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ABSTRACT

An LLM is pretrained on trillions of tokens, but the pretrained LLM may still
generate undesired responses. To solve this problem, alignment techniques such as
RLHF, DPO and KTO are proposed. However, these alignment techniques have
limitations. For example, RLHF requires training the reward model and policy
separately, which is complex, time-consuming, memory intensive and unstable
during training processes. DPO proposes a mapping between an optimal policy and
a reward, greatly simplifying the training process of RLHF. However, it can not
take full advantages of a reward model and it is limited to pairwise preference data.
In this paper, we propose UNified Alignment (UNA) which unifies RLHF/PPO,
DPO and KTO. Firstly, we mathematically prove that given the classical RLHF
objective, the optimal policy is induced by a generalize implicit reward function.
With this novel mapping between a reward model and an optimal policy, UNA
can 1. unify RLHF/PPO, DPO and KTO into a supervised learning of minimizing
the difference between an implicit reward and an explicit reward; 2. outperform
RLHF/PPO while simplify, stabilize, speed up and reduce memory burden of RL
fine-tuning process; 3. accommodate different feedback types including pairwise,
binary and scalar feedback. Downstream experiments show UNA outperforms
DPO, KTO and RLHF.

1 INTRODUCTION

LLMs are trained on extensive and diverse corpora, enabling them to develop robust language
capabilities and a deep understanding of various contexts OpenAI et al. (2024); Anthropic (2024).
However, during inference, LLM can generate undesired responses, which should be avoided.
Supervised fine-tuning (SFT) though can improve an LLM on downstream tasks like question
answering, it cannot solve these problems. To address these problems, alignment techniques like
RLHF Ouyang et al. (2022) and DPO Rafailov et al. (2023) are proposed.

RLHF involves two stages of training from the SFT models as shown in part (b) of Figure 1. Firstly,
it trains a reward model (RM) using a preference dataset consisting of tuples (input, desired response,
undesired response). Next, during the RL fine-tuning stage, the policy generates responses to given
prompts. These responses are evaluated by the reward model and then used to fine-tune the policy with
RL through PPO. However, several problems exist in RLHF. First of all, there exists an overfitting
problem in the training stage of the reward model. In addition, RL fine-tuning stage is inherently
unstable due to the nature of RL. Lastly, RL increases memory requirements for elements like the
policy, reference policy, reward model and value model.

DPO addresses these issues by creating a mapping between the reward model and the optimal policy,
combining the RM and RL training stages into a single process as shown in part (c) of Figure 1. This
approach simplifies the two-stage optimization into one stage, eliminating the need to train an explicit
reward model, reducing memory costs, and transforming the unstable RL process into a stable binary
classification problem. Given a prompt along with desired and undesired responses, the implicit
rewards for both responses are calculated. The differences in these rewards are then used to optimize
the policy. However, DPO has its own set of challenges. It cannot produce an explicit reward model
and will require more preference data to fine-tune the LLM. Moreover, in RL, the pretrained RM can
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Figure 1: A figure comparison among (a). UNA, (b) RLHF, (c) DPO and (d) KTO. Each subfigure
is composed of four types of data: ”prompt data”, ”preference feedback”, ”binary feedback” and
”score feedback”, LLM policy, response, two reward models: ”generalized implicit reward model”
and ”explicit reward model” and a module to minimize the difference between implicit and explicit
rewards. The connection between data to other modules are utilizing green dash arrow, while others
are connected by black solid arrow. All unused modules are grayed out. In part (b), RLHF firstly
utilizes preference feedback to train the explicit reward model, and the use the evaluation provided by
the explicit reward model to continuous optimize the policy in a online mode. In comparison, in part
(c) and (d), DPO and KTO utilize preference feedback and binary feedback respectively to generate
implicit reward to align LLM policy. However, in part (a), UNA can utilize different types of data to
get generalized implicit and explicit rewards and minimize their differences to align LLM policy in
online and offline modes.

provide accurate guidance for alignment, which is absent in DPO. In summary, DPO’s efficiency in
using preference data is lower compared to RLHF/PPO.

KTO extends DPO to handle binary data, such as thumbs up and thumbs down for desired and
undesired responses as shown in the part (d) of Figure 1. However, there have not been work on
alignment based on prompt, response and corresponding evaluation scores. In addition, there have
not been a work that can unify RLHF/PPO, DPO and KTO to accommodate these different types of
data. This work will address these problems.

In this work, we propose UNified Alignment (UNA) which unifies RLHF/PPO, DPO and KTO, and
combines the benefits of them. Firstly, inspired by the derivation of DPO, we prove that based on the
RLHF objective π∗

θ(y|x) = maxπθ
Ex∼D

{
Ey∼πθ(y|x)[rθ(x, y)]− βDKL (πθ(y|x)∥πref(y|x))

}
, the

optimal policy can be induced by r(x, y) = β log
(

πθ(y|x)
πref(y|x)

)
+ f(x) + c. It can be further simplified

to r(x, y) = β log
(

πθ(y|x)
πref(y|x)

)
when f(x) = c = 0. The condition f(x) = c = 0 indicates that the

difference between implicit and explicit rewards is 0.

Based on the new generalized implicit reward function, UNA unifies RLHF/PPO, DPO and KTO
into a supervised learning of minimizing the difference between an implicit reward and an explicit
reward, where the explicit reward can come from human labelers, reward functions and LLMs as
shown in part (a) of Figure 1. Given a prompt, the trained policy can firstly generate responses, and
an implicit reward score can be calculated based on the previous Equation Then, the pair of prompt
and response is evaluated by different evaluation tools to derive an explicit reward score. Provided the
implicit and explicit reward score, a supervised learning problem like mean square error (MSE) can

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

be constructed to unify RLHF and DPO. Last but not least, for clarity, the unnormalized evaluation is
termed as reward and the normalized evaluation is termed as score in this work.

