originally
selected person. Table 3 shows the performance of VLAgent on HC-RefLOCO compared to the 13
representative methods, of which SPHINX-v2-1K Lin et al. (2023) is the well-known SOTA method.
Following the metrics in HC-RefLOCO, Acc0.5, Acc0.75, Acc0.9 and mAcc are used to measure
and compare the performance. AccX means the ratio of test cases where the IoU between the pre-
dicted box and the ground truth is greater than X, and mAcc is the average value of Acc0.5 through
Acc0.95 with a step size of 0.05. We observe that VLAgent surpass the 13 SOTA approaches com-
pared in Acc0.75, Acc0.9 and mAcc, while using lightweight object detection models for inference
time efficiency, and a performance gain over SPHINX-v2 (the best at Acc0.9) by about 7%.

Table 3: Comparison of VLAgent on HC-RefLOCO with 13 SOTA methods (zero-shot or VLMs).
Model Acc0.5 Acc0.75 Acc0.9 mAcc

GPT-4V OpenAI (2023) 17.4% 2.6% 0.3% 5.5%
GroundingGPT Li et al. (2024) 56.6% 27.2% 5.3% 29.8%

Ferret 13B You et al. (2023) 52.9% 38.5% 15.6% 35.7%
KOSMOS-2 Peng et al. (2024) 45.3% 38.0% 20.0% 34.1%

Qwen-VL Bai et al. (2023) 67.9% 56.8% 34.8% 52.8%
OFA-Large Wang et al. (2022) 70.5% 61.6% 44.0% 58.1%

SPHINX Lin et al. (2023) 77.5% 61.0% 27.0% 55.4%
SPHINX-1K Lin et al. (2023) 80.7% 68.6% 41.1% 63.0%

SPHINX-v2-1K Lin et al. (2023) 84.1% 77.1% 56.2% 71.7%
PixelLM 13B Ren et al. (2024) 63.6% 46.6% 25.8% 44.6%

LISA Lai et al. (2024) 52.4% 42.1% 31.3% 41.1%
PSALM Zhang et al. (2024c) 61.7% 53.6% 40.2% 51.1%
GlaMM Rasheed et al. (2024) 66.1% 56.9% 44.2% 55.0%

VLAgent 82.6% 77.4% 63.2% 73.9%
Improvement (min) - +0.3% +7.0% +2.2%
Improvement (max) +65.2% +74.8% +62.9% +68.4%

3.2 ABLATION STUDY

We compare the naive VLAgent (without SS-Parser+Caption-verifier+Ensemble verifier) with
VLAgent+SS-Parser+Caption-verifier, and the full fledged VLAgent on four popular LLMs:
gpt-3.5-turbo-instruct OpenAI (2023), Mistral-Small-24B-Base-2501 Jiang et al. (2023), GLM4-
9B GLM et al. (2024), and Llama3-8B Grattafiori et al. (2024). Table 4 reports the results on GQA.
The performance of VLAgent improves progressively with the addition of SS-Parser and caption-
verifier (row 2) and the addition of ensemble-verifier (row 3), compared to the naive version of
VLAgent without SS-parser and output verifiers. The performance gains of VLAgent powered by
our SS-Parser and Output Verifiers are consistent across the 4 popular LLMs for generating the plan-
ning scripts. Similar observations are made on other benchmarks as well (see Appendix D.1). An
ablation study on inference latency is provided in Appendix D.2.

Table 4: Ablation study (GQA)
Method GPT 3.5 Llama Mistral GLM

VLAgent naive 54.4% 54.1% 55.2% 54.7%

VLAgent +parser+cap-verf 58.9%
+4.5%

56.9%
+2.8%

58.6%
+3.4%

58.2%
+3.5%

VLAgent +parser+cap+ensemble 61.9%
+7.5%

58.7%
+4.6%

60.7%
+5.5%

60.4%
+5.7%

3.3 PERFORMANCE COMPARISON BY VISUALIZATION

Figure 5 illustrates the comparison results of Table 1 with two examples per benchmark from GQA
(columns 2 3), VQAv2 (columns 4 5) and MME (columns 6 7). Each example gives a non-trivial
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Figure 5: Visual comparison on six image QA examples

