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ABSTRACT

Full-graph and mini-batch Graph Neural Network (GNN) training approaches
have distinct system design demands, making it crucial to choose the appropriate
approach to develop. A core challenge in comparing these two GNN training ap-
proaches lies in characterizing their model performance (i.e., convergence and gen-
eralization) and computational efficiency. While a batch size has been an effective
lens in analyzing such behaviors in deep neural networks (DNNs), GNNs extend
this lens by introducing a fan-out size, as full-graph training can be viewed as mini-
batch training with the largest possible batch size and fan-out size. However, the im-
pact of the batch and fan-out size for GNNs remains insufficiently explored. To this
end, this paper systematically compares full-graph vs. mini-batch training of GNNs
through empirical and theoretical analyses from the view points of the batch size and
fan-out size. Our key contributions include: 1) We provide a novel generalization
analysis using the Wasserstein distance to study the impact of the graph structure,
especially the fan-out size. 2) We uncover the non-isotropic effects of the batch size
and the fan-out size in GNN convergence and generalization, providing practical
guidance for tuning these hyperparameters under resource constraints. Finally, full-
graph training does not always yield better model performance or computational
efficiency than well-tuned smaller mini-batch settings. The implementation can be
found in the anonymous link: https://anonymous.4open.science/r/
GNN_fullgraph_minibatch_training-8040/README .md.

1 INTRODUCTION

Graph neural networks (GNNs) have demonstrated exceptional performance across diverse machine
learning tasks involving graph-structured data (Zhang & Chenl 2018} | Xu et al., 2018} |Gilmer et al.,
2017). A defining characteristic of GNNs is their reliance on the graph structure to facilitate
message-passing, enabling the learning of rich node representations from both structural and feature
information (Gilmer et al.| |2017)). Consequently, the computational patterns of GNNs depend strongly
on the underlying graph structure, leading to two prominent and distinct paradigms for training GNNs:
full-graph and mini-batch training (Bajaj et al.,2024; Hamilton et al., [2017; |Zheng et al.| 2022).

Full-graph training and mini-batch training are distinct GNN training paradigms. In full-graph
training, the entire graph is processed simultaneously, and each node aggregates information from
its neighbors across multiple message-passing layers. In contrast, mini-batch training divides the
graph into smaller subgraphs or batches, training the model iteratively on subsets of nodes and their
(sampled) local neighborhoods. These paradigms exhibit fundamentally different computational
patterns, each requiring distinct system designs, training pipelines, and optimization strategies.
For example, full-graph training necessitates efficient communication mechanisms to synchronize
aggregations over the entire graph (Md et al.| 2021} [Peng et al.,[2022), whereas mini-batch training
demands careful optimizations of CPU-GPU data loading to accommodate frequent batch processing
(Chen et al., |2018; Zhu et al., 2019; [Liu et al., [2023)) . Understanding the differences between these
two paradigms is essential for identifying suitable training methods in specific scenarios and guiding
the design of optimised training systems.

Existing Gaps. To systematically investigate the differences between full-graph and mini-batch
training, the hyperparameters batch size (the number of sampled nodes) and fan-out size (the number
of neighbors chosen per node at each hop (Hamilton et al., 2017)) offer critical lenses for analyzing
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GNN performance and computational efficiency, as full-graph training can be viewed as a special case
of mini-batch training with maximum batch and fan-out sizes. However, despite increasing attention
in the literature, the impact of these hyperparameters remains insufficiently understood. Existing
studies typically focus on individual parameters (e.g., batch size or fan-out size independently) (Hu
et al.}2021;|Yuan et al.|[2023)) or singular aspects of evaluation (e.g., convergence (Yang et al., 2023}
Awasthi et al.| [2021)), accuracy (Tang & Liul [2023; |Verma & Zhang, [2019) , or system efficiency
(Naman & Simmbhan| [2024))), providing limited insights into the holistic trade-offs between the two
paradigms (see Sec. [6| for further discussions). Although recent empirical studies, such as (Bajaj
et al.,|2024), have attempted comparisons between full-graph and mini-batch training, their results
are largely observational and hardware- or environment-dependent, limiting their generalizability.
Meanwhile, most of the existing GNN analyses typically rely on strong simplifications, such as
infinite-width assumptions that average out per-neuron gradient noise (Yadati,2022) or linear models
with convex losses that remove local optima (Yang et al.l 2023} [Lin et al.l [2023)), which obscure
the effects of batch sizes or fan-out sizes on training dynamics. Thus, a critical open question
remains: How do the batch size and fan-out size influence the optimization dynamics, generalization
capabilities, and computational efficiency of GNN training, particularly when comparing full-graph
and mini-batch training paradigms?

