
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FULL-GRAPH VS. MINI-BATCH TRAINING: COMPRE-
HENSIVE ANALYSIS FROM A BATCH SIZE AND FAN-
OUT SIZE PERSPECTIVE

Anonymous authors
Paper under double-blind review

ABSTRACT

Full-graph and mini-batch Graph Neural Network (GNN) training approaches
have distinct system design demands, making it crucial to choose the appropriate
approach to develop. A core challenge in comparing these two GNN training ap-
proaches lies in characterizing their model performance (i.e., convergence and gen-
eralization) and computational efficiency. While a batch size has been an effective
lens in analyzing such behaviors in deep neural networks (DNNs), GNNs extend
this lens by introducing a fan-out size, as full-graph training can be viewed as mini-
batch training with the largest possible batch size and fan-out size. However, the im-
pact of the batch and fan-out size for GNNs remains insufficiently explored. To this
end, this paper systematically compares full-graph vs. mini-batch training of GNNs
through empirical and theoretical analyses from the view points of the batch size and
fan-out size. Our key contributions include: 1) We provide a novel generalization
analysis using the Wasserstein distance to study the impact of the graph structure,
especially the fan-out size. 2) We uncover the non-isotropic effects of the batch size
and the fan-out size in GNN convergence and generalization, providing practical
guidance for tuning these hyperparameters under resource constraints. Finally, full-
graph training does not always yield better model performance or computational
efficiency than well-tuned smaller mini-batch settings. The implementation can be
found in the anonymous link: https://anonymous.4open.science/r/
GNN_fullgraph_minibatch_training-8040/README.md.

1 INTRODUCTION

Graph neural networks (GNNs) have demonstrated exceptional performance across diverse machine
learning tasks involving graph-structured data (Zhang & Chen, 2018; Xu et al., 2018; Gilmer et al.,
2017). A defining characteristic of GNNs is their reliance on the graph structure to facilitate
message-passing, enabling the learning of rich node representations from both structural and feature
information (Gilmer et al., 2017). Consequently, the computational patterns of GNNs depend strongly
on the underlying graph structure, leading to two prominent and distinct paradigms for training GNNs:
full-graph and mini-batch training (Bajaj et al., 2024; Hamilton et al., 2017; Zheng et al., 2022).

Full-graph training and mini-batch training are distinct GNN training paradigms. In full-graph
training, the entire graph is processed simultaneously, and each node aggregates information from
its neighbors across multiple message-passing layers. In contrast, mini-batch training divides the
graph into smaller subgraphs or batches, training the model iteratively on subsets of nodes and their
(sampled) local neighborhoods. These paradigms exhibit fundamentally different computational
patterns, each requiring distinct system designs, training pipelines, and optimization strategies.
For example, full-graph training necessitates efficient communication mechanisms to synchronize
aggregations over the entire graph (Md et al., 2021; Peng et al., 2022), whereas mini-batch training
demands careful optimizations of CPU-GPU data loading to accommodate frequent batch processing
(Chen et al., 2018; Zhu et al., 2019; Liu et al., 2023) . Understanding the differences between these
two paradigms is essential for identifying suitable training methods in specific scenarios and guiding
the design of optimised training systems.

Existing Gaps. To systematically investigate the differences between full-graph and mini-batch
training, the hyperparameters batch size (the number of sampled nodes) and fan-out size (the number
of neighbors chosen per node at each hop (Hamilton et al., 2017)) offer critical lenses for analyzing

1

https://anonymous.4open.science/r/GNN_fullgraph_minibatch_training-8040/README.md
https://anonymous.4open.science/r/GNN_fullgraph_minibatch_training-8040/README.md

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

GNN performance and computational efficiency, as full-graph training can be viewed as a special case
of mini-batch training with maximum batch and fan-out sizes. However, despite increasing attention
in the literature, the impact of these hyperparameters remains insufficiently understood. Existing
studies typically focus on individual parameters (e.g., batch size or fan-out size independently) (Hu
et al., 2021; Yuan et al., 2023) or singular aspects of evaluation (e.g., convergence (Yang et al., 2023;
Awasthi et al., 2021), accuracy (Tang & Liu, 2023; Verma & Zhang, 2019) , or system efficiency
(Naman & Simmhan, 2024)), providing limited insights into the holistic trade-offs between the two
paradigms (see Sec. 6 for further discussions). Although recent empirical studies, such as (Bajaj
et al., 2024), have attempted comparisons between full-graph and mini-batch training, their results
are largely observational and hardware- or environment-dependent, limiting their generalizability.
Meanwhile, most of the existing GNN analyses typically rely on strong simplifications, such as
infinite-width assumptions that average out per-neuron gradient noise (Yadati, 2022) or linear models
with convex losses that remove local optima (Yang et al., 2023; Lin et al., 2023), which obscure
the effects of batch sizes or fan-out sizes on training dynamics. Thus, a critical open question
remains: How do the batch size and fan-out size influence the optimization dynamics, generalization
capabilities, and computational efficiency of GNN training, particularly when comparing full-graph
and mini-batch training paradigms?

Challenges. Comparing full-graph and mini-batch GNN training paradigms presents multiple inter-
twined challenges. First, while the batch size and fan-out size are useful for analyzing differences
between these paradigms, their impacts on model performance and system efficiency inherently
depend on the hardware environment used. Therefore, meaningful comparisons necessitate measure-
ment frameworks that are hardware-agnostic and supported by rigorous theoretical analyses. Second,
both the computational dynamics of GNNs and the statistical properties of graph data are intrinsically
tied to the underlying graph structure, which is directly influenced by choices of batch size and
fan-out size. Altering these hyperparameters thus introduces complex interactions, highlighting
the need for flexible analytical frameworks that can accurately capture these dynamics. Finally,
comprehensively understanding the trade-offs between full-graph and mini-batch training demands
frameworks capable of jointly evaluating model efficiency and generalization, ultimately guiding the
development of practically optimized systems.

Contribution. To address the aforementioned research gap, in this paper, we conduct a systematic
study of full-graph and mini-batch GNN training under different batch sizes and fan-out sizes on
transductive node classification tasks. The contributions are highlighted as follows.

▷ We characterize the role of the batch size and fan-out size in GNN optimization dynamic analysis
(Theorem 1 and 2), extending the settings to irregular graphs and GNNs with non-linear activations,
better aligning with the practice. We also provide a novel GNN generalization analysis (Theorem 3)
using the Wasserstein distance to investigate the impact of graph structures, especially the fan-out size,
where this distance can quantify graph structure differences between training and testing datasets.

▷ We theoretically uncover the non-isotropic impacts of the batch size and the fan-out size in GNN
convergence and generalization, where the batch size has a greater impact on GNN optimization
dynamics (Obs.1), while the fan-out size more strongly affects GNN generalization (Obs.2). These
findings suggest that, under memory constraints, adjusting the batch size is preferable when general-
ization is the priority, given its more stable effect on generalization. In contrast, tuning the fan-out
size is preferable when convergence is the concern, given its more consistent impact on convergence
compared to batch size, while setting the fan-out size to moderate values balances convergence and
computational efficiency as the magnitude of its impact on convergence decreases with larger values.

▷ We empirically use additional iteration-based convergence metrics for hardware-agnostic compar-
isons, rather than relying solely on time-based metrics. Experiments on four real-world datasets
(Hamilton et al., 2017; Hu et al., 2020) and three GNN models (Zhang et al., 2019; Hamilton et al.,
2017; Veličković et al., 2017) validate our theoretical findings. We recommend keeping batch size
below half of the training nodes and the fan-out size under 15 for sparse graphs (Hamilton et al.,
2017; Hu et al., 2020) to balance the model performance and computational efficiency.

Our theoretical and empirical findings support that full-graph training does not always yield superior
model performance or computational efficiency compared to smaller mini-batch settings. Instead,
carefully tuning the batch size and fan-out size in mini-batch settings often leads to better trade-offs,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

such as faster convergence or improved generalization under resource constraints. These findings
provide practical guidance for selecting training paradigms under specific task requirements.

2 PRELIMINARIES

Graph. Given a homogeneous undirected graph with total n nodes and the maximal degree dmax ≤ n,
set ntrain nodes in the training set and ntest nodes in the testing set, with n = ntrain + ntest. We allow
arbitrary subsets of nodes to be selected as the training and testing sets. Let b ≤ ntrain be the batch
size and β ≤ dmax be the fan-out size in mini-batch training, where uniform neighbor sampling is
employed to select neighbors.

Each node is an instance (xi, yi) with feature xi and label yi. Let X ∈ Rn×r be the feature matrix,
where xi is the i-th row of X and r is the feature size. In the transductive learning setting, our task is
to predict the labels of nodes {xi}ni=ntrain+1 by the GNN model trained on {xi}ni=1 ∪ {yi}ntrain

i=1 . We
assume that node features are fixed, and node labels are independently sampled from distributions
conditioned on node features, which is widely adopted in the node classification task.

Let A represent the adjacency matrix of graph. We define Afull
train ∈ Rntrain×n for full-graph training,

Amini
train ∈ Rb×n for mini-batch training, and Atest ∈ Rntest×n for inference, where Amini

train is a submatrix
of Afull

train. Let Din denote a diagonal in-degree matrix with Din
ii representing the number of incoming

edges to node i. We define Din,full
train ∈ Rntrain×ntrain for full-graph training, Din,mini

train ∈ Rb×b for mini-
batch training, and Din

test ∈ Rntest×ntest for testing. Dout ∈ Rn×n denotes the respective diagonal

out-degree matrix. Ã =
(
Din + I

)− 1
2 (A+ I) (Dout + I)

− 1
2 is the respective normalized adjacency

matrix with self-loops, where self-loops ensure that each node retains its own features during
aggregation, improving the model’s learning ability. Here ãi denotes the i-th row of Ã.

GNN model. Motivated by recent theoretical advances in understanding GNNs (Su & Wu, 2025;
Awasthi et al., 2021), we analyze the training dynamics using a one-layer GNN model. This model
serves as a powerful and well-established testbed for capturing phenomena arising from finite width
and nonlinearity of GNNs. Its simplicity in model depth provides the analytical flexibility necessary to
precisely characterize how batch size and fan-out size affect GNN training dynamics. In Appendix H,
we further discuss how our analyses and results generalize to multi-layer settings. Concretely, let
W ∈ Rh×r be the learnable model parameters of the GNN model and W∗ ∈ Rh×r be the ground
truth of W, where wi is the i-th row of W and h is the finite hidden dimension. We study a
one-layer GNN with the ReLU activation, and define the output immediately after the first layer as
zi = σ

(
ãtrain,iXW⊤) ,∀i ∈ training set, where σ(x) = max (x, 0) is the ReLU activation function,

and the term ãtrain,iX represents the embedding aggregation on node i. This first-layer output may be
followed by task-specific post-processing (e.g., a linear projection in binary classification). Similarly,
during inference, the output of the first layer is given by zi = σ

(
ãtest,iXW⊤) ,∀i ∈ testing set.

In this paper, we use ∥ · ∥2, ∥ · ∥ and ∥ · ∥F to denote the 2-norm of vector, spectral norm of matrix
and Frobenius norm of vector, respectively. For two sequences {pn} and {qn}, we use pn = O(qn)
to denote that pn ≤ C1qn for some absolute constant C1 > 0. The notation table is in Appendix A.

3 OPTIMIZATION DYNAMIC

We present our theoretical studies on the GNN optimization dynamics. First, the optimization
setup is introduced, representing how to handle interactions between batch size and fan-out size in
optimization dynamics (Sec. 3.1). Next, we show the convergence results, answering our research
question in GNN optimization dynamic. We then reveal an interesting observation, yielding actionable
implications for accelerating convergence under memory constraints (Sec. 3.2).

3.1 OPTIMIZATION SETUP

Optimization algorithms. We aim to minimize the empirical risk L̂train

(
W, Ãtrain

)
=

1
ntrain

∑
i∈training set l (W, ãtrain,i), where l (·) denotes the loss function. In practice, Cross-Entropy

(CE) and Mean Squared Error (MSE) are the most commonly used losses. Under full-graph
training settings, the model parameters are updated via gradient descent (GD) as Wfull

t+1 =

Wfull
t − ηt∇Wfull

t
L̂train

(
Wfull

t ,Afull
train

)
, where ηt > 0 is the learning rate at the t-th training itera-

tion. Under mini-batch training settings, the model parameters are updated via stochastic gradient

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

descent (SGD) as Wmini
t+1 = Wmini

t − ηtĜt, where Ĝt =
1
b

∑
i∈sampled nodes ∇Wmini

t+1
l
(
Wmini

t , ãmini
train,i

)
denotes the stochastic gradient at the t-th training iteration.

Handling interactions between batch size and fan-out size in optimization dynamic. To handle
these interactions, we isolate the impact of the graph structure in the loss and gradient expressions. A
key challenge is that the nonlinear activation (e.g., ReLU) processes aggregated node features as input,
making these expressions analytically intractable. To overcome this, we decouple the aggregated
node features from the activation function. For instance, we extract the aggregation from the ReLU
function by reformulating squared loss terms, or rewrite the ReLU function using a position-wise 0/1
indicator matrix that can directly multiply the aggregated node features.

3.2 CONVERGENCE RESULTS

Building on the aforementioned setup in Sec 3.1, we study GNN convergence results under suitable
assumptions on the distribution of node features as well as the boundedness of the feature matrix
norm, the ground truth parameter norm and the separation between aggregated node features with
different labels in the training data (see Assumptions B.1.-B.2. in Appendix B and Assumption E.1. in
Appendix E), with detailed proofs provided in Appendix B-E.

Theorem 1. (Convergence of Mini-batch Training with MSE) Suppose Wmini are generated by
Gaussian initialization. Under Assumptions B.1. and B.2, if the fan-out size satisfies Cmini

1 ≤ β ≤
Cmini

2 b
3
4 for constants Cmini

1 , Cmini
2 ∈ (0, 1) to ensure a sparser adjacency than a fully connected

graph, then with high probability, Ltrain
(
Wmini

T ,Amini
train

)
≤ ϵ for any ϵ ∈ (0, 1), provided that the

number of iterations T = O
(
ntrainh

2b
5
2 β− 1

2 ϵ−1 log
(
h2ϵ−1

))
under the mini-batch training.

Theorem 2. (Convergence of Mini-batch Training with CE) Suppose Wmini are generated by
Gaussian initialization. Under Assumptions B.1. and E.1, if the hidden dimension of a one-round
GNN satisfies h = Ω

(
log (ntrain)β

−1
(
n2train + ϵ−1

))
to ensure the finite width, then with high

probability, L̂train
(
Wmini

T ,Amini
train

)
≤ ϵ for any ϵ ≥ 0, provided that the number of iterations T =

O
(
n2train (log (ntrain))

1
2 α−2b−1β− 5

2

(
n2train + ϵ−1

))
under the mini-batch training.

When the fan-out size β reaches dmax and the batch size b reaches ntrain, the upper bound on the
number of iterations to convergence in mini-batch training matches that of full-graph training (see
Theorem B.4. under MSE in Appendix B and Theorem D.2. under CE in Appendix D).

Remark 3.1. Our theoretical results show that increasing the batch size b for a fixed fan-out size leads
to more iterations to convergence under MSE (Theorem 1), but fewer iterations under CE (Theorem 2)
in the mini-batch setting of one-round GNNs, different from DNN training. In contrast, increasing
the fan-out size β under a fixed batch size consistently reduces the number of iterations required for
convergence under both MSE (Theorem 1) and CE (Theorem 2).

Remark 3.2. Our theoretical analysis reveals that the magnitude of the fan-out size’s impact on
GNN convergence jointly depends on the batch size b and the fan-out size β, diminishing as either
b (under CE) or β (under MSE and CE) grows. The magnitude of this impact can be characterized
by the absolute slope |∂T/∂β| of the number of iterations T for convergence with respect to the
fan-out size β, where a steeper slope indicates a stronger impact. Specifically, Theorem 1. gives
|∂T/∂β| = O

(
β−3/2b5/2

)
under MSE and Theorem 2. gives |∂T/∂β| = O

(
β−7/2b−1

)
under CE .

Answering our research question: Remark 3.1. and Remark 3.2. represent the impact and interplay
of the batch size and the fan-out size in the GNN optimization dynamic. Therefore, we conclude
that full-graph training does not always provide superior convergence speed than smaller mini-batch
settings, especially under MSE.

Furthermore, we present an interesting observation, providing insights into accelerating GNN conver-
gence under memory constraints.

Obs.1: GNN convergence is more sensitive to batch size than to fan-out size. Remark 3.1. high-
lights a stronger dependence of GNN convergence on batch size b than on fan-out size β, as a larger
batch size b leads to opposite convergence trends under MSE and CE, while increasing the fan-out size
β exhibits a consistent trend. This observation cannot be fully interpreted by the popular explanation
of DNNs, which posits that increasing the batch size reduces gradient variance, resulting in fewer

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

iterations to converge (Cong et al., 2021a; Liu et al., 2024) . We further consider the impact of
message passing on the loss and gradient, providing the interpretation of Obs.1. in Appendix F.

Implication for accelerating convergence. Under memory constraints, Obs.1. suggests that adjusting
the fan-out size β offers a more reliable way to accelerate GNN convergence, as the fan-out size β
keeps the same convergence trends under both MSE and CE. To tune the fan-out size β, Remark
3.2. highlights that a moderate value of β provides a practical balance between convergence and
computational efficiency, as the reduction in the number of iterations for convergence becomes
smaller when increasing β beyond moderate values, particularly with large batches under CE.

4 GENERALIZATION OF MINI-BATCH TRAINING

We represent our theoretical study on GNN generalization. First, problem setup is introduced,
representing how to isolate the impacts of batch size and fan-out size in generalization by employing
Wasserstein distance (Sec. 4.1). Next, we show the generalization result, answering our research
question in GNN generalization. We then present an interesting observation, yielding the actionable
implication for improving generalization under memory constraints (Sec. 4.2).

4.1 PROBLEM SETUP

Basic setup. We aim to bound the generalization gap between the expected testing risk and the
empirical training risk under the mini-batch training settings, where the expected testing risk is given
by Ltest

(
Wmini, Ãfull

test

)
= E

[
1
ntest

∑
i∈test set l

(
Wmini, ãfull

test,i

)]
, and the empirical training risk is ex-

pressed as L̂train

(
Wmini, Ãmini

train

)
= 1

ntrain

∑
i∈training set l

(
Wmini, ãmini

train,i

)
. Note that inference utilizes

all testing neighbors across the entire graph, whereas mini-batch training relies on sampled neighbors
within limited hops. We then employ the Wasserstein distance (Kantorovich, 1960) to quantify the
difference in graph structures between training and testing datasets, as the Wasserstein distance
effectively measures differences in non-i.i.d. data, particularly regarding geometric variations.

Definition 1. (Distance between Training Set and Testing Set). Define the distance
from the training set to the testing set as the Wasserstein distance given by ∆(β, b) ={
infθ∈Θ[ρtrain,ρtest]

∑
i∈train set

∑
j∈test set θi,jδ (yi, yj , β, b)

}
, where ρtrain (yi) and ρtest (yi) denote the

probability of yi appearing in training and testing sets, respectively. Θ[ρtrain, ρtest] is the joint prob-
ability of ρtrain and ρtest. The infimum in the first equality is conditioned on

∑
j∈test set θi,j =

ρtrain (yi) ,
∑
i∈training set θi,j = ρtest (yj) , θi,j ≥ 0. δ (yi,yj , β, b) is the distance function of any two

points from training and testing sets, respectively.

We set δ (yi,yj , β, b) = Cδh
2

nmin

(
δfull
i,j + δfull-mini

i

)
with a constant Cδ > 0, nmin = min{ntrain, ntest}

and δfull
i =

∥∥ãfull
test,j − ãfull

train,i

∥∥2
F
+ 2

∥∥ãfull
test,j

∥∥2
F

, as a constant, mainly capturing the difference of distri-

butions between the training and testing data in full-graph training. δfull-mini
i =

∥∥ãfull
train,i − ãmini

train,i

∥∥2
F

reflects the structural difference between full-graph and mini-batch graphs per node during training.

Isolating the impacts of batch size and fan-out size in generalization. To isolate these impacts, we
focus on the discrepancy U between expected training and testing losses before training, which is the
only term for non-i.i.d. graph data in our generalization analysis, with detailed proof in Appendix M.
Since the training and testing datasets are split beforehand, U depends on the structural difference
between training and testing graphs, which we quantify using the Wasserstein distance ∆(β, b). We
show that greater similarity between training and testing graph structures leads to a smaller U .

4.2 GENERALIZATION RESULT

Building on the aforementioned setup in Sec 4.1, we use the Wasserstein distance to study the
generalization result in PAC-Bayesian framework (McAllester, 2003) under mini-batch GNN training
with MSE, given suitable assumptions on the boundedness of the Frobenius norm of the feature matrix
and the parameter norm (see Assumptions G.1. and G.2. and the detailed proof in Appendix G).

Theorem 3. Suppose Wmini are generated by Gaussian initialization. Under Assump-
tions G.1. and G.2, with high probability, for the posterior distribution Q over hypothe-
sis space in the mini-batch training settings with MSE, we have Ltest

(
Wmini, Ãfull

test;Q
)

−

L̂train

(
Wmini, Ãmini

train;Q
)

= O
(

1
ntrain

+∆(β, b)
)

, where ∆(β, b1) ≤ ∆(β, b2) with b1 ≥ b2,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

∆(β, b) ∝
∑
i∈training set

∑
j∈testing set θi,jδ

full-mini
i , θi,j ∈ Θ[ρtrain, ρtest] and δfull-mini

i has an overall
non-increasing trend as the fan-out size β grows but small non-monotonic fluctuations exist. The
posterior distribution Q represents the distribution of model parameters after training, and the
hypothesis space denotes all possible models.

Remark 4.1. Theorem 3 reveals that increasing either the batch size b or the fan-out size β improves
the GNN generalization. This is because the role of b and β in GNN generalization is captured by the
Wasserstein distance ∆(β, b), where larger ∆(β, b) leads to poorer generalization performance. In
Definition 1, the Wasserstein distance ∆(β, b) is proportional to the weighted sum of δfull-mini

i (i.e.,
the structural difference between full-graph and mini-batch graphs per node during training) over all
training nodes , where δfull-mini

i decreases with either the batch size b or the fan-out size β, though
slightly non-monotonic fluctuations exist when varying β.

Answering our research question: Remark 4.1. represents how the batch size and the fan-out size
characterize GNN generalization via the Wasserstein distance ∆(β, b). While full-graph training is
expected to outperform smaller mini-batch settings, we remain cautious about the degradation in
generalization performance at very large batch sizes or fan-out sizes, as similar issues have been
observed in DNNs (You et al., 2019; 2017) . We conduct an empirical study for further investigation.

In addition, we interpret an interesting observation, providing the implication for improving GNN
generalization under memory constraints.

Obs.2: GNN generalization is more sensitive to fan-out size than to batch size. While increasing
the fan-out size β and the batch size b both help align the mini-batch with the full graph during training,
β has a greater impact on the generalization by directly controlling receptive field of each training
node. Based on Remark 4.1, this can be interpreted using the Wasserstein distance ∆(β, b), which
increases the weighted sum of δfull-mini

i over all training nodes. A larger β can include unsampled
but valid edges, turning zero terms ãmini

train,i into non-zero values in δfull-mini
i , potentially causing slight

non-monotonic fluctuations. In contrast, increasing b does not introduce these edges, as all training
nodes are included during summation of δfull-mini

i . With the more complex impact of β in ∆(β, b),
we conclude that GNN generalization is more sensitive to fan-out size β than to batch size b (see
Appendix M for the detailed proof).

Implication for improving generalization. Under memory constraints, Obs.2. suggests that adjusting
the batch size b offers a more stable way to improve GNN generalization, as the batch size b introduces
less non-monotonic fluctuations than the fan-out size β.

5 EMPIRICAL STUDY

We first explain the rationale for using the metrics (e.g., iteration-to-accuracy) in Sec. 5.1. We validate
Remarks 3.1 - 3.2. and Obs.1. on GNN convergence (Sec. 5.2), and Remark 4.1. and Obs.2. on
GNN generalization with the discussion about performance degradation (Sec. 5.3). We compare
computational efficiency across varying batch sizes and fan-out sizes, answering our research question
in computational efficiency (Sec. 5.4). Finally, we present an overall comparison of generalization
performance between full-graph and mini-batch training after tuning batch size and fan-out size,
yielding implications for tuning these two hyperparameters (Sec. 5.5).

Results overview. Non-isotropic impacts of batch size and fan-out size exist in model performance
(i.e., generalization and convergence) and computational efficiency. Full-graph training does not
always yield superior model performance or computational efficiency compared to well-tuned smaller
mini-batch settings. Carefully tuning the batch size and the fan-out size in mini-batch settings often
achieves more favorable trade-offs, such as faster convergence or better generalization.

Datasets and models: We conduct experiments on four real-world datasets: reddit (Hamilton et al.,
2017), ogbn-arxiv (Hu et al., 2020), ogbn-products (Hu et al., 2020) and ogbn-papers100M (Hu
et al., 2020). We train three representative GNN models: GCN (Zhang et al., 2019), GraphSAGE
(Hamilton et al., 2017) with mean aggregation, and GAT (Veličković et al., 2017) with 2 heads for
ogbn-papers100M and 4 heads for the other datasets. See more training settings in Appendix N.

5.1 METRIC: ITERATION-TO-ACCURACY

We evaluate convergence performance using three metrics: iteration-to-loss (i.e., the number of
iterations to reach a target training loss), iteration-to-accuracy (i.e., the number of iterations to reach a
target validation accuracy), and time-to-accuracy (i.e., the time to reach a target validation accuracy).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Time-to-acc, bw1, GPU (b) Time-to-acc, bw2, GPU (c) Time-to-acc, bw1, CPU

(d) Iter-to-acc, bw1, GPU (e) Iter-to-acc, bw2, GPU (f) Iter-to-acc, bw1, CPU
Figure 1: Time-to-acc and iteration-to-acc in mini-batch and full-graph training with varying band-
widths (i.e., two inter-GPU bandwidth values: bw1=infinity > bw2=900GB/s) and computational
capacities (i.e., GPU with 40GB of memory and CPU with 512GB of host memory). Figure repre-
sentation updated.

Since iteration-to-loss is from the theoretical analysis in Sec. 3 and time-to-accuracy is commonly
used in empirical studies (Bajaj et al., 2024; Hu et al., 2020), we do not provide further explanation.

Rationale for using iteration-to-accuracy. However, time-to-accuracy is highly sensitive to hard-
ware differences, entangling model performance improvement per iteration (e.g., accuracy) and
computational efficiency (e.g., processed nodes per second). Thus, we additionally introduce iteration-
to-accuracy, a hardware-agnostic metric, to capture this performance improvement during training.

To illustrate this rationale more clearly, we provide a simple, non-rigorous mathematical derivation,
with details in Appendix N. Let b denote the batch size, β the fan-out size, and νl the iteration-to-
accuracy. Suppose we compare two training setups under the same compute capacity but different
bandwidths in distributed systems: a full-graph setting (b = 1000, β = 50, νl = 10) and a mini-batch
setting (b = 10, β = 10, νl = 10000). At high bandwidths (1000 nodes/s), the full-graph setting
converges faster, in 5.1× 105 seconds, compared with 1.1× 106 seconds for mini-batch training. In
contrast, at low bandwidths (0.1 nodes/s), mini-batch training converges faster, requiring 2.1× 106

seconds, whereas the full-graph setting requires 5.6× 106 seconds.

Empirically, Figure 1 illustrates time-to-accuracy and iteration-to-accuracy with two training ap-
proaches under different inter-GPU bandwidth levels (i.e., bw1=infinity, simulated by a single GPU
with no inter-device communication; bw2=900GB/s, two-GPU NVLink 4.0 setup) and computation
capacities (i.e., GPU and CPU). Detailed settings are in Appendix N. For time-to-accuracy, mini-batch
training underperforms full-graph training on a single GPU but outperforms it on two GPUs or a
single CPU. In contrast, iteration-to-accuracy remains consistent across hardware environments, with
a maximum variation of 41.28%, compared to 2787.05% for time-to-accuracy.

Therefore, both mathematical and empirical examples indicate that time-to-accuracy cannot reliably
generalize convergence performance across hardware environments, while the iteration-to-accuracy
is more reliable to guide early-stage configuration decisions. For example, in a new hardware setup,
practitioners can use known iteration-to-accuracy trends to narrow the range of batch and fan-out size,
and perform short runs to consider hardware-specific runtime, thereby reducing tuning overhead.

5.2 CONVERGENCE

Empirical Validation of Remarks 3.1, 3.2. and Obs.1. Remark 3.1. and Obs.1. are empirically
validated by Figure 2 and Figures 7- 10 in Appendix N, which illustrate iteration-to-loss for three one-
layer GNNs across four real-world datasets under varying fan-out sizes or batch sizes with different
learning rates. In addition, Figure 4 in more general settings (e.g., multi-layer GraphSAGE) further
confirms Remarks 3.1, 3.2. and Obs.1. using iteration-to-loss (see detailed settings in Appendix N).
Due to more complex optimization dynamics in deeper GNNs, Figure 4 shows minor fluctuations
across varying batch and fan-out sizes, where the batch size and fan-out size increase until mini-batch
training transitions into full-graph training.

Extended experiments using iteration-to-accuracy and time-to-accuracy. To study model perfor-
mance improvement during training, Figure 5 illustrates iteration-to-accuracy and time-to-accuracy
across varying batch sizes and fan-out sizes for reddit (see more datasets in Appendix N), showing
unstable convergence trends with varying batch sizes and very large fan-out sizes (explained further in
Sec. 5.3). This is because these two metrics capture both convergence and generalization performance

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Batch size, CE (b) Fan-out size, CE (c) Batch size, b, MSE (d) Fan-out size, MSE
Figure 2: Iteration-to-loss of one-layer GraphSAGE under CE and MSE across varying learning rates
and batch sizes or fan-out sizes for ogbn-products.

(a) Products, Batch size (b) Products, Fan-out size (c) Reddit, Batch size (d) Reddit, Fan-out size
Figure 3: Test accuracy of one-layer GraphSAGE under MSE across varying learning rates and batch
sizes or fan-out sizes for ogbn-products and reddit.

(a) Products, CE (b) Reddit, CE (c) Arxiv, CE (d) Papers100M, CE

(e) Products, MSE (f) Reddit, MSE (g) Arxiv, MSE (h) Papers100M, MSE
Figure 4: Iteration-to-loss of GraphSAGE under CE and MSE across varying batch and fan-out sizes.