Figure 6: Two video QA examples comparing VLAgent with four selected approach in detail.

text-visual reasoning query. In all six cases, standard VQA models (incl. ensemble VQA method)
fail to produce the correct answers, exposing their limitations in performing compositional visual
reasoning tasks. Even with a massive amount of training data, GPT-4o failed on 3 out of the 6
queries. GPT-5 failed on 4 out of the 6 queries. Even GPT-5-Thinking only achieves good per-
formance in 4 out of 6 cases. Consider the query in Column 7, the visual image shows clearly
where the monitor is. However, GPT-5-Thinking failed on this visual reasoning. In comparison,
VLAgent succeeds on all 6 cases by only utilizing lightweight pretrained models, empowered by its
neuro-symbolic modularity design for robust compositional visual reasoning. Figure 6 illustrate
the effectiveness of VLAgent with two VideoQA examples in NeXT-QA. For each example, we
provide the question, choices, answer, and output to compare VLAgent with 4 STOA methods. For
Example-1 (top 2-rows), VLAgent succeeds by conducting compositional visual reasoning to make
the correct choice. In comparison, the other four models (GPT-5. GPT-5-Thinking, VideoLLAMA3-
7B, InternVL-3.5-38B) all failed to find visual clues to produce the correct inference results. For
Example-2 (bottom 2-rows), VLAgent is able to make the correct choice of E (squat down). How-
ever, the other four models (GPT-5. GPT-5-Thinking, VideoLLAMA3-7B, InternVL-3.5-38B) all
made the wrong choice B (pull) due to the failure to capture/identify the squatting body position.

4 CONCLUSION
We have presented VLAgent, a neurosymbolic approach to developing a visual-language agent sys-
tem for compositional visual reasoning with three original contributions: (1) A novel two-stage
neurosymbolic architectural design of VLAgent. (2) The use of SS-parser to empower VLAgent to
detect and correct logic errors in the LLM-generated planning script. (3) The output evaluation via
caption verifier and ensemble verifier to fortify the generalization performance of compositional rea-
soning. Extensive experiments conducted on 6 visual benchmarks show the effectivess of VLAgent
in comparison with over 30 representative VLM/ZS methods.
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A STATEMENTS

A.1 REPRODUCIBILITY STATEMENT

We make every effort to ensure the results in this paper are reproducible.

• We provide a link of anonymous GitHub repository where the source code and runtime logs
of VLAgent can be downloaded from.

• We provide details of modules used in VLAgent in Figure 3. In Appendix C, we provide
the detailed settings of datasets and LLMs. In Appendix E, we provide full implementation
details.

• Both in main paper and appendix, we provide figures as examples containing input, proce-
dure and output to show how exactly VLAgent works.

A.2 LARGE LANGUAGE MODELS (LLMS) USAGE STATEMENT

During the process of writing this paper, LLMs are used and only used for grammar checking and
polishing of certain paragraphs.

B ADDITIONAL EXAMPLES WITH VISUALIZATION

In this supplementary section, we provide additional examples with visualization to illustrate the
main optimizations introduced by VLAgent in its backend engine, such as SS-Parser, Per-instruction
output verifier via Caption Analysis and Ensemble based Visual Reasoning.

We first present an example video QA task, where the long video optimization and caption analysis
plays the most important role in producing a correct answer. Then we use one example of image-
based visual reasoning task to show how ensemble verifier contributes to the overall performance.
In addition, we also include two failure cases as well as our analysis.