Challenges. Comparing full-graph and mini-batch GNN training paradigms presents multiple inter-
twined challenges. First, while the batch size and fan-out size are useful for analyzing differences
between these paradigms, their impacts on model performance and system efficiency inherently
depend on the hardware environment used. Therefore, meaningful comparisons necessitate measure-
ment frameworks that are hardware-agnostic and supported by rigorous theoretical analyses. Second,
both the computational dynamics of GNNs and the statistical properties of graph data are intrinsically
tied to the underlying graph structure, which is directly influenced by choices of batch size and
fan-out size. Altering these hyperparameters thus introduces complex interactions, highlighting
the need for flexible analytical frameworks that can accurately capture these dynamics. Finally,
comprehensively understanding the trade-offs between full-graph and mini-batch training demands
frameworks capable of jointly evaluating model efficiency and generalization, ultimately guiding the
development of practically optimized systems.

Contribution. To address the aforementioned research gap, in this paper, we conduct a systematic
study of full-graph and mini-batch GNN training under different batch sizes and fan-out sizes on
transductive node classification tasks. The contributions are highlighted as follows.

> We characterize the role of the batch size and fan-out size in GNN optimization dynamic analysis
(Theorem [T]and 2)), extending the settings to irregular graphs and GNNs with non-linear activations,
better aligning with the practice. We also provide a novel GNN generalization analysis (Theorem 3))
using the Wasserstein distance to investigate the impact of graph structures, especially the fan-out size,
where this distance can quantify graph structure differences between training and testing datasets.

> We theoretically uncover the non-isotropic impacts of the batch size and the fan-out size in GNN
convergence and generalization, where the batch size has a greater impact on GNN optimization
dynamics (Obs[I), while the fan-out size more strongly affects GNN generalization (Obs[2). These
findings suggest that, under memory constraints, adjusting the batch size is preferable when general-
ization is the priority, given its more stable effect on generalization. In contrast, tuning the fan-out
size is preferable when convergence is the concern, given its more consistent impact on convergence
compared to batch size, while setting the fan-out size to moderate values balances convergence and
computational efficiency as the magnitude of its impact on convergence decreases with larger values.

> We empirically use additional iteration-based convergence metrics for hardware-agnostic compar-
isons, rather than relying solely on time-based metrics. Experiments on four real-world datasets
(Hamilton et al., |2017; Hu et al., [2020) and three GNN models (Zhang et al., 2019} [Hamilton et al.,
2017} [Velickovi¢ et al},2017) validate our theoretical findings. We recommend keeping batch size
below half of the training nodes and the fan-out size under 15 for sparse graphs (Hamilton et al.,
2017; Hu et al.,|2020) to balance the model performance and computational efficiency.

Our theoretical and empirical findings support that full-graph training does not always yield superior
model performance or computational efficiency compared to smaller mini-batch settings. Instead,
carefully tuning the batch size and fan-out size in mini-batch settings often leads to better trade-offs,
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such as faster convergence or improved generalization under resource constraints. These findings
provide practical guidance for selecting training paradigms under specific task requirements.