(a) Iter-to-acc, CE (b) Iter-to-acc, MSE (c) Time-to-acc, CE (d) Time-to-acc, MSE
Figure 5: Iteration-to-accuracy and time-to-accuracy of GraphSAGE under CE and MSE across
varying batch sizes and fan-out sizes for reddit.

due to the dependency on validation accuracy. Moderate fan-out sizes (e.g., around 15) are shown to
balance convergence speed and computational efficiency (shown in time-to-accuracy), supporting the
convergence acceleration implications in Sec 3.

5.3 GENERALIZATION

Empirical Validation of Remark 4.1. and Obs.2. Remark 4.1. and Obs.2. are empirically validated
by Figure 3 and Figures 15-16 of one-layer GNNs in Appendix N, which illustrate test accuracies for
three one-layer GNNs across four datasets under varying fan-out sizes or batch sizes with different
learning rates. In addition, Figures 6(a)-(b) in more general settings for ogbn-products further confirm
Obs.2. (see more datasets and details in Appendix N), as the variation of fan-out size induces more
frequent and diverse shifts in test accuracies. Regarding Remark 4.1, Figure 6(b) under MSE generally
aligns with our theoretical prediction, while Figure 6(a) under CE further shows that performance
degradation occurs with very large fan-out sizes (typically more than 15 on these datasets) or batch
sizes (exceeding half of the training nodes). This degradation is more severe with fan-out sizes
than with batch sizes. We justify our answer in Sec. 4 to the research question: full-graph training
does not always outperform the smaller mini-batch settings in generalization due to degradation in
generalization performance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Test accuracy, CE (b) Test accuracy, MSE

(c) Throughput, CE (d) Throughput, MSE
Figure 6: Test accuracies and training throughput (# nodes/s) of GraphSAGE under CE and MSE
across varying batch sizes and fan-out sizes for ogbn-products.

Table 1: Best test accuracies of full-graph and mini-batch training of multi-layer GraphSAGE model
without dropout layers after graph-based hyperparameter tuning.

Datasets Reddit Ogbn-arxiv Ogbn-products Ogbn-papers100M
Full-graph 96.13 70.96 77.92 59.54
Mini-batch 96.32 71.16 78.80 58.52

Understanding performance degradation. This degradation under CE arises as the models tend
to converge to sharp minima under large batch sizes (Keskar et al., 2016). Since gradient variance
decreases with larger batch and fan-out sizes, similar issues likely occur with large fan-out sizes.
This degradation is more severe with fan-out sizes than batch sizes, as aggregating information from
too many neighbors causes overfitting and weakens generalization. In contrast, such degradation
is not obvious under MSE, which produces flatter minima due to weaker gradients near prediction
boundaries (Bosman et al., 2020).

5.4 COMPUTATIONAL EFFICIENCY

Figures 6(c)-(d) show the training throughput as the number of target nodes processed per second on
a single GPU for ogbn-products (see other datasets in Appendix N).

Answering our research question: Computational Efficiency improves with batch size as fixed
computations (e.g., parameter updates) are distributed across more data, but becomes worse with
larger fan-out sizes due to higher computational demands in message passing. Overall, mini-batch
training achieves better computational efficiency than full-graph training.

Non-isotropic impacts of batch size and fan-out size in convergence, generalization, and compu-
tational efficiency. Based on the observations in Sec. 5.2 - 5.4, the batch size and the fan-out size
exhibit distinct, non-uniform effects across different aspects of GNN training. These non-isotropic
impacts highlight the need for careful tuning of both hyperparameters to balance computational
efficiency, convergence, and generalization.

5.5 FULL-GRAPH VS. MINI-BATCH TRAINING AFTER HYPERPARAMETER TUNING

Table 1 compares the generalization performance of full-graph and mini-batch training after tuning
batch size and fan-out size via grid search. For the ogbn-papers100M dataset, two hidden layers
with a hidden dimension of 128 are used due to resource constraints, limiting representation capacity.
The best accuracy from mini-batch training is within 1.74% of full-graph training, suggesting that
full-graph training does not consistently outperform well-tuned mini-batch settings.

Implications for tuning batch size b and fan-out size β. Based on both the theoretical and empirical
observations above, we recommend keeping the batch size b below half of the training nodes and
the fan-out size β under 15 for datasets with an average degree less than 50, to avoid generalization
degradation and balance the trade-offs in computational efficiency and model performance.

6 RELATED WORK
The only existing comparison work (Bajaj et al., 2024) between full-graph and mini-batch GNN
training empirically evaluates overall performance but does not investigate the impact of key hyper-
parameters (e.g., batch size and fan-out size) on model performance and computational efficiency,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

thereby overlooking the trade-offs achieved by tuning these hyperparameters. Recent efforts (Yuan
et al., 2023; Hu et al., 2021) focus on these hyperparameters but remain limited. For instance, Yuan
et al. (Yuan et al., 2023) lack theoretical support, consider only limited batch sizes and fan-out
values that are far smaller than those of full-graph training, and overlook the interplay of batch
size and fan-out size. Hu et al. (Hu et al., 2021) rely on gradient variance to explain the role of
batch size but do not consider fan-out size; thus their explanation conflicts with their empirical
observations. Meanwhile, existing theoretical analyses of GNN training (Yang et al., 2023; Tang &
Liu, 2023; Xu et al., 2021; Verma & Zhang, 2019; Yadati, 2022; Awasthi et al., 2021) overlook key
graph-related factors (e.g., irregular graphs, the difference between training and testing graphs in
mini-batch settings) and the impact of non-linear activation on gradients. Furthermore, due to GNN’s
message-passing process, performance insights from DNNs (You et al., 2019; Smith, 2017; Golmant
et al., 2018; Zou et al., 2020a; Bassily et al., 2018; Nabavinejad et al., 2021) cannot directly transfer
to GNNs. We provide a more comprehensive related work discussion in Appendix O.

7 CONCLUSION
We provide a comprehensive empirical and theoretical study of full-graph vs. mini-batch GNN training
from the view of batch size and fan-out size. We provide a novel theoretical GNN generalization
analysis employing the Wasserstein distance, to study the impact of batch size and fan-out size. We
empirically highlight the importance of iteration-based convergence metrics for hardware-independent
evaluation. Our theoretical and empirical findings reveal the non-isotropic impact of batch size and
fan-out size in GNN convergence and generalization. Finally, full-graph training does not consistently
outperform well-tuned mini-batch settings in model performance or computational efficiency. These
insights clarify the trade-offs between full-graph and mini-batch training. We further discuss the
extension (e.g., link prediction tasks) and future work (e.g., different activations) in Appendix P.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

For the theoretical results, all assumptions and complete proofs are provided in Appen-
dices A–E, G, and I–M, with additional important discussions in Appendices F, H, and P.
For the empirical study, the code is publicly available via an anonymous link provided in
the abstract: https://anonymous.4open.science/r/GNN_fullgraph_minibatch_
training-8040/README.md . Detailed experimental configurations and additional experiment
results are represented in Appendix N, and all datasets are properly cited in the main text.

REFERENCES

Pranjal Awasthi, Abhimanyu Das, and Sreenivas Gollapudi. A convergence analysis of gradient
descent on graph neural networks. Advances in Neural Information Processing Systems, 34:
20385–20397, 2021.

Saurabh Bajaj, Hui Guan, and Marco Serafini. Graph neural network training systems: A performance
comparison of full-graph and mini-batch. arXiv preprint arXiv:2406.00552, 2024.

Raef Bassily, Mikhail Belkin, and Siyuan Ma. On exponential convergence of sgd in non-convex
over-parametrized learning. arXiv preprint arXiv:1811.02564, 2018.

Anna Sergeevna Bosman, Andries Engelbrecht, and Mardé Helbig. Visualising basins of attraction
for the cross-entropy and the squared error neural network loss functions. Neurocomputing, 400:
113–136, 2020.

Zhenkun Cai, Xiao Yan, Yidi Wu, Kaihao Ma, James Cheng, and Fan Yu. Dgcl: An efficient
communication library for distributed gnn training. In Proceedings of the Sixteenth European
Conference on Computer Systems, pp. 130–144, 2021.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. arXiv preprint arXiv:1710.10568, 2017.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via
importance sampling. arXiv preprint arXiv:1801.10247, 2018.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of the
25th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 257–266,
2019.

Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On the importance of sampling in training
gcns: Tighter analysis and variance reduction. arXiv preprint arXiv:2103.02696, 2021a.

Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On provable benefits of depth in training
graph convolutional networks. Advances in Neural Information Processing Systems, 34:9936–9949,
2021b.

Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks: The
power of initialization and a dual view on expressivity. Advances in neural information processing
systems, 29, 2016.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and Keyulu
Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels. Advances in
neural information processing systems, 32, 2019.

Ran El-Yaniv and Dmitry Pechyony. Transductive rademacher complexity and its applications.
Journal of Artificial Intelligence Research, 35:193–234, 2009.

11

https://anonymous.4open.science/r/GNN_fullgraph_minibatch_training-8040/README.md
https://anonymous.4open.science/r/GNN_fullgraph_minibatch_training-8040/README.md

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec. Gnnautoscale: Scalable and
expressive graph neural networks via historical embeddings. In International conference on
machine learning, pp. 3294–3304. PMLR, 2021.

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of
graph neural networks. In International Conference on Machine Learning, pp. 3419–3430, 2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272, 2017.

Noah Golmant, Nikita Vemuri, Zhewei Yao, Vladimir Feinberg, Amir Gholami, Kai Rothauge,
Michael W Mahoney, and Joseph Gonzalez. On the computational inefficiency of large batch sizes
for stochastic gradient descent. arXiv preprint arXiv:1811.12941, 2018.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Johann Hauswald, Yiping Kang, Michael A Laurenzano, Quan Chen, Cheng Li, Trevor Mudge,
Ronald G Dreslinski, Jason Mars, and Lingjia Tang. Djinn and tonic: Dnn as a service and its
implications for future warehouse scale computers. ACM SIGARCH Computer Architecture News,
43(3S):27–40, 2015.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

Yaochen Hu, Amit Levi, Ishaan Kumar, Yingxue Zhang, and Mark Coates. On batch-size selection
for stochastic training for graph neural networks. 2021.

Tim Kaler, Nickolas Stathas, Anne Ouyang, Alexandros-Stavros Iliopoulos, Tao Schardl, Charles E
Leiserson, and Jie Chen. Accelerating training and inference of graph neural networks with fast
sampling and pipelining. Proceedings of Machine Learning and Systems, 4:172–189, 2022.

Leonid V Kantorovich. Mathematical methods of organizing and planning production. Management
science, 6(4):366–422, 1960.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Vladimir Koltchinskii. Rademacher penalties and structural risk minimization. IEEE Transactions
on Information Theory, 47(5):1902–1914, 2001.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, et al. Pytorch distributed: Experiences on accelerating
data parallel training. arXiv preprint arXiv:2006.15704, 2020.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. Advances in neural information processing systems, 31, 2018.

Renjie Liao, Raquel Urtasun, and Richard Zemel. A pac-bayesian approach to generalization bounds
for graph neural networks. arXiv preprint arXiv:2012.07690, 2020.

Yucong Lin, Silu Li, Jiaxing Xu, Jiawei Xu, Dong Huang, Wendi Zheng, Yuan Cao, and Junwei
Lu. Graph over-parameterization: Why the graph helps the training of deep graph convolutional
network. Neurocomputing, 534:77–85, 2023.

Chaoyue Liu, Dmitriy Drusvyatskiy, Misha Belkin, Damek Davis, and Yian Ma. Aiming towards
the minimizers: fast convergence of sgd for overparametrized problems. Advances in neural
information processing systems, 36, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tianfeng Liu, Yangrui Chen, Dan Li, Chuan Wu, Yibo Zhu, Jun He, Yanghua Peng, Hongzheng Chen,
Hongzhi Chen, and Chuanxiong Guo. Bgl:gpu-efficient gnn training by optimizing graph data i/o
and preprocessing. In 20th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23), pp. 103–118, 2023.

Shaogao Lv. Generalization bounds for graph convolutional neural networks via rademacher com-
plexity. arXiv preprint arXiv:2102.10234, 2021.

Jiaqi Ma, Junwei Deng, and Qiaozhu Mei. Subgroup generalization and fairness of graph neural
networks. Advances in Neural Information Processing Systems, 34:1048–1061, 2021.

David McAllester. Simplified pac-bayesian margin bounds. In Learning Theory and Kernel Machines:
16th Annual Conference on Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003,
Washington, DC, USA, August 24-27, 2003. Proceedings, pp. 203–215, 2003.

Vasimuddin Md, Sanchit Misra, Guixiang Ma, Ramanarayan Mohanty, Evangelos Georganas, Alexan-
der Heinecke, Dhiraj Kalamkar, Nesreen K Ahmed, and Sasikanth Avancha. Distgnn: Scalable
distributed training for large-scale graph neural networks. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–14, 2021.

Hesham Mostafa. Sequential aggregation and rematerialization: Distributed full-batch training of
graph neural networks on large graphs. MLSys, 2022.

Seyed Morteza Nabavinejad, Sherief Reda, and Masoumeh Ebrahimi. Batchsizer: Power-performance
trade-off for dnn inference. In Proceedings of the 26th Asia and South Pacific Design Automation
Conference, pp. 819–824, 2021.

Pranjal Naman and Yogesh Simmhan. Performance trade-offs in gnn inference: An early study on
hardware and sampling configurations. In 2024 IEEE 31st International Conference on High
Performance Computing, Data and Analytics Workshop (HiPCW), pp. 173–174. IEEE, 2024.

Kenta Oono and Taiji Suzuki. Optimization and generalization analysis of transduction through
gradient boosting and application to multi-scale graph neural networks. Advances in Neural
Information Processing Systems, 33:18917–18930, 2020.

Jingshu Peng, Zhao Chen, Yingxia Shao, Yanyan Shen, Lei Chen, and Jiannong Cao. Sancus: sta le n
ess-aware c omm u nication-avoiding full-graph decentralized training in large-scale graph neural
networks. Proceedings of the VLDB Endowment, 15(9):1937–1950, 2022.

Boris Teodorovich Polyak. Gradient methods for minimizing functionals. Zhurnal vychislitel’noi
matematiki i matematicheskoi fiziki, 3(4):643–653, 1963.

Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. The vapnik–chervonenkis dimension
of graph and recursive neural networks. Neural Networks, 108:248–259, 2018.

Zhihao Shi, Xize Liang, and Jie Wang. Lmc: Fast training of gnns via subgraph sampling with
provable convergence. arXiv preprint arXiv:2302.00924, 2023.

Zhihao Shi, Jie Wang, Zhiwei Zhuang, Xize Liang, Bin Li, and Feng Wu. Accurate and scalable
graph neural networks via message invariance. arXiv preprint arXiv:2502.19693, 2025.

SL Smith. Don’t decay the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489,
2017.

Junwei Su and Chuan Wu. On the interplay between graph structure and learning algorithms in graph
neural networks. In Forty-second International Conference on Machine Learning, 2025.

Huayi Tang and Yong Liu. Towards understanding generalization of graph neural networks. In
International Conference on Machine Learning, pp. 33674–33719, 2023.

Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. In Measures of complexity: festschrift for alexey chervonenkis, pp.
11–30. 2015.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Saurabh Verma and Zhi-Li Zhang. Stability and generalization of graph convolutional neural networks.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 1539–1548, 2019.

Cheng Wan, Youjie Li, Ang Li, Nam Sung Kim, and Yingyan Lin. Bns-gcn: Efficient full-graph
training of graph convolutional networks with partition-parallelism and random boundary node
sampling. Proceedings of Machine Learning and Systems, 4:673–693, 2022a.

Cheng Wan, Youjie Li, Cameron R Wolfe, Anastasios Kyrillidis, Nam Sung Kim, and Yingyan
Lin. Pipegcn: Efficient full-graph training of graph convolutional networks with pipelined feature
communication. arXiv preprint arXiv:2203.10428, 2022b.

Xinchen Wan, Kaiqiang Xu, Xudong Liao, Yilun Jin, Kai Chen, and Xin Jin. Scalable and efficient
full-graph gnn training for large graphs. Proceedings of the ACM on Management of Data, 1(2):
1–23, 2023.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Keyulu Xu, Mozhi Zhang, Stefanie Jegelka, and Kenji Kawaguchi. Optimization of graph neural
networks: Implicit acceleration by skip connections and more depth. In International Conference
on Machine Learning, pp. 11592–11602, 2021.

Naganand Yadati. A convex formulation for graph convolutional training: Two layer case. In 2022
IEEE International Conference on Data Mining (ICDM), pp. 1281–1286. IEEE, 2022.

Chenxiao Yang, Qitian Wu, David Wipf, Ruoyu Sun, and Junchi Yan. How graph neural networks
learn: Lessons from training dynamics in function space. arXiv preprint arXiv:2310.05105, 2023.

Yang You, Aydın Buluç, and James Demmel. Scaling deep learning on gpu and knights landing
clusters. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–12, 2017.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Hao Yuan, Yajiong Liu, Yanfeng Zhang, Xin Ai, Qiange Wang, Chaoyi Chen, Yu Gu, and Ge Yu.
Comprehensive evaluation of gnn training systems: A data management perspective. arXiv preprint
arXiv:2311.13279, 2023.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph convolutional networks: a
comprehensive review. Computational Social Networks, 6(1):1–23, 2019.

Guoyi Zhao, Tian Zhou, and Lixin Gao. Cm-gcn: A distributed framework for graph convolutional
networks using cohesive mini-batches. In 2021 IEEE International Conference on Big Data (Big
Data), pp. 153–163. IEEE, 2021.

Da Zheng, Xiang Song, Chengru Yang, Dominique LaSalle, and George Karypis. Distributed
hybrid cpu and gpu training for graph neural networks on billion-scale heterogeneous graphs. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.
4582–4591, 2022.

Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and Jingren Zhou.
Aligraph: A comprehensive graph neural network platform. arXiv preprint arXiv:1902.08730,
2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient descent optimizes
over-parameterized deep relu networks. arXiv preprint arXiv:1811.08888, 2018.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-dependent
importance sampling for training deep and large graph convolutional networks. Advances in neural
information processing systems, 32, 2019.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes over-
parameterized deep relu networks. Machine learning, 109:467–492, 2020a.

Difan Zou, Philip M Long, and Quanquan Gu. On the global convergence of training deep linear
resnets. arXiv preprint arXiv:2003.01094, 2020b.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model (LLM) only as a general-purpose writing assistant to aid in grammar
checking and polishing the writing. The LLM did not contribute to research ideas, experiment design,
theoretical analysis, or result interpretation.

A NOTATIONS

Table 2: Notations
n Number of nodes of the entire graph

ntrain / ntest Number of nodes in the training set / the testing set
nmin The minimal value between training and testing sets
X/xi Node feature matrix / i-th row of node feature matrix
yi Ground truth label of node i

yi / ŷi Ground truth label in one-hot form / estimated outcomes of node i
r feature size
b Batch size
β Fan-out size

Amini
train / Afull

train Adjacency matrix in each mini-batch / full-graph training iteration
Din,mini

train / Din,full
train Diagonal in-degree matrices in each mini-batch / full-graph training iteration

Dout,mini
train / Dout,full

train Diagonal out-degree matrices in each mini-batch / full-graph training iteration
Ãmini

train / Ãfull
train Normalized adjacency matrix in a mini-batch / full-graph training iteration

ãmini
train,i / ãfull

train,i i-th row of normalized adjacency matrix in a mini-batch / full-graph training iteration
Ãtest / ãtest,i Normalized adjacency matrix / i-th row of Normalized adjacency matrix in testing set
Wmini / Wfull Learnable parameters of the GNN under mini-batch / full-graph training
wmini
i / wfull

i i-th row of parameters of the GNN under mini-batch / full-graph training
Wmini∗ / Wfull∗ Ground truth of learnable parameters Wmini / Wfull

wmini∗
i / wfull∗

i i-th row of ground truth of learnable parameters Wmini / Wfull

h Hidden size
K Number of label categories
σ(·) ReLU activation function
σ̂(·) Dual activation function

Ltrain(·) / L̂train(·) Expected / empirical training risk
Lmini

train(·) / L̂mini
train(·) Expected / empirical training risk in a mini-batch

Ltest(·) / L̂test(·) Expected / empirical testing risk
Ĝ Stochastic gradient in mini-batch training
η Learning rate

P/Q Prior / Posterior distribution of model parameters
U(·) Expected loss discrepancy between training set C and testing set Z
δ(·) Distance function
θ Covariance

To easily distinguish the training risk between full-graph and mini-batch training, we rewrite Ltrain(·)
and L̂train(·) as Lfull

train(·) and L̂full
train(·) under full-graph training. Similarly, we rewrite the gradient

∇L̂train(·) as ∇L̂full
train(·) during full-graph training, and the stochastic gradient Ĝ as ∇L̂mini

train(·).

B PROOF OF CONVERGENCE THEOREM IN FULL-GRAPH TRAINING WITH
MSE

In this section, we provide the proof of the convergence theorem in full-graph training with MSE. We
consider multi-class node classification tasks using a one-round GNN trained with the MSE, defined
as l
(
W, ãfull

train,i

)
= 1

2 ∥ŷi − yi∥2F . The ground truth label yi is rewritten as yi ∈ R1×K in the one-hot

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

form, where K ≥ 2 is the number of label categories. The final output of the GNN model is given
by ŷi = zi = σ

(
ãfull

train,iXW⊤), where the ReLU function is modified as σ(x) =
√
2max (x, 0).

Note that 1/2 in the MSE function and
√
2 in the ReLU function are introduced to simplify the proof.

The hidden dimension h becomes K. Note that The rows of W are initialized independently from a
Gaussian distribution N

(
0, κ2I

)
.

We decompose the analysis of GNN optimization dynamic into three steps.

Step 1: Reformulating loss and gradient expressions on irregular graphs. We decouple the activation
function from the aggregated node features. For instance, we extract the aggregation from the ReLU
function by reformulating squared loss terms.

Step 2: Bounding the norm of gradient. Based on the reformulated loss and gradient expressions, we
aim to quantify the magnitude of optimization updates by bounding the gradient norm, facilitating
convergence analysis. This can be achieved by leveraging the Polyak–Łojasiewicz (PL) inequality
(Polyak, 1963), where the squared norm of the gradient is lower bounded by the loss value scaled by
a factor.

Step 3: Bounding the number of iterations to Convergence. We first leverage the smoothness of the
loss function to derive a per-iteration inequality relating loss reduction to the gradient norm, and then
accumulate these iteration-wise inequalities over GD updates to obtain an upper bound on the number
of iterations required for convergence.

B.1 ASSUMPTIONS

Assumption B.1. The node feature xi is drawn i.i.d from N (0, Ir×r) for all i in the graph, with
∥X∥22 ≤ Cx for a constant Cx > 0.

Assumption B.2. The rows of ground truth parameters satisfy ∥w∗
i ∥2 = 1 for all i ∈ {1, . . . , h}.

Assumption B.1 specifies the distribution of node features and bounds the norm of the feature
matrix, and Assumption B.2 limits the norm of ground truth parameters for the GNN model. These
assumptions are also adopted in the GNN convergence analysis on regular graphs (Awasthi et al.,
2021). We emphasize Assumptions B.1 and B.2 are introduced to simplify the proof. Note that
Assumption B.2 can be relaxed to be that ∥w∗

i ∥2 is lower and upper bounded by some constants
instead of fixing ∥w∗

i ∥2 = 1.

Definition B.3 (Dual activation (Daniely et al., 2016)) The dual activation of σ is the function
σ̂ : [−1, 1] → R defined as σ̂ (θ) = E [σ (x)σ (y)], where x and y are jointly Gaussian random
variables with mean zero, variance one, and covariance θ.

Definition B.3 demonstrated that dual activations hold continuity over the interval [−1, 1] and
convexity within the range [0, 1].

B.2 EXPRESSIONS FOR LOSS AND GRADIENTS.

While our ultimate training objective remains empirical risk minimization, we analyze the optimiza-
tion dynamics of MSE using its expected risk formulation on node feature distribution. This is done
to simplify the proof, as expected risk offers a cleaner mathematical structure and does not affect
the graph structure. Although this approximation is more accurate in the large-sample regime, we
adopt it here as a modeling tool to study the impact of batch size and fan-out size in convergence,
even when analyzing small-sample settings.

Expression for MSE loss: We first begin by writing an equivalent expression of Lfull
train(w

full
j) with

j ∈ {1, . . . , h} as:

Lfull
train

(
wfull

j

)
=

1

2ntrain
(E

[
ntrain∑
i=1

σ

(
ãfull

train,iX
(
wfull

j

)⊤)2
]
+ E

[
ntrain∑
i=1

σ

(
ãfull

train,iX
(
wfull

j

∗)⊤)2
]

− 2E

[
ntrain∑
i,j=1

σ

(
ãfull

train,iX
(
wfull

j

)⊤)
σ

(
ãfull

train,iX
(
wfull

j

∗)⊤)]
)

(1)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

We next compute expressions for each of the three terms above.

1

ntrain
E

[
ntrain∑
i=1

σ

(
ãfull

train,iX
(
wfull

j

)⊤)2
]

=
1

ntrain
E

 ntrain∑
i,k=1

pijσ

(
ãfull

train,iX
(
wfull

j

)⊤)
σ

(
ãfull

train,kX
(
wfull

j

)⊤)
=

1

ntrain
E[
∥∥∥wfull

j

∥∥∥2 ntrain∑
i,k=1

pij

√(
Ãfull

train1
)
i

(
Ãfull

train1
)
k

· σ

 ãfull
train,iX

(
wfull

j

)⊤√(
Ãfull

train1
)
i

∥∥wfull
j

∥∥
σ

 ãfull
train,iX

(
wfull

j

)⊤√(
Ãfull

train1
)
k

∥∥wfull
j

∥∥
]

=

∥∥wfull
j

∥∥2
ntrain

ntrain∑
i,k=1

pikσ̂

 ϱfull
i,k√
ϑfull
i,k

√ϑfull
i,k

=
∥∥∥wfull

j

∥∥∥2 Γfull,

(2)

where the penultimate equality follows Definition B.3. We use pij = 1 if i = j and pij = 0 if
i ̸= j, ϱfull

i,j to denote the amount of common messages between node i and node j at a given training
iteration, and we define:

Γfull =
1

ntrain

ntrain∑
i,j=1

pij σ̂

 ϱfull
i,j√
ϑfull
i,j

√ϑfull
i,j , (3)

ϑfull
i,j =

(
Ãfull

train1
)
i

(
Ãfull

train1
)
j
. (4)

Similarly, we get the second term as:

1

ntrain
E

[
ntrain∑
i=1

σ

(
ãfull

train,iX
(
wfull
j

∗)⊤)2
]
=
∥∥∥wfull

j

∗
∥∥∥2 Γfull. (5)

We simplify the last term as:

1

ntrain
E

 ntrain∑
i,k=1

pikσ

(
ãfull

train,iX
(
wfull

j

)⊤)
σ

(
ãfull

train,kX
(
wfull

j

∗)⊤)
=

1

ntrain
E[
∥∥∥wfull

j

∥∥∥∥∥∥wfull
j

∗
∥∥∥ ntrain∑

i,k=1

pik

√(
Ãfull

train1
)
i

(
Ãfull

train1
)
k

· σ

 ãfull
train,iX

(
wfull

j

)⊤√(
Ãfull

train1
)
i

∥∥wfull
j

∥∥
σ

 ãfull
train,kX

(
wfull

j
∗)⊤√(

Ãfull
train1

)
k

∥∥wfull
j

∗∥∥
]

=
1

ntrain

∥∥∥wfull
j

∥∥∥ ∥∥∥wfull
j

∗
∥∥∥ ntrain∑

i,k=1

pikσ̂

 ϱfull
i,k√
ϑfull
i,k

(
wfull

j

)⊤
wfull

j
∗∥∥wfull

j

∥∥∥∥wfull
j

∗∥∥
√ϑfull

i,k.

(6)

Therefore, we have the expression of Lfull
train(w

full
j) as:

Lfull
train

(
wfull

j

)
=
1

2
(∥wfull

j ∥2Γfull + ∥wfull
j

∗∥2Γfull

− 2

ntrain

∥∥∥wfull
j

∥∥∥∥∥∥wfull
j

∗
∥∥∥ ntrain∑

i,k=1

pikσ̂

 ϱfull
i,k√
ϑfull
i,k

(
wfull

j

)⊤
wfull

j
∗∥∥wfull

j

∥∥ ∥∥wfull
j

∗∥∥
√ϑfull

i,k).
(7)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

It is easy to see that if wfull
j,0 is the initial value of wfull

j with j ∈ {1, . . . , h} then each subsequent
iteration will be a linear combination of wfull

j,0 and wfull
j

∗. Hence we can assume that wfull
j =

ϕfullwfull
j

∗
+ ψfullwfull

j
⊥, where w⊥ is a fixed unit vector (depending on the initialization) orthogonal

to wfull
j

∗. Then rewriting the loss in terms of ϕfull, ψfull and recalling that ∥wfull
j

∗∥ = 1 we get the
simplified expression of Lfull

train

(
wfull
j

)
:

Lfull
train

(
ϕfull, ψfull

)
=

1

2

((
ϕfull

)2
+
(
ψfull

)2
+ 1

)
Γfull −

√(
ϕfull

)2
+
(
ψfull

)2
Υfull, (8)

where we define:

Υfull =
1

ntrain

ntrain∑
i,j=1

pij σ̂

 ϕfull√(
ϕfull

)2
+
(
ψfull

)2 ϱfull
i,j√
ϑfull
i,j

√ϑfull
i,j . (9)

Expression for gradient: We compute the gradient of the objective with respect to w or equivalently
with respect to ϕ, ψ.