Figure 7 illustrates a representative text-video reasoning task with the query “Why did the girl start
to shake her container horizontally after filling it up with water?”. The ground truth provided by
NeXT-QA is given below the query with A as the correct answer (highlighted in green) out of the
five multiple choice answers. In this example, the movement of the girl is fast, such that we can
only infer it from the overall movement in the entire video. We use the four VLMs smaller than
8B in Table 2 to construct the model pool of the VIDQA module, which is used to answer questions
based on a video. During ensemble pruning of the video QA task, we run VLAgent on 150 samples
from the task dataset, and run the ensemble pruning process in Algorithm 2 to select three models.
Finally, LLaVA-Video-7B-Qwen2 Zhang et al. (2024b), InternVL-3.5-8B Wang et al. (2025) and
VideoLLaMA3-7B Zhang et al. (2025) are selected to construct the VIDQA module. Since the
original video is too long, we divide the video into 5 chunks, with each chunk containing roughly
15 seconds, and use LLaVA-Video-7B-Qwen2 Zhang et al. (2024b) to get a detailed caption of
each chunk. Then GPT-4.1-mini OpenAI (2025) is used to select chunks which may be relavent to
the question. Chunks 2, 3 and 5 are selected, and they are concatenated together to form variable
VIDEO. Meanwhile, our task planner generates a script to solve the problem. The script is then run
with an initial variable VIDEO. In the figure, we divide the script execution process into two stages:
keyframe locating and question answering. In the first stage, LOC is called to locate the timestamp
where the girl has filled her container with water, and then clips the video after the starting frame.
The clipped video is shown on the right of VIDEO0 in Figure 7, with keyframes annotated with red
border. We can already see the girl is washing the container. In question answering stage, VIDQA
is called to ask a bunch of questions on VIDEO0 and SELECT is called to choose the best answer.
Unfortunately, video QA models do not provide enough information to distinguish A with C, and
mistakenly votes C as the most possible answer. In verification step, we use per-frame caption model
on VIDEO1, and answer A is clearly supported. Therefore, the answer is modified to answer A and
VLAgent generates the correct final answer to this question.

Figure 8 illustrates the effect of ensemble-verifier by an example from GQA with visualization. It
shows that with ensemble verification, VLAgent can further improve the LOC performance using
three external object detection models chosen by our ensemble-verifier. The cutting board bounding
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Figure 7: VLAgent example on video QA.

Figure 8: A GQA example illustrates the effectiveness of ensemble verification in VLAgent.

box in BOX1 gets the highest ensemble confidence score based on inconsistency resolution and
fusion analysis. As we can see from the figure, the script locates the serving tray and cutting board,
and then queries and compares their colors, which is correct. However, the default LOC module
in VLAgent returns a wrong bounding box when it performs inference to locate the cutting board,
making IMAGE1 remains to be a serving tray, and thus outputs a wrong result. By leveraging two
other LOC modules, VLAgent can verify the output of the original LOC module. As shown in the
bottom of Figure 8, both of the additional LOCmodules can successfully locate the cutting board. As
a result, the cutting board is the top-1 bounding box ranked by the fusion confidence score instead
of the serving tray, delivering the correct final result by VLAgent with ensemble boosting.

We also provide two failure scenarios from GQA in Figure 9, and Figure 10.
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Figure 9: The script should examine the color of buses/trucks, but the SS-Parser fails to detect this
type of error.

Figure 10: An example where VLAgent fails because the image is blurred.

In Figure 9, the script neglects to examine the color of the buses and trucks because the 20 in-
context examples do not cover similar questions. Consequently, the SS-Parser fails to detect this
type of logical error. This failure case motivates our future work in developing a more advanced
semantic parser. For example, our revised SS-Parser can detect the error by judging the adjective
word ”red” in the question is not checked in the script.

Finally, in Figure 10, the VLAgent successfully corrects the errors in LLM-generated planning
script via its SS-Parser and script-repair module. Unfortunately although the ensemble reasoning
is leveraged, it fails when all of the three VQA models produce incorrect answers for the second
person due to the fact that the image is too blurred and dark. This indicates that a more robust output
verification method would improve the solution.