2 PRELIMINARIES

Graph. Given a homogeneous undirected graph with total n nodes and the maximal degree dy.x < 7,
set Nyrin Nodes in the training set and n nodes in the testing set, with 1 = Nygin + Nest- We allow
arbitrary subsets of nodes to be selected as the training and testing sets. Let b < ny,;, be the batch
size and 8 < dp, be the fan-out size in mini-batch training, where uniform neighbor sampling is
employed to select neighbors.

Each node is an instance (x;, y;) with feature x; and label y;. Let X € R™*" be the feature matrix,
where x; is the i-th row of X and r is the feature size. In the transductive learning setting, our task is
to predict the labels of nodes {x;};_,, _,; by the GNN model trained on {x;};", U {y;};"" . We
assume that node features are fixed, and node labels are independently sampled from distributions
conditioned on node features, which is widely adopted in the node classification task.

Let A represent the adjacency matrix of graph. We define Aftll ‘€ R™winx" for full-graph training,

Amini ¢ ROX™ for mini-batch training, and A € R™=*" for inference, where AMM is a submatrix
of Al 'Tet D" denote a diagonal in-degree matrix with D! representing the number of incoming
edges to node i. We define D% € Rwin*7win for full-graph training, D™ € RY*? for mini-
batch training, and D, € R™eX"e for testing. D" € R™*" denotes the respective diagonal
out-degree matrix. A = (D" +1) 3 (A+1) (D" + 1)7% is the respective normalized adjacency
matrix with self-loops, where self-loops ensure that each node retains its own features during
aggregation, improving the model’s learning ability. Here a; denotes the i-th row of A.

GNN model. Motivated by recent theoretical advances in understanding GNNs (Su & Wul, 2025}
Awasthi et al., 2021)), we analyze the training dynamics using a one-layer GNN model. This model
serves as a powerful and well-established testbed for capturing phenomena arising from finite width
and nonlinearity of GNNss. Its simplicity in model depth provides the analytical flexibility necessary to
precisely characterize how batch size and fan-out size affect GNN training dynamics. In Appendix [H]
we further discuss how our analyses and results generalize to multi-layer settings. Concretely, let
W € R"*" be the learnable model parameters of the GNN model and W* € R"*" be the ground
truth of W, where w; is the i-th row of W and £ is the finite hidden dimension. We study a
one-layer GNN with the ReLLU activation, and define the output immediately after the first layer as
2z; = 0 (&ain,; XW ') ,Vi € training set, where o () = max (z, 0) is the ReLU activation function,
and the term &y ; X represents the embedding aggregation on node 7. This first-layer output may be
followed by task-specific post-processing (e.g., a linear projection in binary classification). Similarly,
during inference, the output of the first layer is given by z; = o (&eq,; XW ') ,Vi € testing set.

In this paper, we use || - ||2, || - || and || - || r to denote the 2-norm of vector, spectral norm of matrix
and Frobenius norm of vector, respectively. For two sequences {p,,} and {g, }, we use p,, = O(qy,)
to denote that p,, < (¢, for some absolute constant C; > 0. The notation table is in Appendix

3  OPTIMIZATION DYNAMIC

We present our theoretical studies on the GNN optimization dynamics. First, the optimization
setup is introduced, representing how to handle interactions between batch size and fan-out size in
optimization dynamics (Sec. [3.1)). Next, we show the convergence results, answering our research
question in GNN optimization dynamic. We then reveal an interesting observation, yielding actionable
implications for accelerating convergence under memory constraints (Sec. [3.2).