∂Lfull (ϕfull, ψfull)
∂ϕfull

=ϕfullΓfull − ϕfullΥfull√
(ϕfull)2 + (ψfull)2

+
1

ntrain2

 (
ψfull)2

(ϕfull)2 + (ψfull)2

ntrain∑
i,j=1

pijϱ
full
i,j σ̂

′

 ϕfull√
(ϕfull)2 + (ψfull)2

ϱfull
i,j√
ϑfull
i,j


=ϕfullΓfull − ϕfullΥfull√

(ϕfull)2 + (ψfull)2

+
1

ntrain2

 (
ψfull)2

(ϕfull)2 + (ψfull)2

ntrain∑
i,j=1

pijϱ
full
i,j σ̂step

 ϕfull√
(ϕfull)2 + (ψfull)2

ϱfull
i,j√
ϑfull
i,j

 ,

=ϕfullΓfull − ϕfullΥfull√
(ϕfull)2 + (ψfull)2

+

(
ψfull)2 Ξfull

(ϕfull)2 + (ψfull)2
,

(10)

where in the second equality we use σ̂′ = σ̂′ and σ̂′ =
√
21(x ≥ 0) = σstep(x), σstep is the step

function, and we define:

Ξfull =
1

ntrain

ntrain∑
i,j=1

pijϱ
full
i,j σ̂step

 ϕfull√(
ϕfull

)2
+
(
ψfull

)2 ϱfull
i,j√
ϑfull
i,j

 . (11)

Similarly, we have:

∂Lfull
(
ϕfull, ψfull

)
∂ψfull = ψfullΓfull − ψfullΥfull√(

ϕfull
)2

+
(
ψfull

)2 +
ϕfullψfullΞfull(
ϕfull

)2
+
(
ψfull

)2 . (12)

B.3 THEOREM B.4

Theorem B.4. (Convergence of Full-graph Training with MSE) Suppose Wfull are generated
by Gaussian initialization. Under Assumptions B.1 and B.2, if the maximal degree satisfies
C full

1 ≤ dmax ≤ C full
2 n

3
4
train for some constants C full

1 , C full
2 ∈ (0, 1), then with high probabil-

ity, the training loss satisfies Ltrain

(
Wfull

T ,Afull
train

)
≤ ϵ, provided that the number of iterations

T = O
(
n

7
2
trainh

2d
− 1

2
maxϵ−1 log

(
h2ϵ−1

))
for any ϵ ∈ (0, 1) under the full-graph GNN training.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.4 PROOF OF THEOREM B.4

Lemma B.5 1
πntrain

∥Afull
train1∥1 ≤ Γfull ≤ 1

ntrain
∥Afull

train1∥1, and |Υfull
t | ≤ Γfull, where n

1
2

traind
− 1

2
max ≤

∥Afull
train,t1∥1 ≤ ntraindmax.

Lemma B.6 If wfull
j,0 ∼ N(0, κ2I) and the learning rate η ∈ (0, 1

6πΓfull], then with probability at

least 1− e−O(1), it holds that for all t > 0,
√(

ϕfull
t

)2
+
(
ψfull
t

)2 ≤ C, and
√(

ϕfull
t

)2
+
(
ψfull
t

)2
> 0

for all t ≥ 1, where C = π
2 +O (κ

√
r) is a positive constant.

Lemma B.7 If wfull
j,0 ∼ N(0, κ2I) and the learning rate η ∈ (0, 1

6πΓfull], then for all t ≥ 1 and any
C1 ∈ [0, 1] such that

(
ϕfull, ψfull

)
= (1− C1)

(
ϕfull
t , ψfull

t

)
+ C1

(
ϕfull
t+1, ψ

full
t+1

)
, we have that,

λmax(∇2Lfull
train(ϕ

full, ψfull)) ≤ C2Γ
full,

where λmax is the maximum eigenvalue of the population Hessian denoted by ∇2Lfull
train

(
ϕfull, ψfull

)
,

and C2 = 4
(
1 +

√
π
2 +O (κ

√
r) + o (1)

)
is a positive constant.

Lemma B.8 If wfull
j,0 ∼ N(0, κ2I) and the learning rate η ∈ (0, 1

6πΓfull], then with at least 1− 1/h2,

it holds that for all t ≥ C3 log (log h),
√(

ϕfull
t

)2
+
(
ψfull
t

)2 ≥ 1−o (1), where C3 > 0 is an absolute
constant.

Lemma B.9 If wfull
j,0 ∼ N(0, κ2I) and the learning rate η ∈ (0, 1

6πΓfull], then there is an absolute con-

stant C3, such that for all t ≥ C3 log (log h), either
∣∣ψfull
t

∣∣ ≤ ϵ
1
2

2h and
∥∥∥∥√(ϕfull

t

)2
+
(
ψfull
t

)2 − 1

∥∥∥∥ ≤

ϵ
1
2

2h or we have that ∥∥∇Lfull
train

(
ϕfull
t , ψfull

t

)∥∥2 ≥ µfullLfull
train

(
ϕfull
t , ψfull

t

)
,

where µfull ≥ C4ϵh
−2d−2

maxΓ
full, and C4 is a positive constant.

Proof of Theorem B.4: We analyze an arbitrary j ∈ {1, . . . , h} and the iterates of the corresponding
wfull
j vector. Setting κ = 1, we have from Lemma B.7 that the smoothness parameter C full of the loss

function is

Cfull ≤ C2 = 4

(
1 +

√
2 +

π

2
+ o (1)

)
(13)

Hence, for any t > 0,

Lfull
train(w

full
j,t+1) ≤Lfull

train

(
wfull

j,t

)
+∇Lfull

train

(
wfull

j,t

)
(wfull

j,t+1 −wfull
j,t)

+
C full

2

∥∥∥wfull
j,t+1 −wfull

j,t

∥∥∥2
≤Lfull

train

(
wfull

j,t

)
− η

∥∥∥∇Lfull
train

(
wfull

j,t

)∥∥∥2 + η2C full

2

∥∥∥∇Lfull
train

(
wfull

j,t

)∥∥∥2
=Lfull

train

(
wfull

j,t

)
− η

∥∥∥∇Lfull
train

(
wfull

j,t

)∥∥∥2(1− ηC full

2

)
.

(14)

By Lemma B.6, we know that η ∈ (0, 1
6πΓfull]. Using Lemma B.5, we first assume that C

full

6π ≤ dmax ≤(
1

6C6

) 1
4

n
3
4

train where C6 <
1
6 is a positive constant. Then, we set η ∈

[
C6d

3
max

πn3
train
, 1
6πdmax

]
. We are going

to prove η ∈
[
C6d

3
max

πn3
train
, 1
6πdmax

]
is still within the range (0, 1

6πΓfull] and C6d
3
max

πn3
train

≤ 1
6πdmax

.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

For the right side of the range, we have 1
6πdmax

≤ 1
6πΓfull due to Γfull ≤ dmax. For the left side of the

range, C6d
3
max

πn3
train

> 0 with the positive constant C6. Moreover, we have:

1

6πdmax
− C6d

3
max

πn3
train

=
1

π

(
1

6dmax
− C6d

3
max

n3
train

)
≥ 1

π

(
1

6dmax
− 1

6dmax

)
= 0.

(15)

With η ∈
[
C6d

3
max

πn3
train
, 1
6πdmax

]
, we have:

ηCfull ≤ Cfull

6πdmax
≤ 1. (16)

Furthermore, using Lemma B.9, we have

Lfull
train(w

full
j,t+1) < Lfull

train

(
wfull

j,t

)
(1− ηµfull) ≤ Lfull

train,0(w
full
j,0)(1− ηµfull)t. (17)

Then we have:

T ≤ C7 log

(
h2

ϵ

)
1

ηµfull , (18)

where C7 is a positive constant.

Moreover, we have:

ηµfull ≥ C4C6dmaxϵΓ
full

πn3
trainh

2
≥ C4C6d

1
2
maxϵ

π2n
7
2

trainh
2

(19)

Hence, we have T = O

(
n

7
2
trainh

2

ϵd
1
2
max

log h2

ϵ

)
.

After T time steps, we either have Lfull
train

(
wfull
j,t

)
≤ ϵ

h , or that ψfull
t ≤ ϵ

1
2

2h and
(
ϕfull
t

)2
+
(
ψfull
t

)2 − 1 ≤
ϵ
1
2

2h . The latter implies that
∥∥wfull

j,t −wfull
j,t

∗∥∥2 ≤ ϵ
h . In addition, it is easy to see that Lfull

train

(
wfull
j,t

)
≤

∥wfull
j,t −wfull

j,t
∗∥2. Hence, if the latter happens, then Lfull

train

(
wfull
j,t

)
≤ ϵ

h . Hence Lfull
train(W

full
T) ≤ ϵ.

This completes the proof.

C PROOF OF CONVERGENCE THEOREM IN MINI-BATCH TRAINING WITH
MSE

In this section, we provide the proof of the convergence theorem in mini-batch training with MSE
of Section 3. We consider multi-class node classification tasks using a one-round GNN trained
with the MSE, defined as l

(
W, ãmini

train,i

)
= 1

2 ∥ŷi − yi∥2F . The ground truth label yi is rewritten as
yi ∈ R1×K in the one-hot form, where K ≥ 2 is the number of label categories. The final output
of the GNN model is given by ŷi = zi = σ

(
ãmini

train,iXW⊤), where the ReLU function is modified
as σ(x) =

√
2max (x, 0). Note that 1/2 in the MSE function and

√
2 in the ReLU function are

introduced to simplify the proof. The hidden dimension h becomes K. The rows of W are initialized
independently from a Gaussian distribution N

(
0, κ2I

)
.

We decompose the analysis of GNN optimization dynamic into three steps, similar to Appendix B.

C.1 ASSUMPTION

We still use Assumptions B.1 and B.2 in mini-batch settings for training data and the ground truth.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C.2 EXPRESSIONS FOR LOSS AND GRADIENTS.

While our ultimate training objective remains empirical risk minimization, we analyze the optimiza-
tion dynamics of MSE using its expected risk formulation on node feature distribution. This is done
to simplify the proof, as expected risk offers a cleaner mathematical structure and does not affect
the graph structure. Although this approximation is more accurate in the large-sample regime, we
adopt it here as a modeling tool to study the impact of batch size and fan-out size in convergence,
even when analyzing small-sample settings.

Expression for MSE loss: We first begin by writing an equivalent expression of Lmini
train(w

mini
j) with

j ∈ {1, . . . , h}. We can assume that wmini
j = ϕminiwmini

j
∗
+ ψminiwmini

j
⊥, where w⊥ is a fixed unit

vector (depending on the initialization) orthogonal to wmini
j

∗. Then rewriting the loss in terms of
ϕmini, ψmini and recalling that ∥wmini

j
∗∥ = 1 we get the simplified expressions of Lmini

train

(
wmini
j

)
and

Lfull
train

(
wmini
j

)
:

Lmini
train

(
ϕmini, ψmini

)
=

1

2

((
ϕmini

)2
+
(
ψmini

)2
+ 1

)
Γmini −

√(
ϕmini

)2
+
(
ψmini

)2
Υmini, (20)

and
Lfull

train

(
ϕmini, ψmini, Ãmini

train

)
=
1

2

((
ϕmini

)2
+
(
ψmini

)2
+ 1

)
Γfull

(
ϕmini, ψmini, Ãmini

train

)
−
√

(ϕmini)2 + (ψmini)2Υfull
(
ϕmini, ψmini, Ãmini

train

)
,

(21)

where we simplify Γfull
(
ϕmini, ψmini, Ãmini

train

)
and Υfull

(
ϕmini, ψmini, Ãmini

train

)
as Γfull-mini and Υfull-mini,

respectively, and we define:

Γmini =
1

b

b∑
i,j=1

pij σ̂

 ϱmini
i,j√
ϑmini
i,j

√ϑmini
i,j , (22)

Γfull-mini = Γfull
(
ϕmini, ψmini, Ãmini

train

)
=

1

ntrain

ntrain∑
i,j=1

pij σ̂

 ϱmini
i,j√
ϑmini
i,j

√ϑmini
i,j , (23)

Υmini =
1

b

b∑
i,j=1

pij σ̂

 ϕmini√(
ϕmini

)2
+
(
ψmini

)2 ϱmini
i,j√
ϑmini
i,j

√ϑmini
i,j , (24)

Υfull-mini = Υfull
(
ϕmini, ψmini, Ãmini

train

)
=

1

ntrain

ntrain∑
i,j=1

pij σ̂

 ϕmini√
(ϕmini)2 + (ψmini)2

ϱmini
i,j√
ϑmini
i,j

√ϑmini
i,j ,

(25)

ϑmini
i,j =

(
Ãmini

train1
)
i

(
Ãmini

train1
)
j
, (26)

where we use pij = 1 if i = j and pij = 0 if i ̸= j, ϱmini
i,j to denote the amount of common messages

between node i and node j at a given training iteration

Expression for gradient: We compute the gradient of the objective with respect to w or equivalently
with respect to ϕ, ψ.

∂Lmini
(
ϕmini, ψmini

)
∂ϕmini = ϕminiΓmini − ϕminiΥmini√(

ϕmini
)2

+
(
ψmini

)2 +

(
ψmini

)2
Ξmini(

ϕmini
)2

+
(
ψmini

)2 , (27)

and

∂Lfull
(
ϕmini, ψmini, Ãmini

train

)
∂ϕmini = ϕminiΓfull-mini − ϕminiΥfull-mini√(

ϕmini
)2

+
(
ψmini

)2 +

(
ψmini

)2
Ξfull-mini(

ϕmini
)2

+
(
ψmini

)2 , (28)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

where we define:

Ξmini =
1

b

b∑
i,j=1

pijϱ
mini
i,j σ̂step

 ϕmini√(
ϕmini

)2
+
(
ψmini

)2 ϱmini
i,j√
ϑmini
i,j

 , (29)

Ξfull-mini =Ξfull
(
ϕmini, ψmini, Ãmini

train

)
=

1

ntrain

ntrain∑
i,j=1

pijϱ
mini
i,j σ̂step

 ϕmini√
(ϕmini)2 + (ψmini)2

ϱmini
i,j√
ϑmini
i,j

 .
(30)

Similarly, we have:

∂Lmini
(
ϕmini, ψmini

)
∂ψmini = ψminiΓmini − ψminiΥmini√(

ϕmini
)2

+
(
ψmini

)2 +
ϕminiψminiΞmini(
ϕmini

)2
+
(
ψmini

)2 , (31)

and

∂Lfull
(
ϕmini, ψmini, Ãmini

train

)
∂ψmini = ψminiΓfull-mini − ψminiΥfull-mini√(

ϕmini
)2

+
(
ψmini

)2 +
ϕminiψminiΞfull-mini(
ϕmini

)2
+
(
ψmini

)2 . (32)

C.3 PROOF OF THEOREM 1

Lemma C.1 1
πb∥A

mini
train,t1∥1 ≤ Γmini

t ,Γfull-mini
t ≤ 1

b

∥∥∥Ãmini
train1

∥∥∥
1
, |Υmini

t | ≤ Γmini
t and |Υfull-mini

t | ≤

Γfull-mini
t , where b

1
2 β− 1

2 ≤ ∥Amini
train,t1∥1 ≤ bβ.

Lemma C.2 If wmini
j,0 ∼ N(0, κ2I) and the learning rate ηt ∈ (0, 1

6πΓmini
t

], then with probability at

least 1−e−O(1), it holds that for all t > 0,
√(

ϕmini
t

)2
+
(
ψmini
t

)2 ≤ C, and
√(

ϕmini
t

)2
+
(
ψmini
t

)2
>

0 for all t ≥ 1, where C = π
2 +O (κ

√
r) is a positive constant.

Lemma C.3 If wmini
j,0 ∼ N(0, κ2I) and the learning rate ηt ∈ (0, 1

6πΓmini
t

], then for all t ≥ 1 and any

C1 ∈ [0, 1] such that
(
ϕmini, ψmini

)
= (1− C1)

(
ϕmini
t , ψmini

t

)
+ C1

(
ϕmini
t+1, ψ

mini
t+1

)
, we have that,

λmax(∇2Lfull
train(ϕ

mini, ψmini, Ãmini
train)) ≤ C2Γ

full-mini
t ,

where λmax is the maximum eigenvalue of the population Hessian denoted by

∇2Lfull
train

(
ϕmini, ψmini, Ãmini

train

)
, and C2 = 4

(
1 +

√
π
2 +O (κ

√
r) + o (1)

)
is a positive con-

stant.

Lemma C.4 If wmini
j,0 ∼ N(0, κ2I) and the learning rate ηt ∈ (0, 1

6πΓmini
t

], then with at least

1− 1/h2, it holds that for all t ≥ C3 log (log h),
√(

ϕmini
t

)2
+
(
ψmini
t

)2 ≥ 1− o (1), where C3 > 0

is an absolute constant.

Lemma C.5 If wmini
j,0 ∼ N(0, κ2I) and the learning rate η ∈ (0, 1

6πΓmini], then there is

an absolute constant C3, such that for all t ≥ C3 log (log h), either
∣∣ψmini
t

∣∣ ≤ ϵ
1
2

2h and∥∥∥∥√(ϕmini
t

)2
+
(
ψmini
t

)2 − 1

∥∥∥∥ ≤ ϵ
1
2

2h or we have that

∥∥∥∇Lfull
train

(
ϕmini
t , ψmini

t , Ãmini
train

)∥∥∥2 ≥ µmini
t Lfull

train

(
ϕmini
t , ψmini

t , Ãmini
train

)
,

where µmini
t ≥ C4ϵh

−2β−2Γfull-mini, and C4 is a positive constant.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Lemma C.6 [Lemma G.2 in (Du et al., 2018)] Regarding n random variables u1, . . . , un satisfying∑n
i=1 ui = 0. Let B ∈ [n] denote a subset of [n] and |B| = b ≤ n, the following holds,

E

(1

b

∑
i∈B

ui

)2
 ≤ 1

b
E
[
u2i
]
.

Proof of Theorem 1: For any t > 0, taking expectation conditioning on wmini
j,t+1 gives:

E
[
Lfull

train(w
mini
j,t+1, Ã

mini
train)|wmini

j,t

]
≤Lfull

train

(
wmini

j,t , Ã
mini
train

)
+∇Lfull

train

(
wmini

j,t , Ã
mini
train

)
E
[(

wmini
j,t+1 −wmini

j,t

)
|wmini

j,t

]
+
Cmini

2
E
[∥∥∥wmini

j,t+1 −wmini
j,t

∥∥∥2 |wmini
j,t

] (33)

Furthermore, using Lemma C.6, we have:

E
[∥∥∥wmini

j,t+1 −wmini
j,t

∥∥∥2 |wmini
j,t

]
=η2tE

[∥∥∥∇Lmini
train

(
wmini

j,t , Ã
mini
train

)∥∥∥2
F
|wmini

j,t

]
≤η2t (E

[∥∥∥∇Lmini
train

(
wmini

j,t , Ã
mini
train

)
−∇Lfull

train

(
wmini

j,t , Ã
mini
train

)∥∥∥2 |wmini
j,t

]
+
∥∥∥∇Lfull

train

(
wmini

j,t , Ã
mini
train

)∥∥∥2)
≤η2t

(
n2

train

ntrainb

∥∥∥∇Lfull
train

(
wmini

j,t , Ã
mini
train

)∥∥∥2 + ∥∥∥∇Lfull
train

(
wmini

j,t , Ã
mini
train

)∥∥∥2)
≤η2t

(
2ntrain

b

∥∥∥∇Lfull
train

(
wmini

j,t , Ã
mini
train

)∥∥∥2) .

(34)

Moreover, we have:

∇Lfull
train

(
wmini

j,t , Ã
mini
train

)
E
[(

wmini
j,t+1 −wmini

j,t

)
|wmini

j,t+1

]
=− ηt∇Lfull

train

(
wmini

j,t , Ã
mini
train

)
E
[
∇Lmini

train,t

(
wmini

j,t

)
E|wmini

j,t+1

]
=− ηt

∥∥∥∇Lfull
train

(
wmini

j,t , Ã
mini
train

)∥∥∥2
(35)

Hence, we have:

E
[
Lfull

train(w
mini
j,t+1, Ã

mini
train)|wmini

j,t

]
≤Lfull

train

(
wmini

j,t , Ã
mini
train

)
− ηt

∥∥∥∇Lfull
train

(
wmini

j,t , Ã
mini
train

)∥∥∥2
+
Cminintrain

b
η2t

∥∥∥∇Lfull
train

(
wmini

j,t , Ã
mini
train

)∥∥∥2
≤Lfull

train

(
wmini

j,t , Ã
mini
train

)
− ηt

∥∥∥∇Lfull
train

(
wmini

j,t , Ã
mini
train

)∥∥∥2(1− Cminintrain

b
ηt

)
(36)

By Lemma C.2, we know that ηt ∈ (0, 1
6πΓmini

t
]. Using Lemma C.1, we first assume that C

mini

6π ≤

β ≤
(

1
6C6

) 1
4

b
3
4 where C6 <

1
6 is a positive constant. Then, we set ηt ∈

[
C6β

3

πntrainb2
, b
6πβntrain

]
. We are

going to prove ηt ∈
[
C6β

3

πntrainb2
, b
6πβntrain

]
is still within the range (0, 1

6πΓmini] and C6β
3

πntrainb2
≤ b

6πβntrain
.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

For the right side of the range, we have b
6πβntrain

≤ b
6πΓmini

t ntrain
≤ 1

6πΓmini
t

due to Γmini
t ≤ β and

b ≤ ntrain. For the left side of the range, C6β
3

πntrainb2
with the positive constant C6. Moreover, we have:

b

6πβntrain
− C6β

3

πntrainb2
=

b

πntrain

(
1

6β
− C6β

3

b3

)
≥ 1

π

(
1

6β
− 1

6β

)
= 0.

(37)

With ηt ∈
[
C6β

3

πntrainb2
, b
6πβntrain

]
, we have:

Cminintrain
b

ηt ≤
Cmini

6πβ
≤ 1. (38)

Furthermore, using Lemma C.5, we have

Lfull
train(w

mini
j,t+1, Ã

mini
train) ≤Lfull

train

(
wmini

j,t , Ã
mini
train

)
(1− ηtµ

mini
t)

≤Lmini
train(w

mini
j,0 , Ã

mini
train)

t∏
τ=1

(1− ητµ
mini
τ)

≤Lmini
train(w

mini
j,0 , Ã

mini
train)(1−

1

t

t∑
τ=1

ητµ
mini
τ)t,

(39)

where the last inequality can be proved: f(x) = log(1 − x) is a concave function on 0 < x < 1,
then, for 0 < xi < 1 with i = {1, . . . , n}, we have f(1n

∑n
i=1 xi) ≥

1
n

∑n
i=1 f(xi), which can be

written as log(1 − 1
n

∑n
i=1 xi) ≥

1
n

∑n
i=1 log(1 − xi). Therefore, we have (1 − 1

n

∑n
i=1 xi)

n ≥∏n
i=1(1− xi).

Then we have:
T ≤ C7 log

(
h2

ϵ

)
1

1
T

∑T
τ=1 ητµ

mini
τ

, (40)

where C7 is a positive constant.

Moreover, we have:
1

T

T∑
τ=1

ητµ
mini
τ ≥ 1

T

T∑
τ=1

C4C6βϵΓ
full-mini
τ

πntrainb2h2

≥ 1

T

T∑
τ=1

C4C6β
1
2 ϵ

π2ntrainb
5
2 h2

=
C4C6β

1
2 ϵ

π2ntrainb
5
2 h2

(41)

Hence, we have T = O

(
ntrainb

5
2 h2

ϵβ
1
2

log h2

ϵ

)
.

After T time steps, we either have Lfull
train

(
wmini
j,t , Ã

mini
train

)
≤ ϵ

h , or that ψmini
t ≤ ϵ

1
2

2h and
(
ϕmini
t

)2
+(

ψmini
t

)2 − 1 ≤ ϵ
1
2

2h . The latter implies that
∥∥wmini

j,t −wmini
j,t

∗∥∥2 ≤ ϵ
h . In addition, it is easy to see that

Lfull
train

(
wmini
j,t , Ã

mini
train

)
≤ ∥wmini

j,t −wmini
j,t

∗∥2. Hence, if the latter happens, then Lfull
train

(
wmini
j,t , Ã

mini
train

)
≤

ϵ
h . Hence Lfull

train(W
mini
T) ≤ ϵ.

This completes the proof.

D PROOF OF CONVERGENCE THEOREM IN FULL-GRAPH TRAINING WITH CE

In this section, we provide the proof of the convergence theorem in full-graph training with CE. To
simplify the analysis, we focus on binary node classification using a one-round GNN trained with the

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

CE, defined as l
(
W, ãfull

train,i

)
= log (1 + exp (−yiŷi)). The final output of the GNN model is given

by ŷi = ziv
⊤ = σ

(
ãfull

train,iXW⊤)v⊤,∀i ∈ training set, where v ∈ {−1,+1} ∈ R1×h is the fixed
output layer vector with half 1 and half −1. The rows of W are initialized independently from a
Gaussian distribution N

(
0, κ2I

)
.

We decompose the analysis of GNN optimization dynamic into three steps.

Step 1: Reformulating loss and gradient expressions on irregular graphs. We represent the ReLU
function implicitly using a position-wise 0/1 indicator matrix that can directly multiply the aggregated
node features.

Step 2: Bounding the norm of gradient. Based on the reformulated loss and gradient expressions, we
aim to quantify the magnitude of optimization updates by bounding the gradient norm, facilitating
convergence analysis. We can bound the Frobenius norm of the gradient by the average of individual
node-level gradients.

Step 3: Bounding the number of iterations to Convergence. We first leverage the smoothness of the
loss function to derive a per-iteration inequality relating loss reduction to the gradient norm, and then
accumulate these iteration-wise inequalities over GD updates to obtain an upper bound on the number
of iterations required for convergence.

D.1 ASSUMPTION

We still use Assumptions D.3 on the training data.

Assumption D.1. ∀i, i′ ∈ training set, if yi ̸= yi′ , then ∥ãfull
train,iX − ãfull

train,i′X∥2 ≥ α for some
α > 0.

Assumption D.1 requires that aggregated node features with different labels in the training data are
separated by at least a constant, which is often satisfied in practice and can be easily verified based on
the training data. A similar assumption on the non-aggregated features ∥xi − xi′∥2 has been adopted
in prior analyses of the DNN optimization dynamics without message passing (Zou et al., 2020a;
2018).

D.2 EXPRESSIONS FOR GRADIENTS FOR CE LOSS.

We first provide some basic expressions regarding the gradients for the CE loss in the GNN under our
setting. Note that the node classification task in this case is binary, denoted as K = 2.

Output after the 1-st layer: Given an input X, the i-th column of output after the first layer of the
GNN under the full-graph training is

zfull
i = σ

(
ãfull

train,iX
(
Wfull

)⊤)
= ãfull

train,iX(Σfull
i Wfull)⊤, (42)

where Σfull
i = Diag

(
1
{
ãfull

train,iX
(
Wfull

)⊤
> 0
})

∈ Rh×h represents whether the j-th element{
ãtrain,iX

(
Wfull

)⊤}
j

is more than zero (1) or is zeroed out (0). Here we slightly abuse the notation

and denote 1 {x > 0} = (1 {x1 > 0} , . . . ,1 {xm > 0})⊤ for a vector x ∈ Rm.

Output of one-round GNN for the CE loss: The output of the one-round GNN for the CE loss
with input X under the full-graph training can be expressed as:

ŷfull
i = σ

(
ãfull

train,iX
(
Wfull

)⊤)
v⊤ = ãfull

train,iX(Σfull
i Wfull)⊤v⊤, (43)

where v ∈ {−1,+1} ∈ R1×h is the fixed output layer weight vector with half 1 and half −1,
corresponding to the binary classification task setting in this case.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Gradient for CE loss in GNN: The partial gradient of the training loss L̂full
train

(
Wfull

)
with respect

to Wfull under full-graph training can be expressed as:

∇L̂full
train

(
Wfull

)
=

1

ntrain

ntrain∑
i=0

l′
(
yiŷ

full
i

)
· yi · ∇Wfull

[
ŷfull
i

]
, (44)

where the gradient of the GNN is defined as ∇Wfull

[
ŷfull
i

]
=
(
vΣfull

i

)⊤
ãfull

train,iX.

D.3 THEOREM D.2.

Theorem D.2. (Convergence of Full-graph Training with CE) Suppose Wfull are generated by
Gaussian initialization. Under Assumptions D.3 and D.1, if the hidden dimension of a one-
round GNN satisfies h = Ω

(
log (ntrain) d

−1
max

(
n2train + ϵ−1

))
, then with high probability, the

training loss satisfies L̂train

(
Wfull

T ,Afull
train

)
≤ ϵ, provided that the number of iterations T =

O
(
ntrain (log (ntrain))

1
2 α−2d

− 5
2

max
(
n2train + ϵ−1

))
for any ϵ ≥ 0 under the full-graph training.

D.4 PROOF OF THEOREM D.2.

We first provide the following lemmas.

Lemma D.3 (Bounded initial training loss) Under Assumptions D.3 and D.1, with the probability
at least 1 − δ, at the initialization the training loss satisfies L̂full

train

(
Wfull

0

)
≤ C

√
dmax log(ntrain/δ),

where C is an absolute constant.

Lemma D.4 (Gradient lower and upper bound) Under Assumptions D.3 and D.1, with the probabil-
ity at least 1− exp

(
−C1hα

2/n2
train

)
, there exist positive constants C1, C2 and C3, such that

∥∥∥∇WfullL̂full
train

(
Wfull)∥∥∥2

F
≥ C2hα

2d3max

n3train

(
ntrain∑
i=1

l′
(
yiŷ

full
i

))2

,

∥∥∥∇WfullL̂full
train

(
Wfull)∥∥∥

F
≤ −C3h

1
2 d

1
2
max

ntrain

ntrain∑
i=1

l′
(
yiŷ

full
i

)
.

Lemma D.4 (Sufficient descent) Let Wfull
0 be generated via Gaussian random initialization. Let

Wfull
t be the t-th iterate in the gradient descent. If Wfull

t ,Wfull
t+1 ∈ B

(
Wfull

0 , τ
)

and τ ≤ C6/(αd
1
2
max),

then there exist constants C4, C5 and C6 such that, with probability at least 1 − exp(−O(1)), the
following holds:

L̂full
train

(
Wfull

t+1

)
− L̂full

train

(
Wfull

t

)
≤ −(η − C4dmaxhη

2)
∥∥∥∇Wfull L̂

full
train

(
Wfull

t

)∥∥∥2
F

−
C5ηd

1
2
maxh

1
2

∥∥∥∇Wfull L̂full
train

(
Wfull

t

)∥∥∥
F

ntrainτ

ntrain∑
i=1

l′
(
yiŷ

full
i,t

)
.

Proof of Theorem D.2: We first prove that gradient descent can achieve the training loss at the
value of ϵ under the condition that all iterates are staying inside the perturbation region B

(
Wfull

0 , τ
)
={

W :
∥∥W −Wfull

0

∥∥
2
≤ τ

}
.