With UNA, RLHF can be simplified through replacing the original RL fine-tuning stage, which
is unstable, slow, and memory-intensive with a stable, efficient and memory friendly supervised
learning. In addition, UNA can accommodate different types of data including pairwise feedback,
binary feedback, score-based feedback. For pairwise data, we mathematically prove that UNA and
DPO are equivalent. For binary data, thumb up (positive feedback) and thumb down (negative
feedback) can be regarded as explicit rewards with reward scores of 1 and 0 respectively. With
these derived implicit and explicit rewards, UNA can accommodate binary feedback. Lastly, for any
types of unpaired data composed of a tuple, i.e., (prompt, response, score), UNA can be applied as
well. Given the prompt and response, the implicit reward is firstly calculated, and then a supervised
learning process is conducted to minimize the difference between the implicit reward and the explicit
reward. In conclusion, UNA is a unified alignment framework for RLHF, DPO and KTO. It does not
only simplify RLHF but also accommodates different types of data.

The contributions of this paper are five-fold:

1. Mathematically prove that based on the RLHF objective function, the optimal policy can be
induced by the reward function r(x, y) = β log

(
πθ(y|x)
πref(y|x)

)
+f(x)+c, which can simplified

to r(x, y) = β log
(

πθ(y|x)
πref(y|x)

)
when f(x) = c = 0.

2. Propose UNA which unifies RLHF/PPO with DPO into a supervised learning of minimizing
the difference between implicit reward and explicit reward.

3. Propose UNA that outperforms RLHF/PPO while simplifies, stabilizes, speeds up and
reduces memory burden of RL fine-tuning process.

4. Propose UNA that can accommodate different types of data: pairwise feedback, binary
feedback, score-based feedback on both online and offline mode from different evaluation
methodologies including human labeling, reward models and LLMs.

5. Evaluate the performance of UNA on downstream tasks and compare it with DPO, KTO
and RLHF/PPO to show its benefits.

2 METHODOLOGY: UNA

In this section, we will starts with some review of RLHF/PPO and DPO. Then, we will introduce
UNA and derive a general loss function and its four applications: 1. Equivalence to DPO for pairwise
preference dataset; 2. Improvement KTO for binary feedback; 3. RM / LLM distillation using reward
from RM / LLM; 4. Simplification of RLHF in RL fine-tuning stage.

2.1 RLHF/PPO

After the SFT phase, the RLHF using PPO consists of two main stages: reward model training and
reinforcement learning fine-tuning.

During the reward model training process, an explicit reward model is trained to predict a reward
score rϕ(x, y) based on a given prompt x and response y. This training utilizes pairwise preference
data in the form of tuples, specifically (x, yw, yl), where yw represents the desired response and yl
represents the undesired response. Initially, the probability of yw being preferred over yl, denoted as
Pϕ(yw > yl|x), is calculated based on their respective reward scores rϕ(x, yw) and rϕ(x, yl) through
the Bradley-Terry (BT) model as shown in Equation 1, which provides a probabilistic framework for
comparing the preferences between the two responses.

Pϕ(yw > yl|x) =
erϕ(x,yw)

erϕ(x,yw) + erϕ(x,yl)
= σ(rϕ(x, yw)− rϕ(x, yl)) (1)

Given a pre-collected pairwise dataset where humans have selected the desired and undesired
responses from two candidates, we have P (yw > yl|x) = 1 and P (yw < yl|x) = 0. To train an
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effective reward model, we minimize the cross-entropy loss between the predicted probabilities and
the human-labeled probabilities as shown in Equation 2. Once the cross-entropy loss is minimized,
the training of the reward model is complete.

LRM(πθ) = −E(x,yw,yl)∼D [log(σ(rϕ(x, yw)− rϕ(x, yl)))] (2)

The second stage of RL fine-tuning has two primary goals. The first goal is to maximize the pretrained
explicit reward function rϕ(x, y) to ensure the policy aligns with reward model. To prevent reward
hacking, the KL divergence from the initial policy πref(y|x) is incorporated. The overall objective of
RL fine-tuning is detailed in Equation 3.

π∗
θ(y|x) = max

πθ

Ex∼D

{
Ey∼πθ(y|x) [rϕ(x, y)]− βDKL (πθ(y|x)∥πref(y|x))

}
(3)

Several limitations exist in RLHF. To begin with, the reward model may suffer from overfitting during
training, which can adversely affect the RL fine-tuning process. Then, unlike traditional supervised
learning, RL does not have explicit labels for each prompt and response. To address this, the authors
employed PPO to optimize the RL objective. However, even with PPO, RL training can still be
unstable. Additionally, RLHF with PPO necessitates the use of a policy, reference policy, reward
model, and value model, which significantly increases memory requirements, especially for LLMs.
These limitations constrain the practical application of RLHF.

2.2 DPO

In RLHF, the trained reward model can suffer from overfitting, and RL fine-tuning is notorious for
its instability and memory intensity. To address these challenges, the authors of DPO discover that
the optimal policy is induced by Equation 4, based on the objective function in Equation 3. Here,
Z(x) =

∑
y πref(y|x)e(

1
β rθ(x,y)), where rθ(x, y) represents the implicit reward function.

rθ(x, y) = β log

(
πθ(y|x)
πref(y|x)

)
+ β logZ(x) (4)

With the derived implicit reward model, it can be plugged into the reward model training process of
RLHF in Equation 2 where Z(x) gets cancelled. Eventually, the loss function for DPO is derived as
shown in Equation 5.