3.1 OPTIMIZATION SETUP

Optimization algorithms. We aim to minimize the empirical risk ﬁtrain (W,Amm) =

ﬁ 2 ictaining set | (W 8uain,; ), where [ (-) denotes the loss function. In practice, Cross-Entropy
(CE) and Mean Squared Error (MSE) are the most commonly used losses. Under full-graph

training settings, the model parameters are updated via gradient descent (GD) as Wgﬂll =

will ntvwgnﬁm (WAl ), where 7, > 0 is the learning rate at the ¢-th training itera-

train
tion. Under mini-batch training settings, the model parameters are updated via stochastic gradient
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. . . . 1 o
descent (SGD) as Wi = WM — ), Gy, where Gy = § 3 cqumpled nodes Vi | (Wini amini )
denotes the stochastic gradient at the ¢-th training iteration.

Handling interactions between batch size and fan-out size in optimization dynamic. To handle
these interactions, we isolate the impact of the graph structure in the loss and gradient expressions. A
key challenge is that the nonlinear activation (e.g., ReLU) processes aggregated node features as input,
making these expressions analytically intractable. To overcome this, we decouple the aggregated
node features from the activation function. For instance, we extract the aggregation from the ReLU
function by reformulating squared loss terms, or rewrite the ReLU function using a position-wise 0/1
indicator matrix that can directly multiply the aggregated node features.

3.2 CONVERGENCE RESULTS

Building on the aforementioned setup in Sec[3.1] we study GNN convergence results under suitable
assumptions on the distribution of node features as well as the boundedness of the feature matrix
norm, the ground truth parameter norm and the separation between aggregated node features with
different labels in the training data (see Assumptions[B.1}{B.2] in Appendix [B]and Assumption[E.T} in
Appendix [E), with detailed proofs provided in Appendix [BJE]

Theorem 1. (Convergence of Mini-batch Training with MSE) Suppose W™ are generated by
Gaussian initialization. Under Assumptions and if the fan-out size satisfies C"" < § <
C’?i”ib% for constants C" Cini ¢ (0,1) to ensure a sparser adjacency than a fully connected
graph, then with high probability, L., (W%i”i, Amf”i) < e forany ¢ € (0,1), provided that the

train

number of iterations T = O (n,,uinhzb% T log (h26’1)> under the mini-batch training.

Theorem 2. (Convergence of Mini-batch Training with CE) Suppose W™ are generated by
Gaussian initialization. Under Assumptions|[B.1| and[EZ1} if the hidden dimension of a one-round
GNN satisfies h =  (10g (Nuyain) B~ (N yin + € 1)) 10 ensure the finite width, then with high

probability, Lirain (W?’”i , AJmini ) < € for any € > 0, provided that the number of iterations T =

train

0 (nfmm (log (n,m,-,,))% =213 (n2am + 671)) under the mini-batch training.

When the fan-out size J reaches dp,x and the batch size b reaches ny.in, the upper bound on the
number of iterations to convergence in mini-batch training matches that of full-graph training (see
Theorem [B.4] under MSE in Appendix B]and Theorem[D.2] under CE in Appendix D).

Remark 3.1. Our theoretical results show that increasing the batch size b for a fixed fan-out size leads
to more iterations to convergence under MSE (Theorem E]), but fewer iterations under CE (Theorem@)
in the mini-batch setting of one-round GNNs, different from DNN training. In contrast, increasing
the fan-out size /7 under a fixed batch size consistently reduces the number of iterations required for
convergence under both MSE (Theorem@ and CE (Theorem @)

Remark 3.2. Our theoretical analysis reveals that the magnitude of the fan-out size’s impact on
GNN convergence jointly depends on the batch size b and the fan-out size /7, diminishing as either
b (under CE) or /7 (under MSE and CE) grows. The magnitude of this impact can be characterized
by the absolute slope |07/ /7| of the number of iterations T for convergence with respect to the
fan-out size [/, where a steeper slope indicates a stronger impact. Specifically, Theorem [I| gives
10T/9 | = O (7/~3/26°/%) under MSE and Theorem gives [07/9 /| = O (/~7/2b~1) under CE .