Using Lemma D.4, there exists a constant C2 such that

∥∥∥∇Wfull L̂
full
train

(
Wfull

t

)∥∥∥2
F
≥ C2hα

2d3max
n3

train

(
ntrain∑
i=1

l′
(
yiŷ

full
i,t

))2

(45)

We then set the step size η and the radius τ as follows:

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

η =
1

4C4dmaxh
= O

(
d−1

maxh
−1) , (46)

τ =
4C5n

1
2

train
C2αdmax

= O

(
n

1
2

traind
−1
maxα

−1

)
. (47)

Then we have

L̂full
train

(
Wfull

t+1

)
− L̂full

train

(
Wfull

t

)
≤− 3

4
η
∥∥∥∇Wfull L̂

full
train

(
Wfull

t

)∥∥∥2
F
− C2ηh

1
2αd

3
2
max

4n
3
2
train

∥∥∥∇Wfull L̂
full
train

(
Wfull

t

)∥∥∥
F

ntrain∑
i=1

l′
(
yiŷ

full
i,t

)
≤− 3

4
η
∥∥∥∇Wfull L̂

full
train

(
Wfull

t

)∥∥∥2
F
+
η

4

∥∥∥∇Wfull L̂
full
train

(
Wfull

t

)∥∥∥2
F

=− 1

2
η
∥∥∥∇Wfull L̂

full
train

(
Wfull

t

)∥∥∥2
F

≤− η
C2hα

2d3max

2n3
train

(
ntrain∑
i=0

l′
(
yiŷ

full
i,t

))2

,

(48)

where the first inequality is derived from Lemma D.4 and the settings of η and τ , the second inequality
is derived from Lemma D.4, as well as the last inequality follows the gradient lower bound in Lemma
D.4.

We note that l(x) = log(1 + exp(−x)) satisfies −l′(x) = 1/(1 + exp(x)) ≥ min {u0, u1l(x)},
where u0 = 1/2, u1 = 1/(2 log(2)). This implies that:

−
ntrain∑
i=0

l′
(
yiŷ

full
i,t

)
≥ min

{
u0,

ntrain∑
i=0

u1l
′
(
yiŷ

full
i,t

)}
≥ min

{
u0, ntrainu0L̂

full
train

(
Wfull

t

)}
.

(49)

Since min {a, b} ≥ 1/ (1/a+ 1/b), we have:

L̂full
train

(
Wfull

t+1

)
− L̂full

train

(
Wfull

t

)
≤− ηmin

{
C2hα

2d3max

2n3
train

u2
0,
C2hα

2d3max

2ntrain
u2
1

(
L̂full

train

(
Wfull

t

))2}

≤− η

 2n3
train

C2hα2d3maxu2
0

+
2ntrain

C2hα2d3maxu2
1

(
L̂full

train (W
full
t)
)2


−1

.

(50)

Rearranging terms, we have:

2n2
train

C2hα2d2maxu
2
0

(
L̂full

train

(
Wfull

t+1

)
− L̂full

train

(
Wfull

t

))
+

2
(
L̂full

train

(
Wfull

t+1

)
− L̂full

train

(
Wfull

t

))
C2hα2d2maxu

2
1

(
L̂full

train
(
Wfull

t

))2 ≤ −η. (51)

Using (x− y)/y2 ≥ y−1 − x−1 and taking telescope sum over t, we have:

tη ≤ 2n3
train

C2hα2d3maxu2
0

(
L̂full

train

(
Wfull

0

)
− L̂full

train

(
Wfull

t

))
+

2ntrain

((
L̂full

train

(
Wfull

t

))−1

−
(
L̂full

train

(
Wfull

0

))−1
)

C2hα2d3maxu2
1

≤ 2n3
train

C2hα2d3maxu2
0

L̂full
train

(
Wfull

0

)
+

2ntrain

((
L̂full

train

(
Wfull

t

))−1

−
(
L̂full

train

(
Wfull

0

))−1
)

C2hα2d3maxu2
1

.

(52)

Next, we guarantee that, after T gradient steps, the loss function L̂full
train

(
Wfull

T

)
is smaller than ϵ.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Using Lemma D.3, we have L̂full
train

(
Wfull

0

)
= O

(
d

1
2
max (log (ntrain))

1
2

)
.

Therefore, T satisfies:

T = O

(
n3

train (log (ntrain))
1
2 /

(
α2d

5
2
max

)
+ ntrain (log (ntrain))

1
2 /

(
ϵα2d

5
2
max

))
. (53)

Then we are going to verify the condition that all iterates stay inside the perturbation region
B
(
Wfull

0 , τ
)
. Obviously, we have Wfull

0 ∈ B
(
Wfull

0 , τ
)
. Hence, we need to prove Wfull

t+1 ∈
B
(
Wfull

0 , τ
)

under the induction hypothesis that Wfull
t ∈ B

(
Wfull

0 , τ
)

holds for all t ≤ T .

Since we have L̂full
train

(
Wfull

t+1

)
− L̂full

train

(
Wfull

t

)
≤ − 1

2η
∥∥∥∇WfullL̂full

train

(
Wfull

t

)∥∥∥2
F

for any t ≤ T , using
triangle inequality, we have:

∥∥∥Wfull
t −Wfull

0

∥∥∥
2
≤ η

t−1∑
k=0

∥∥∥∇Wfull
k
L̂full

train

(
Wfull

k

)∥∥∥2
F

≤ η

√√√√t

t−1∑
k=0

∥∥∥∇Wfull
k
L̂full

train (W
full
k)
∥∥∥2
F

≤

√√√√2tη

t−1∑
k=0

[
L̂full

train (W
full
k)− L̂full

train

(
Wfull

k+1

)]
≤
√

2tηL̂full
train (W

full
0).

(54)

Using L̂full
train

(
Wfull

0

)
= O

(
d

1
2
max (log (ntrain))

1
2

)
in Lemma D.3 and our settings of η, we have:

∥∥∥Wfull
t −Wfull

0

∥∥∥
2
≤
√

2tηL̂full
train (W

full
0)

=O

(
n

3
2
train (log (ntrain))

1
2 α−1d

− 3
2

max h
− 1

2 + n
1
2
train (log (ntrain))

1
2 ϵ−

1
2α−1d

− 3
2

max h
− 1

2

)
.

(55)

In addition, by Lemma D.4 and our choice of η, we have

η
∥∥∥∇Wfull L̂

full
train

(
Wfull

)∥∥∥
2
≤ −ηC3h

1
2 d

1
2
max

ntrain

ntrain∑
i=0

l′
(
yiŷ

full
i

)
≤ O

(
(log (ntrain))

1
2 h− 1

2 d
− 1

2
max

)
,

(56)

where the second inequality is derived from the fact that −1 ≤ l′(·) ≤ 0.

Therefore, by triangle inequality, we assume that h = Ω
(
n2train log (ntrain) d

−1
max + log (ntrain) ϵ

−1d−1
max

)
and we have:∥∥∥Wfull

t+1 −Wfull
t

∥∥∥
2
≤ η

∥∥∥∇Wfull L̂
full
train

(
Wfull

t

)∥∥∥
2
+
∥∥∥Wfull

t −Wfull
0

∥∥∥
2

= O

(
n

3
2
train (log (ntrain))

1
2 α−1d

− 3
2

max h
− 1

2 + n
1
2
train (log (ntrain))

1
2 ϵ−

1
2α−1d

− 3
2

max h
− 1

2

)
= O

(
n

1
2
traind

−1
maxα

−1

)
,

(57)
which is exactly the same order of τ in our settings.

This verifies Wfull
t+1 ∈ B

(
Wfull

0 , τ
)
.

Proved.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

E PROOF OF CONVERGENCE THEOREM IN MINI-BATCH TRAINING WITH CE
AND INTERPRETATION OF THE OBS.1

In this section, we provide the proof of the convergence theorem in mini-batch training with CE. To
simplify the analysis, we focus on binary node classification using a one-round GNN trained with the
CE, defined as l

(
W, ãmini

train,i

)
= log (1 + exp (−yiŷi)). The final output of the GNN model is given

by ŷi = ziv
⊤ = σ

(
ãmini

train,iXW⊤)v⊤,∀i ∈ training set, where v ∈ {−1,+1} ∈ R1×h is the fixed
output layer vector with half 1 and half −1. The rows of W are initialized independently from a
Gaussian distribution N

(
0, κ2I

)
.

We decompose the analysis of GNN optimization dynamic into three steps, similar to Appendix D.

E.1 ASSUMPTION

We still use Assumptions B.1 on the training data.

Assumption E.1. ∀i, i′ ∈ training set, if yi ̸= yi′ , then ∥ãmini
train,iX − ãmini

train,i′X∥2 ≥ α for some
α > 0.

Assumption E.1 requires that aggregated node features with different labels in the training data are
separated by at least a constant.

E.2 EXPRESSIONS FOR GRADIENTS FOR CE LOSS.

We first provide some basic expressions regarding the gradients for the CE loss in the GNN under our
setting. Note that the node classification task in this case is binary, denoted as K = 2.

The i-th column of the output zmini
i after the first layer, as well as the output ŷmini

i of the one-round
GNN for the CE loss under mini-batch training, are similar to those in full-graph training in Sec. D,
with Wfull and ãfull

train,i replaced by Wmini and ãmini
train,i, respectively.

Gradient for CE loss in GNN: The partial gradients of the training losses L̂mini
train

(
Wmini, Ãmini

train

)
and L̂full

train

(
Wmini, Ãmini

train

)
with respect to Wmini under full-graph training can be expressed as:

∇L̂mini
train

(
Wmini, Ãmini

train

)
=

1

b

b∑
i=0

l′
(
yiŷ

mini
i

)
· yi · ∇Wmini

[
ŷmini
i

]
, (58)

∇L̂full
train

(
Wmini, Ãmini

train

)
=

1

ntrain

ntrain∑
i=0

l′
(
yiŷ

mini
i

)
· yi · ∇Wmini

[
ŷmini
i

]
, (59)

where the gradient of the GNN is defined as ∇Wmini

[
ŷmini
i

]
=
(
vΣmini

i

)⊤
ãmini

train,iX.

E.3 THEOREM E.2.

Theorem E.2. (Convergence of Mini-batch Training with CE) Suppose Wmini are generated
by Gaussian initialization. Under Assumptions B.1 and E.1, if the hidden dimension of a one-
round GNN satisfies h = Ω

(
n2train log (ntrain)β

−1 + log (ntrain)β
−1ϵ−1

)
, then with high probabil-

ity, the training loss satisfies L̂train
(
Wmini

T ,Amini
train

)
≤ ϵ, provided that the number of iterations

T = Õ
(
n4train (log (ntrain))

1
2 α−2β− 5

2 b−1 + n2train (log (ntrain))
1
2 α−2β− 5

2 b−1ϵ−1
)

for any ϵ ≥ 0

under the mini-batch GNN training.

Our bound on the hidden dimension h reveals an over-parameterization setting in this case, where the
number of trainable parameters exceeds the number of training samples. Since the hidden dimension
h remains finite, our analysis is conducted in the finite-width setting, in contrast to the infinite-width
Neural Tangent Kernel (NTK) framework (Yang et al., 2023; Lin et al., 2023).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

E.4 PROOF OF E.2.

We first provide the following lemmas.

Lemma E.3 (Bounded initial training loss) Under Assumptions B.1-E.1, with the probabil-
ity at least 1 − δ, at the initialization the training loss satisfies L̂full

train

(
Wmini

0

)
, L̂mini

train

(
Wmini

0

)
≤

C
√
β log(ntrain/δ), where C is an absolute constant.

Lemma E.4 (Gradient lower and upper bound) Under Assumptions B.1-E.1, with the probability at
least 1− exp

(
−C1hα

2/ (nβ)
)
, there exist positive constants C1, C2 and C3, such that

∥∥∥∇WminiL̂full
train

(
Wmini, Ãmini

train

)∥∥∥2
F
≥ C2hα

2β3

n3train

(
ntrain∑
i=1

l′
(
yiŷ

mini
i

))2

,

∥∥∥∇WminiL̂mini
train

(
Wmini, Ãmini

train

)∥∥∥
F
≤ −C3h

1
2 β

1
2

b

b∑
i=1

l′
(
yiŷ

mini
i

)
.

Lemma E.5 (Sufficient descent) Let Wmini
0 be generated via Gaussian random initialization. Let

Wmini
t be the t-th iterate in the stochastic gradient descent. If Wmini

t ,Wmini
t+1 ∈ B

(
Wmini

0 , τ
)

and
τ ≤ C6n

1
2 /(αβ), then there exist constants C4, C5 and C6 such that, with probability at least

1− exp(−O(1)), the following holds:

E
[
L̂full

train

(
Wmini

t+1, Ã
mini
train

)
|Wmini

t

]
− L̂full

train

(
Wmini

t , Ãmini
train

)
≤−

(
η − C4βhη

2ntrain

b

)∥∥∥∇Wmini
t
L̂full

train

(
Wmini

t , Ãmini
train

)∥∥∥2
F

−
C5ηβ

1
2 h

1
2

∥∥∥∇Wmini
t
L̂full

train

(
Wmini

t , Ãmini
train

)∥∥∥
F

ntrainτ

ntrain∑
i=1

l′
(
yiŷ

mini
i,t+1

)
.

Proof of E.2: We first prove that stochastic gradient descent can achieve the training loss at the value
of ϵ under the condition that all iterates are staying inside the perturbation region B

(
Wmini

0 , τ
)
={

W :
∥∥W −Wmini

0

∥∥
2
≤ τ

}
.

Using Lemma E.4, there exists a constant C2 such that

∥∥∥∇Wfull L̂
mini
train

(
Wmini

t , Ãmini
train

)∥∥∥2
F
≥ C2hα

2β3

n3
train

(
ntrain∑
i=1

l′
(
yiŷ

mini
i,t

))2

(60)

We then set the step size η and the radius τ as follows:

η =
b

4C4βhntrain
= O

(
bβ−1h−1n−1

train
)
, (61)

τ =
4C5n

1
2

train
C2αβ

= O

(
n

1
2

trainα
−1β−1

)
. (62)

Then we have:

E
[
L̂full

train

(
Wmini

t+1, Ã
mini
train

)
|Wmini

t

]
− L̂full

train

(
Wmini

t , Ãmini
train

)

≤− η

 2n3
train

C2hα2β3u2
0

+
2ntrain

C2hα2β3u2
1

(
L̂full

train

(
Wmini

t , Ãmini
train

))2


−1

,
(63)

where u0 = 1/2, u1 = 1/(2 log(2)).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Rearranging terms, we have:

2n3
train

C2hα2β3u2
0

(
E
[
L̂full

train

(
Wmini

t+1, Ã
mini
train

)
|Wmini

t

]
− L̂full

train

(
Wmini

t , Ãmini
train

))

+
2ntrain

(
E
[
L̂full

train

(
Wmini

t+1, Ã
mini
train

)
|Wmini

t

]
− L̂full

train

(
Wmini

t , Ãmini
train

))
C2hα2β3u2

1

(
L̂full

train

(
Wmini

t , Ãmini
train

))2 ≤ −η.
(64)

Using (x− y)/y2 ≥ y−1 − x−1 and taking telescope sum over t, we have:

tη ≤ 2n3
train

C2hα2β3u2
0

L̂full
train

(
Wmini

0 , Ãmini
train

)

+

2ntrain

((
E
[
L̂full

train

(
Wmini

t , Ãmini
train

))−1
]
−
(
L̂full

train

(
Wmini

0 , Ãmini
train

))−1
)

C2hα2β3u2
1

.

(65)

Next, we guarantee that, after T gradient steps, the loss function L̂full
train

(
Wmini

T , Ãmini
train

)
is smaller than

ϵ.

Using Lemma E.3, we have L̂full
train

(
Wmini

0 , Ãmini
train

)
= O

(
β

1
2 (log (ntrain))

1
2

)
.

Therefore, T satisfies:

T = Õ
(
n4

train (log (ntrain))
1
2 /
(
α2β

5
2 b
)
+ n2

train (log (ntrain))
1
2 /
(
ϵα2β

5
2 b
))

. (66)

Then we are going to verify the condition that all iterates stay inside the perturbation region
B
(
Wmini

0 , τ
)
. Obviously, we have Wmini

0 ∈ B
(
Wmini

0 , τ
)
. Hence, we need to prove Wt+1 ∈

B
(
Wmini

0 , τ
)

under the induction hypothesis that Wt ∈ B
(
Wmini

0 , τ
)

holds for all t ≤ T .

Since we have L̂mini
train

(
Wmini

t+1

)
− L̂mini

train

(
Wmini

t

)
≤ − 1

2η
∥∥∥∇WminiL̂mini

train

(
Wmini

t , Ãmini
train

)∥∥∥2
F

for any
t ≤ T , using triangle inequality, we have:∥∥∥Wmini

t −Wmini
0

∥∥∥
2
≤
√

2tηL̂mini
train

(
Wmini

0 , Ãmini
train

)
. (67)

Using L̂mini
train

(
Wmini

0 , Ãmini
train

)
= O

(
β

1
2 (log (ntrain))

1
2

)
in Lemma E.3 and our settings of η, we have:∥∥∥Wmini

t −Wmini
0

∥∥∥
2

≤
√

2tηL̂mini
train

(
Wmini

0 , Ãmini
train

)
=O

(
n

3
2
train (log (ntrain))

1
2 b

1
2α−1β− 3

2 h− 1
2 + n

1
2
train (log (ntrain))

1
2 b

1
2 ϵ−

1
2α−1β− 3

2 h− 1
2

)
.

(68)

In addition, by Lemma E.4 and our choice of η, we have

η
∥∥∥∇Wmini L̂

mini
train

(
Wmini, Ãmini

train

)∥∥∥
2
≤ −ηC3h

1
2 β

1
2

b

b∑
i=0

l′
(
yiŷ

mini
i

)
≤ O

(
(log (ntrain))

1
2 h− 1

2 b−
1
2

)
,

(69)

where the second inequality is derived from the fact that −1 ≤ l′(·) ≤ 0.

Therefore, by triangle inequality, we assume that h = Ω
(
n2train log (ntrain)β

−1 + log (ntrain) ϵ
−1β−1

)
and we have: ∥∥∥Wmini

t+1 −Wmini
t

∥∥∥
2
≤ η

∥∥∥∇Wmini L̂
mini
train

(
Wmini

t

)∥∥∥
2
+
∥∥∥Wmini

t −Wmini
0

∥∥∥
2

= O

(
n

1
2
trainα

−1β−1

)
,

(70)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

which is exactly the same order of τ in our settings.

This verifies Wmini
t+1 ∈ B

(
Wmini

0 , τ
)
.

Proved.

F INTERPRETATION OF THE OBS.1 FROM CONVERGENCE THEOREMS

Understanding the impact of batch size on GNN convergence. The popular explanation posits
that increasing batch size reduces gradient variance, resulting in fewer iterations to converge (Cong
et al., 2021a; Zou et al., 2020b; Liu et al., 2024; Li & Liang, 2018; Hu et al., 2021). This explanation
does not fully account for the impact of batch size on GNN convergence, necessitating additional
consideration of the impact of message passing on the loss and gradient.

MSE: Taking the MSE as an example, the impact of batch size on GNN convergence is explained in
three steps: (1). Activation similarity: Larger batch place more sampled nodes and their neighbors
into the same graph subset in a single iteration, where message passing enables direct or indirect
information exchange, resulting in similar activations processed by the same GNN parameters. In
contrast, smaller batches spread nodes across iterations with varying graph subsets and updated
parameters, reducing such similarity. (2). Gradient similarity: As MSE penalizes the numerical
difference between predicted and target activations, the nodes with similar activations produce similar
gradients. The GNN with larger batch sizes yields more coherent update directions after gradient
averaging, capturing dominant structural patterns among nodes. (3). Bias: These updates may
reduce node representational distinctiveness and overlook graph structural diversity, introducing
bias and steering optimization toward suboptimal local minima. As batch size grows, convergence
requires more iterations to escape these biased regions. DNNs typically assume i.i.d. training
samples, enabling large batches to retain diversity and reduce gradient bias. This explains why GNN
findings on MSE differ from expectations based on gradient variance alone, highlighting how the
interplay between message passing and the loss function affects the impact of batch sizes on the GNN
optimization dynamic, diverging from DNN behavior.

CE:CE focuses on optimizing the predicted probability of the true class, rather than minimizing the
numerical differences between activations. Thus, the activation similarity does not necessarily lead to
similar gradient directions under CE. This allows larger batch sizes to benefit from reduced gradient
variance without introducing significant bias under CE, leading to fewer iterations to converge.

Understanding the impact of fan-out size on convergence. A larger fan-out size allows each node
to aggregate more neighbors, enriching the node’s embedding and enhancing the effective gradient
even when using MSE. This leads to the reduced gradient variance, thereby more stable updates and
fewer iterations for GNN convergence.

G PROOF OF GENERALIZATION THEOREM IN MINI-BATCH TRAINING

In this section, we provide the proof of Theorem 3 in Section 4.

We can characterize the GNN generalization under mini-batch training via the PAC-Bayesian frame-
work (McAllester, 2003). This framework decomposes the generalization gap into two components:
(1) the divergence between the prior distribution P and the posterior distribution Q over the hypothe-
sis space that includes all possible models that a learning algorithm can select, and (2) the discrepancy
between expected training and testing losses over P . The first component is easily re-derived follow-
ing the PAC-Bayesian framework. We mainly focus on bounding the second component, namely the
discrepancy U between expected training and testing losses over P .

As the training and testing datasets are split before training, analyzing this loss discrepancy U reflects
the structural difference between training and testing graphs. To isolate the impact of this structural
difference on generalization, we demonstrate that the discrepancy U is bounded by the Wasserstein
distance ∆(β, b) from the training graph to the testing graph, such that U ≤ Cu∆(β, b) for a
constant Cu > 0. This bound suggests that the more similar the training and testing graph structures
are, the smaller the expected loss discrepancy is.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

G.1 ASSUMPTIONS

We introduce assumptions on graph data and model parameters.

Assumption G.1. There exists a constant CF > 0 such that ∥X∥2F ≤ CF .

Assumption G.2. There exists a constant Cw > 0 such that ∥wi∥22 ≤ Cw for all i.

Assumption G.1 bounds the Frobenius norm of the feature matrix, and Assumption G.2 requires the
norm of parameters to be upper-bounded during mini-batch training. These assumptions are also
employed in the analyses of GNN generalization (Tang & Liu, 2023; Garg et al., 2020; Liao et al.,
2020), which are introduced to simplify the proof.

The rows of W are initialized independently from a Gaussian distribution N
(
0, κ2I

)
.

G.2 PROOF OF THEOREM 3

Definition G.3. (Expected Loss Discrepancy (Ma et al., 2021)). For a constant Cu > 0, define the
expected loss discrepancy between training and testing datasets before GNN training as:

U = lnEWmini∼P

[
eCu(Ltest(Wmini,Afull

test)−Ltrain(Wmini,Amini
train))

]
,

where P represents the prior distribution over hypothesis space that includes all possible models that
a learning algorithm can select.

Definition G.3 captures the difference between training and testing datasets.

Definition G.4. (Distance between Training Set and Testing Set). Define the distance from the
training set to the testing set as the Wasserstein distance given by:

∆(β, b) =

{
inf

θ∈Θ[ρtrain,ρtest]

∑
i∈train set

∑
j∈test set

θi,jδ (yi, yj , β, b)

}

=

{
sup

f(·),g(·)

∑
i∈train set

f (yi) ρtrain (yi) +
∑

j∈test set

g (yj) ρtest (yj)

}
,

(71)

where ρtrain (yi) and ρtest (yi) denote the probability of yi appearing in training and testing sets,
respectively. Θ[ρtrain, ρtest] is the joint probability of ρtrain and ρtest, and f (yi) and g (yi) are func-
tions of yi with i ∈ V . The infimum in the first equality is conditioned on

∑
j∈test set θi,j =

ρtrain (yi) ,
∑
i∈training set θi,j = ρtest (yj) , θi,j ≥ 0, and the supremum in the second equality is condi-

tioned on f (yi) + g (yj) ≤ δ (yi, yj , β, b). δ (yi,yj , β, b) is the distance function of any two points
from training and testing sets, respectively.

The Wasserstein distance effectively measures differences in non-i.i.d. data, particularly regarding
geometric variations. A dual representation is provided in Eq (71).

Theorem G.5. (PAC-Bayesian Generalization Theorem). For any Cu > 0, for any “prior” distribu-
tion P of the output hypothesis function of a GNN that is independent of node labels from training
dataset, with probability at least 1− CG, for the distribution Q of the output hypothesis function of a
GNN, we have:

Ltest(W
mini, Ãfull

test;Q) ≤ L̂full
train(W

mini, Ãmini
train;Q) +

1

Cu
(DKL(Q∥P) + ln

1

CG
+

C2
u

4ntrain
+ U).

Lemma G.6 For any Cu > 0, assume the "prior" P on hypothesis space is defined by sampling the
model parameters. If the in-degree of each node is O(β) and the out-degree of each node is O(b), we
have:

U ≤ Cu∆(β, b),

and,
∆(β, b) ∝

∑
i∈train set

∑
j∈test set

θi,jδ
full-mini
i =

∑
i∈train set

∑
j∈test set

θi,j

∥∥∥ãfull
train,i − ãmini

train,i

∥∥∥2
F
.

∆(β, b1) ≤ ∆(β, b2) with b1 ≥ b2

(72)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

where δfull-mini
i has a overall non-increasing trend when the fan-out size β increases but small non-

monotonic fluctuations can exist. Note that fan-out size β plays a more dominant role than batch size
b in influencing generalization.

Proof of Theorem 3: Using Theorem G.5, we have

Ltest

(
Wmini, Ãfull

train;Q
)
≤L̂full

train

(
Wmini, Ãmini

train;Q
)

+
1

Cu
(DKL(Q∥P) + ln

1

CG
+

C2
u

4ntrain
+ U.

(73)

Since both P and Q are normal distributions (Ma et al., 2021), assuming that
∥∥wmini

j,T

∥∥2
F
≤ Cw, we

know that

DKL(Q∥P) ≤

∥∥∥Wmini
T

∥∥∥2
F

2hκ2
=

∑h
j

∥∥∥wmini
j,T

∥∥∥2
F

2hκ2
≤ Cw

2κ2
, (74)

where CT is a positive constant.

Hence,
Ltest

(
Wmini, Ãfull

train;Q
)

≤L̂full
train

(
Wmini, Ãmini

train;Q
)
+

1

Cu
(DKL(Q∥P) + ln

1

CG
+

C2
u

4ntrain
+ U

≤L̂full
train

(
Wmini, Ãmini

train;Q
)
+

1

Cu

(
Cw

2κ2
+ ln

1

CG
+

C2
u

4ntrain
+ Cu∆(β, b)

)
.

(75)

H EXTENSION TO MULTI-LAYER GNNS

Our theoretical analysis readily extends to multi-layer GNNs, as long as each layer introduces only
one non-linearity (e.g., ReLU activation). In such settings, the key difference is that the output of
each layer is recursively defined based on the previous layer.

This recursive definition preserves the same message-passing structure at each layer. In convergence
analysis, we bound the gradient norms layer by layer; in generalization analysis, the pre-training
loss discrepancy propagates across layers. These recursive structures allow our convergence and
generalization bounds to translate naturally to multi-layer GNNs.

Our key theoretical insights (from the view of batch size and fan-out size) are generalizable to
multi-layer GNNs. This is because adding more layers simply nests the same operations, without
changing the qualitative roles of batch size and fan-out size. Hence, the analytical trends observed in
the one-layer case remain consistent.

Therefore, our theoretical analyses support the multi-layer GNN settings.

I PROOF OF THE MAIN LEMMAS OF CONVERGENCE THEOREMS WITH MSE

I.1 PROOF OF LEMMA B.5 AND C.1

We first focus on the mini-batch training. Note that σ̂(x) ≥ 1
π whenever x ≥ 0 (Daniely et al., 2016).

Then, the bound on Γmini follows as:

Γmini =
1

b

b∑
i,j=1

pij σ̂

 ϱmini
i,j√
ϑmini
i,j

√ϑmini
i,j

≥ 1

πb

b∑
i,j=1

pij

√
ϑmini
i,j =

1

πb

b∑
i,j=1

pij

√(
Ãmini

train1
)
i

(
Ãmini

train1
)
j

=
1

πb

b∑
i=1

(
Ãmini

train1
)
i
,

=
1

πb

∥∥∥Ãmini
train1

∥∥∥
1
.

(76)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

To bound Υmini
t , we notice that |σ̂ (x) | ≤ σ̂ (|x|), and σ̂ (·) is a non-decreasing function in [0, 1].

Hence, we get |Υmini| ≤ Γmini.

we have the normalized adjacency matrix of a graph with b nodes as:

Ãmini
train =


1√
din
1

. . .
1√
din
b


a11 · · · a1n

...
. . .

...
ab1 · · · abn




1√
dout
1

. . .
1√
dout
n



=


1√
din
1

1√
dout
1

a11 · · · 1√
din
1

1√
dout
n

a1n

...
. . .

...
1√
din
1

1√
dout
b

ab1 · · · 1√
din
b

1√
dout
n

abn

 ,
(77)

where aij ∈ {0, 1} represents whether node i connects with node j (1) or not (0).

Since din
i ≤ β and dout ≤ b, we have:

∥Ãmini
train1∥1 =

b∑
i=1

1√
din
i

√
dout
1

ai1 + · · ·+ 1√
din
i

√
dout
n

ain

≥
b∑

i=1

1

β
1
2 b

1
2

(ai1 + · · ·+ ain)

≥ b
1
2

β
1
2

min
i

(ai1 + · · ·+ ain)

≥ b
1
2

β
1
2

.

(78)

Moreover, since ϱmini
i,j denotes the amount of common messages between node i and node j at a given

training iteration, we know that
ϱmini
i,j√
ϑmini
i,j

≤ 1. Then we have:

Γmini =
1

b

b∑
i,j=1

pij σ̂

(
ϱmini
i,j√
ϑmini
mini

)√
ϑfull
i,j

≤1

b

∥∥∥Ãmini
train1

∥∥∥
1

(79)

Moreover, since 1/
(√

din
i

√
dout
1

)
≤ 1, we have:

∥Ãmini
train1∥1 =

b∑
i=1

1√
din
i

√
dout
1

ai1 + · · ·+ 1√
din
i

√
dout
n

ain

≤
b∑

i=1

(ai1 + · · ·+ ain)

≤βb,

(80)

where the last inequality holds because there exist at most β terms that are not equal to 0.