C DETAILED EXPERIMENTAL SETTINGS

In our experiments, we evaluate the performance of VLAgent and the baselines on six distinct
datasets, each corresponding to a specific task. The datasets are described below:

• GQA Hudson & Manning (2019): A large-scale dataset for real-world visual reasoning and
compositional question answering. GQA challenges models to understand complex scenes
and answer questions that require multi-step reasoning. For example, a question might ask
whether there is a boy to the left of a standing girl. For fair comparison, following the
Visprog settings, we test VLAgent on a subset of the test dev set by randomly selecting 20
questions per type, resulting in 1460 QA pairs.

• NLVR2 Suhr et al. (2018): A dataset designed for natural language visual reasoning, con-
sisting of paired images and textual statements. The task is to determine whether a state-
ment accurately describes the visual content, thereby assessing both language understand-
ing and visual grounding. We adopt the same setting as Visprog by evaluating on the entire
balanced test set. After filtering out expired image links, 2316 samples remain.

• VQAv2 Goyal et al. (2017): An improved version of the original VQA Antol et al. (2015)
dataset, VQAv2 provides balanced question-answer pairs to mitigate language biases and
foster deeper visual understanding. Widely used for benchmarking visual question answer-
ing models, we randomly sample 20 QA pairs per type from the validation set (the test set
is not used as it lacks answer annotations). With 65 question types, this yields a total of
1300 QA pairs.
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• MME Fu et al. (2024): A comprehensive benchmark designed to evaluate various aspects
of multimodal reasoning, including math reasoning, code understanding, chart QA, exis-
tence, position, color, and more. In this work, we focus on a representative subset of the
dataset—specifically the existence, position, and color categories—which require direct
image-level reasoning. This selection aligns with our objective of evaluating visual rea-
soning capabilities independent of external components such as OCR or symbolic math
engines. Categories heavily reliant on textual extraction or LLM-based arithmetic fall out-
side the scope of our image-centric evaluation. Our subset includes 580 QA pairs sampled
from the official test set, providing a robust and targeted assessment of image-level reason-
ing performance.

• NeXT-QA Xiao et al. (2021): A large-scale video question answering benchmark targeting
temporal and causal reasoning about human activities and events. Questions are multiple-
choice and often require cross-frame understanding of before/after relations, intentions,
and cause/effect. We evaluate on a subset of its test set, where we randomly sample 200
QAs per type, forming a subset of 1493 QAs.

• HC-RefLOCO Wei et al. (2025): A human-centric referring expression comprehension
dataset with long, attribute-rich descriptions that combine appearance, pose, spatial rela-
tions, and actions. The task is to localize the target person (bounding box) that best matches
the natural-language description, emphasizing fine-grained grounding over long sentences.
We sample 1400 referring expressions from the official test split to form a subset to test
VLAgent and other approaches.

Our experiments are conducted on a single H100 or H200 GPU in a Python 3.9 environment. We
evaluate four LLM models for script generation:

• GPT-3.5 OpenAI (2023): gpt-3.5-turbo-instruct API from OpenAI is employed
to assess GPT’s performance. For fair comparison, we change the LLM models of zeroshot
baselines to GPT-3.5 as well if they are using older models.

• Llama3-8B Grattafiori et al. (2024): This model is loaded from HuggingFace at
meta-llama/Meta-Llama-3-8B. Developed by Meta, it is a completion model with
8B parameters, a vocabulary size of 128K, and a context window of 8K - meeting the basic
requirements for script generation.

• GLM4-9B GLM et al. (2024): This model is loaded from HuggingFace at
THUDM/glm-4-9b-hf. It is a more advanced model, featuring 9B parameters, a vo-
cabulary size of 152K, and a context window of 128K.

• Mistral-Small-24B-Base-2501 Jiang et al. (2023): From HuggingFace at
mistralai/Mistral-Small-24B-Base-2501, this model is loaded. Among
the four LLMs, Mistral offers the best performance, with a parameter size of 24B (even
larger than GPT-3.5, which has a reported parameter size of 20B Singh et al. (2023b)). Its
vocabulary size is 131K, and its context window is 32K.