Answering our research question: Remark [3.1] and Remark 3.2} represent the impact and interplay
of the batch size and the fan-out size in the GNN optimization dynamic. Therefore, we conclude
that full-graph training does not always provide superior convergence speed than smaller mini-batch
settings, especially under MSE.

Furthermore, we present an interesting observation, providing insights into accelerating GNN conver-
gence under memory constraints.

Obs.1: GNN convergence is more sensitive to batch size than to fan-out size. Remark 3.1} high-
lights a stronger dependence of GNN convergence on batch size b than on fan-out size /7, as a larger
batch size b leads to opposite convergence trends under MSE and CE, while increasing the fan-out size

exhibits a consistent trend. This observation cannot be fully interpreted by the popular explanation
of DNNs, which posits that increasing the batch size reduces gradient variance, resulting in fewer
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iterations to converge (Cong et al. 2021a} [Liu et al.| [2024) . We further consider the impact of
message passing on the loss and gradient, providing the interpretation of Obs[I] in Appendix [F

Implication for accelerating convergence. Under memory constraints, Obs[T] suggests that adjusting
the fan-out size /7 offers a more reliable way to accelerate GNN convergence, as the fan-out size
keeps the same convergence trends under both MSE and CE. To tune the fan-out size //, Remark
highlights that a moderate value of /7 provides a practical balance between convergence and
computational efficiency, as the reduction in the number of iterations for convergence becomes
smaller when increasing /7 beyond moderate values, particularly with large batches under CE.

4 GENERALIZATION OF MINI-BATCH TRAINING

We represent our theoretical study on GNN generalization. First, problem setup is introduced,
representing how to isolate the impacts of batch size and fan-out size in generalization by employing
Wasserstein distance (Sec. @ Next, we show the generalization result, answering our research
question in GNN generalization. We then present an interesting observation, yielding the actionable
implication for improving generalization under memory constraints (Sec. [#.2).

4.1 PROBLEM SETUP
Basic setup. We aim to bound the generalization gap between the expected testing risk and the
empirical training risk under the mini-batch training settings, where the expected testing risk is given

by Liest (Wm"“ A“’”) =E {i > ictest et L (WM Ml z)} , and the empirical training risk is ex-

test Mygest

7 . mini mint — 1 mini & mini 1 111
pressed as Liygn (WM Amini) — o D iCtraining set | (W s Ayrain, ;)- Note that inference utilizes

all testing neighbors across the entire graph, whereas mini-batch training relies on sampled neighbors
within limited hops. We then employ the Wasserstein distance (Kantorovich, |1960) to quantify the
difference in graph structures between training and testing datasets, as the Wasserstein distance
effectively measures differences in non-i.i.d. data, particularly regarding geometric variations.

Definition 1. (Distance between Training Set and Testing Set). Define the distance
from the training set to the testing set as the Wasserstein distance given by A (5,b) =

{infeee)[plmm;plesl] 2 ictmain set 2jetest set 01,30 (Yir Ys B, b)}? where puin (i) and piest (i) denote the

probability of y; appearing in training and testing sets, respectively. ©[piain, Prest] 1S the joint prob-
ability of pgain and peg. The infimum in the first equality is conditioned on Zjetest wij =

Puain (Yi) s D curaining set 05 = Prest (Y5) 0,5 > 0.6 (yi,y;, 8, b) is the distance function of any two
points from training and testing sets, respectively.

We set § (yi,y;,8,b) = C‘Sh (5”" + o) with a constant Cs > 0, Nipin = min{ain, Miest}
and 60 = || ahll i éf;‘;iln i H +2 H afull 4 || - as a constant, mainly capturing the difference of distri-
butions between the training and testing data in full-graph training. 6! = ||l . — apiet | H

reflects the structural difference between full-graph and mini-batch graphs per node during training.