Similarly, for Γfull-mini, we have:

Γfull-mini ≥ 1

πntrain

ntrain∑
i=1

(
Ãmini

train1
)
i
,

=
1

πntrain

ntrain

b

b∑
i=1

(
Ãmini

train1
)
i
,

=
1

πb

∥∥∥Ãmini
train1

∥∥∥
1
,

(81)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

and

Γfull-mini ≤ 1

b

∥∥∥Ãmini
train1

∥∥∥
1
. (82)

Moreover, |Υfull-mini| ≤ Γfull-mini holds.

Similarly, in the full-graph training, we can replace b and β by ntrain and dmax, respectively. Therefore,
we have:

1

πntrain

∥∥∥Ãfull
train1

∥∥∥
1
≤ Γfull ≤ 1

ntrain

∥∥∥Ãfull
train1

∥∥∥
1
. (83)

n
1
2

train

d
1
2
max

≤ ∥Ãfull
train1∥1 ≤ ntraindmax. (84)

|Υfull| ≤ Γfull (85)

This complete the proof.

I.2 PROOF OF LEMMA B.6 AND C.2

Lemma I.1 In the mini-batch training, |Ξmini
t | = o(Γmini

t), |Ξfull-mini
t | = o(Γfull-mini

t), and, when

ϕmini
t ≥ − 1

100 and
√(

ϕmini
t

)2
+
(
ψmini
t

)2 ≥ 1−o(1), then Ξmini
t ≥ Γmini

t

2β and Ξfull-mini
t ≥ Γfull-mini

t

2β . In the

full-graph training, |Ξfull
t | = o(Γfull), and, when ϕfull

t ≥ − 1
100 and

√(
ϕfull
t

)2
+
(
ψfull
t

)2 ≥ 1− o(1),

then Ξfull
t ≥ Γfull

t

2dmax
.

Proof of Lemma B.6 and C.2: We first focus on the mini-batch training. Considering the gradient,
we are going to analyze

(
ϕmini
t+1

)2
+
(
ψmini
t+1

)2
:(

ϕmini
t+1

)2
+
(
ψmini

t+1

)2
=

(
ϕmini
t − ηt

∂Lmini
train,t

(
ϕmini
t , ψmini

t

)
∂ϕmini

t

)2

+

(
ψmini

t − ηt
∂Lmini

train,t
(
ϕmini
t , ψmini

t

)
∂ψmini

t

)2

=

ϕmini
t − ηtϕ

mini
t Γmini

t + ηt
ϕmini
t√

(ϕmini
t)

2
+ (ψmini

t)
2
Υmini

t + ηt

(
ψmini

t

)2
(ϕmini

t)
2
+ (ψmini

t)
2Ξ

mini
t

2

+

ψmini
t − ηtψ

mini
t Γmini

t + ηt
ψmini

t√
(ϕmini

t)
2
+ (ψmini

t)
2
Υmini

t + ηt
ϕmini
t ψmini

t

(ϕmini
t)

2
+ (ψmini

t)
2Ξ

mini
t

2

=
(
ϕmini
t

)2
+
(
ψmini

t

)2
+ η2tΓ

mini
t

2
((

ϕmini
t

)2
+
(
ψmini

t

)2)
+ η2tΥ

mini
t

2

+ η2t

(
ψmini

t

)2
(ϕmini

t)
2
+ (ψmini

t)
2

(
Ξmini

t

)2
− 2ηtΓ

mini
t

((
ϕmini
t

)2
+
(
ψmini

t

)2)
+ 2ηt

√
(ϕmini

t)
2
+ (ψmini

t)
2
Υmini

t − 2η2tΓ
mini
t Υmini

t

√
(ϕmini

t)
2
+ (ψmini

t)
2

(86)

Hence, By Lemma C.1 and Lemma I.1, we have:(
ϕmini
t+1

)2
+
(
ψmini

t+1

)2
≤
(√(

ϕmini
t

)2
+
(
ψmini

t

)2(
1− C

π

))2

+ C, (87)

when the learning rate ηt ∈
[

C
πΓmini

t
, 1
6πΓmini

t

]
(Awasthi et al., 2021), where C ≤ 1

16 is a small enough

and positive constant. Hence, we can rewrite the range of η as ηt ∈ (0, 1
6πΓmini

t
]

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Then, for all t ≥ 1, we have:√
(ϕmini

t)
2
+ (ψmini

t)
2 ≤

(
1− C

π

)t√
(ϕmini

0)
2
+ (ψmini

0)
2
+

C

1−
(
1− C

π

)2
<

√
(ϕmini

0)
2
+ (ψmini

0)
2
+

π

2− C

<

√
(ϕmini

0)
2
+ (ψmini

0)
2
+
π

2

(88)

Moreover, with probability at least 1− e−O(r), we will have
√(

ϕmini
0

)2
+
(
ψmini
0

)2
= O(κ

√
r).

Hence, we have
√(

ϕmini
t

)2
+
(
ψmini
t

)2 ≤ C1.

We also have that if Υmini
t > 0, then(

ϕmini
t+1

)2
+
(
ψmini

t+1

)2
≥(
(
ϕmini
t

)2
+
(
ψmini

t

)2
)(1− ηtΓ

mini
t)2

+ 2ηtΥ
mini
t

√
(ϕmini

t)
2
+ (ψmini

t)
2
(1− ηtΓ

mini
t) + η2tΥ

mini
t

2

>η2tΥ
mini
t

2
> 0

(89)

Similarly, in the full-graph training, we can replace b and β by ntrain and dmax, respectively.

This completes the proof.

I.3 PROOF OF LEMMA B.7 AND C.3

We first focus on the mini-batch training. From Lemma C.2 , we immediately have√
(ϕmini)

2
+ (ψmini)

2 ≤ C, where C is a positive constant.

Next, we analyze the upper bound of λmax(∇2Lfull
train(ϕ

mini, ψmini, Ãmini
train)). We have:

λmax(∇2Lfull
train(ϕ

mini, ψmini, Ãmini
train))

≤

∣∣∣∣∣∂2Lfull
train(ϕ

mini
t , ψmini

t , Ãmini
train)

∂ (ϕmini
t)

2

∣∣∣∣∣+
∣∣∣∣∣∂2Lfull

train(ϕ
mini
t , ψmini

t , Ãmini
train)

∂ (ψmini
t)

2

∣∣∣∣∣
+

∣∣∣∣∂2Lfull
train(ϕ

mini
t , ψmini

t , Ãmini
train)

∂ϕmini
t ∂ψmini

t

∣∣∣∣+ ∣∣∣∣∂2Lfull
train(ϕ

mini
t , ψmini

t , Ãmini
train)

∂ψmini
t ∂ϕmini

t

∣∣∣∣ .
(90)

Taking the second derivatives, we get:∣∣∣∣∣∂2Lfull
train(ϕ

mini
t , ψmini

t , Ãmini
train)

∂ (ϕmini
t)

2

∣∣∣∣∣ =Γfull-mini
t − ϕmini

t∥∥wmini
j,t

∥∥ ∂Υfull-mini
t

∂ϕmini
t

−
(
ψmini

t

)2∥∥wmini
j,t

∥∥ 3
2

Υfull-mini
t

−
(
ψmini

t

)2∥∥wmini
j,t

∥∥2 ∂Ξfull-mini
t

∂ϕmini
t

+
2ϕmini

t

(
ψmini

t

)2∥∥wmini
j,t

∥∥4 Ξfull-mini
t ,

(91)

∣∣∣∣∣∂2Lfull
train(ϕ

mini
t , ψmini

t , Ãmini
train)

∂ (ψmini
t)

2

∣∣∣∣∣
=Γfull-mini

t − ψmini
t∥∥wmini
j,t

∥∥ ∂Υfull-mini
t

∂ψmini
t

+
ϕmini
t ψmini

t∥∥wmini
j,t

∥∥ 3
2

Υfull-mini
t

+
ϕmini
t ψmini

t∥∥wmini
j,t

∥∥2 ∂Ξfull-mini
t

∂ϕmini
t

+
ϕmini
t (

(
ϕmini
t

)2 − (ψmini
t

)2
)∥∥wmini

j,t

∥∥4 Ξfull-mini
t ,

(92)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

∣∣∣∣∂2Lfull
train(ϕ

mini
t , ψmini

t , Ãmini
train)

∂ϕmini
t ∂ψmini

t

∣∣∣∣ =− ψmini
t∥∥wmini
j,t

∥∥ ∂Υfull-mini
t

∂ϕmini
t

+
ϕmini
t ψmini

t∥∥wmini
j,t

∥∥ 3
2

Υfull-mini
t

+
ϕmini
t ψmini

t∥∥wmini
j,t

∥∥2 ∂Ξfull-mini
t

∂ϕmini
t

+
ϕmini
t ψmini

t∥∥wmini
j,t

∥∥2 ∂Ξfull-mini
t

∂ϕmini
t

+
ψmini

t

((
ψmini

t

)2 − (ϕmini
t

)2)∥∥wmini
j,t

∥∥4 Ξfull-mini
t ,

(93)

∣∣∣∣∂2Lfull
train(ϕ

mini
t , ψmini

t , Ãmini
train)

∂ψmini
t ∂ϕmini

t

∣∣∣∣ =− ϕmini
t∥∥wmini
j,t

∥∥ ∂Υfull-mini
t

∂ψmini
t

+
ϕmini
t ψmini

t∥∥wmini
j,t

∥∥ 3
2

Υfull-mini
t

+
ϕmini
t ψmini

t∥∥wmini
j,t

∥∥2 ∂Ξfull-mini
t

∂ϕmini
t

− 2
ϕmini
t

(
ψmini

t

)2∥∥wmini
j,t

∥∥4 Ξfull-mini
t .

(94)

Next we have∣∣∣∣∂Υfull-mini
t

∂ϕmini
t

∣∣∣∣ =
∣∣∣∣∣∣ 1

ntrain

ntrain∑
i,k=1

pikϱ
mini
i,k σ̂step(

ϱmini
i,k√
ϑmini
i,k

ϕmini
t√

(ϕmini
t)

2
+ (ψmini

t)
2
) ·
(
ψmini

t

)2∥∥wmini
j,t

∥∥ 3
2

∣∣∣∣∣∣
≤
((

ϕmini
t

)2
+
(
ψmini

t

)2) 1
4 ∣∣∣Ξfull-mini

t

∣∣∣ = o
(
Γfull-mini
t

) (95)

∣∣∣∣∂Υfull-mini
t

∂ψmini
t

∣∣∣∣ =
∣∣∣∣∣∣ 1

ntrain

ntrain∑
i,k=1

pikϱ
mini
i,k σ̂step(

ϱmini
i,k√
ϑmini
i,k

ϕmini
t√

(ϕmini
t)

2
+ (ψmini

t)
2
) · ϕ

mini
t ψmini

t∥∥wmini
j,t

∥∥ 3
2

∣∣∣∣∣∣
≤
((

ϕmini
t

)2
+
(
ψmini

t

)2) 1
4 ∣∣∣Ξfull-mini

t

∣∣∣ = o
(
Γfull-mini
t

)
,

(96)

where we use |Ξfull-mini
t | = o(Γfull-mini

t) in the Lemma I.1.

To differentiate Ξfull-mini
t , we employ σ̂(θ) = 1− arccos(θ)

π (Daniely et al., 2016) and arccos′(θ) =
− 1√

1−θ2 to get:

∣∣∣∣∂Ξfull-mini
t

∂ϕmini
t

∣∣∣∣ =
∣∣∣∣∣∣ 1

ntrain

ntrain∑
i,k=1

pik

(
ϱmini
i,k

)2
ϑmini
i,k

∥∥wmini
j,t

∥∥
ψmini

t

(
ψmini

t

)2∥∥wmini
j,t

∥∥ 3
2

∣∣∣∣∣∣
≤ 1

ntrain

ntrain∑
i,k=1

((
ϕmini
t

)2
+
(
ψmini

t

)2) 1
4
(
ϱmini
i,k

)2
ϑmini
i,k

= o
(
Γfull-mini
t

)
,

(97)

∣∣∣∣∂Ξfull-mini
t

∂ψmini
t

∣∣∣∣ =
∣∣∣∣∣∣ 1

ntrain

ntrain∑
i,k=1

pik

(
ϱmini
i,k

)2
ϑmini
i,k

∥∥wmini
j,t

∥∥
ψmini

t

ϕmini
t ψmini

t∥∥wmini
j,t

∥∥ 3
2

∣∣∣∣∣∣
≤ 1

ntrain

ntrain∑
i,k=1

((
ϕmini
t

)2
+
(
ψmini

t

)2) 1
4
(
ϱmini
i,k

)2
ϑmini
i,k

= o
(
Γfull-mini
t

)
.

(98)

Therefore, we have:∣∣∣∣∣∂2Lfull
train(ϕ

mini
t , ψmini

t , Ãmini
train)

∂ (ϕmini
t)

2

∣∣∣∣∣ ≤Γfull-mini
t +

((
ϕmini
t

)2
+
(
ψmini

t

)2) 1
4

Γfull-mini
t + o

(
Γfull-mini
t

)
≤Γfull-mini

t (1 +
√
C + o (1)) = C1Γ

full-mini
t

(99)

∣∣∣∣∣∂2Lfull
train(ϕ

mini
t , ψmini

t , Ãmini
train)

∂ (ψmini
t)

2

∣∣∣∣∣ ≤Γfull-mini
t +

((
ϕmini
t

)2
+
(
ψmini

t

)2) 1
4

Γfull-mini
t + o

(
Γfull-mini
t

)
≤Γfull-mini

t (1 +
√
C + o (1)) = C1Γ

full-mini
t

(100)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

∣∣∣∣∂2Lfull
train(ϕ

mini
t , ψmini

t , Ãmini
train)

∂ϕmini
t ∂ψmini

t

∣∣∣∣ ≤((ϕmini
t

)2
+
(
ψmini

t

)2) 1
4

Γfull-mini
t + o

(
Γfull-mini
t

)
≤Γfull-mini

t (
√
C + o (1)) = C2Γ

full-mini
t

(101)

∣∣∣∣∂2Lfull
train(ϕ

mini
t , ψmini

t , Ãmini
train)

∂ψmini
t ∂ϕmini

t

∣∣∣∣ ≤((ϕmini
t

)2
+
(
ψmini

t

)2) 1
4

Γfull-mini
t + o

(
Γfull-mini
t

)
≤Γfull-mini

t (
√
C + o (1)) = C2Γ

full-mini
t ,

(102)

where C1 and C2 are absolute constants.

Hence, we have:
λmax(∇2Lfull

train(ϕ
mini, ψmini, Ãmini

train)) ≤ C3Γ
full-mini
t , (103)

where C3 = 4
(
1 +

√
π
2 +O (κ

√
r) + o (1)

)
is an absolute constant.

Similarly, in the full-graph training, we have:

λmax(∇2Lfull
train(ϕ

full, ψfull)) ≤ C4Γ
full, (104)

where C4 = 4
(
1 +

√
π
2 +O (κ

√
r) + o (1)

)
is an absolute constant.

I.4 PROOF OF LEMMA B.8 AND C.4

We first focus on the mini-batch training. Due to random initialization, with probability at least

1 − 1
h2 , we have that

√(
ϕmini
0

)2
+
(
ψmini
0

)2
= o (κ

√
r) and ϕmini

0 ≥ −Cκ
√
log h with a constant

C > 0. Furthermore, we have the following updates:(
ϕmini
t+1

)2
+
(
ψmini

t+1

)2
=

(√
(ϕmini

t)
2
+ (ψmini

t)
2
(
1− ηtΓ

mini
t + ηtΥ

mini
t

))2

+ η2t

(
ψmini

t

)2
(ϕmini

t)
2
+ (ψmini

t)
2

(
Ξmini

t

)2
,

(105)

ϕmini
t+1 = ϕmini

t

(
1− ηtΓ

mini
t

)
+ ηt

ϕmini
t√(

ϕmini
t

)2
+
(
ψmini

t

)2Υmini
t + ηt

(
ψmini

t

)2
(
ϕmini
t

)2
+
(
ψmini

t

)2Ξmini
t . (106)

Since Υmini
t > 0 and is bounded by Γmini

t and Ξmini
t = o(Γmini

t), if ϕmini
t < 0 and√(

ϕmini
t

)2
+
(
ψmini
t

)2 ≥ 2, we have:√(
ϕmini
t+1

)2
+
(
ψmini

t+1

)2 ≥
√(

ϕmini
t

)2
+
(
ψmini

t

)2 (
1− ηtΓ

mini
t

)
, (107)

ϕmini
t+1 ≥ ϕmini

t

(
1− ηt

2
Γmini
t − ηto

(
Γmini
t

))
. (108)

Hence, after t ≥ C1 log(κ log h) steps, we have that ϕmini
t ≥ − 1

100 and
√(

ϕmini
t

)2
+
(
ψmini
t

)2 ≥ 2.

Next we show that from this point on ϕmini
t and

√(
ϕmini
t

)2
+
(
ψmini
t

)2
, the conditions in this Lemma

continue to be satisfied. We have:√(
ϕmini
t+1

)2
+
(
ψmini

t+1

)2
≥
√

(ϕmini
t)

2
+ (ψmini

t)
2 − ηtΓ

mini
t

(√
(ϕmini

t)
2
+ (ψmini

t)
2 − 1

)
+ ηt

(
Υmini

t − Γmini
t

)
,

(109)

where
Υmini

t − Γmini
t

=
1

b

b∑
i,j:ϱmini

i,j ̸=0

pij

√
ϑmini
i,j

σ̂
 ϱmini

i,j√
ϑmini
i,j

ϕmini
t√

(ϕmini
t)

2
+ (ψmini

t)
2

− σ̂

 ϱmini
i,j√
ϑmini
i,j

 .
(110)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Once ϕmini
t ≥ − 1

100 , we have:∣∣∣∣∣∣σ̂
 ϱmini

i,j√
ϑmini
i,j

ϕmini
t√(

ϕmini
t

)2
+
(
ψmini

t

)2
− σ̂

 ϱmini
i,j√
ϑmini
i,j

∣∣∣∣∣∣ ≤ 2
ϱmini
i,j√
ϑmini
i,j

. (111)

Hence, we have that if ϕmini
t ≥ − 1

100 , then
√(

ϕmini
t

)2
+
(
ψmini
t

)2 ≥ 1− o(1).

Next we discuss that ϕmini
t continues to be larger than − 1

100 . First, if ϕmini
t > 0, then√(

ϕmini
t

)2
+
(
ψmini
t

)2 ≥ 1 − o(1) remains. Furthermore, if ϕmini
t ∈ [− 1

100 , 0), then Ξmini
t is non

negative and is at least 1
4b

∑b
i,j,ϱmini

i,j ̸=0 pij
ϱmini
i,j√
ϑmini
i,j

. Hence, we have:

ϕmini
t+1 ≥ϕmini

t − ηtΓ
mini
t ϕmini

t

1− 1√
(ϕmini

t)
2
+ (ψmini

t)
2


+ ηt

ϕmini
t√

(ϕmini
t)

2
+ (ψmini

t)
2

(
Υmini

t − Γmini
t

)

+ ηt

(
ψmini

t

)2
(ϕmini

t)
2
+ (ψmini

t)
2

∑b
i,j,ϱmini

i,j ̸=0 pij
ϱmini
i,j√
ϑmini
i,j

4b
.

(112)

Using
∣∣∣∣√(ϕmini

t

)2
+
(
ψmini
t

)2 − 1

∣∣∣∣ = O(1) and the fact that if ϕmini
t ∈ [− 1

100 , 0) and√(
ϕmini
t

)2
+
(
ψmini
t

)2 ≥ 1− o(1), then

∣∣∣∣∣ ψmini
t√

(ϕmini
t)

2
+(ψmini

t)
2

∣∣∣∣∣ ≥ 1
2 , we have that ϕmini

t+1 ≥ ϕmini
t .

Similarly, under the full-graph training, we can replace b by ntrain.

I.5 PROOF OF LEMMA B.9 AND E.5

We first focus on the full-graph training. We have∥∥∥∇Lfull
train,t

(
ϕfull
t , ψfull

t

)∥∥∥2
=

ϕfull
t Γfull − ϕfull

t√
(ϕfull

t)
2
+ (ψfull

t)
2
Υfull

t −
(
ψfull

t

)2
(ϕfull

t)
2
+ (ψfull

t)
2Ξ

full
t

2

+

ψfull
t Γfull − ψfull

t√
(ϕfull

t)
2
+ (ψfull

t)
2
Υfull

t − ϕfull
t ψfull

t

(ϕfull
t)

2
+ (ψfull

t)
2Ξ

full
t

2

=

(√
(ϕfull

t)
2
+ (ψfull

t)
2
Γfull −Υfull

t

)2

+

(
ψfull

t

)2
(ϕfull

t)
2
+ (ψfull

t)
2

(
Ξfull

t

)2
.

(113)

On the other hand, the loss Lfull
train,t

(
ϕfull
t , ψfull

t

)
can be written as :

Lfull
train,t

(
ϕfull
t , ψfull

t

)
=
1

2

((
ϕfull
t

)2
+
(
ψfull

t

)2
+ 1

)
Γfull −

√
(ϕfull

t)
2
+ (ψfull

t)
2
Υfull

t

≤1

2

((
ϕfull
t

)2
+
(
ψfull

t

)2
+ 1

)
Γfull.

(114)

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Hence, we have:

∥∥∇Lfull
train,t

(
ϕfull
t , ψfull

t

)∥∥2
Lfull

train,t (ϕ
full
t , ψfull

t)
≥

(√
(ϕfull

t)
2
+ (ψfull

t)
2
Γfull −Υfull

t

)2

Γfull

+ 2

(
ψfull

t

)2 (
Ξfull

t

)2(
(ϕfull

t)
2
+ (ψfull

t)
2
)(

(ϕfull
t)

2
+ (ψfull

t)
2
+ 1
)
Γfull

.

(115)

If
√(

ϕfull
t

)2
+
(
ψfull
t

)2 − 1 > ϵ
1
2

2h , then the first term above combined with Υfull
t ≤ Γfull leads to∥∥∥∇Lfull

train,t

(
ϕfull
t , ψfull

t

)∥∥∥2
Lfull

train,t
(
ϕfull
t , ψfull

t

) ≥ ϵΓfull2

4h2Γfull =
ϵΓfull

4h2
. (116)

If
∣∣∣∣√(ϕfull

t

)2
+
(
ψfull
t

)2 − 1

∣∣∣∣ ≤ ϵ
1
2

2h ≤ 2 and
∣∣ψfull
t

∣∣ > ϵ
1
2

2h , then the second term leads to

∥∥∇Lfull
train,t

(
ϕfull
t , ψfull

t

)∥∥2
Lfull

train,t (ϕ
full
t , ψfull

t)
≥2

(
ψfull

t

)2 (
Ξfull

t

)2(
(ϕfull

t)
2
+ (ψfull

t)
2
)(

(ϕfull
t)

2
+ (ψfull

t)
2
+ 1
)
Γfull

≥2

(
ψfull

t

)2 (
Ξfull

t

)2
9(9 + 1)Γfull

≥2

(
Ξfull

t

)2
90Γfull

ϵ

4h2

≥2
Γfull

360d2max

ϵ

4h2

(117)

Hence, we have: ∥∥∥∇Lfull
train,t

(
ϕfull
t , ψfull

t

)∥∥∥2 ≥ µfullLfull
train,t

(
ϕfull
t , ψfull

t

)
, (118)

where µfull ≥ C1ϵh
−2d−2

maxΓ
full, and C1 is a positive constant.

Similarly, in the mini-batch training, we can replace dmax by β, we have:∥∥∥∇Lfull
train,t

(
ϕmini
t , ψmini

t , Ãmini
train

)∥∥∥2 ≥ µmini
t Lfull

train,t

(
ϕmini
t , ψmini

t , Ãmini
train

)
, (119)

where µmini
t ≥ C2ϵh

−2β−2Γfull-mini, and C2 is a positive constant.

Finally, we are going to consider the case in the full-graph training when
√(

ϕfull
t

)2
+
(
ψfull
t

)2 ≤

1− ϵ
1
2

2h . We can assume that
∣∣∣∣Υfull

t −
√(

ϕfull
t

)2
+
(
ψfull
t

)2
Γfull

∣∣∣∣ ≤ ϵ
1
2

2hΓ
full since otherwise we get the

same bound as in (116). In this case, we show that
∥∥ψfull

t

∥∥ must be at least ϵ
1
2

2h and hence the bound
of (117) can be applicable. Using σ̂(·) is convex in [0, 1], we can get

ntrainpij

√ϑfull
i,j

σ̂
 ϱfull

i,j√
ϑfull
i,j

ϕfull
t√

(ϕfull
t)

2
+ (ψfull

t)
2

− σ̂

 ϱfull
i,j√
ϑfull
i,j


≥ pijϱ

full
i,j

ϕfull
t −

√
(ϕfull

t)
2
+ (ψfull

t)
2√

(ϕfull
t)

2
+ (ψfull

t)
2

σ̂step

 ϱfull
i,j√
ϑfull
i,j

 .

(120)

Summing over i, j, we have

ntrain

(
Υfull

t − Γfull
)
≥
ϕfull
t −

√(
ϕfull
t

)2
+
(
ψfull

t

)2√(
ϕfull
t

)2
+
(
ψfull

t

)2 ∑
i,j

pijϱ
full
i,j σ̂step(

ϱfull
i,j√
ϑfull
i,j

). (121)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Substituting Υfull
t =

√(
ϕfull
t

)2
+
(
ψfull
t

)2
Γfull ± ϵ

1
2 Γfull

2h , we have

ntrain

((√
(ϕfull

t)
2
+ (ψfull

t)
2 − 1

)
Γfull ± ϵ

1
2Γfull

2h

)

≥
ϕfull
t −

√
(ϕfull

t)
2
+ (ψfull

t)
2√

(ϕfull
t)

2
+ (ψfull

t)
2

∑
i,j

pijϱ
full
i,j σ̂step(

ϱfull
i,j√
ϑfull
i,j

).

(122)

Using the bound on
√(

ϕfull
t

)2
+
(
ψfull
t

)2
, the above implies that

ϵ
1
2 ntrainΓ

full

2h
≤

√
(ϕfull

t)
2
+ (ψfull

t)
2 − ϕfull

t√
(ϕfull

t)
2
+ (ψfull

t)
2

∑
i,j

pijϱ
full
i,j σ̂step(

ϱfull
i,j√
ϑfull
i,j

) (123)

Noticing that Γfull ≥ 1
πntrain

∥Ãfull
train,t1∥1 by Lemma C.1, we have√(

ϕfull
t

)2
+
(
ψfull

t

)2 − ϕfull
t√(

ϕfull
t

)2
+
(
ψfull

t

)2 ≥
ϵ
1
2 ∥Ãfull

train,t1∥1

2πh
∑

i,j pijϱ
full
i,j σ̂step(

ϱfull
i,j√
ϑfull
i,j

)
(124)

Therefore, we have

ψfull
t ≥

√
(ϕfull

t)
2
+ (ψfull

t)
2 − ϕfull

t

≥
ϵ
1
2 ∥Ãfull

train,t1∥1

2πh
∑

i,j pijϱ
full
i,j σ̂step(

ϱfull
i,j√
ϑfull
i,j

)

√
(ϕfull

t)
2
+ (ψfull

t)
2

≥
ϵ
1
2 ∥Ãfull

train,t1∥1

2πh
∑

i,j pijϱ
full
i,j σ̂step(

ϱfull
i,j√
ϑfull
i,j

)

>
ϵ
1
2 ∥Ãfull

train,t1∥1
2hntrain

≥ ϵ
1
2

2hn
1
2
traind

1
2
max

>
ϵ
1
2

2h

(125)

where the second last inequality uses
∑
i,j pijϱ

full
i,j σ̂step(

ϱfull
i,j√
ϑfull
i,j

) ≤ ntrain because there exist ntrain

nodes that have the common messages.

Similarly, in the mini-batch training, we can replace ntrain and dmax by b and β, respectively.

J PROOF OF AUXILIARY LEMMAS OF CONVERGENCE THEOREMS WITH MSE

J.1 PROOF OF LEMMA I.1:

We first focus on the mini-batch training. We are going to analyze the upper bound of Ξmini:

Ξmini =
1

b

b∑
i,j=1

pijϱ
mini
i,j σ̂step

 ϕmini√(
ϕmini

)2
+
(
ψmini

)2 ϱmini
i,j√
ϑmini
i,j

 , (126)

where each term in summation is non-zero only when ϱmini
i,j ̸= 0 if i = j.

Hence, there are at most b non-zero terms in the summation, and Ξmini
t is upper bounded by Γmini

t ,
namely Ξmini

t = o(Γmini
t).

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Note that σ̂step(x) ≥ 1
2 whenever |x| ≤ 1

50 (Daniely et al., 2016), which is ensured by ϕt ≥ − 1
100 and√(

ϕmini
t

)2
+
(
ψmini
t

)2 ≥ 1− o(1). Hence, in this case, each term in the summation in the expression
of Ξmini will be non-negative. Then, for i = j, each of the b terms in the summation will contributed
at least 1

200 (Awasthi et al., 2021). Therefore, in this case Ξmini
t ≥ 1

2 ≥ Γmini
t

2β with Γmini
t ≤ β.

Similarly, we have Ξfull-mini
t = o(Γfull-mini

t), and, when ϕmini
t ≥ − 1

100 and
√(

ϕmini
t

)2
+
(
ψmini
t

)2 ≥

1− o(1), Ξfull-mini
t ≥ Γfull-mini

t

2β .

Similarly, under the full-graph training, we place b and β by ntrain and dmax, respectively.

K PROOF OF THE MAIN LEMMAS OF CONVERGENCE THEOREMS WITH CE

K.1 PROOF OF LEMMA D.3 AND E.3

Lemma K.1 Let Ã be the normalized adjacency matrix with self-loops. Given a mini-batch of size
b and fan-out size β, the following inequalities hold:∥∥ãmini

train,i

∥∥2
2
≤ β,

and ∥∥ãfull
train,i

∥∥2
2
≤ dmax,

for any i in the training set.

Lemma K.2 With Gaussian random initialization, for any δ ∈ (0, 1), if h ≥ C log (n/δ) for some
large enough constant C, then with probability at least 1− δ, the following inequalities hold:∣∣∣∥∥zmini

i

∥∥
2
− C

1
2
x β

1
2

∣∣∣ ≤ C1

√
β
log (ntrain/δ)

h
,

and ∣∣∣∥∥zfull
i

∥∥
2
− C

1
2
x d

1
2
max

∣∣∣ ≤ C2

√
dmax

log (ntrain/δ)

h
,

for any i in the training set, where C1 and C2 are absolute constants.