LDPO(πθ) = −E(x,yw,yl)∼D

{
log

[
σ

(
β log

(
πθ(yw|x)
πref(yw|x)

)
− β log

(
πθ(yl|x)
πref(yl|x)

))]}
(5)

By optimizing the loss function in DPO, we can eliminate the need for an explicit reward model
and combine the two stages of RLHF into a single, streamlined process, greatly simplifying the
RLHF/PPO workflow. However, DPO has several limitations. First, Z(x) cannot be directly estimated,
which means only pairwise preference data can be utilized, making single-prompt data unusable
during the RL fine-tuning stage. Additionally, while pairwise preference data are typically used only
in the reward model stage, DPO requires them throughout, leading to inefficient use of precollected
pairwise data. In comparison, after reward model training, it can be applied to prompt data, which are
much easier to obtain compared with pairwise data. Lastly, in the RL stage in RLHF, reward model
can provide more detailed evaluations of the generated responses. However, DPO cannot offer this
level of granularity during training.

2.3 UNA

Inspired by the idea of DPO, we aim to establish a new relationship between the reward model and the
optimal policy for a unified alignment framework including RLHF/PPO, DPO and KTO on different
types of data. By adhering to the same objective outlined in RLHF (Equation 3), we can formulate a
novel connection between the implicit reward function and the optimal policy, as shown in Equation
6. The derivation can be found in Section ??. In the special case where f(x) = 0 and c = 0, it is
further simplified.
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rθ(x, y) = β log

(
πθ(y|x)
πref(y|x)

)
+ f(x) + c

= β log

(
πθ(y|x)
πref(y|x)

)
when f(x) = 0 and c = 0

(6)

The optimal implicit reward formulation in Equation 6 implies that we can transform the original
unstable, memory-expensive RL training process into a reward function optimization problem, i.e.,
a stable and memory-efficient supervised learning process. Explicit rewards can be derived from
multiple methods including 1. human labeling, 2. pretrained LLMs and 3. reward models. Eventually,
the RL fine-tuning process is transformed into a general minimization problem between explicit
reward rϕ(x, y) and implicit reward rθ(x, y) as shown in Equation 7 where g(x, y) refers to a general
function that measure the difference between x and y like MSE.

LUNA-reward(πθ) = Ex∼DEy∼πθ(·|x)[g(rϕ(x, y), rθ(x, y))] (7)

When applying an LLM for evaluation, the scores lie within a specific range, such as [0, 100]. These
scores can be easily normalized to the interval [0, 1]. However, the implicit reward function can span
from negative to positive infinity. To normalize implicit reward, the implicit score function, denoted
as sθ(x, y), can be derived as shown in Equation 8. For clarity, the unnormalized evaluation is termed
as reward and the normalized evaluation is termed as score.

sθ(x, y) = σ[rθ(x, y)] = σ

[
β log

(
πθ(y|x)
πref(y|x)

)]
(8)

Given the implicit and explicit score functions, an equivalent general loss for UNA can be shown in
Equation 9. The normalized general loss function is more stable and will be used for experiments in
this study.

LUNA-score(πθ) = Ex∼DEy∼πθ(·|x)[g(sϕ(x, y), sθ(x, y))] (9)

Based on this general loss function using the new implicit reward function, UNA can be utilized
in multiple conditions: 1. Equivalence to DPO for pairwise preference dataset 2. Improvement
over KTO for binary feedback 3. RM / LLM distillation using reward from teacher RM / LLM
outperforming DPO and KTO 4. Improvement over RLHF in RL fine-tuning stage: simplify PPO
with a supervised learning process. Figure 2 shows how UNA is applied to different types of data and
simplifies RLHF.

2.3.1 UNA: EQUIVALENT TO DPO FOR PAIRWISE DATASET

For pairwise dataset, the implicit rewards of desired and undesired responses can be derived as shown
in part (a) of Figure 1. Then, LLM policy is aligned by maximizing the difference of implicit rewards
between desired and undesired responses. The loss function of UNA for pairwise dataset is shown in
Equation 10.

LUNA-pair(πθ) = −E(x,yw,yl)∼D (rθ(x, yw)− rθ(x, yl))

= −E(x,yw,yl)∼D

[
β log

(
πθ(yw|x)
πref(yw|x)

)
− β log

(
πθ(yl|x)
πref(yl|x)

)]
(10)

It is equivalent to DPO as the loss function is the same as long as f(x) = log[σ(x)] is applied to
the difference of implicit rewards of desired and undesired responses: L′

UNA-pair(πθ) = LDPO(πθ) =

−E(x,yw,yl)∼D {log[σ(rϕ(x, yw)− rϕ(x, yl))]}

2.3.2 UNA: IMPROVEMENT OVER KTO FOR BINARY FEEDBACK

For binary preference, the positive and negative feedback can be transformed to explicit scores.
Positive or ’thumb up’ data can be assigned an explicit reward score of 1, i.e., sϕ(x, yw) = 1.

5
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Figure 2: The four applications of UNA: (a). equivalent to DPO for pairwise data, (b). improvement
over KTO for binary data, (c). RM/LLM distillation for score-based data, (d). simplification of RLHF
for online training. The same modules are utilized as in Figure 1, and unused modules are grayed out.
For part (a), the same steps as DPO will be utilized. For part (b), (c), (d), from the different types of
data including pairwise, binary and score-based feedback, implicit and explicit rewards are firstly
gathered. Then, the difference between implicit and explicit rewards is minimized like MSE loss
function to align the LLM policy. More details can be found in Section 2.3.

In contrast, negative or ’thumb down’ data can be assigned an explicit reward score of 0, i.e.,
sϕ(x, yl) = 0. After that, similar procedures to DPO will be conducted to estimate implicit reward
and minimize the difference between implicit and explicit rewards as shown in part (b) of Figure 2.