Isolating the impacts of batch size and fan-out size in generalization. To isolate these impacts, we
focus on the discrepancy U between expected training and testing losses before training, which is the
only term for non-i.i.d. graph data in our generalization analysis, with detailed proof in Appendix [M]
Since the training and testing datasets are split beforehand, U depends on the structural difference
between training and testing graphs, which we quantify using the Wasserstein distance A (3,b). We
show that greater similarity between training and testing graph structures leads to a smaller U.

4.2 GENERALIZATION RESULT

Building on the aforementioned setup in Sec f.1] we use the Wasserstein distance to study the
generalization result in PAC-Bayesian framework (McAllester, [2003) under mini-batch GNN training
with MSE, given suitable assumptions on the boundedness of the Frobenius norm of the feature matrix
and the parameter norm (see Assumptions|G.I] and[G.2] and the detailed proof in Appendix[G].

Theorem 3. Suppose W™ qre generated by Gaussian initialization. Under Assump-
tions and with high probability, for the posterior distribution Q over hypothe-

sis space in the mini-batch training settings with MSE, we have L. (W”Ii”i,A{Z£l,; Q) —
L irain (W’" Arini, ) - 0( FA( ,b)), where A(B,b1) < A(B,by) with by > b,

train? Ntrain
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A( 7b) x Zietmining set Zjetexting set 9@]_6{“”””’”’) 92’,]’ € @[ptraim pIESt] and (SZUHWHW has an overall
non-increasing trend as the fan-out size 7 grows but small non-monotonic fluctuations exist. The
posterior distribution Q represents the distribution of model parameters after training, and the
hypothesis space denotes all possible models.

Remark 4.1. Theorem 3| reveals that increasing either the batch size b or the fan-out size ' improves
the GNN generalization. This is because the role of b and /7 in GNN generalization is captured by the
Wasserstein distance A (/7,b), where larger A (7, ) leads to poorer generalization performance. In

Deﬁnition the Wasserstein distance A (17, b) is proportional to the weighted sum of /"™ (i.e.,
the structural difference between full-graph and mini-batch graphs per node during training) over all
training nodes , where (51“”’”‘”“ decreases with either the batch size b or the fan-out size /7, though

slightly non-monotonic fluctuations exist when varying

Answering our research question: Remark [4.1] represents how the batch size and the fan-out size
characterize GNN generalization via the Wasserstein distance A (7, b). While full-graph training is
expected to outperform smaller mini-batch settings, we remain cautious about the degradation in
generalization performance at very large batch sizes or fan-out sizes, as similar issues have been
observed in DNNs (You et al.,|2019;2017)) . We conduct an empirical study for further investigation.

In addition, we interpret an interesting observation, providing the implication for improving GNN
generalization under memory constraints.

Obs.2: GNN generalization is more sensitive to fan-out size than to batch size. While increasing
the fan-out size /7 and the batch size b both help align the mini-batch with the full graph during training,

has a greater impact on the generalization by directly controlling receptive field of each training
node. Based on Remark this can be interpreted using the Wasserstein distance A (7, b), which
increases the weighted sum of /""" over all training nodes. A larger ' can include unsampled
but valid edges, turning zero terms 53‘;{3 ; into non-zero values in 6" potentially causing slight
non-monotonic fluctuations. In contrast, increasing b does not introduce these edges, as all training
nodes are included during summation of /""" With the more complex impact of 7in A (7, b),
we conclude that GNN generalization is more sensitive to fan-out size // than to batch size b (see
Appendix [M] for the detailed proof).

Implication for improving generalization. Under memory constraints, Obs[2] suggests that adjusting
the batch size b offers a more stable way to improve GNN generalization, as the batch size b introduces
less non-monotonic fluctuations than the fan-out size

5 EMPIRICAL STUDY

We first explain the rationale for using the metrics (e.g., iteration-to-accuracy) in Sec. We validate
Remarks [3.1] - 3.2] and Obs[I] on GNN convergence (Sec. [5.2), and Remark {.1| and Obs[2] on
GNN generalization with the discussion about performance degradation (Sec.[5.3). We compare
computational efficiency across varying batch sizes and fan-out sizes, answering our research question
in computational efficiency (Sec.[5.4). Finally, we present an overall comparison of generalization
performance between full-graph and mini-batch training after tuning batch size and fan-out size,
yielding implications for tuning these two hyperparameters (Sec. [5.3)).