Proof of Lemma D.3 and E.3: Since half of the elements of v are 1’s and the other half of the
elements are −1’s, without loss of generality, we can assume that v1 = · · · = vh/2 = 1 and
vh/2+1 = · · · = vh = −1.

Obviously, we have E
(
ŷmini
i

)
= E

(
ŷfull
i

)
= 0 for any i in the training set.

We first focus on the mini-batch training. Using the value of v, we have:

ŷmini
i =

h/2∑
i=1

[
σ

(
ãmini

train,iX
(
wmini

j

)⊤)
− σ

(
ãmini

train,iX
(
wmini

j+h/2

)⊤)]
(127)

With the Lipschitz property of ReLU function, we have:∥∥∥∥σ(ãmini
train,iX

(
wmini

j

)⊤)
− σ

(
ãmini

train,iX
(
wmini

j+h/2

)⊤)∥∥∥∥
2

≤
∥∥∥∥ãmini

train,iX
(
wmini

j

)⊤
− ãmini

train,iX
(
wmini

j+h/2

)⊤∥∥∥∥
2

=

∥∥∥∥ãmini
train,iX

(
wmini

j −wmini
j+h/2

)⊤∥∥∥∥
2

≤
∥∥∥ãmini

train,i

∥∥∥
2
∥X∥2

∥∥∥wmini
j −wmini

j+h/2

∥∥∥
2

≤C3h
− 1

2 β
1
2 ,

(128)

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

for some absolute constant C3. Here the last inequality follows Lemma K.1.

Therefore, by Hoeffding’s inequality and Lemma K.2, we have:

P
(∣∣∣ŷmini

i

∣∣∣ > u
)
≤ 2 exp

− u2∑h/2
j=0

(
C3h

− 1
2 β

1
2

)2


P
(∣∣∣ŷmini

i

∣∣∣ > u
)
≤ 2 exp

(
− 2u2

C2
3β

) (129)

Taking union bound over i, we have

P
(∣∣∣ŷmini

i

∣∣∣ > u, i = 1, . . . , ntrain

)
≤ 2ntrain exp

(
− 2u2

C2
3β

)
. (130)

Let 2n exp
(
− 2u2

C2
3β

)
= δ, we have:

exp

(
− 2u2

C2
3β

)
=

δ

2ntrain
,

− 2u2

C2
3β

= log

(
δ

2ntrain

)
,

u2 =
C2

3β

2
log

(
δ

2ntrain

)
> 0,

u = C4

√
β log

(
δ

ntrain

)
.

(131)

Then P
(∣∣ŷmini

i

∣∣ > C4

√
β log

(
δ

ntrain

)
, i = 1, . . . , ntrain

)
≤ δ.

Therefore, with the probability at least 1− δ, it holds that

∣∣∣ŷmini
i

∣∣∣ ≤ C4

√
β log

(
δ

ntrain

)
, (132)

for any i in the training set.

Then substituting the above bound into the formula of loss function l(yiŷmini
i), we complete the proof

of Lemma E.3. Further, substituting the β with dmax, we complete the proof of Lemma D.3 for the
full-graph training.

K.2 PROOF OF LEMMA D.4 AND E.4

Lemma K.3 There exist absolute constants C,C1, C2 > 0 such that, with the probability at
least 1 − exp

(
−Chα2/ (ntraindmax)

)
, for any m = (m1, . . . ,mntrain) ∈ Rntrain

+ , there exist at least
C1hα

2/ (ntraindmax) GNN nodes in {1, . . . , j, . . . , h} that satisfy:∥∥∥∥∥ 1

ntrain

ntrain∑
i=1

miyiσ
′
(
ãfull

train,iX
(
wmini
j

)⊤)
ãfull

train,iX

∥∥∥∥∥
2

≥ C2 ∥m∥∞ d2max.

Lemma K.4 There exist absolute constants C3, C4, C5 > 0 such that, with the probability at
least 1 − exp

(
−C3hα

2/ (ntrainβ)
)
, for any m = (m1, . . . ,mntrain) ∈ Rntrain

+ , there exist at least
C4hα

2/ (ntrainβ) GNN nodes in {1, . . . , j, . . . , h} that satisfy:∥∥∥∥∥ 1

ntrain

ntrain∑
i=1

miyiσ
′
(
ãmini

train,iX
(
wmini
j

)⊤)
ãmini

train,iX

∥∥∥∥∥
2

≥ C5 ∥m∥∞ β2.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Proof of Lemma D.4 and E.4: We first focus on the mini-batch training. We are going to prove the
gradient upper bound. The gradient ∇Wmini l

(
yiŷ

mini
i

)
can be written as:

∇Wmini l
(
yiŷ

mini
i

)
= l′

(
yiŷ

mini
i

)
· yi · ∇Wmini ŷ

mini
i

= l′
(
yiŷ

mini
i

)
· yi ·

(
vΣmini

i

)⊤
ãmini

train,iX.
(133)

Since Σmini
i is a diagonal matrix with

(
Σmini
i

)
jj

∈ {0, 1} for any j ∈ {1, . . . , h}, we have
∥∥Σmini

i

∥∥
2
=

1 for any i in the training set.

Hence, we have the following upper bound on
∥∥∇Wmini l

(
yiŷ

mini
i

)∥∥
F

:∥∥∥∇Wmini l
(
yiŷ

mini
i

)∥∥∥
F
=
∥∥∥∇Wmini l

(
yiŷ

mini
i

)∥∥∥
2

≤ −l′
(
yiŷ

mini
i

)∥∥∥Σmini
i

∥∥∥
2
∥v∥2

∥∥∥ãmini
train,i

∥∥∥
2
∥X∥2

≤ −l′
(
yiŷ

mini
i

)
C

1
2
x h

1
2 β

1
2 ,

(134)

where the first equality holds due to the fact that ∇Wmini l
(
yiŷ

mini
i

)
is a rank-one matrix, and the last

ineuqality follows Lemma K.1 and ∥v∥2 = h
1
2 .

Further, we have the following for ∇WminiL̂mini
train

(
Wmini, Ãmini

train

)
:

∥∥∥∇Wmini L̂
mini
train

(
Wmini, Ãmini

train

)∥∥∥
F
=

∥∥∥∥∥1b
b∑

i=0

∇Wmini l
(
yiŷ

mini
i

)∥∥∥∥∥
F

≤ 1

b

b∑
i=0

∥∥∥∇Wmini l
(
yiŷ

mini
i

)∥∥∥
F

≤ −C6h
1
2 β

1
2

b

b∑
i=0

l′
(
yiŷ

mini
i

)
,

(135)

where C6 is a positive constant.

Then, replacing b and β by ntrain and dmax respectively, we have:∥∥∥∇Wfull L̂
full
train

(
Wfull

)∥∥∥
F
≤ −C6h

1
2 d

1
2
max

ntrain

ntrain∑
i=1

l′
(
yiŷ

full
i

)
, (136)

for the full-graph training.

Next, we still focus on the mini-batch training. We are going to prove the gradient lower bound.

Given the initilization Wmini
0 and any W̃mini ∈ B

(
Wmini

0 , τ
)
, where B

(
Wmini

0 , τ
)

={
W :

∥∥W −Wmini
0

∥∥
2
≤ τ

}
.

We define:

gj =
1

ntrain

ntrain∑
i=0

l′
(
yiŷ

mini
i

)
yivjσ

′
(
ãmini

train,iX
(
Wmini

i,0

)⊤)
ãmini

train,iX. (137)

Then, since W0 is generated via Gaussian random initialization, by Lemma K.4, we have the
following inequality holds for at least C4hα

2/ (ntrainβ) GNN nodes:

∥gj∥2 ≥ C5 max
i

∣∣∣l′ (yiŷmini
i

)∣∣∣β2, (138)

where C4 and C5 are positive absolute constants.

Further, we can rewrite ∇wmini
j
L̂full

train

(
wmini
j , Ãmini

train

)
as follows:

∇w̃mini
j
L̂full

train

(
w̃mini

j , Ãmini
train

)
=

1

ntrain

ntrain∑
i=1

l′
(
yiŷ

mini
i

)
yivjσ

′
(
ãmini

train,iX
(
w̃mini

j

)⊤)
ãmini

train,iX. (139)

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Let zi,j = l′
(
yiŷ

mini
i

)
yivj , we have:

∥gj∥2 −
∥∥∥∇w̃mini

j
L̂full

train

(
w̃mini

j , Ãmini
train

)∥∥∥
2

=

∥∥∥∥∥ 1

ntrain

ntrain∑
i=1

zi,jσ
′
(
ãmini

train,iX
(
wmini

j,0

)⊤)
ãmini

train,iX

∥∥∥∥∥
2

−

∥∥∥∥∥ 1

ntrain

ntrain∑
i=1

zi,jσ
′
(
ãmini

train,iX
(
w̃mini

j

)⊤)
ãmini

train,iX

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

ntrain

ntrain∑
i=1

zi,j

(
σ′
(
ãmini

train,iX
(
wmini

j,0

)⊤)
− σ′

(
ãmini

train,iX
(
w̃mini

j

)⊤))
ãmini

train,iX

∥∥∥∥∥
2

≤ 1

ntrain

ntrain∑
i=1

C
1
2
x β

1
2 max

i

∣∣∣l′ (yiŷmini
i

)∣∣∣
=C7β

1
2 max

i

∣∣∣l′ (yiŷmini
i

)∣∣∣ ,

(140)

where C7 is an absolute constant.

Therefore, there are at least C4hα
2/ (ntrainβ) GNN nodes, satisfying:∥∥∥∇w̃mini

j
L̂full

train

(
w̃mini

j , Ãmini
train

)∥∥∥
2

≥C5 max
i

∣∣∣l′ (yiŷmini
i

)∣∣∣β2 − C7β
1
2 max

i

∣∣∣l′ (yiŷmini
i

)∣∣∣
≥C8 max

i

∣∣∣l′ (yiŷmini
i

)∣∣∣β2.

(141)

Therefore, we have: ∥∥∥∇W̃mini L̂
full
train

(
W̃mini, Ãmini

train

)∥∥∥
2

=

h∑
j=1

∥∥∥∇w̃mini
j
L̂full

train

(
w̃mini

j , Ãmini
train

)∥∥∥
2

≥C4hα
2

ntrainβ

(
C8 max

i

∣∣∣l′ (yiŷmini
i

)∣∣∣β2
)2

≥C9hα
2β3

n3
train

(
ntrain∑
i=1

l′
(
yiŷ

mini
i

))2

.

(142)

Then, replacing β by dmax, we have:

∥∥∥∇W̃full L̂
full
train

(
W̃full

)∥∥∥
2
≥ C9hα

2d3max
n3

train

(
ntrain∑
i=1

l′
(
yiŷ

full
i

))2

, (143)

for the full-graph training.

Proved.

K.3 PROOF OF LEMMA D.5

Lemma K.5 For any δ > 0, with probability at least 1− e−O(1), if Wfull
t ∈ B

(
Wfull

0 , τ
)
, it holds

that: ∥∥wfull
j,t

∥∥
2
≤ C + τ,

and ∥∥wfull
j,0

∥∥
2
≤ C,

for j ∈ {1, . . . , h}, where C = κ (
√
r + δ) is positive constant.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Proof of Lemma D.5: Since l (x) is 1/4-smooth, the following holds for any ∆ and x:

l (x+∆) ≤ l (x) + l′ (x)∆ +
1

8
∆2. (144)

Then we have the following upper bound on L̂full
train

(
Wfull

t+1

)
− L̂full

train

(
Wfull

t

)
:

L̂full
train

(
Wfull

t+1

)
− L̂full

train

(
Wfull

t

)
=

1

ntrain

ntrain∑
i=1

[
l
(
yiŷ

full
i,t+1

)
− l
(
yiŷ

full
i,t

)]
=

1

ntrain

ntrain∑
i=1

[
l′
(
yiŷ

full
i,t+1

)
∆full

i,t+1 +
1

8

(
∆full

i,t+1

)2]
,

(145)

where ∆full
i,t+1 = yi

(
ŷfull
i,t+1 − ŷfull

i,t

)
.

Therefore, we are going to bound ∆full
i,t . The upper bound of

∣∣∆full
i,t

∣∣ can be derived as:∣∣∣∆full
i,t

∣∣∣ = ∣∣∣∣yiãfull
train,iX

(
Σfull

i,t+1W
full
t+1

)⊤
v⊤ − yiã

full
train,iX

(
Σfull

i,tW
full
t

)⊤
v⊤
∣∣∣∣

=

∣∣∣∣yiãfull
train,iX

(
Σfull

i,t+1W
full
t+1 −Σfull

i,tW
full
t

)⊤
v⊤
∣∣∣∣

≤ C
1
2
x d

1
2
maxh

1
2

∥∥∥Σfull
i,t+1W

full
t+1 −Σfull

i,tW
full
t

∥∥∥
2
,

(146)

where the last inequality follows Lemma K.1.

Hence, we have:∣∣∣∆full
i,t

∣∣∣ ≤ C
1
2
x d

1
2
maxh

1
2

∥∥∥(Wfull
t+1 −Wfull

t

)
Σfull

i,t+1

∥∥∥
2
+
∥∥∥Wfull

t

(
Σfull

i,t+1 −Σfull
i,t

)∥∥∥
2

≤ 2C
1
2
x d

1
2
maxh

1
2

(∥∥∥Wfull
t+1 −Wfull

t

∥∥∥
2
+
∥∥∥Wfull

t

∥∥∥
2

)
≤ C1d

1
2
maxh

1
2 η
(∥∥∥∇Wfull

t
L̂full

train

(
Wfull

t

)∥∥∥
2
+ C + τ

)
= C1d

1
2
maxh

1
2 η
(∥∥∥∇Wfull

t
L̂full

train

(
Wfull

t

)∥∥∥
F
+ C + τ

)
.

(147)

Note that τ has an upper bound, the third term in the brackets on the right-hand side of the above
inequality is dominated by the first one. Then we have:∣∣∣∆full

i,t

∣∣∣ ≤ C1d
1
2
maxh

1
2 η
∥∥∥∇Wfull

t
L̂full

train

(
Wfull

t

)∥∥∥
F
. (148)

Then we are going to prove the lower bound of ∆full
i,t .

Since ∆full
i,t = yiã

full
train,iX

(
Σfull
i,t+1W

full
t+1 −Σfull

i,tW
full
t

)⊤
v⊤ = yi

(
zfull
i,t+1 − zfull

i,t

)
v⊤, thus we mainly

focus on bounding the term zfull
i,t+1 − zfull

i,t .

We define the diagonal matrix Σ̃full
i,t as:

(
Σ̃full

i,t

)
jj

=
(
Σfull

i,t+1 −Σfull
i,t

)
jj

(
wfull

j,t+1

)⊤
(
wfull

j,t+1 −wfull
j,t

)⊤ , (149)

for any j ∈ {1, . . . , h}.

Then we have:
zfull
i,t+1 − zfull

i,t

=ãfull
train,iX

(
Wfull

t+1 −Wfull
t

)⊤ (
Σfull

i,t + Σ̃full
i,t

)⊤
=− ηãfull

train,iX∇Wfull
t
L̂full

train

(
Wfull

t

)(
Σfull

i,t + Σ̃full
i,t

)⊤
.

(150)

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Thus, the following holds:

∆full
i,t =yi

(
zfull
i,t+1 − zfull

i,t

)
v⊤

=− ηyiã
full
train,iX∇Wfull

t
L̂full

train

(
Wfull

t

)(
v
(
Σfull

i,t + Σ̃full
i,t

))⊤
=− ηyiã

full
train,iX∇Wfull

t
L̂full

train

(
Wfull

t

)(
vΣ̃full

i,t

)⊤
− ηyiã

full
train,iX∇Wfull

t
L̂full

train

(
Wfull

t

)(
vΣfull

i,t

)⊤
=U

(1)
i,t +U

(2)
i,t ,

(151)

where we define:
U

(1)
i,t = −ηyiãfull

train,iX∇Wfull
t
L̂full

train

(
Wfull

t

)(
vΣ̃full

i,t

)⊤
, (152)

and
U

(2)
i,t = −ηyiãfull

train,iX∇Wfull
t
L̂full

train

(
Wfull

t

)(
vΣfull

i,t

)⊤
. (153)

For U(1)
i,t , we notice that:∥∥∥vΣ̃full

i,t

∥∥∥
2
≤∥v∥2

∥∥∥Σ̃full
i,t

∥∥∥
2

≤h
1
2 max

j

∣∣∣∣∣(Σfull
i,t+1 −Σfull

i,t

)
jj

(
wfull

j,t+1

)⊤(
wfull

j,t+1 −wfull
j,t

)⊤
∣∣∣∣∣

≤h
1
2 max

j

∣∣∣∣∣
(
wfull

j,t+1

)⊤(
wfull

j,t+1 −wfull
j,t

)⊤
∣∣∣∣∣ .

(154)

Using Lemma K.5 and noticing that τ has a upper bound, we have:∣∣∣∣∣∣∣
(
wfull

j,t+1

)⊤
(
wfull

j,t+1 −wfull
j,t

)⊤
∣∣∣∣∣∣∣ ≤

∥∥∥wfull
j,t+1

∥∥∥
2∥∥wfull

j,t+1

∥∥
2
−
∥∥wfull

j,t

∥∥
2

≤

∥∥∥wfull
j,0

∥∥∥
2
+ τ

ετ
≤ C2τ

−1, (155)

where ε represents a positive small enough constant and C2 is a positive constant.

Then we have
∥∥∥vΣ̃full

i,t

∥∥∥
2

≤ C2h
1
2 τ−1, thereby we know that

∣∣∣U(1)
i,t

∣∣∣ ≤

C3ηd
1
2
maxh

1
2 τ−1

∥∥∥∇Wfull
t
L̂full

train

(
Wfull

t

)∥∥∥
F

.

Moreover, we have:

1

ntrain

ntrain∑
l′
(
yiŷ

full
i,t

)
U

(2)
i,t

=− η

ntrain

ntrain∑
l′
(
yiŷ

full
i,t

)
yiã

full
train,iX∇Wfull

t
L̂full

train

(
Wfull

t

)(
vΣfull

i,t

)⊤
=− η

∥∥∥∇Wfull
t
L̂full

train

(
Wfull

t

)∥∥∥2
F
.

(156)

Therefore, putting everything together, we have:

L̂full
train

(
Wfull

t+1

)
− L̂full

train

(
Wfull

t

)
=

1

ntrain

ntrain∑
i=1

[
l′
(
yiŷ

full
i,t+1

)
∆full

i,t+1 +
1

8

(
∆full

i,t+1

)2]
≤ 1

ntrain
l′
(
yiŷ

full
i,t+1

)(
U

(1)
i,t +U

(2)
i,t

)
+ C4dmaxhη

2
∥∥∥∇Wfull

t
L̂full

train

(
Wfull

t

)∥∥∥2
F

≤−
(
η − C4dmaxhη

2) ∥∥∥∇Wfull
t
L̂full

train

(
Wfull

t

)∥∥∥2
F

−
C3ηd

1
2
maxh

1
2

∥∥∥∇Wfull
t
L̂full

train

(
Wfull

t

)∥∥∥
F

ntrainτ

ntrain∑
i=1

l′
(
yiŷ

full
i,t+1

)
.

(157)

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Since we both have the condition "with the probability at least 1−exp
(
−O

(
hα2/ (ntraindmax)

))
" and

"with the probability at least 1− exp (−O (1))", we can write the condition as "with the probability
at least 1− exp (−O (1))".

Proved.

K.4 PROOF OF LEMMA E.5

Lemma K.6 For any δ > 0, with probability at least 1− e−O(1), if Wmini
t ∈ B

(
Wmini

0 , τ
)
, it holds

that: ∥∥wmini
j,t

∥∥
2
≤ C + τ,

and ∥∥wmini
j,0

∥∥
2
≤ C,

for j ∈ {1, . . . , h}, where C = κ (
√
r + δ) is positive constant.

Proof of Lemma E.5: Since l (x) is 1/4-smooth, the following holds for any ∆ and x:

l (x+∆) ≤ l (x) + l′ (x)∆ +
1

8
∆2. (158)

Then we have the following upper bound on L̂full
train

(
Wmini

t+1

)
− L̂full

train

(
Wmini

t

)
:

L̂full
train

(
Wmini

t+1, Ã
mini
train

)
− L̂full

train

(
Wmini

t , Ãmini
train

)
=

1

ntrain

ntrain∑
i=1

[
l
(
yiŷ

mini
i,t+1

)
− l
(
yiŷ

mini
i,t

)]
=

1

ntrain

ntrain∑
i=1

[
l′
(
yiŷ

mini
i,t+1

)
∆mini

i,t+1 +
1

8

(
∆mini

i,t+1

)2]
,

(159)

where ∆mini
i,t+1 = yi

(
ŷmini
i,t+1 − ŷmini

i,t

)
.

Then, taking expectation conditioning Wmini
t gives:

E
[
L̂full

train

(
Wmini

t+1, Ã
mini
train

)
|Wmini

t

]
− L̂full

train

(
Wmini

t , Ãmini
train

)
=

1

ntrain

ntrain∑
i=1

[
l′
(
yiŷ

mini
i,t+1

)
E
[
∆mini

i,t+1|Wmini
t

]
+

1

8
E
[(

∆mini
i,t+1

)2
|Wmini

t

]]
.

(160)

Similar to the proof of Lemma D.5, we have:

1

ntrain

ntrain∑
i=1

l′
(
yiŷ

mini
i,t+1

)
E
[
∆mini

i,t+1|Wmini
t

]
≤− η

∥∥∥∇Wmini
t
L̂full

train

(
Wmini

t , Ãmini
train

)∥∥∥2
F

−
C1ηβ

1
2 h

1
2

∥∥∥∇Wmini
t
L̂full

train

(
Wmini

t , Ãmini
train

)∥∥∥
F

ntrainτ

ntrain∑
i=1

l′
(
yiŷ

mini
i,t+1

)
.

(161)

In terms of E
[(
∆mini
i,t+1

)2 |Wmini
t

]
, similar to the proof of Lemma D.5, we have:

E
[(

∆mini
i,t+1

)2
|Wmini

t

]
≤ C2βhη

2E
[∥∥∥∇Wmini

t
L̂mini

train

(
Wmini

t , Ãmini
train

)∥∥∥2
F
|Wmini

t

]
. (162)

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

Furthermore, using Lemma E.6, we have:

E
[∥∥∥∇Wmini

t
L̂mini

train

(
Wmini

t , Ãmini
train

)∥∥∥2
F
|Wmini

t

]
≤E

[∥∥∥∇Wmini
t
L̂mini

train

(
Wmini

t , Ãmini
train

)
−∇Wmini

t
L̂full

train

(
Wmini

t , Ãmini
train

)∥∥∥2
F
|Wmini

t

]
+
∥∥∥∇Wmini

t
L̂full

train

(
Wmini

t , Ãmini
train

)∥∥∥2
F

≤ n2
train

ntrainb

∥∥∥∇Wmini
t
L̂full

train

(
Wmini

t , Ãmini
train

)∥∥∥2
F
+
∥∥∥∇Wmini

t
L̂full

train

(
Wmini

t , Ãmini
train

)∥∥∥2
F

≤2ntrain

b

∥∥∥∇Wmini
t
L̂full

train

(
Wmini

t , Ãmini
train

)∥∥∥2
F
.

(163)

Hence, the following holds:

E
[(

∆mini
i,t+1

)2
|Wmini

t

]
≤ C3βhntrainη

2

b

∥∥∥∇Wmini
t
L̂full

train

(
Wmini

t , Ãmini
train

)∥∥∥2
F

(164)

Therefore, we have:
E
[
L̂full

train

(
Wmini

t+1, Ã
mini
train

)
|Wmini

t

]
− L̂full

train

(
Wmini

t , Ãmini
train

)
≤−

(
η − C3ntrainβhη

2

b

)∥∥∥∇Wmini
t
L̂full

train

(
Wmini

t , Ãmini
train

)∥∥∥2
F

−
C1ηβ

1
2 h

1
2

∥∥∥∇Wmini
t
L̂full

train

(
Wmini

t , Ãmini
train

)∥∥∥
F

ntrainτ

ntrain∑
i=1

l′
(
yiŷ

mini
i,t+1

) (165)

Since we both have the condition "with the probability at least 1− exp
(
−O

(
hα2/ (ntrainβ)

))
" and

"with the probability at least 1− exp (−O (1))", we can write the condition as "with the probability
at least 1− exp (−O (1))".

Proved.

L PROOF OF AUXILIARY LEMMAS OF CONVERGENCE THEOREMS WITH CE

L.1 PROOF OF LEMMA K.1:

We first focus on the mini-batch training. The normalized adjacency matrix can be expressed as:

Ãmini
train =


1√
din
1

. . .
1√
din
b


a11 · · · a1n

...
. . .

...
ab1 · · · abn




1√
dout
1

. . .
1√
dout
n



=


1√
din
1

1√
dout
1

a11 · · · 1√
din
1

1√
dout
n

a1n

...
. . .

...
1√
din
1

1√
dout
b

ab1 · · · 1√
din
b

1√
dout
n

abn

 ,
(166)

where aij ∈ {0, 1} for any node i in the mini batch and j ∈ {1, . . . , n}.

Then, the following inequality holds on the l2-norm of ãmini
train,i:∥∥∥ãmini

train,i

∥∥∥2
2
≤ 1

din
i d

out
1

+ · · ·+ 1

din
i d

out
n

≤ β, (167)

where the first inequality has at most β terms because there exist at most β terms with aij = 1, and
the last inequality follows 1

din
i d

out
j

≤ 1.

Similarly, under the full-graph training, we have:∥∥∥ãfull
train,i

∥∥∥2
2
≤ 1

din
i d

out
1

+ · · ·+ 1

din
i d

out
n

≤ dmax. (168)

This completes the proof.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

L.2 PROOF OF LEMMA K.2:

We first focus on the mini-batch training.

For any fixed i ∈ {1, . . . , ntrain} and j ∈ {1, . . . , h}, conditioned on ãmini
train,iX, we have:

E
[
σ2

(
ãmini

train,iX
(
wmini

j

)⊤)
|ãmini

train,iX

]
=
1

2
E

[(
ãmini

train,iX
(
wmini

j

)⊤)2

|ãmini
train,iX

]

=
∥∥∥ãmini

train,iX
∥∥∥2
2
κ2,

(169)

where the last inequality is due to ãmini
train,iX

(
wmini
j

)⊤ ∼ N
(
0,
∥∥ãmini

train,iX
∥∥2
2
κ2I
)

conditioned on

ãmini
train,iX.

Then, since zmini
i = ãmini

train,iX(Σmini
i Wmini)⊤, by Bernstein inequality, for any ξ ≥ 0, we have:

P
(∣∣∣∣∥∥∥zmini

i

∥∥∥2
2
−
∥∥∥ãmini

train,iX
∥∥∥2
2

∣∣∣∣ ≥ ∥∥∥ãmini
train,iX

∥∥∥2
2
ξ|ãmini

train,iX

)
≤ 2 exp

(
−Chmin

{
ξ2, ξ

})
.

(170)

Taking union bound over i, we have:

P
(∣∣∣∣∥∥∥zmini

i

∥∥∥2
2
−
∥∥∥ãmini

train,iX
∥∥∥2
2

∣∣∣∣ ≤ ∥∥∥ãmini
train,iX

∥∥∥2
2
ξ, i = 1, . . . , ntrain

)
≤ 1− 2ntrain exp

(
−Chmin

{
ξ2, ξ

})
,

(171)

which further implies that, if h ≥ C2
1 log (ntrain/δ), then with probability at least 1− δ, we have:∣∣∣∣∥∥∥zmini

i

∥∥∥2
2
−
∥∥∥ãmini

train,iX
∥∥∥2
2

∣∣∣∣ ≤ C1

∥∥∥ãmini
train,iX

∥∥∥2
2

√
log (ntrain/δ)

h
, (172)

for any i = 1, . . . , ntrain, where C1 is an absolute constant.

This inequality implies that:∥∥∥zmini
i

∥∥∥2
2
≤

[
1 + C1

√
log (ntrain/δ)

h

] 1
2 ∥∥∥ãmini

train,iX
∥∥∥2
2

≤

[
1 + C1

√
log (ntrain/δ)

h

] 1
2 ∥∥∥ãmini

train,i

∥∥∥2
2
∥X∥22

≤C
1
2
x β

1
2

(
1 + C1

√
log (ntrain/δ)

h

)
,

(173)

where the last inequality fowllows by the fact that (1 + x)
1
2 ≤ 1 + x for x > 0, which is applicable

here.

Similarly, we can also prove that:∥∥∥zmini
i

∥∥∥2
2
≥ C

1
2
x β

1
2

(
1− C2

√
log (ntrain/δ)

h

)
, (174)

for some absolute constant C2. Hence, we have:∣∣∣∣∥∥∥zmini
i

∥∥∥2
2
− C

1
2
x β

1
2

∣∣∣∣ ≤ C3

√
β
log (ntrain/δ)

h
, (175)

where C3 is an absolute constant.

For the full-graph training, we can replace β by dmax as:∣∣∣∣∥∥∥zmini
i

∥∥∥2
2
− C

1
2
x d

1
2
max

∣∣∣∣ ≤ C4

√
dmax

log (ntrain/δ)

h
, (176)

where C4 is an absolute constant.

This completes the proof.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

L.3 PROOF OF LEMMA K.3 AND K.4

Lemma L.1 Assume that for i ̸= j such that yi ̸= yj ,
∥∥ãfull

train,iX− ãfull
train,jX

∥∥
2

≥ α

and
∥∥ãmini

train,iX− ãmini
train,jX

∥∥
2

≥ α. For any m = (m1, . . . ,mntrain) ∈ Rntrain
+ ,

we define h
(
wfull
j

)
=

∑ntrain
i=1 miyiσ

′
(
ãfull

train,iX
(
wfull
j

)⊤)
ãfull

train,iX and h
(
wmini
j

)
=∑ntrain

i=1 miyiσ
′
(
ãmini

train,iX
(
wmini
j

)⊤)
ãmini

train,iX, where wj is a Gaussian random vector for any
j = 1, . . . , h. There exist absolute constant C,C1, C2, C3 > 0 such that:

P
[∥∥h (wfull

j

)∥∥
2
≥ C ∥m∥∞

]
≥ C1

α2

ntraindmax
.

and

P
[∥∥h (wmini

j

)∥∥
2
≥ C2 ∥m∥∞

]
≥ C3

α2

ntrainβ
.