Because the explicit feedback is binary, i.e., score rather than reward, implicit score should be utilized.
Based on the implicit and explicit scores, multiple loss functions can be designed using mean square
error (MSE) in Equation 11 and binary cross entropy (BCE) in Equation 12. As a result, UNA can be
utilized to improve KTO for binary feedback data.

LUNA-binary-MSE(πθ) = −E(x,y)∼D[(sθ(x, y)− sϕ(x, y))
2]

= −[E(x,yw)∼D(sθ(x, y)− 1)2 + E(x,yl)∼D(sθ(x, y)− 0)2]
(11)

LUNA-binary-BCE(πθ) = −E(x,y)∼D [LBCE(sθ(x, y), sϕ(x, y))]

= −[E(x,yw)∼D log(sθ(x, y)) + E(x,yl)∼D log(1− sθ(x, y))]
(12)

2.3.3 UNA: LLM / RM DISTILLATION

Researchers have utilized LLM and RM to evaluate responses by outputting scores and rewards
according to predefined standards. If the score and reward evaluations are accurate enough, they can
be extra information to utilize for alignment. When the tuple type of data (prompt, response, score) is
provided, the prompt and response are utilized to calculate implicit reward as shown in Equation 6,
and the score is utilized as the explicit reward as shown in part (c) of Figure 2. The last step is the
minimization of implicit and explicit rewards. However, the explicit reward and score from reward
model and LLM are not binary, and as a result, MSE can be used as the loss function, excluding BCE.
After normalization, the loss function for UNA using LLM / RM distillation is shown in Equation 13.
When LLMs are utilized for evaluation, it can be regarded as an offline version of RLAIF.
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LUNA-LLM-distill(πθ) = −E(x,y)∼D[(sθ(x, y)− sϕ(x, y))
2] (13)

2.3.4 UNA: SIMPLIFICATION OF RLHF

When utilizing reward model for online evaluation, UNA will greatly simplify RL fine-tuning stage
of RLHF/PPO with superior performances as shown in part (d) of Figure 2. Assuming the reward
model has already been trained, the focus now shifts exclusively to the RL fine-tuning stage. Prompts
are firstly sent to an LLM for online response generation and implicit reward estimation. Then,
the prompt and response are sent to the reward model for explicit reward estimation. The last step
minimize the differences between implicit and explicit rewards to align the LLM policy. Eventually,
the original RL objective in Equation 3 can be transformed to difference minimization like MSE of
implicit reward and explicit reward or scores as shown in Equation 13

UNA has several benefits over PPO in RL fine-tuning stage. First of all, it transforms the original
unstable RL problem into a stable supervised learning problem by minimizing the difference between
implicit and explicit rewards. In addition, UNA removes the necessary of value model in PPO, and
partially reduce the burden of memory cost. Then, the computation cost of MSE is much lower
compared with the multiple terms in PPO to maintain performance, and as a result, UNA will speed
up the training process. Lastly, UNA outperforms RLHF/PPO on downstream tasks.

3 EXPERIMENTS

In this section, we will evaluate UNA on three types of experiments: improvements over DPO in
pairwise feedback and KTO in binary feedback, RM/LLM distillation for score-based response and
simplification to online RLHF. For the first two tests, mistralai/Mistral-7B-v0.1 Jiang et al.
(2023) is utilized as the policy model, and the HelpSteer2 dataset Nvidia et al. (2024) is utilized as
the alignment data, which have a prompt, chosen and rejected responses with corresponding scores.
The evaluation scores in HelpSteer2 are labeled by human from the perspectives of 1. helpfulness,
2. correctness 3. coherence 4. complexity and 5. verbosity, and the combined score is computed
as: 0.65× helpfulness + 0.8× correctness + 0.45× coherence, following ?. Low rank adaptation
(LoRA) Hu et al. (2021) is employed during the fine-tuning process with r = 32, where r denotes the
ranks used in LoRA. For β, UNA-binary utilizes 0.01 and DPO, KTO and UNA-score utlizes 0.03.
For learning rate, UNA-score employs 3e-5 while others utilize 5e-6.

For the simplification of RLHF experiments, due to the computation availability and LoRA is not
supported in PPOv2, Qwen/Qwen2-1 5B Yang et al. (2024a) is utilized as the policy model and
Ray2333/GRM-Gemma-2B-rewardmodel-ft Yang et al. (2024b) is utilized as the reward model. The
prompts of the same Helpsteer2 dataset are utilized excluding the prompts longer than 1000 tokens.
These experiments shows that UNA outperforms RLHF. For β, RLHF utilizes 0.05, while UNA uses
0.03, with both approaches employing the same learning rate of 5e-6.

After alignment, the old and new HuggingFace Open LLM Leaderboards Beeching et al. (2023);
Fourrier et al. (2024) are both utilized to measure the performance. The new Open LLM Leaderboard
contains 6 tasks: bbh Suzgun et al. (2022), gpqa Rein et al. (2023), mmlu-pro Wang et al. (2024),
musr Sprague et al. (2024), ifeval Zhou et al. (2023) and math-hard Hendrycks et al. (2021b). For all
tasks, the average scores of all tasks are reported. On the other hand, the old Open LLM Leaderboard
contains other 6 tasks: gsm8k Cobbe et al. (2021), truthful-qa Lin et al. (2022), winograde Sakaguchi
et al. (2019), arc-challenge Clark et al. (2018), hellaswag Zellers et al. (2019) and mmlu Hendrycks
et al. (2021a). In this work, the average match rate in gsm8k, mc2 in truthful-qa, acc in winograde,
acc-norm in arc-challenge, acc-norm in hellaswag and acc in mmlu will be reported. In addition
to evaluating the model’s selection capabilities, MT-Bench and Alpaca-eval will also be used to
assess the model’s ability to generate text responses, rather than selecting from predefined candidate
answers.