D ADDITIONAL ABLATION OF VLAGENT

D.1 ABLATION OF TASK PLANNER LLM

Table 5 reports the comparison results of full-fledged VLAgent with its naive version with only
LLM-generated script and its runtime executor (w/o parsers and verifiers) with four popular LLMs
as the LLM-script generator respectively and tested on all four ImageQA benchmarks. VLAgent
consistently outperforms its naive version by a significant margin. In particular, for NLVR2 with
GLM, the combo performs poorly with only an accuracy of 19.2% due to incorrect generation of
LLM programs. In comparison, VLAgent achieves an accuracy of 58.6% with 39.4% gain margin.
Similarly, for VQAv2, VLAgent significantly improves the accuracy with Llama by 14.3%, Mistral
by 6.4%, GPT-3.5 by 4.6%, and GLM by 3.9%. For MME, the full-fledged VLAgent remains the top
performer with 3.5% improvement on average. Given that the questions in the selected categories
of MME are significantly simpler compared to those in GQA, the naive VLAgent can achieve very
good accuracy. The improvement brought by the combo of SS-Parser and Output verifier is about
1.4 ∼ 7.6%.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 5: Accuracy Comparison on 4 benchmarks (GQA, VQAv2, MME, NLVR2). Each benchmark is tested
using four different LLMs as the corresponding initial task plan generators for both VLAgent naive (with
only LLM script planner and executor) and VLAgent (the full fledged version with SS-Parser and caption and
ensemble Verifiers). A total of 16 combos for VLAgent to compare with 16 combos of VLAgent naive, showing
the consistent gain of SS-Parser and Output Verifiers.

Agent Framework Benchmark GPT 3.5 Llama Mistral GLM

VLAgent naive GQA 54.4% 54.1% 55.2% 54.7%
VLAgent GQA 61.9% 58.7% 60.7% 60.4%

Improvement GQA +7.5% +4.6% +5.5% +5.7%

VLAgent naive VQAv2 72.3% 61.0% 70.8% 74.2%
VLAgent VQAv2 76.9% 75.3% 77.2% 78.1%

Improvement VQAv2 +4.6% +14.3% +6.4% +3.9%

VLAgent naive MME 86.9% 81.0% 85.3% 86.0%
VLAgent MME 88.4% 88.6% 88.8% 87.4%

Improvement MME +1.5% +7.6% +3.5% +1.4%

VLAgent naive NLVR2 69.3% 65.9% 67.6% 19.2%
VLAgent NLVR2 73.2% 70.0% 74.1% 58.6%

Improvement NLVR2 +3.9% +4.1% +6.5% +39.4%

D.2 LATENCY TEST

The third experiment we want to report as a part of the ablation study is the latency of each core
component and each optimization, especially the cost of ensemble verifier and caption verifier.
Table 6 reports the per-sample inference time of VLAgent on GQA, including its naive version
(planner+executor only), and the individual core components within VLAgent. It is observed that
empowered with all the SS-parser checking, repairing, and verifying mechanisms, VLAgent runs
at 7.54 seconds per sample. Compared to the VLAgent naive which takes 3.24 seconds, the full-
fledged VLAgent offers the inference latency at an acceptable range in practice. Also the breakdown
of the components reveals that a majority of the added latency stems from the caption verifier, which
invokes both an image captioning model and an LLM. In comparison, the ensemble fusion of vision
models introduces only a modest overhead and the SS-Parser incurs negligible additional cost.

Table 6: Inference time per sample. VLAgent w. parallel means part of the caption verifier runs in
parallel with the other VLAgent components.