Results overview. Non-isotropic impacts of batch size and fan-out size exist in model performance
(i.e., generalization and convergence) and computational efficiency. Full-graph training does not
always yield superior model performance or computational efficiency compared to well-tuned smaller
mini-batch settings. Carefully tuning the batch size and the fan-out size in mini-batch settings often
achieves more favorable trade-offs, such as faster convergence or better generalization.

Datasets and models: We conduct experiments on four real-world datasets: reddit (Hamilton et al.,
2017), ogbn-arxiv (Hu et al., |2020), ogbn-products (Hu et al., 2020) and ogbn-papers100M (Hu
et al.} 2020). We train three representative GNN models: GCN (Zhang et al.| 2019), GraphSAGE
(Hamilton et al.||2017)) with mean aggregation, and GAT (Velickovic¢ et al.,|2017)) with 2 heads for
ogbn-papers100M and 4 heads for the other datasets. See more training settings in Appendix

5.1 METRIC: ITERATION-TO-ACCURACY

We evaluate convergence performance using three metrics: iteration-to-loss (i.e., the number of
iterations to reach a target training loss), iteration-to-accuracy (i.e., the number of iterations to reach a
target validation accuracy), and time-to-accuracy (i.e., the time to reach a target validation accuracy).
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Figure 1: Time-to-acc and iteration-to-acc in mini-batch and full-graph training with varying band-
widths (i.e., two inter-GPU bandwidth values: bw1=infinity > bw2=900GB/s) and computational
capacities (i.e., GPU with 40GB of memory and CPU with 512GB of host memory ). Figure repre-
sentation updated.

Since iteration-to-loss is from the theoretical analysis in Sec. [3]and time-to-accuracy is commonly
used in empirical studies (Bajaj et al.|[2024; |Hu et al., 2020), we do not provide further explanation.

Rationale for using iteration-to-accuracy. However, time-to-accuracy is highly sensitive to hard-
ware differences, entangling model performance improvement per iteration (e.g., accuracy) and
computational efficiency (e.g., processed nodes per second). Thus, we additionally introduce iteration-
to-accuracy, a hardware-agnostic metric, to capture this performance improvement during training.

To illustrate this rationale more clearly, we provide a simple, non-rigorous mathematical derivation,
with details in Appendix [N| Let b denote the batch size, 3 the fan-out size, and v; the iteration-to-
accuracy. Suppose we compare two training setups under the same compute capacity but different
bandwidths in distributed systems: a full-graph setting (b = 1000, S = 50, ; = 10) and a mini-batch
setting (b = 10, 8 = 10, v; = 10000). At high bandwidths (1000 nodes/s), the full-graph setting
converges faster, in 5.1 x 10 seconds, compared with 1.1 x 10° seconds for mini-batch training. In
contrast, at low bandwidths (0.1 nodes/s), mini-batch training converges faster, requiring 2.1 x 10°
seconds, whereas the full-graph setting requires 5.6 x 10% seconds.

Empirically, Figure [T] illustrates time-to-accuracy and iteration-to-accuracy with two training ap-
proaches under different inter-GPU bandwidth levels (i.e., bw1=infinity, simulated by a single GPU
with no inter-device communication; bw2=900GB/s, two-GPU NVLink 4.0 setup) and computation
capacities (i.e., GPU and CPU). Detailed settings are in Appendix [N] For time-to-accuracy, mini-batch
training underperforms full-graph training on a single GPU but outperforms it on two GPUs or a
single CPU. In contrast, iteration-to-accuracy remains consistent across hardware environments, with
a maximum variation of 41.28%, compared to 2787.05% for time-to-accuracy.