3.1 UNA: IMPROVEMENTS OVER DPO & KTO

For binary feedback, borrowing the idea of KTO, the chosen responses are regarded as desired
response with score ”+1” and rejected response are regarded as undesired response with score ”0”. In
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this way, the explicit scores are obtained. The generalized implicit rewards are firstly transformed
into implicit reward scores, i.e., sθ(x, y) = σ[rθ(x, y)] = σ

[
β log

(
πθ(y|x)
πref(y|x)

)]
. Then, different loss

functions including BCE and MSE are utilized to minimize the differences between implicit and
explicit reward scores.

In score-based feedback for HelpSteer2, human annotators assign initial scores to each metric,
ranging from 0 to 4. These scores are then normalized to a 0 to 1 scale. The normalized scores are
subsequently weighted, and the resulting weighted scores are used as explicit feedback to align the
LLM. The same implicit reward scores as before are utilized. Because the explicit reward score is a
continuous variable in the interval [0, 1], MSE is utilized as the loss function.

The results are shown in Table 1 for the new Open LLM Leaderboard and Table 2 for the old
Open LLM Leaderboard. The highest scores for each metric and average are stressed in bold. For
binary data, UNA performs better than all the baselines do on both Leaderboards. Lastly, for score-
based feedback, it further improves over UNA-binary on both Leaderboards, as more information is
provided. Consequently, when precise score-based information is available, it is recommended to
leverage it.

Method bbh gpqa mmlu-pro musr ifeval math-hard Average
Mistral 44.11 29.53 30.11 41.79 23.22 2.92 28.61

DPO (UNA-pairwise) 44.5 28.48 30.41 39.25 26.3 2.25 28.53
KTO 44.46 29.51 30.43 40.45 24.18 2.34 28.56

UNA-binary (MSE) 44.32 29.86 30.54 39.11 26.1 3.32 28.88
UNA-binary (BCE) 44.43 29.42 30.73 39.51 26.49 2.99 28.93
UNA-score (MSE) 43.53 30.25 29.72 42.01 37.25 2.77 30.92

Table 1: The comparison of UNA with DPO, KTO considering pairwise, binary and score-based data
on new Open LLM Leaderboard

Method gsm8k truthful-qa winograde arc hellaswag mmlu Average
Mistral 38.02 42.58 77.58 61.43 83.44 62.51 60.93

DPO (UNA-pairwise) 40.22 44.75 79.16 62.88 84.42 62.15 62.26
KTO 41.63 47.72 78.14 62.29 84.21 62.46 62.74

UNA-binary (MSE) 40.87 48.23 79.48 63.23 84.57 62.34 63.12
UNA-binary (BCE) 40.41 48.33 79.4 63.14 84.6 62.48 63.06
UNA-score (MSE) 40.41 55.09 80.27 63.23 84.52 62.56 64.35

Table 2: The comparison of UNA with DPO, KTO considering pairwise, binary and score-based data
on old Open LLM Leaderboard

We also conducted evaluations on both MT-Bench Zheng et al. (2023) and AlpacaEval Li et al. (2023).
UNA-binary (MSE) achieves the highest performance on MT-Bench, while UNA-score (MSE) leads
on AlpacaEval, as seen in Table 3. The performance results from LLM Leaderboards, MT-Bench,
and AlpacaEval clearly demonstrate the advantages of UNA over DPO and KTO.

Method MT-Bench Alpacaeval LC WR
Mistral 3.15 0.31

DPO (UNA-pairwise) 6.1 3.67
KTO 5.99 4.46

UNA-binary (MSE) 6.78 5.54
UNA-binary (BCE) 6.23 7.41
UNA-score (MSE) 6.72 8.78

Table 3: The comparison of UNA with DPO, KTO considering pairwise, binary and score-based data
on MT-Bench and AlpacaEval using HelpSteer2 as fine-tuning data

3.2 UNA: IMPROVEMENT AND SIMPLIFICATION ON ONLINE RLHF

For the comparison between RLHF and UNA, only prompts of HelpSteer2 are utilized. In RLHF,
the prompts are sent to the policy for response generation, to the reward model for reward estimation
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and to the policy for update through PPO. In comparison, in UNA, the prompts are sent to the policy
for response generation and implicit reward estimation, to the reward model for explicit reward
estimation and to the policy for update through difference minimization like MSE between implicit
and explicit rewards.

The comparison between RLHF and UNA is shown in Table 4 and Table 5. UNA outperforms RLHF
in 12 out of 14 tasks. Overall, UNA beats RLHF in both Open LLM Leaderboards. More comparison
of RLHF with UNA on MT-Bench and AlpacaEval can be found in Table 6. The performance results
from LLM Leaderboards, MT-Bench, and AlpacaEval clearly demonstrate the superiority of UNA
over RLHF.