Component Time Cost (s)

VLAgent Naive 3.24
VLAgent (all) Sequential 7.54
VLAgent (all) Parallel 5.10

Task Planning 1.50
LOC w/o ensemble verifier 0.23
LOC w/ ensemble verifier 0.88

VQA w/o ensemble verifier 0.17
VQA w/ ensemble verifier 0.23

SS-Parser 0.00 (0.0016)
Caption Verifier 4.01

Important to note is that the captioning and its analysis are independent of script generation and
script execution, we can process them in parallel. For parallel implementation of caption-verifier,
the total inference time of VLAgent can be reduced to 5.10 seconds per sample (a gain margin
of 2.44 seconds). This also indicates that the checking and verifying mechanism only adds a tiny
latency increase (less than 2s), while offering substantially improved visual compositional reasoning
capability and improved interpretability.
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E IMPLEMENTATION DETAIL

E.1 SCRIPT PARSER & SCRIPT AUDITOR

Before passing the script to the executor, VLAgent checks for potential errors. The script parser
looks for syntax errors; for example, it flags any script that uses a module name not supported by
VLAgent. The script auditor checks for semantic-level errors. For instance, if the script attempts to
locate “standing” in a cropped bird image to check whether a bird is standing, the auditor will note
that the object name passed to the LOC module should be a noun or a phrase describing a noun. The
auditor can detect such an error and return a corrected script.

Table 7 summarizes the representative detected conditions and the automatic repairs applied by
our two safeguards: the script parser and script auditor. For the script auditor, an expression like
== ’yes’ must be replaced with == True because we omit explicit type conversion in the tem-
plate for simplicity. Instead, all variables are converted to their appropriate types inside the EVAL
module: digit strings become numbers, “yes” and “no” become True or False, and other formats
remain unchanged. However, the LLM is unaware of this and may still produce statements like
{ANSWER0} == ’yes’ to determine if a variable is “yes” or “no.”

The script auditor may also add a plural=True flag in the LOC call if the object name is plural
or corresponds to a plural word in the question. For example, if the question is “Are both people
the same gender?” and LOC identifies a person, the auditor can detect that “person” corresponds
to “people,” meaning the bounding box should encompass a group of people. In such a case, the
script auditor adds plural=True to the LOC call, and the bounding box of the entire image is
returned if any person is detected. In implementation, the script parser and the script auditor can be
implemented together, with a line-by-line check of the script, as shown in Algorithm 1.

Table 7: Representative issues and automatic repairs applied by the script parser and script auditor.
Module Detected Condition Strategy

Script parser

Wrong script format Replace with direct VQA call
Non-existent module names Replace with direct VQA call

Non-existent variables Replace with direct VQA call
Syntax error in EVAL’s expression Replace with direct VQA call

Script Auditor

LOC: Strange object names Replace with direct VQA call
LOC: plural object name Add “plural=True“ in LOC call

LOC: corresponding plural noun in question found Add “plural=True“ in LOC call
EVAL contains “== ’yes’“ Replace it with “== True“
EVAL contains “== ’no’“ Replace it with “== False“

On video QA task, SS-Parser adds the syntax check for VIDQA, LENGTH, CLIP, CLIP AROUND,
CLIP BEFORE, CLIP AFTER, SELECT modules, while for LOC, the input is changed to question
along with a video. The script auditing part extracts the temporal keywords from the question and
checks whether the usage of CLIP family models is correct. For referring expression, SS-Parser
only does syntax check on supported modules.

E.2 ENSEMBLE PRUNING

Consider LOC as an example. Suppose we have N models to consider as candidate external modules.
Instead of designing an ensemble of N models, we consider only a small subset of M models by
ensemble pruning method Tekin et al. (2024) to avoid computation overhead.

We run our VLAgent on a small sample from the task dataset. Suppose we totally run LOC for P
times. Our ensemble pruning step consists of three stages: (i) Compute a score for each model to
represent its overall performance; (ii) Use K-Means MacQueen (1967) to group models with similar
performance together. Before clustering, we use Silhouette distance Rousseeuw (1987) to compute
the best K. (iii) The models of the cluster with the highest scores are put to our candidate model
list. If the number of candidate models is smaller than our desired M , go through (ii) and (iii) on
remaining models.
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Algorithm 1: High-Level Algorithm for SS-Parser. For simplicity, this algorithm only includes
modules in GQA.
Input: program: multiline script; question: user query; module list: allowed module

names; var dict: runtime variable values (e.g. {"IMAGE":None})
Output: approved program: adjusted script or fallback