Proof of Lemma K.3 and K.4: We first focus on the mini-batch training. Under the assumption,
we know that for i ̸= j and yi ̸= yj ,

∥∥ãmini
train,iX− ãmini

train,jX
∥∥
2
≥ α. For any given j = {1, . . . , h} and

m̂ with ∥m̂∥∞ = 1, by Lemma L.1, we have:

P

[∥∥∥∥∥ 1

ntrain

ntrain∑
i=1

m̂iyiσ
′
(
ãmini

train,iX
(
wmini

j

)⊤)
ãmini

train,iX

∥∥∥∥∥
2

≥ C2

ntrain

]
≥ C3α

2

ntrainβ
. (177)

Let Sntrain−1
∞,+ =

{
m ∈ Rntrain

+ : ∥m∥∞ = 1
}

, and U = U
[
Sntrain−1
∞,+ , C2/ (4ntrain)

]
be a C2/ (4ntrain)-

net covering Sntrain−1
∞,+ in l∞-norm. Then we have:

|U| ≤ (4ntrain/C2)
ntrain . (178)

For j = 1, . . . , h, we define:

Zij = 1

[∥∥∥∥∥ 1

ntrain

ntrain∑
i=1

m̂iyiσ
′
(
ãmini

train,iX
(
wmini

j

)⊤)
ãmini

train,iX

∥∥∥∥∥
2

≥ C2

ntrain

]
. (179)

Let pα = C3α
2

ntrainβ
, by Bernstein ineuqality and union bound, with probability at least 1 −

exp (−C4hpα + ntrain log (4ntrain/C2)) ≥ 1− exp
(
−C5hα

2/ (ntrainβ)
)
, we have:

1

h

h∑
j=1

Zj ≥ pα
2
, (180)

where C4 and C5 are absolute constants.

For any m ∈ Sntrain−1
∞,+ , there exists m̂ ∈ U such that:

∥m− m̂∥∞ ≤ C2/ (4ntrain) . (181)

Therefore, we have:

|

∥∥∥∥∥ 1

ntrain

ntrain∑
i=1

miyiσ
′
(
ãmini

train,iX
(
wmini

j

)⊤)
ãmini

train,iX

∥∥∥∥∥
2

−

∥∥∥∥∥ 1

ntrain

ntrain∑
i=1

m̂iyiσ
′
(
ãmini

train,iX
(
wmini

j

)⊤)
ãmini

train,iX

∥∥∥∥∥
2

| ≤ C6β
2.

(182)

where C6 is an absolute constant.

It is clear that with probability 1− exp
(
−C5hα

2/ (ntrainβ)
)
), for any m ∈ Sntrain−1

∞,+ , there exist at
least C3hα

2/ (ntrainβ) GNN nodes that satisfy:∥∥∥∥∥ 1

ntrain

ntrain∑
i=1

m̂iyiσ
′
(
ãmini

train,iX
(
wmini

j

)⊤)
ãmini

train,iX

∥∥∥∥∥
2

≥ C6β
2 = C6β

2 ∥m∥∞ . (183)

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

Similarly, for the full-graph training, we replace β by dmax. It is clear that with probability 1 −
exp

(
−C7hα

2/ (ntraindmax)
)
), for any m ∈ Sntrain−1

∞,+ , there exist at least C8hα
2/ (ntraindmax) GNN

nodes that satisfy:∥∥∥∥∥ 1

ntrain

ntrain∑
i=1

m̂iyiσ
′
(
ãfull

train,iX
(
wfull

j

)⊤)
ãfull

train,iX

∥∥∥∥∥
2

≥ C9d
2
max = C9d

2
max ∥m∥∞ . (184)

where C7, C8 and C9 are absolute constants.

This completes the proof.

L.4 PROOF OF LEMMA K.5 AND K.6:

We first focus on the mini-batch training. Under the assumption, we know that each row of Wmini
0

follows N
(
0, κ2I

)
. We define:

Wmini
0 = κZ, (185)

where Z ∈ Rh×r with Zj ∈ R1×r ∼ N (0, I).

Using Vershynin’s result, we have:

P
(
∥Z∥2 ≤

√
r +

√
h+ δ

)
≥ 1− e−

δ2

2 , (186)

and
P
(
∥Zj∥2 ≤

√
r + δ

)
≥ 1− e−

δ2

2 . (187)

Therefore, with probability at least 1− e−
δ2

2 , we have:∥∥∥wmini
j,0

∥∥∥
2
≤ κ

(√
r + δ

)
(188)

Since Wmini
t ∈ B

(
Wmini

0 , τ
)
, we have:∥∥∥wmini

j,t

∥∥∥
2
≤ κ

(√
r + δ

)
+ τ (189)

Similarly, under the full-graph training, we have:∥∥∥wfull
j,0

∥∥∥
2
≤ κ

(√
r + δ

)
(190)

and ∥∥∥wfull
j,t

∥∥∥
2
≤ κ

(√
r + δ

)
+ τ (191)

L.5 PROOF OF LEMMA L.1:

We first focus on the mini-batch training. Without loss of generality, we assume that m1 = ∥m∥∞.
Let z̃1 = ãmini

train,1X/
∥∥ãmini

train,1X
∥∥
2
, we can construct an orthonormal matrix Q = [z̃1,Q

′] ∈ Rr×r.

Let u = Q⊤wmini
j ∼ N

(
0, κ2I

)
be a Gaussian random vector with 0 < κ ≤ 1. Then we have:

wmini
j =

∥∥∥ãmini
train,1X

∥∥∥
2
Qu = u1ã

mini
train,1X+

∥∥∥ãmini
train,1X

∥∥∥
2
Q′u′, (192)

where u′ = (u2, . . . ,ur)
⊤.

We define the following two events based on a parameter γ ∈ (0, 1]:

E1(γ) = {Cxβ |u1| ≤ γ} , (193)

and
E2(γ) = {

∣∣∣< ∥∥∥ãmini
train,1X

∥∥∥
2
Q′u′, ãmini

train,iX >
∣∣∣ ≤ γ

for all ãmini
train,iX such that

∥∥∥ãmini
train,iX− ãmini

train,1X
∥∥∥
2
≥ α}.

(194)

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

Let E(γ) = E1(γ) ∩ E2(γ). We first give lower bound for P (E) = P (E1)P (E2).

Since u1 ∼ N
(
0, κ2

)
, we have:

P (E1) ≥P
({
Cxβ |u1| ≤ κ2γ

})
=

1√
2π

∫ γκ2

Cxβ

− γκ2

Cxβ

exp

(
−1

2
x2
)
dx

≥
√

2

πe

γκ2

Cxβ
.

(195)

Moreover, by definition, for any i = 1, . . . , ntrain, we have:

<
∥∥∥ãmini

train,1X
∥∥∥
2
Q′u′, ãmini

train,iX >

∼ N

[
0,
∥∥∥ãmini

train,1X
∥∥∥2
2

∥∥∥ãmini
train,iX

∥∥∥2
2
−
((

ãmini
train,1X

)⊤
ãmini

train,iX

)2
]
.

(196)

Let I =
{
i :
∥∥ãmini

train,iX− ãmini
train,1X

∥∥
2
≥ α

}
. For any i ∈ I, we have:∥∥∥ãmini

train,iX− ãmini
train,1X

∥∥∥
2

=
∥∥∥ãmini

train,iX
∥∥∥
2
+
∥∥∥ãmini

train,1X
∥∥∥
2
− 2 < ãmini

train,iX, ã
mini
train,1X > .

(197)

Then we have:

−Cxβ +
α2

2
≤< ãmini

train,iX, ã
mini
train,1X >≤ Cxβ − α2

2
, (198)

and if α2 ≤ 2Cxβ, then:

C2
xβ

2 −
((

ãmini
train,1X

)⊤
ãmini

train,iX

)2

≥C2
xβ

2 −
(
C2

xβ
2 − α2

2

)2

≥C2
xβ

2 ≥ α2

4

(199)

Therefore, for any i ∈ I, we have:

P
[∣∣∣< ∥∥∥ãmini

train,1X
∥∥∥
2
Q′u′, ãmini

train,iX >
∣∣∣ ≤ γ

]
=

1√
2π

∫ [
∥ãmini

train,1X∥2

2
∥ãmini

train,iX∥2

2
−
(
(ãmini

train,1X)
⊤
ãmini

train,iX
)2

] 1
2
γ

−
[
∥ãmini

train,1X∥2

2
∥ãmini

train,iX∥2

2
−
(
(ãmini

train,1X)
⊤
ãmini

train,iX
)2

] 1
2
γ

exp

(
−1

2
x2
)
dx

≤ 1√
2π

∫ [
C2

xβ2−
(
(ãmini

train,1X)
⊤
ãmini

train,iX
)2

] 1
2
γ

−
[
C2

xβ2−
(
(ãmini

train,1X)
⊤
ãmini

train,iX
)2

] 1
2
γ

exp

(
−1

2
x2
)
dx

≤
√

2

π

γ[
C2

xβ2 −
((

ãmini
train,1X

)⊤
ãmini

train,iX
)2] 1

2

≤
√

2

π

γ

α2/2

(200)

Taking union bound over I, we have:

P (E2) ≥ 1− 2
√
2√
π
ntrainγα

−2. (201)

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

Therefore, we have:

P (E) ≥
√

2

πe

γκ2

Cxβ

(
1− 2

√
2√
π
ntrainγα

−2

)
. (202)

Setting γ =
√
πα2

4
√
2ntrain

, we obtain:

P (E) ≥
√

2

πe

κ2

Cxβ

√
πα2

4
√
2ntrain

(
1− 2

√
2√
π
ntrain

√
πα2

4
√
2ntrain

α−2

)
=

κ2α2

8
√
eCxntrainβ

.

(203)

Let I ′ = [ntrain]\ (I ∪ {1}). Conditioning on event E , we have:

h
(
wmini

j

)
=

ntrain∑
i=1

miyiσ
′
(
ãmini

train,iX
(
wmini

j

)⊤)
ãmini

train,iX

=m1y1σ
′ (u1) ã

mini
train,1X

+
∑
i∈I

miyiσ
′
(
u1 < ãmini

train,1X, ã
mini
train,iX >,<

∥∥∥ãmini
train,1X

∥∥∥
2
Q′u′, ãmini

train,iX >
)
ãmini

train,iX

+
∑
i∈I′

miyiσ
′
(
u1 < ãmini

train,1X, ã
mini
train,iX >,<

∥∥∥ãmini
train,1X

∥∥∥
2
Q′u′, ãmini

train,iX >
)
ãmini

train,iX

=m1y1σ
′ (u1) ã

mini
train,1X+

∑
i∈I

miyiσ
′
(
<
∥∥∥ãmini

train,1X
∥∥∥
2
Q′u′, ãmini

train,iX >
)
ãmini

train,iX

+
∑
i∈I′

miyiσ
′
(
u1 < ãmini

train,1X, ã
mini
train,iX >,<

∥∥∥ãmini
train,1X

∥∥∥
2
Q′u′, ãmini

train,iX >
)
ãmini

train,iX,

(204)

where the last equality follows from the fact that conditioning on event E , for all i ∈ I, it hold that:∣∣∣< ∥∥∥ãmini
train,1X

∥∥∥
2
Q′u′, ãmini

train,iX >
∣∣∣ ≥ |u1Cxβ| ≥

∣∣∣u1 < ãmini
train,1X, ã

mini
train,iX >

∣∣∣ . (205)

We then consider two cases: u1 > 0 and u1 < 0, which occur equally likely conditioning on E .

Therefore, we have:

P

[∥∥∥h(wmini
j

)∥∥∥
2
≥ inf

u
(1)
1 >0,u

(2)
1 <0

max
{∥∥∥h(wmini,(1)

j

)∥∥∥
2
,
∥∥∥h(wmini,(2)

j

)∥∥∥
2

}
|E

]
≥ 1

2
, (206)

where we define w
mini,(1)
j = u

(1)
1 ãmini

train,1X +
∥∥ãmini

train,1X
∥∥
2
Q′u′ and w

mini,(2)
j = u

(2)
1 ãmini

train,1X +∥∥ãmini
train,1X

∥∥
2
Q′u′.

By the inequality max {∥a∥2 , ∥b∥2} ≥ ∥a− b∥2 /2, we have:

P

[∥∥∥h(wmini
j

)∥∥∥
2
≥ inf

u
(1)
1 >0,u

(2)
1 <0

∥∥∥h(wmini,(1)
j

)
− h

(
w

mini,(2)
j

)∥∥∥
2
/2|E

]
≥ 1

2
, (207)

By Eq 204, we have:

h
(
w

mini,(1)
j

)
− h

(
w

mini,(2)
j

)
= m1y1ã

mini
train,1X+

∑
i∈I′

m′
iyiã

mini
train,iX, (208)

where we define:

m′
i = mi[σ

′
(
u
(1)
1 < ãmini

train,1X, ã
mini
train,iX >,<

∥∥∥ãmini
train,1X

∥∥∥
2
Q′u′, ãmini

train,iX >
)

− σ′
(
u
(2)
1 < ãmini

train,1X, ã
mini
train,iX >,<

∥∥∥ãmini
train,1X

∥∥∥
2
Q′u′, ãmini

train,iX >
)
].

(209)

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

Note that for all i ∈ I ′, we have yi = y1 and < ãmini
train,1X, ã

mini
train,iX >≥ Cxβ − α2/2 ≥ 0. Therefore,

since u
(1)
1 > 0 > u

(2)
1 , we have:

σ′
(
u
(1)
1 < ãmini

train,1X, ã
mini
train,iX >,<

∥∥∥ãmini
train,1X

∥∥∥
2
Q′u′, ãmini

train,iX >
)

− σ′
(
u
(2)
1 < ãmini

train,1X, ã
mini
train,iX >,<

∥∥∥ãmini
train,1X

∥∥∥
2
Q′u′, ãmini

train,iX >
)
≥ 0.

(210)

Therefore, m′
i ≥ 0 for all i ∈ I ′ and

h
(
w

mini,(1)
j

)
− h

(
w

mini,(2)
j

)
= y1

(
m1ã

mini
train,1X+

∑
i∈I′

m′
iã

mini
train,iX

)
. (211)

Then we have: ∥∥∥h(wmini,(1)
j

)
− h

(
w

mini,(2)
j

)∥∥∥
2

≥

∥∥∥∥∥y1
(
m1ã

mini
train,1X+

∑
i∈I′

m′
iã

mini
train,iX

)∥∥∥∥∥
2

≥ <m1ã
mini
train,1X+

∑
i∈I′

m′
iã

mini
train,iX, ã

mini
train,1X > /

∥∥∥ãmini
train,1X

∥∥∥
2

≥m1.

(212)

Since the inequality above holds for any u
(1)
1 > 0 and u

(2)
1 < 0, taking infimum, we have:

inf
u
(1)
1 >0,u

(2)
1 <0

∥∥∥h(wmini,(1)
j

)
− h

(
w

mini,(2)
j

)∥∥∥
2
≥ m1. (213)

Therefore, we have:
P
[∥∥∥h(wmini

j

)∥∥∥
2
≥ m1/2|E

]
≥ 1

2
. (214)

Since m1 = ∥m∥∞ and P (E) ≥ κ2α2

8
√
eCxntrainβ

, we have:

P
[∥∥∥h(wmini

j

)∥∥∥
2
≥ C ∥m∥∞

]
≥ C1α

2

ntrainβ
, (215)

where C and C1 are absolute constants.

Similarly, for the full-graph training, we can replace β by dmax as:

P
[∥∥∥h(wfull

j

)∥∥∥
2
≥ C2 ∥m∥∞

]
≥ C3α

2

ntraindmax
, (216)

where C2 and C3 are absolute constants.

Proved.

M PROOFS OF THE MAIN THEOREM AND LEMMA OF THEOREM 5

M.1 PROOF OF THEOREM G.5

Lemma M.1. (Lemma 4 in (Ma et al., 2021)) For any two distributions P and Q defined on the
hypothesis space, and any function f(·) ∈ R with domf in this hypothesis space, we have:

Ex∼Q ≤ DKL (Q∥P) + Ex∼Pe
f(x).

Lemma M.2. (Lemma 2 in (Ma et al., 2021)) Suppose x1, x2, . . . , xn are independent random
variables with ai ≤ xi ≤ bi, ∀i = 1, 2, . . . , n. Let x = 1

n

∑n
i=1 xi. Then, for any C > 0,

P (|x− E (x) | > C) ≤ 2e
− n2C2∑n

i=1(bi−ai)
2
.

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

Lemma M.3. (Lemma 3 in (Ma et al., 2021)) If x is a centered random variable, i.e., E (x) = 0,
and if ∃C1 > 0, for any C2 > 0,

P (|x| > C2) ≤ 2e−C1C
2
2 .

Then, for any Cu > 0,

E
(
eCux

)
≤ e

C2
u

2C1 .

Proof of Theorem G.5: We are going to prove the result by upper-bounding the quantity
Cu(Ltest

(
Wmini, Ãfull

test;Q
)
− L̂full

train

(
Wmini, Ãmini

train;Q
)

. First, we have:

Cu(Ltest

(
Wmini, Ãfull

test;Q
)
− L̂full

train

(
Wmini, Ãmini

train;Q
)

≤EWmini∼Q

[
Cu

(
Ltest

(
Wmini, Ãfull

test

)
− L̂full

train

(
Wmini, Ãmini

train

))]
≤DKL(Q∥P) + lnEWmini∼P

[
e(Ltest(Wmini,Ãfull

test)−L̂full
train(W

mini,Ãmini
train))

]
,

(217)

where the last inequality uses Lemma M.1.

Next, we upper-bound the second term in the RHS of (217). Here the term Λ =

EWmini∼P

[
e(Ltest(Wmini,Ãfull

test)−L̂
full
train(W

mini,Ãmini
train))

]
is a random variable with the randomness coming

from the sample of node labels in training dataset, and P is independent of node labels y from train-
ing dataset. Applying Markov’s inequality to the term Λ, we have for any CG > 0, with probability
at least 1− CG over y from training set,

Λ ≤ 1

CG
Ey∼training set [Λ] , (218)

and hence,
lnΛ ≤ ln

1

CG
Ey∼training set [Λ] = ln

1

CG
+ lnEy∼training set [Λ] . (219)

Then we need to upper-bound lnEy∼training set [Λ]. We can rewrite it as:

lnEy∼training set [Λ]

= lnEy∼training setEWmini∼P

[
e(Ltest(Wmini,Ãfull

test)−L̂full
train(W

mini,Ãmini
train))

]
= lnEWmini∼PEy∼training set

[
e(Ltest(Wmini,Ãfull

test)−L̂full
train(W

mini,Ãmini
train))

]
.

(220)

For a fixed model with model parameters Wmini, we have

Ey∼training set

[
e(Ltest(Wmini,Ãfull

test)−L̂full
train(W

mini,Ãmini
train))

]
=Ey∼training set

[
e(Ltest(Wmini,Ãfull

test)−Lfull
train(W

mini,Ãmini
train)+Lfull

train(W
mini,Ãmini

train)−L̂full
train(W

mini,Ãmini
train))

]
=Ey∼training set

[
e(Ltest(Wmini,Ãfull

test)−Lfull
train(W

mini,Ãmini
train))e(L

full
train(W

mini,Ãmini
train)−L̂full

train(W
mini,Ãmini

train))
]

=e(Ltest(Wmini,Ãfull
test)−Lfull

train(W
mini,Ãmini

train))Ey∼training set

[
e(L

full
train(W

mini,Ãmini
train)−L̂full

train(W
mini,Ãmini

train))
]
.

(221)

In the following, we wil give an upper bound on Ey∼training set

[
e(L

full
train(W

mini,Ãmini
train)−L̂

full
train(W

mini,Ãmini
train))

]
that is independent of Wmini. For the entire training dataset, L̂full

train

(
Wmini, Ãmini

train

)
can be written as:

L̂full
train

(
Wmini, Ãmini

train

)
=

1

ntrain

∑
i∈training set

∥ŷmini
i − yi∥2F , (222)

where the node labels are independently sampled. Hence, L̂full
train

(
Wmini, Ãmini

train

)
is the empirical

mean of ntrain independent Bernoulli random variables and Lfull
train

(
Wmini, Ãmini

train

)
is the expectation

of L̂full
train

(
Wmini, Ãmini

train

)
. By Lemma M.2, for any C1 > 0,

P
(∣∣∣Lfull

train

(
Wmini, Ãmini

train

)
− L̂full

train

(
Wmini, Ãmini

train

)∣∣∣ ≥ C1

)
≤ 2e−2ntrainC

2
1 , (223)

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

and hence, by Lemma M.1, we have

Ey∼training set

[
eCu(Lfull

train(W
mini,Ãmini

train)−L̂full
train(W

mini,Ãmini
train))

]
≤ e

C2
u

4ntrain . (224)

Therefore, we have

lnΛ ≤ lnEWmini∼P

[
e(Ltest(Wmini,Ãfull

test)−Lfull
train(W

mini,Ãmini
train))e

C2
u

4ntrain

]

=U +
C2

u

4ntrain
.

(225)

Finally, we get

Cu(Ltest

(
Wmini, Ãfull

test;Q
)
− L̂full

train

(
Wmini, Ãmini

train;Q
)

≤DKL(Q∥P) + lnEWmini∼P

[
e(Ltest(Wmini,Ãfull

test)−L̂full
train(W

mini,Ãmini
train))

]
≤DKL(Q∥P) + ln

1

CG
+

C2
u

4ntrain
+ U.

(226)

Hence, we have the final result

Ltest

(
Wmini, Ãfull

test;Q
)

≤L̂full
train

(
Wmini, Ãmini

train;Q
)
+

1

Cu

(
DKL(Q∥P) + ln

1

CG
+

C2
u

4ntrain
+ U

)
.

(227)

M.2 PROOF OF LEMMA G.6

Recall that
U = lnEWmini∼P

[
eCu(Ltest(Wmini,Ãfull

test)−Lfull
train(W

mini,Ãmini
train))

]
. (228)

First, we focus on the term Ltest

(
Wmini, Ãfull

test

)
− Lfull

train

(
Wmini, Ãmini

train

)
. Set lmini

train(yi) = ∥ŷmini
i −

yi∥2F ,∀i ∈ train set and lmini
test (yj) =

∥∥ŷmini
i − yj

∥∥2
F
,∀i ∈ test set. Then we have

Ltest

(
Wmini, Ãfull

test

)
− Lfull

train

(
Wmini, Ãmini

train

)
=Ey∼test set

[
1

ntest

∑
j∈test set

lmini
test (yj)

]
− Ey∼train set

[
1

ntrain

∑
i∈train set

lmini
train(yi)

]

=
1

ntest

∑
j∈test set

lmini
test (yj)ρtest(yj)−

1

ntrain

∑
i∈train set

lmini
train(yi)ρtrain(yi)

(229)

Furthermore, we define Σtrain,i = Diag
(
1
{
ãmini

train,iX
(
Wmini

)⊤
> 0
})

∈ Rh×h to represent

whether the j-th element
{
ãtrain,iX

(
Wfull

)⊤}
j

is more than zero (1) or is zeroed out (0). Then we

have:
σ

(
ãmini

train,iX
(
Wmini

)⊤)
= ãmini

train,iX(Σtrain,iW
mini)⊤. (230)

Similarly, we have σ
(
ãmini

train,iX
(
Wmini∗)⊤) = ãmini

train,iX(Σ∗
train,iW

mini∗)⊤,

σ
(
ãfull

test,iX
(
Wmini

)⊤)
= ãfull

test,iX(Σtest,iW
mini)⊤, and σ

(
ãfull

test,iX
(
Wmini∗)⊤) =

ãfull
test,iX(Σ∗

test,iW
mini∗)⊤.

we set f(yi) = − 1
ntrain

lmini
train(yi) with ∀i ∈ train set and g(yj) = 1

ntest
lmini
test (yj) with ∀j ∈ test set and

nmin = min{ntrain, ntest}.

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

Hence, we have:

f(yi) + g(yj)

=
1

ntest
lmini
test (yj)−

1

ntrain
lmini
train(yi)

≤ 1

nmin

(
lmini
test (yj)− lmini

train(yi)
)

=
1

nmin

∥∥∥∥σ(ãfull
test,jX

(
Wmini

)⊤)
− σ

(
ãfull

test,jX
(
Wmini∗

)⊤)∥∥∥∥2
F

− 1

nmin

∥∥∥∥σ(ãmini
train,iX

(
Wmini

)⊤)
− σ

(
ãmini

train,iX
(
Wmini∗

)⊤)∥∥∥∥2
F

≤ 1

nmin
∥σ
(
ãfull

test,jX
(
Wmini

)⊤)
− σ

(
ãfull

test,jX
(
Wmini∗

)⊤)
−
(
σ

(
ãmini

train,iX
(
Wmini

)⊤)
− σ

(
ãmini

train,iX
(
Wmini∗

)⊤))
∥2F

=
1

nmin
∥ãfull

test,jX
(
Wmini

)⊤
Σ⊤

test,j − ãfull
test,jX

(
Wmini∗

)⊤
Σ∗

test,j
⊤

−
(
ãmini

train,iX
(
Wmini

)⊤
Σ⊤

train,i − ãmini
train,iX

(
Wmini∗

)⊤
Σ∗

train,i
⊤
)
∥2F

≤
∥X∥2F
nmin

(

(∥∥∥Wmini∗
∥∥∥2
F

∥∥Σ∗
train,i

∥∥2
F
+
∥∥∥Wmini

∥∥∥2
F
∥Σtrain,i∥2F

)∥∥∥ãfull
test,j − ãmini

train,i

∥∥∥2
F

+
∥∥∥Wmini∗

∥∥∥2
F

∥∥Σ∗
train,i −Σ∗

test,j

∥∥2
F

∥∥∥ãfull
test,j

∥∥∥2
F

+
∥∥∥Wmini

∥∥∥2
F
∥Σtrain,i −Σtest,j∥2F

∥∥∥ãfull
test,j

∥∥∥2
F
)

≤CF (Cw + 1)h2

nmin

(∥∥∥ãfull
test,j − ãmini

train,i

∥∥∥2
F
+ 2

∥∥∥ãfull
test,j

∥∥∥2
F

)
≤CF (Cw + 1)h2

nmin

(∥∥∥ãfull
test,j − ãfull

train,i

∥∥∥2
F
+ 2

∥∥∥ãfull
test,j

∥∥∥2
F
+
∥∥∥ãfull

train,i − ãmini
train,i

∥∥∥2
F

)
,

=
CF (Cw + 1)h2

nmin

(
δfull
i,j + δfull-mini

i

)
=δ(yi,yj , β, b)

(231)

where the penultimate inequality follows ∥Σtrain,i∥2F ,
∥∥Σ∗

train,i

∥∥2
F

≤ h,∥∥Σ∗
train,i −Σ∗

test,i

∥∥2
F
, ∥Σtrain,i −Σtest,i∥2F ≤ 2h because Σi is a diagonal matrix with

(Σi)jj ∈ {0, 1} for any j ∈ {1, . . . , h}. The penultimate expression is exactly the distance function

defined in Definition 1., δfull-mini
i,j =

∥∥ãfull
train,i − ãmini

train,i

∥∥2
F

, and δfull
i,j =

∥∥ãfull
test,j − ãfull

train,i

∥∥2
F
+2
∥∥ãfull

test,j

∥∥2
F

is a constant based on the split of training and testing.

Hence, we have

Ltest

(
Wmini, Ãfull

test

)
− Lfull

train

(
Wmini, Ãmini

train

)
=

1

2ntest

∑
j∈test set

lmini
test (yj)ρtest(yj)−

1

2ntrain

∑
i∈train set

lmini
train(yi)ρtrain(yi)

≤∆train,test(β, b) = min
∑

i∈train set

∑
j∈test set

θi,jδ(yi,yj , β, b)

=min
∑

i∈train set

∑
j∈test set

θi,j
CF (Cw + 1)h2

nmin

(
δfull
i,j + δfull-mini

i

)
(232)

Then we mainly focus on the elements of δfull-mini
i .

Recall that ãfull
train,i,j = 1√

din,full
i

√
dout,full
j

afull
ij and ãmini

train,i,j = 1√
din,mini
i

√
dout,mini
j

amini
ij , where afull

ij , a
mini
ij ∈

{0, 1} represents whether node i receives a message from node j (1) or not (0).

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

Hence, we have:

∥∥∥ãfull
train,i − ãmini

train,i

∥∥∥2
F
=

n∑
j=1

∣∣∣∣∣∣∣
1√

din,full
i

√
dout,full
j

afull
ij − 1√

din,mini
i

√
dout,mini
j

amini
ij

∣∣∣∣∣∣∣
2

, (233)

where 1√
din,full
i

√
dout,full
j

≤ 1√
din,mini
i

√
dout,mini
j

.

We fix the batch size b. Notice that when the fan-out size β increases, dout,mini
j may increase and

we have four cases: (1). amini
ij keeps as 0 given afull

ij = 0, (2). amini
ij keeps as 0 given afull

ij = 1,
(3). amini

ij keeps as 1 given afull
ij = 1, (4). amini

ij becomes 1 from 0 given afull
ij = 1. Then

we have
∑n
j=1

∣∣∣∣∣ 1√
din,full
i

√
dout,full
j

afull
ij − 1√

din,mini
i

√
dout,mini
j

amini
ij

∣∣∣∣∣
2

are non-increasing when β increases

at the first three cases. However, at the fourth case, we may both have

∣∣∣∣∣ 1√
din,full
i

√
dout,full
j

∣∣∣∣∣
2

≤∣∣∣∣∣ 1√
din,full
i

√
dout,full
j

− 1√
din,mini
i

√
dout,mini
j

∣∣∣∣∣
2

and

∣∣∣∣∣ 1√
din,full
i

√
dout,full
j

∣∣∣∣∣
2

≥

∣∣∣∣∣ 1√
din,full
i

√
dout,full
j

− 1√
din,mini
i

√
dout,mini
j

∣∣∣∣∣
2

.

Hence, δfull-mini
i has a overall non-increasing trend when β increases but small non-monotonic

fluctuations can exist.

We fix the fan-out size β. Notice that when the batch size b increases, din,mini
j may increase and we

have three situations: (1). amini
ij keeps as 0 given afull

ij = 0, (2). amini
ij keeps as 0 given afull

ij = 1, (3).
amini
ij keeps as 1 given afull

ij = 1. Then we have δfull-mini
i is non-increasing when b increases.