Method bbh gpqa mmlu-pro musr ifeval math-hard Average
Qwen2-1.5B 35.46 25.16 25.56 36.85 22.2 5.4 25.11

RLHF 35.57 26.7 25.17 36.84 22.37 5.48 25.36
UNA 36.03 25.62 25.3 38.32 24.78 5.4 25.91

Table 4: The comparison of UNA with RLHF using HelpSteer2 prompts on new Open LLM
Leaderboard

Method gsm8k truthful-qa winograde arc hellaswag mmlu Average
Qwen2-1.5B 57.92 45.93 66.06 43.94 66.72 55.82 56.07

RLHF 57.2 46.93 64.88 42.83 66.56 55.67 55.68
UNA 57.36 47.08 65.27 44.28 66.98 55.78 56.13

Table 5: The comparison of UNA with RLHF using HelpSteer2 prompts on old Open LLM
Leaderboard

Method MT-Bench AlpacaEval LC WR
Qwen 4.63 1.06
RLHF 2.87 0.66
UNA 5.02 1.63

Table 6: The comparison of UNA with RLHF using HelpSteer2 prompts on MT-Bench and Al-
pacaEval

Last but not the least, because UNA has transformed RLHF from an RL task into a supervised
learning problem and got rid of the value model, the memory usage and time cost are greatly reduced
for training. The training time for 20,000 steps with 8 80G A100 GPUs is around 8 hours for RLHF
and 3.5 hours for UNA with the same batch size. The speed improvement of UNA over RLHF is
significant, and these advantages can be amplified with a larger batch for UNA, which is impractical
for RLHF due to its higher memory costs. In conclusion, with improved performances, a more
stable loss function, memory-efficient and faster training, UNA outperforms RLHF from multiple
perspectives.

4 RELATED WORK

The field of LLM has been greatly revolutionized with billions of parameters, trillions of tokens in
parallel during the pretraining stage OpenAI et al. (2024); Anthropic (2024); Team et al. (2023).
After pretraining, SFT will be applied to enhance its capability on downstream tasks. However, both
pretraining and SFT can not solve the bias and ethic problem of LLM as they exist in the pretriaing
data OpenAI et al. (2024). To solve this problem, RLHF with PPO Ouyang et al. (2022); Bai et al.
(2022a) have been proposed, and it is the mostly accepted method to align LLM including GPT and
Claude. However, lots of problems exist for RLHF/PPO including large memory burden, unstability
of RL and multiple stages of training, i.e. RM training and RL fine-tuning Rafailov et al. (2023). To
decrease the cost of human labelling, AI feedback can be utilized to replace human feedback, which
will be termed as RLAIF Bai et al. (2022b); Lee et al. (2023). RLOO considers PPO an overkill for
LLM alignment as LLM has been pretrained, and RLOO should be good enough Ahmadian et al.
(2024).
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To simplify RLHF, DPO is proposed to map the optimal policy and reward model, and the two stages
can be merged into one step Rafailov et al. (2023). This process transforms the initial unstable RL
into a binary cross entropy problem. DPOP Pal et al. (2024) mathematically prove that during DPO,
the reward of desired responses will go down and proposed a maximum term to prevent the rewards
of desired responses going down. IPO discovered that under nearly deterministic condition between
desired and undesired responses, the effectiveness of the KL divergence constraint imposed by β
diminished, potentially leading to overfitting, and they proposed a new loss term to prevent this
problem Azar et al. (2023). sDPO proposed to divide given dataset into splits and use these splits
to sequentially align the model will achieve performance than using all of them at once Kim et al.
(2024). Iterative DPO argued that LLM can be both response generator and evaluator so that it can
iterate and improve it continuously Yuan et al. (2024); Xu et al. (2024). TDPO provided an idea to
provided reward to each token generation Rafailov et al. (2024); Zeng et al. (2024).

There have also been some works on merging SFT with alignment. ORPO proposed a new loss
function to increase the ratio of desired responses over undesired responses to realize the goal of both
SFT and alignment Hong et al. (2024). PAFT proposed to conduct SFT and alignment in parallel and
merge them together afterward Pentyala et al. (2024). Some works, i.e., R-DPO Park et al. (2024)
and SimPO Meng et al. (2024) have also discovered the verbose problem of LLM generation, and
included some length control methods to reduce the length of generated responses while minimizing
the impact of LLM performances.

The previous work focused on pairwise dataset, which was more tough to gather. In comparison,
binary feedback like ”thumb up” and ”thumb down” will be easier to gather. KTO borrowed the idea
of human aversion to desired over undesired data and it can handle binary feedback successfully
Ethayarajh et al. (2024). DRO focused on binary data by estimating the policy and value functions
and optimize each sequentially while maintaining the other fixed Richemond et al. (2024). However,
there have not been a work that can unify both pairwise and binary feedback. Nash learning model
the LLM improvement as a minmax problem and propose a iterative method to gradually approach
the optimal solution Munos et al. (2024). It can solve the intranstivity problem of human preference.
SPPO utilized one model as two sides of the competition Wu et al. (2024). Though Nash learning
provides some hints, it will increase the time of alignment as it will increase the number of iteration
before convergence.

LiPO Liu et al. (2024), RRHF Yuan et al. (2023) and PRO Song et al. (2024) utilized the ranking of a
list of responses, and the relative score between these methods were utilized. RPO proposd to utilize
KL divergence to mimize the difference between predicted reward and labelled reward by human or
AI, which is closer to our idea in this work Nvidia et al. (2024).

5 CONCLUSION

Despite the trillions of tokens used to pretrain LLMs with billions of parameters, undesired responses
persist. RLHF, DPO and KTO can improve the alignment quality. However, RLHF, DPO and KTO
each have their own strengths and drawbacks, but they cannot be unified into a single approach. In this
work, we propose UNA to integrate the benefits of RLHF, DPO, and KTO into a unified framework.
Based on the RLHF objective, the optimal policy is induced by r(x, y) = β log

(
πθ(y|x)
πref(y|x)

)
+f(x)+c.