1 begin
2 Split program into lines; Set num box arrays=0 and num image arrays=0;

foreach (i, ℓ) in enumerate(lines) do
3 Parse ℓ with parse step into (s, o, a); if s not in module list then
4 return fallback script;
5 switch s do
6 case EVAL do
7 Let expr fmt = a["expr"];
8 if expr fmt syntax error found in expr fmt then
9 return fallback script;

10 Set var dict[o] = eval(expr fmt); In ℓ, replace == ’yes’→==
True and == ’no’→== False;

11 case LOC do
12 Set var dict[o] = [[0,0,100,100]];
13 if a["image"] not in var dict then
14 return fallback script;
15 Let obj = eval(a["object"]);
16 if obj is not noun OR obj not mentioned in question then
17 return fallback script;
18 if obj is plural or corresponds to a plural noun in question then
19 a["plural"]=True;
20 if question contains any of {all, every, both, each} then
21 k ←num box arrays++;
22 o←“BOX ARRAY {k}”;
23 For each CROP line using the bounding box: update bounding box

name as new o; for each related VQA call:
m←num image arrays++, update image argument name to be
IMAGE ARRAY m, add increasing index argument starting from 1;

24 case VQA do
25 if a["image"] not in var dict then
26 return fallback script;
27 Set var dict[o] = ’0’;
28 case CROP/COUNT/RESULT/GET do
29 Run l, updating var dict; if exception occurs then
30 return fallback script;

31 else
32 return fallback script;

33 Replace line i of lines with the updated ℓ;
34 Let approved program = join(lines, ”\n”);
35 return approved program;

For each of the P LOC instructions, we get the bounding box list of M models, denoted as Bij ,
where 1 ≤ i ≤ P , 1 ≤ j ≤ M . Let B denote the final list of the M bounding boxes produced by
the ensemble fusion of M external LOC models, , which serves as a pseudo label. Let Area(B) :=
{(x, y)|∃b ∈ B, (x, y) ∈ b} denote the union region of bounding boxes in bounding box list B.
Hence, we can compute the confidence score Iij for each bounding box list Bij (1 ≤ i ≤ P ,
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1 ≤ j ≤M ), as follows:

Iij =
|Area(∪Bij) ∩Area(∪B)|
|Area(∪Bij) ∪Area(∪B)|

(1)

which is the Intersection of Union (IoU) between the M bounding boxes in Bij and pseudo label.
| · | is the area. We then use the average IoU of the j th model as its score:

sj =
1

P

P∑
i=1

Iij (2)

After getting {sj}Nj=1, we go through stage (ii) and (iii) to iteratively select M models to construct
the model set for LOC. Refer to Algorithm 2 for a detailed selection pseudo code. In Algorithm 2,
line 2 to line 6 runs the VLAgent on m samples from the task dataset. Line 7-10 goes through stage
(i) to get a score of each model. Line 11-22 uses Silhouette distance Rousseeuw (1987) to select the
best K, where C(sj) is the cluster sj belongs to, a(j) is the intra-cluster distance for sj , b(j) is the
inter-cluster distance for sj , and s(j) is the Silhouette distance of sj . Line 23-26 runs K∗-Means
clustering, and adds the models in cluster C∗ which contains largest sjs to the candidate model set
S, meanwhile removing them from the model poolR.

Algorithm 2: Model Selection via IoU-based Scoring and K-Means Clustering
Input: N models; m samples from dataset; minimum number of models M
Output: S: set of selected model indices

1 Initialize S ← ∅,R ← {1, 2, . . . , N}
2 Sample m data points and run LOC for P total lines
3 for i = 1 to P do
4 for j ∈ R do
5 Get bounding box list Bij from model j
6 Run ensemble algorithm to get pseudo label Bi