Note that fan-out size β plays a more dominant role than batch size b in influencing generalization.
This is because the variation in fan-out size β not only increases the number of sampled neighbors
but also potentially alters the structure of the adjacency matrix of node i — by introducing new
connections during mini-batch sampling (i.e., the fourth case). This structural change can lead to more
significant variations in generalization performance. In contrast, changes in batch size b primarily
supplement the number of sampled nodes without modifying the adjacency structure of the node i.

Since δ(yi,yj , β, b) is proporional to δfull-mini
i,j =

∥∥ãfull
train,i − ãmini

train,i

∥∥2
F

and ∆(β, b) is proporional

to δ(yi,yj , β, b), we have the upper bound ∆(β, b) of Ltest

(
Wmini, Ãfull

test

)
− Lfull

train

(
Wmini, Ãmini

train

)
keeps non-increasing when b increases, and overall have the non-increasing trend when β increases
but small non-monotonic fluctuations exist.

Finally, we have

U = lnEWmini∼P

[
eCu(Ltest(Wmini,Ãfull

test)−Lfull
train(W

mini,Ãmini
train))

]
≤ lnEWmini∼P

[
eCu∆(β,b)

]
= ln(eCu∆(β,b))

=Cu∆(β, b).

(234)

This completes the proof.

N EXPERIMENTS

N.1 TRAINING SETTINGS

Testbed: The experiments, except those on the ogbn-papers100M, are conducted on a machine with
512GB of host memory and four NVIDIA A100 GPUs, each with 40GB of memory, inter-connected
via 900GB/s NVLink 4.0. The experiments on ogbn-papers100M are run on two machines without
GPUs, each equipped with 1024GB of host memory and an interconnect bandwidth of 50 Gbps.

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

Table 3: Datasets Info1.
Datasets #Nodes #Edges Avg. Degree #Classes #Features
Reddit 232,965 11,606,919 50 41 602
Ogbn-arxiv 169,343 1,166,243 7 40 128
Ogbn-products 2,449,029 61,859,140 25 47 100
Ogbn-papers100M 111,059,956 1,615,685,872 15 172 128

Table 4: Datasets Info2.
Datasets Train/Val/Test
Reddit 152,410/23,699/55,334
Ogbn-arxiv 90,941/29,799/48,603
Ogbn-products 195,922/48,980/2,204,127
Ogbn-papers100M 1,207,179 / 125,265/214,338

Metrics: 1). We evaluate convergence performance using three metrics: iteration-to-loss, iteration-to-
accuracy, and time-to-accuracy. These metrics measure training progress towards a target convergence
point in terms of training loss or validation accuracy. For all GNN models and datasets except ogbn-
papers100M, the target training loss is defined as the maximum loss observed over 100 consecutive
iterations at the smallest batch size, provided that the variance of these loss values is below 5× 10−4.
Similarly, the target validation accuracy is defined as the minimum accuracy over 100 consecutive
iterations at the smallest batch size, provided that the variance of these accuracies is below 4× 10−4.
Note that the defined target training loss and the defined target validation accuracy are applied across
all hyperparameter settings for the specific model and dataset. For ogbn-papers100M, training is
limited to 200 iterations due to the extremely large graph size and training time constraints. Note
that using the smallest batch size as the reference is common in prior works (Bajaj et al., 2024), and
serves as a conservative criterion: because fluctuations are most pronounced under the smallest batch
size, requiring stability in this setting to prevent mistaking transient variations for convergence and to
provide a uniform benchmark across batch sizes. Moreover, by enforcing a variance threshold, this
definition remains unbiased toward larger or smaller batch sizes and offers a fair basis for comparing
convergence across settings. 2). For generalization, test accuracy is used as the metric in the training
iteration. 3).For system efficiency, we measure the training throughput in terms of the number of
target nodes processed per second (number of nodes/s). This metric ensures that throughput reflects
the rate of training examples processed.

We run all implementations using Python 3.8.10 and dgl>=1.0.0. The uniform neighbor sampling
is used for mini-batch training. Due to the massive comparisons, adding error bars to every figure
would make them overly cluttered and difficult to interpret. We have repeated all experiments at least
three times using different seeds and observed low variance. For example, in Figure 6, the standard
deviation of the final accuracy is less than 3.17%. This small variance does not affect the observed
convergence trends, which remain consistent across runs.

N.2 METRICS: ITERATION-TO-LOSS

Simple mathematical derivation. In distributed systems with two devices, assuming:

• Per-iteration calculation time tcal: tcal = (b ∗ β + b)/C, where b is batch size, β is fan-out
size, and C is compute capacity (nodes/s);

• Per-iteration communication time tcomm : tcomm = b/H for mini-batch training and
tcomm = (b ∗ β + b)/H for full-graph training, where H is the bandwidth.

• time-to-accuracy t: t = n× (tcal + tcomm), where n is iteration-to-accuracy.

Consider two training setups:

• Full-graph training: bl = 1000, βl = 50, nl = 10 iterations to converge

• Mini-batch training: bs = 10, βs = 10, ns = 10000 iterations to converge

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

Under the same compute power C = 1 node/s, but different bandwidths:

• High bandwidth: Hh = 1000 nodes/s
• Low bandwidth: Hs = 0.1 nodes/s

Plugging into the formulas:

• High bandwidth: 1).Full-graph: t = 10×
(
1000·50+1000

1 + 1000·50+1000
1000

)
= 5.1051× 105 s

2). Mini-batch: t = 10000×
(
10·10+10

1 + 10
1000

)
= 1.1001× 106 s

Therefore, Full-graph training is faster.
• Low bandwidth: 1). Full-graph: t = 10×

(
1000·50+1000

1 + 1000·50+1000
0.1

)
= 5.61× 106 s

2). Mini-batch: t = 10000×
(
10·10+10

1 + 10
0.1

)
= 2.1× 106 s

Therefore, Mini-batch training is faster.

This example shows that time-to-accuracy may flip conclusions depending on hardware, while
iteration-to-accuracy remains stable.

Experiments. The vanilla distributed system (i.e., the standard implementation without any optimiza-
tions) is used for full-graph training, and the Distributed Data Parallel (DDP) technique (Li et al.,
2020) is applied for mini-batch training. We examine a three-layer GraphSAGE model on Reddit
and a three-layer GCN model on ogbn-products. These models include normalization layers and are
trained using a cross-entropy loss function and Adam optimizer with a learning rate of 0.01. The
target validation accuracy is set at 0.9 for ogbn-products and 0.95 for Reddit. The total batch size is
2000 and the fan-out size is [5,10,15]. To simulate infinite bandwidth (i.e., bw1), we use a single GPU
or CPU. For limited bandwidth (i.e., bw2), we use two GPUs interconnected via 900GB/s NVLink.

N.3 CONVERGENCE

For experiments on one-layer GNN models, the basic setups are without drop-out or normalization
layers and with ReLU activation, and SGD optimizer for both full-graph and mini-batch training. For
experiments in more general settings, multiple-layer GNNs are adopted without dropout layers and
with ReLU activation and Adam optimizer for both full-graph and mini-batch training. The SAR
system (Mostafa, 2022) is used for full-graph and mini-batch training on ogbn-papers100M via the
gloo backend, while other datasets are mainly trained on a single GPU.

Convergence of one-round GNN trained with MSE. To align with theoretical analysis, we use
iteration-to-loss here. The details are as follows: 1). The target training losses are 0.0226 for
ogbn-arxiv, 0.0225 for reddit and ogbn-products, and [0.005, 0.0054, 0.0065] for ogbn-papers100M
on GCN, GraphSAGE, GAT, respectively. 2). When varying the batch sizes, the fan-out size is 5. 3).
When varying the fan-out sizes, the batch size is 500 for ogbn-arxiv, ogbn-products and reddit, as
well as is 10000 for for ogbn-papers100M.

Figure 7-8 shows the iteration-to-loss for four datasets under GAT, GCN, and GraphSAGE trained
with MSE across different learning rates and either varying batch sizes or varying fan-out sizes.

Convergence of one-round GNN trained with CE. To align with theoretical analysis, we use
iteration-to-loss here. We set the original multi-class node classification task as the binary node
classification task. The details are as follows: 1). The target training losses are 0.51 for ogbn-arxiv,
[0.325,0.325,0.2] for reddit on GCN, GraphSAGE, GAT, respectively, [0.08,0.051,0.051] for ogbn-
products on GCN, GraphSAGE, GAT, respectively, and [0.009, 0.0087, 0.0087] for ogbn-papers100M
on GCN, GraphSAGE, GAT, respectively. 2). When varying the batch sizes, the fan-out size is 5. 3).
When varying the fan-out sizes, the batch size is 500 for ogbn-arxiv, ogbn-products and reddit, as
well as is 10000 for for ogbn-papers100M.

Figure 9-10 shows the iteration-to-loss for four datasets under GAT, GCN, and GraphSAGE trained
with MSE across different learning rates and either varying batch sizes or varying fan-out sizes.

Convergence in more general settings. For the comparison at the dimension of batch size and fan-
out size, we use 3-layer GraphSAGE models with hidden dimension of 256 for reddit, ogbn-products,

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2026

(a) Reddit, GAT (b) Products, GAT (c) Arxiv, GAT (d) Papers100M, GAT

(e) Reddit, GCN (f) Products, GCN (g) Arxiv, GCN (h) Papers100M, GCN

(i) Reddit, SAGE (j) Products, SAGE (k) Arxiv, SAGE (l) Papers100M, SAGE

Figure 7: Iteration-to-loss for real-world datasets for one-round GAT, GCN, GraphSAGE across
different batch sizes and learning rates under MSE.

(a) Reddit, GAT (b) Products, GAT (c) Arxiv, GAT (d) Papers100M, GAT

(e) Reddit, GCN (f) Products, GCN (g) Arxiv, GCN (h) Papers100M, GCN

(i) Reddit, SAGE (j) Products, SAGE (k) Arxiv, SAGE (l) Papers100M, SAGE

Figure 8: Iteration-to-loss for real-world datasets for one-round GAT, GCN, GraphSAGE across
different fan-out sizes and learning rates under MSE.

and ogbn-arxiv, and 2-layer GraphSAGE models with hidden dimension of 128 for ogbn-papers100M.
The activation function is ReLU function. The optimizer is Adam with a learning rate of 0.001 and a
weight decay of 0. Due to the extremely large graph size of the ogbn-papers100M dataset and limited
computational resources, we use separate machines for full-graph and mini-batch training on this
dataset, making it infeasible to compare system efficiency between the two methods.

The target losses are [0.2, 0.1, 0.8, 1.52] under CE, and [0.005, 0.005, 0.013, 0.0055] under MSE
for the products, reddit, arXiv, and papers100M datasets, respectively. The corresponding target
accuracies are [0.918, 0.962, 0.708, 0.599] under CE, and [0.89, 0.946, 0.676, 0.5] under MSE for
the same datasets.

Figure 11 (under CE) and 12 (under MSE) illustrate time-to-accuracy on GraphSAGE across varying
batch sizes and fan-out sizes for ogbn-products, ogbn-arxiv and ogbn-papers100M.

Figure 14 (under MSE) and 13 (under CE) illustrate time-to-accuracy on GraphSAGE across varying
batch sizes and fan-out sizes for ogbn-products, ogbn-arxiv and ogbn-papers100M.

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2026

(a) Reddit, GAT (b) Products, GAT (c) Arxiv, GAT (d) Papers100M, GAT

(e) Reddit, GCN (f) Products, GCN (g) Arxiv, GCN (h) Papers100M, GCN

(i) Reddit, SAGE (j) Products, SAGE (k) Arxiv, SAGE (l) Papers100M, SAGE

Figure 9: Iteration-to-loss for one-round real-world datasets for GAT, GCN, GraphSAGE across
different batch sizes and learning rates under CE.

(a) Reddit, GAT (b) Products, GAT (c) Arxiv, GAT (d) Papers100M, GAT

(e) Reddit, GCN (f) Products, GCN (g) Arxiv, GCN (h) Papers100M, GCN

(i) Reddit, SAGE (j) Products, SAGE (k) Arxiv, SAGE (l) Papers100M, SAGE

Figure 10: Iteration-to-loss for one-round real-world datasets for GAT, GCN, GraphSAGE across
different fan-out sizes and learning rates under CE.

(a) Products (b) Arxiv (c) Papers100M

Figure 11: Iteration-to-acc of multi-layer GraphSAGE under CE across varying batch sizes and
fan-out sizes.

N.4 GENERALIZATION

Generalization of one-round GNN trained with MSE. For test accuracy, the numbder of iterations
are 5× 105 for GraphSAGE and GCN, or 1× 105 for GAT, for ogbn-arxiv, ogbn-products, and reddit.

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2026

(a) Products (b) Arxiv (c) Papers100M

Figure 12: Iteration-to-acc of multi-layer GraphSAGE under MSE across varying batch sizes and
fan-out sizes.

(a) Products (b) Arxiv (c) Papers100M

Figure 13: Time-to-accuracy (s) of multi-layer GraphSAGE under CE across varying batch sizes and
fan-out sizes.

(a) Products (b) Arxiv (c) Papers100M

Figure 14: Time-to-accuracy (s) of multi-layer GraphSAGE under MSE across varying batch sizes
and fan-out sizes.

And the number of iterations are 1× 104 for ogbn-papers100M across all GNN models. The learning
rates are [0.015,0.02,0.025] for ogbn-arxiv, ogbn-products, and reddit, and [0.00025, 0.0002] for
ogbn-papers100M. The batch sizes and the fan-out sizes are consistent with the settings used in the
experiments measuring time-to-accuracy. Other settings are the same as Appendix N.3.

Figure 15-16 shows the test accuracies for four datasets under GAT, GCN, and GraphSAGE trained
with MSE across different learning rates and either varying batch sizes or varying fan-out sizes.

Generalization in more general settings. The settings are the same as the general settings in
Appendix N.3.

Figure 17 (under CE) and 18 (under MSE) illustrate test accuracies on GraphSAGE across varying
batch sizes and fan-out sizes for reddit, ogbn-arxiv and ogbn-papers100M.

N.5 COMPUTATIONAL EFFICIENCY

The settings are the same as the general settings in Appendix N.3.

Figure 17 (under CE) and 18 (under MSE) illustrate training throughput as the number of processed
nodes per second on GraphSAGE across varying batch sizes and fan-out sizes for reddit, ogbn-arxiv
and ogbn-papers100M.

N.6 FULL-GRAPH VS. MINI-BATCH TRAINING AFTER HYPERPARAMETER TUNING.

The settings are the same as the general settings in Appendix N.3.

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2026

(a) Reddit, SAGE (b) Products, SAGE (c) Arxiv, SAGE (d) Papers100M, SAGE

(e) Reddit, GCN (f) Products, GCN (g) Arxiv, GCN (h) Papers100M, GCN

(i) Reddit, GAT (j) Products, GAT (k) Arxiv, GAT (l) Papers100M, GAT

Figure 15: Test accuracy for real-world datasets for one-round GAT, GCN, GraphSAGE across
different batch sizes and learning rates under MSE.

(a) Reddit, SAGE (b) Products, SAGE (c) Arxiv, SAGE (d) Papers100M, SAGE

(e) Reddit, GCN (f) Products, GCN (g) Arxiv, GCN (h) Papers100M, GCN

(i) Reddit, GAT (j) Products, GAT (k) Arxiv, GAT (l) Papers100M, GAT

Figure 16: Test accuracy for real-world datasets for one-round GAT, GCN, GraphSAGE across
different fan-out sizes and learning rates under MSE.

N.7 ADDITIONAL RUNS FOR KEY EXPERIMENTS

The Tables 5-12 are as follows. We use b as the batch size and β as the fan-out size.

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2026

(a) Reddit (b) Arxiv (c) Papers100M

Figure 17: Test accuracies of multi-layer GraphSAGE trained with CE across varying batch sizes and
fan-out sizes.

(a) Reddit (b) Arxiv (c) Arxiv

Figure 18: Test accuracies of multi-layer GraphSAGE trained with MSE across varying batch sizes
and fan-out sizes.

(a) Reddit (b) Arxiv (c) Papers100M

Figure 19: Training throughput (# nodes/s) of multi-layer GraphSAGE trained with CE across
varying batch sizes and fan-out sizes.

(a) Reddit (b) Arxiv (c) Papers100M

Figure 20: Training throughput (# nodes/s) of multi-layer GraphSAGE trained with MSE across
varying batch sizes and fan-out sizes.

O RELATED WORK

For full-graph vs. mini-batch GNN training, the existing literature presents conflicting empirical
findings on the GNN performance (i.e., convergence and generalization) and computational efficiency:
some studies (Cai et al., 2021; Wan et al., 2022a;b; 2023) argue that full-graph training achieves higher
model accuracy and faster convergence than mini-batch training, while others (Kaler et al., 2022;
Zheng et al., 2022; Zhao et al., 2021; Bajaj et al., 2024) present contrasting findings. Furthermore,
due to the message-passing process, performance insights from DNNs (Keskar et al., 2016; You et al.,
2019; Smith, 2017; Golmant et al., 2018; Zou et al., 2020a; Bassily et al., 2018; Nabavinejad et al.,
2021; Hauswald et al., 2015) cannot directly transfer to GNNs.

The only existing comparison work (Bajaj et al., 2024) between full-graph and mini-batch GNN
training empirically evaluates overall performance but does not investigate the impact of key hyper-
parameters (e.g., batch size and fan-out size) on model performance and computational efficiency,
thereby overlooking the trade-offs achieved by tuning these hyperparameters. Recent efforts (Yuan
et al., 2023; Hu et al., 2021) focus on these hyperparameters but remain limited. For instance, Yuan
et al. (Yuan et al., 2023) lack theoretical support, consider only limited batch sizes and fan-out values
that are far smaller than those of full-graph training, and overlook the interplay of the batch size and

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2026

Table 5: Run 1 for Figure 4(a).
Test acc β = 5 β = 10 β = 15 β = 50 all
b = 1000 747 671 618 427 481
b = 10000 525 356 342 283 277
b = 100000 416 308 291 245 232
b = 150000 409 302 283 239 238
full batch 399 303 275 242 229

Table 6: Run 2 for Figure 4(a).
Test acc β = 5 β = 10 β = 15 β = 50 all
b = 1000 743 682 621 435 497
b = 10000 515 355 342 291 278
b = 100000 423 322 289 258 242
b = 150000 417 315 287 246 240
full batch 387 306 279 232 210

the fan-out size. Hu et al. (Hu et al., 2021) rely on gradient variance to explain the role of batch size
but do not consider fan-out size, thus their explanation conflicts with their empirical observations.

Existing theoretical analyses of GNN training typically focus on singular aspects (e.g., convergence,
or generalization), overlooking key graph-related factors (e.g., irregular graphs with nodes of varying
degrees, the difference between training and testing graphs in mini-batch settings) and the impact of
non-linear activation on gradients. For convergence analysis, Yang et al. (Yang et al., 2023) and Lin et
al. (Lin et al., 2023) apply the NTK framework by assuming infinite-width GNNs. Xu et al. (Xu et al.,
2021) analyze multi-layer linear GNNs. Awasthi et al. (Awasthi et al., 2021) employ PL conditions to
study one-round GNNs with ReLU activation, simplifying the analysis to regular graphs. All these
convergence analyses are solely on full-graph training. For generalization analysis, full-graph GNN
training has been studied (Scarselli et al., 2018; Vapnik & Chervonenkis, 2015; Garg et al., 2020; Lv,
2021; El-Yaniv & Pechyony, 2009; Oono & Suzuki, 2020; Koltchinskii, 2001; Cong et al., 2021b; Du
et al., 2019; Liao et al., 2020) under the well-established frameworks (e.g., PAC-Bayesian framework
(McAllester, 2003)), while the previous analyses of mini-batch training impractically assume the
same graph structures used in training and testing (Tang & Liu, 2023; Verma & Zhang, 2019). The
difference among graph structures in training and testing can result in generalization performance
degradation or overfitting to graph structures used in training.

P EXTENSIONS AND FUTURE WORK

P.1 EXTENSIONS

Multi-layer GNN models in theoretical analysis. We focus on a one-layer GNN with ReLU
activation in theoretical analysis. We discuss the extension of theoretical results to multi-layer settings
in Appendix H, and conduct experiments using multi-layer GNNs in Sec 5 and Appendix N. The
results validate that our key insights remain applicable in such settings. Therefore, our theoretical
and empirical analyses support the multi-layer GNN settings.

Sampling methods. We focus on uniform neighbor sampling before mini-batch training. There
exist many other sampling methods (Hamilton et al., 2017; Chen et al., 2018; Zou et al., 2019; Chiang
et al., 2019; Zeng et al., 2019) that have been proposed at the layer- or subgraph-level to enhance
performance. Our core insights could extend to more sampling methods.

For example, compared to uniform neighbor sampling, the key difference in some advanced samplers
lies in introducing specific constraints on the effective fan-out size by either assigning non-uniform
sampling probabilities (Chen et al., 2018), or imposing layer-wise upper bounds on the number of
neighbors per node (Zou et al., 2019). These specific constraints preserve the qualitative trend of the
amount of aggregated information per node in the message-passing when varying fan-out sizes. In
convergence analysis, following our analysis in Appendix G, increasing the effective fan-out size

69

3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2026

Table 7: Run 1 for Figure 4(e).
Test acc β = 5 β = 10 β = 20 β = 50 all
b = 1000 1167 928 854 817 801
b = 10000 1232 1028 991 907 861
b = 100000 1250 1025 1005 919 902
b = 150000 1256 1047 1013 928 909
full batch 1295 1035 1007 945 925

Table 8: Run 2 for Figure 4(e).
Test acc β = 5 β = 10 β = 20 β = 50 all
b = 1000 1169 943 872 809 787
b = 10000 1222 1016 993 923 847
b = 100000 1257 943 936 929 886
b = 150000 1230 1037 978 923 902
full batch 1279 998 946 938 927

can enrich each target node’s aggregated neighbors, improving embeddings and reducing gradient
variance. Therefore, the mechanism “larger fan-out size → more iterations to convergence” still
holds in GNN training under these samplers. For generalization, a larger fan-out size can reduce
the Wasserstein distance ∆(β, b) under these constraints, which leads to improved generalization.
While these advanced samplers may lessen the sensitivity of generalization to fan-out size, they
cannot completely eliminate the effect of including unsampled but valid edges as fan-out increases
(see Obs. 2). Consequently, generalization remains more sensitive to fan-out size than to batch size.
Overall, our key insights remain applicable to these sampling methods.

On the other hand, we notice that some advanced works (Chen et al., 2017; Shi et al., 2023; Fey et al.,
2021; Shi et al., 2025) use historical embeddings to incorporate nearly full-graph information at each
iteration. Therefore, from a model performance perspective, these methods reduce the variance caused
by different batch sizes and behave more like full-graph training. From a system design perspective,
they also rely on additional memory to store historical embeddings, making them closer to full-graph
training systems than typical mini-batch ones. In contrast, we preserve and study the effects of batch
size and fan-out, rather than eliminating them. Hence, we adopt the standard neighbor-aggregation
scheme that is commonly used in practice and do not consider these sampling methods.

Link prediction tasks. We focus on node classification tasks in GNN training, which can be
easily extended to graph classification. Different from node classification, link prediction tasks use
node pairs (connected and unconnected) for edge prediction, which can be transformed to node
classification tasks using the line graph method in the graph theory. The new line graph L(G) is
constructed in the following way: for each edge in the original graph G, make a vertex in L(G);
for every two edges in G that have a vertex in common, make an edge between their corresponding
vertices in L(G). Hence, our analyses and core insights naturally carry over to link prediction tasks.

Inductive GNN tasks. We focus on transductive GNN tasks. Unlike transductive tasks, inductive
tasks apply different graphs between testing and training. For convergence, our analysis can be
applied to inductive tasks without considering the testing graphs. For generalization, our analysis can
be easily extended to inductive tasks by revising δfull

i,j in the Wasserstein distance to consider graph
structure differences between testing and training graphs.

P.2 FUTURE WORK

Different activations: GeLU and Tanh. Our theoretical analysis readily extends to the GeLU and
Tanh functions as the activation under our settings. The key difference lies in how the activation
affects the gradient norm bound. GeLU is a smooth approximation of ReLU and shares a similar
upper bound, while Tanh is even smoother with bounded high-order derivatives that control the
gradient norm. As a result, both our convergence and generalization methodology naturally translate
to these activation functions.

70

3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

Under review as a conference paper at ICLR 2026

Table 9: Run 1 for Figure 6(a).
Test acc β = 5 β = 15 β = 25 β = 50 all
b = 1000 0.7767 0.7832 0.7821 0.7810 0.7789
b = 5000 0.7817 0.7846 0.7825 0.7803 0.7698
b = 10000 0.7851 0.7818 0.7812 0.7775 0.7713
b = 100000 0.7869 0.7823 0.7818 0.7783 0.7753
b = 150000 0.7852 0.7818 0.7809 0.7781 0.7761
full batch 0.7868 0.7810 0.7778 0.7778 0.7803

Table 10: Run 2 for Figure 6(a).
Test acc β = 5 β = 15 β = 25 β = 50 all
b = 1000 0.7793 0.7840 0.7820 0.7818 0.7792
b = 5000 0.7825 0.7842 0.7833 0.7817 0.7702
b = 10000 0.7852 0.7821 0.7818 0.7771 0.7713
b = 100000 0.7862 0.7825 0.7816 0.7780 0.7762
b = 150000 0.7860 0.7818 0.7800 0.7768 0.7760
full batch 0.7864 0.7808 0.7778 0.7775 0.7808

Our core insights are clearly generalizable to GeLU due to its similarity with ReLU. However,
whether the same insights hold for Tanh is less certain, as its bounded and more intricate derivative
structure may affect the theoretical bounds in a nontrivial way.

Heterogeneous graphs. Different from homogeneous graphs, heterogeneous graphs require spe-
cialized handling to address different types of nodes and edges, involving distinct aggregation and
transformation functions for each type, such as using separate neural networks for different edge
types. This can be explored.

71

3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

Under review as a conference paper at ICLR 2026

Table 11: Run 1 for Figure 6(b).
Test acc β = 5 β = 10 β = 20 β = 50 all
b = 1000 0.6617 0.6891 0.7117 0.7241 0.7242
b = 5000 0.7113 0.7207 0.7336 0.7345 0.7369
b = 10000 0.7209 0.7292 0.7341 0.7344 0.7362
b = 100000 0.7318 0.7348 0.7373 0.7403 0.7415
b = 150000 0.7329 0.7357 0.7372 0.7378 0.7401
full batch 0.7345 0.7391 0.7386 0.7384 0.7385

Table 12: Run 2 for Figure 6(b).
Test acc β = 5 β = 10 β = 20 β = 50 all
b = 1000 0.7295 0.7321 0.7344 0.7345 0.7341
b = 5000 0.7307 0.7343 0.7361 0.7364 0.7371
b = 10000 0.7326 0.7353 0.7366 0.7365 0.7381
b = 100000 0.7342 0.7372 0.7392 0.7400 0.7411
b = 150000 0.7343 0.7361 0.7385 0.7393 0.7405
full batch 0.7341 0.7396 0.7391 0.7389 0.7403

72

	Introduction
	Preliminaries
	Optimization Dynamic
	Optimization Setup
	Convergence Results

	Generalization of Mini-batch Training
	Problem Setup
	Generalization Result

	Empirical Study
	Metric: Iteration-to-accuracy
	Convergence
	Generalization
	Computational Efficiency
	Full-graph vs. Mini-batch Training after Hyperparameter Tuning

	Related Work
	Conclusion
	Notations
	Proof of Convergence Theorem in Full-graph Training with MSE
	Assumptions
	Expressions for loss and gradients.
	Theorem [TheoremMSEfullgraph]B.4
	Proof of Theorem [TheoremMSEfullgraph]B.4

	Proof of Convergence Theorem in Mini-batch Training with MSE
	Assumption
	Expressions for loss and gradients.
	Proof of Theorem [TheoremMSEminibatch]1

	Proof of Convergence Theorem in Full-graph Training with CE
	Assumption
	Expressions for gradients for CE loss.
	Theorem [TheoremCEfullgraph]D.2.
	Proof of Theorem [TheoremCEfullgraph]D.2.

	Proof of Convergence Theorem in Mini-batch Training with CE and Interpretation of the Obs.[Obsconvergence]1
	Assumption
	Expressions for gradients for CE loss.
	Theorem [TheoremCEminibatch]E.2.
	Proof of [TheoremCEminibatch]E.2.

	Interpretation of the Obs.[Obsconvergence]1 from Convergence Theorems
	Proof of Generalization Theorem in Mini-batch Training
	Assumptions
	Proof of Theorem [TheoremMSEgeneralization]3

	Extension to multi-layer GNNs
	Proof of the Main Lemmas of Convergence Theorems with MSE
	Proof of Lemma [LemmaB5]B.5 and [LemmaC1]C.1
	Proof of Lemma [LemmaB6]B.6 and [LemmaC2]C.2
	Proof of Lemma [LemmaB7]B.7 and [LemmaC3]C.3
	Proof of Lemma [LemmaB8]B.8 and [LemmaC4]C.4
	Proof of Lemma [LemmaB9]B.9 and [LemmaC5]E.5

	Proof of Auxiliary Lemmas of Convergence Theorems with MSE
	Proof of Lemma [LemmaG1]I.1:

	Proof of the Main Lemmas of Convergence Theorems with CE
	Proof of Lemma [LemmaD3]D.3 and [LemmaE3]E.3
	Proof of Lemma [LemmaD4]D.4 and [LemmaE4]E.4
	Proof of Lemma [LemmaD5]D.5
	Proof of Lemma [LemmaE5]E.5

	Proof of Auxiliary Lemmas of Convergence Theorems with CE
	Proof of Lemma [LemmaI1]K.1:
	Proof of Lemma [LemmaI2]K.2:
	Proof of Lemma [LemmaI3]K.3 and [LemmaI4]K.4
	Proof of Lemma [LemmaI5]K.5 and [LemmaI6]K.6:
	Proof of Lemma [LemmaJ1]L.1:

	Proofs of the Main Theorem and Lemma of Theorem 5
	Proof of Theorem [TheoremF5]G.5
	Proof of Lemma [LemmaF6]G.6

	Experiments
	Training settings
	Metrics: Iteration-to-loss
	Convergence
	Generalization
	Computational Efficiency
	Full-graph vs. Mini-batch Training after Hyperparameter Tuning.
	Additional Runs for Key Experiments

	Related Work
	Extensions and Future Work
	Extensions
	Future Work