When f(x) = c = 0, the reward can be simplified to r(x, y) = β log
(

πθ(y|x)
πref(y|x)

)
. With this derived

implicit reward function, it can be utilized to build UNA, which unifies RLHF, DPO and KTO as a
task of minimization between implicit and explicit reward functions. As a result, UNA simplifies,
stabilizes and reduces memory cost of RLHF. Downstream tasks demonstrate that UNA significantly
outperforms RLHF. Then, UNA can deal with pairwise, binary and score-based feedback. For
pairwise feedback, UNA is mathematically equivalent to DPO. For binary feedback, UNA can
improve over KTO. For score-based feedback, UNA outperforms non-score-based methods including
DPO and KTO, and it can be regarded as a distillation of RM and LLM or an offline RLAIF. In
conclusion, UNA has introduced a unified, stable, and efficient approach to LLM alignment that
delivers high-quality results.
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A DPO: RELATIONSHIP BETWEEN OPTIMAL POLICY AND REWARD FUNCTION

The objective of RLHF / DPO is shown in Equation 3. From the objective, the relationship between op-
timal reward and optimal policy can be derived in Equation 4 where Z(x) =

∑
y πref(y|x)e(

1
β rθ(x,y)).

The illustration for deriving DPO is shown in Equation 14.

(14)

π∗
θ(y|x) = max

πθ

Ex∼D

[
Ey∼πθ(y|x)rθ(x, y)− βDKL (πθ(y|x)∥πref(y|x))

]
= max

πθ

Ex∼D

{
Ey∼πθ(y|x)

[
r(x, y)− β log

πθ(y|x)
πref(y|x)

]}
= min

πθ

Ex∼D

{
Ey∼πθ(y|x)

[
log

πθ(y|x)
πref(y|x)

− 1

β
r(x, y)

]}

= min
πθ

Ex∼D

Ey∼πθ(y|x)

log
 πθ(y|x)

1
Z(x)πref(y|x)e

1
β r(x,y)

− log (Z(x))


= min

πθ

Ex∼D

Ey∼πθ(y|x)

log
 πθ(y|x)

1
Z(x)πref(y|x)e

1
β r(x,y)

− log (Z(x))


= min

πθ

Ex∼D

{
DKL

(
πθ(y|x)∥

1

Z(x)
πref(y|x)e

1
β r(x,y)

)
− log (Z(x))

}

The objective function is minimized when DKL

(
πθ(y|x)|| 1

Z(x)πref(y|x)e
1
β r(x,y)

)
= 0, and this is

equivalent to πθ(y|x) = 1
Z(x)πref(y|x)e

1
β r(x,y). By rewriting, the reward model can be expressed in

term of the current policy as shown in Equation 4.

However, the term Z(x) cannot be computed as it needed to be computed by summing all candidate
responses y. DPO avoids this problem by subtracting the rewards of desired and undesired responses
r(x, yw) − r(x, yl) = β

[
log
(

πθ(yw|x)
πref(yw|x)

)
− log

(
πθ(yl|x)
πref(yl|x)

)]
. In addition, the authors argue ”We

say that two reward functions r(x, y) and r′(x, y) are equivalent iff r(x, y) − r′(x, y) = f(x) for
some function f”. However, rigorous proof cannot be provided and it is only provided that r(x, y)
and r′(x, y) induce the same optimal policy. For Lipo, r(x, y) = β log

(
πθ(y|x)
πref(y|x)

)
is directly utilized

as rewards for listwise responses and KTO estimates Z(x) by averaging over multiple samples.
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B MATHEMATICAL PROOF OF UNA

In the section, the mathematical proof of UNA will be provided. For the proof of how to derive the
mapping of optimal policy and reward model in DPO can be found in appendix A. Inspired by the
proof of DPO, we will rigorously prove that r(x, y) = β log

(
πθ(y|x)
πref(y|x)

)
+ f(x) + c will maximize

the objective in Equation 3 and r(x, y) = β log
(

πθ(y|x)
πref(y|x)

)
is the simplest reward with f(x) = c = 0.

Proposition 1. Let a1, . . . , an and b1, . . . , bn be non-negative numbers. Denote the sum of all ai by
a and the sum of all bi by b. The log sum inequality states Equation 15 with equality if and only if ai

bi
are equal for all i, in other words ai = λ× bi for all i. The proof could be found in C

n∑
i=1

ai log
ai
bi

≥ a log
a

b
(15)

Starting from the same objective in Equation 3, it can be simplified as shown in Equation 16.

(16)

π∗
θ(y|x) = max

πθ

Ex∼D

[
Ey∼πθ(y|x)rθ(x, y)− βDKL (πθ(y|x)∥πref(y|x))

]
= max

πθ

Ex∼D

{
Ey∼πθ(y|x)

[
r(x, y)− β log

πθ(y|x)
πref(y|x)

]}
= βmax

πθ

Ex∼D

{
Ey∼πθ(y|x)

[
1

β
r(x, y)− log

πθ(y|x)
πref(y|x)

]}
= βmax

πθ

Ex∼D

{
Ey∼πθ(y|x)

[
− log

(
πθ(y|x)

πref(y|x)e
1
β r(x,y)

)]}

= βmax
πθ

Ex∼D

{
Ey∼πθ(y|x)

[
− log

(
πθ(y|x)

πref(y|x)e
1
β (r(x,y)−f(x))

)
+

1

β
f(x)

]}

= βmax
πθ

Ex∼D

{
Ey∼πθ(y|x)

[
− log

(
πθ(y|x)

πref(y|x)e
1
β (r(x,y)−f(x))

)]
+

1

β
f(x)

}

Based on the log-sum inequality in Equation 15, the term can be further simplified as shown in
Equation 17 because both πθ(y|x) and πref(y|x)e

1
β (r(x,y)−f(x)) are non-negative.