7 for j ∈ R do
8 for i = 1 to n do
9 Iij =

|Area(∪Bij)∩Area(∪Bi)|
|Area(∪Bij)∪Area(∪Bi)|

10 sj =
1
P

∑P
i=1 Iij

11 while |S| < M andR ̸= ∅ do
12 for K = 1 to |R| do
13 Run K-Means clustering on {sj}j∈R to get clusters {Cr}Kr=1
14 for j ∈ R do
15 if |C(sj)| = 1 then
16 s(j) = 0
17 else
18 a(j) = 1

|C(sj)|−1

∑
sk∈C(sj),k ̸=j |sj − sk|

19 b(j) = minr ̸=C(sj)
1

|Cr|
∑

sk∈Cr
|sj − sk|

20 s(j) = b(j)−a(j)
max{a(j),b(j)}

21 S(K) = 1
|R|

∑
j∈R s(j)

22 K∗ = argmaxK∈{1,2,...,|R|} S(K)
23 Run K∗-Means clustering on {sj}j∈R
24 C∗ = argmaxr∈{1,...,K∗} maxj:C(sj)=r sj
25 S ← S ∪ {j : C(sj) = C∗}
26 R ← R \ {j : C(sj) = C∗}
27 return S

For other external modules like VQA, we run the same algorithm. The only difference is how Iij is
computed. For VQA, Iij = I[|Aij ∩ Ai| > 0], where Aij is the set of words generated by model j
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on i-th data, and Ai is the set of words in the ensembled answer. For VIDQA, Iij = I[choiceij =
choicei], where choiceij is the choice supported by model j on i-th data, and choicei is the majority
voted choice. The effectiveness of ensemble verifier is measured in the Ablation study in Section 3.2.

F RELATED WORKS

Our work is inspired by several pioneering projects in Neural Module Networks (NMNs) Andreas
et al. (2016b); Hu et al. (2018; 2017); Johnson et al. (2017). NMNs were introduced to improve
interpretability by decomposing visual reasoning into explicit sub-tasks. In NMN frameworks, a
question is parsed into a layout of modular operations (e.g., find, filter, count), each of which is
handled by specialized neural units, and the results are composed to produce the answer. This
compositional design yields a step-by-step reasoning trace that is more transparent than monolithic
end-to-end models. However, NMNs require supervised learning to train the module selection or
layout predictor, often relying on ground-truth programs or strong annotations. Consequently, their
generalization is constrained by the quality and quantity of training data, and hard to extend to
new tasks without additional supervision. The recent progress in Neural Module Networks includes
ViperGPT Surı́s et al. (2023), VisProg Gupta & Kembhavi (2023) and GENOME Chen et al. (2023).
These recent projects formulate Python programs that invoke external trained models and Python
library modules to obtain answers in visual reasoning tasks.

Our research is also inspired by recent research in LLM enhancement for visual reasoning Singh
et al. (2023a); Surı́s et al. (2023); Yang et al. (2022); Gupta & Kembhavi (2023) without task-specific
model training or supervised finetuning of fundation models Antonio Torralba (2024); Sharma et al.
(2024); Huh et al. (2024). The visual inference methods prompt an LLM to output an explicit se-
quence of operations that can invoke pre-built executable modules. ProgPrompt Singh et al. (2023a)
uses an LLM to produce robot task plans as executable code given high-level instructions. PICa Yang
et al. (2022) introduces the representation of visual information as text via objects and their attributes
detected, and it improves the in-context learning with the additional textual data to GPT-3 to obtain
answer to a visual question. ViperGPT Surı́s et al. (2023) formulates visual questions as Python
programs calling vision APIs to generate answers via code execution. VisProg Gupta & Kembhavi
(2023) introduced a well-structured program instruction template for visual reasoning and an inter-
preter is to execute the external pre-trained vision moddel or a Python module in Python library.
GENOME Chen et al. (2023) extends Visprog to unseen task scenarios by adding a process to create
new modules and new in-context learning examples. However, most existing zero-shot approaches
suffer from the problem of blindly entrusting LLM generated programs, instead of integrating error
checking and repairing with result verification as the preconditions for invoking program execution,
minimizing the detrimental effect of logical errors in LLM-generated programs, such as incorrect
planning steps, non-existent external modules due to undesirable LLM hallucination.
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