(17)

βEx ∼D

{
Ey∼πθ(y|x)

[
− log

(
πθ(y|x)

πref(y|x)e
1
β (r(x,y)−f(x))

)]
+

1

β
f(x)

}

= βEx∼D

{
−
∑
y

[
πθ(y|x) log

(
πθ(y|x)

πref(y|x)e
1
β (r(x,y)−f(x))

)]
+

1

β
f(x)

}

≤ βEx∼D

{[
−

(∑
y

πθ(y|x)

)
log

( ∑
y πθ(y|x)∑

y πref(y|x)e
1
β (r(x,y)−f(x))

)]
+

1

β
f(x)

}

= βEx∼D

{[
−1 log

(
1∑

y πref(y|x)e
1
β (r(x,y)−f(x))

)]
+

1

β
f(x)

}

= βEx∼D

{
log
(
Ey∼πref(y|x)e

1
β (r(x,y)−f(x))

)
+

1

β
f(x)

}
As a result, the maximum value of the objective function
maxπθ

Ex∼D

[
Ey∼πθ(y|x)rθ(x, y)− βDKL (πθ(y|x)∥πref(y|x))

]
in eq 16 is

17
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βEx∼D

{
log
(
Ey∼πref(y|x)e

1
β (r(x,y)−f(x))

)
+ 1

β f(x)
}

in Equation 17, and this inequality
reaches the equality condition when Equation 18 is satisfied where λ is a constant.

(18)
πθ(y|x)

πref(y|x)e
1
β (r(x,y)−f(x))

=
1

λ

By rewriting this term, we can obtain the reward in term of the policy as shown in Equation 19.
In special case, f(x) = c = 0, it is simplified to r(x, y) = β log

(
πθ(y|x)
πref(y|x)

)
. The condition

f(x) = c = 0 refers that implicit and explicit reward models are exactly the same.

(19)

r(x, y) = β log

(
λπθ(y|x)
πref(y|x)

)
+ f(x)

= β log

(
πθ(y|x)
πref(y|x)

)
+ f(x) + β log(λ)

= β log

(
πθ(y|x)
πref(y|x)

)
+ f(x) + c when c = β log(λ)

When plugging Equation 18 in Equation 17, the upper bound can be simplified into a constant
β log(λ) + Ex∼D(f(x)) as shown in Equation 20.

(20)

βEx ∼D

{
log
(
Ey∼πref(y|x)e

1
β (r(x,y)−f(x))

)
+

1

β
f(x)

}
= βEx∼D

{
log

(
Ey∼πref(y|x)

λπθ(y|x)
πref(y|x)

)
+

1

β
f(x)

}
= βEx∼D

{
log
(
Ey∼πθ(y|x)λ

)
+

1

β
f(x)

}
= βEx∼D

{
log (λ) +

1

β
f(x)

}
= β log(λ) + Ex∼D(f(x))

When desired to generalize this into ”infinite dimension”, another constraint needs to be added,
i.e.,

∑
y πref(y|x)e

1
β (r(x,y)−f(x)) should be finite. Then, f(x) is further restricted to f(x) >

max[r(x, y)] with normalization on r(x, y) in advance. Eventually,
∑

y πref(y|x)e
1
β (r(x,y)−f(x)) <∑

y πref(y|x) = 1, which will be finite.

Here is a brief summary of this section, based on this objective π∗
θ(y|x) =

maxπθ
Ex∼D

[
Ey∼πθ(y|x)rθ(x, y)− βDKL (πθ(y|x)∥πref(y|x))

]
in Equation 3, we can obtain

its upper bound βEx∼D

{
log
(
Ey∼πref(y|x)e

1
β (r(x,y)−f(x))

)
+ 1

β f(x)
}

as shown in Equation 17.

The upper bound, i.e., the equality condition is reached when r(x, y) = β log
(

πθ(y|x)
πref(y|x)

)
+ f(x) + c

as shown in Equation 19. It can be further simplified to r(x, y) = β log
(

πθ(y|x)
πref(y|x)

)
if f(x) = c = 0.

In particular, f(x) = c = 0 refers the implicit reward equals to explicit rewards. Lastly, when
the equality condition is reached, the upper bound would be β log(λ) + Ex∼D(f(x)) as shown in
Equation 20.
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C DERIVATION OF LOG-SUM INEQUALITY

Jesen inequality. For a real convex function φ, numbers x1, x2, . . . , xn in its domain, and positive
weights ai, Jensen’s inequality can be stated as in Equation 21:∑n

i=1 aiφ(xi)∑n
i=1 ai

≥ φ

(∑n
i=1 aixi∑n
i=1 ai

)
(21)

Proof of log-sum inequality. Firstly, define f(x) = x log(x). Then, f ′(x) = 1 + log(x) and
f ′′(x) = 1

x . For the domain x > 0, f ′′(x) > 0. As a result, f(x) = x log(x) is a concvex function
and satisfy Jesen’s inequality. Then, the log-sum inequality could be derived in Equation 22.

(22)

n∑
i=1

ai log

(
ai
bi

)
=

n∑
i=1

bif

(
ai
bi

)

= b

n∑
i=1

bi
b
f

(
ai
bi

)

= b

∑n
i=1 bif

(
ai

bi

)
∑n

i=1 bi

≥ bf

[∑n
i=1 bi

ai

bi∑n
i=1 bi

]
= bf

(a
b

)
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D DEFAULT NOTATION

x: prompt to LLM
yw : desired response
yl : undesired response
P (yw > yl|x) : the probability of desired response over undesired response
rϕ(x, y) : the explicit reward
rθ(x, y) : the implicit reward
sϕ(x, y) : the explicit score: normalized explicit reward
sθ(x, y) : the implicit score: normalized implicit reward
DKL : KL divergence
πθ : LLM policy to be aligned
πref : reference policy for LLM alignment
g(·) : any function that measures the difference between implicit and explicit reward functions
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