Therefore, both mathematical and empirical examples indicate that time-to-accuracy cannot reliably
generalize convergence performance across hardware environments, while the iteration-to-accuracy
is more reliable to guide early-stage configuration decisions. For example, in a new hardware setup,
practitioners can use known iteration-to-accuracy trends to narrow the range of batch and fan-out size,
and perform short runs to consider hardware-specific runtime, thereby reducing tuning overhead.

5.2 CONVERGENCE

Empirical Validation of Remarks [3.1}, 3.2} and Obs[I} Remark [3.1] and Obs[I] are empirically
validated by Figure[2]and Figures[7}[10/in Appendix [N] which illustrate iteration-to-loss for three one-
layer GNNSs across four real-world datasets under varying fan-out sizes or batch sizes with different
learning rates. In addition, Figure [d]in more general settings (e.g., multi-layer GraphSAGE) further
confirms Remarks[3.1] 3.2] and Obs/[I] using iteration-to-loss (see detailed settings in Appendix [N).
Due to more complex optimization dynamics in deeper GNNs, Figure ] shows minor fluctuations
across varying batch and fan-out sizes, where the batch size and fan-out size increase until mini-batch
training transitions into full-graph training.

Extended experiments using iteration-to-accuracy and time-to-accuracy. To study model perfor-
mance improvement during training, Figure [5]illustrates iteration-to-accuracy and time-to-accuracy
across varying batch sizes and fan-out sizes for reddit (see more datasets in Appendix [N}, showing
unstable convergence trends with varying batch sizes and very large fan-out sizes (explained further in
Sec.[5.3). This is because these two metrics capture both convergence and generalization performance
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Figure 4: Iteration-to-loss of GraphSAGE under CE and MSE across varying batch and fan-out sizes.
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Figure 5: Iteration-to-accuracy and time-to-accuracy of GraphSAGE under CE and MSE across
varying batch sizes and fan-out sizes for reddit.

due to the dependency on validation accuracy. Moderate fan-out sizes (e.g., around 15) are shown to
balance convergence speed and computational efficiency (shown in time-to-accuracy), supporting the
convergence acceleration implications in Sec[3]

5.3 GENERALIZATION

Empirical Validation of Remark 4.1} and Obs2] Remark [.T] and Obs[2] are empirically validated
by Figure [3|and Figures[T5{I6] of one-layer GNNs in Appendix [N] which illustrate test accuracies for
three one-layer GNNs across four datasets under varying fan-out sizes or batch sizes with different
learning rates. In addition, Figures[6{a)-(b) in more general settings for ogbn-products further confirm
Obs[2] (see more datasets and details in Appendix [N), as the variation of fan-out size induces more
frequent and diverse shifts in test accuracies. Regarding Remark [.1] Figure[6{b) under MSE generally
aligns with our theoretical prediction, while Figure[6{a) under CE further shows that performance
degradation occurs with very large fan-out sizes (typically more than 15 on these datasets) or batch
sizes (exceeding half of the training nodes). This degradation is more severe with fan-out sizes
than with batch sizes. We justify our answer in Sec. [ to the research question: full-graph training
does not always outperform the smaller mini-batch settings in generalization due to degradation in
generalization performance.
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Figure 6: Test accuracies and training throughput (# nodes/s) of GraphSAGE under CE and MSE
across varying batch sizes and fan-out sizes for ogbn-products.

Table 1: Best test accuracies of full-graph and mini-batch training of multi-layer GraphSAGE model
without dropout layers after graph-based hyperparameter tuning.

Datasets Reddit | Ogbn-arxiv | Ogbn-products | Ogbn-papers100M
Full-graph | 96.13 70.96 77.92 59.54
Mini-batch | 96.32 71.16 78.80 58.52

Understanding performance degradation. This degradation under CE arises as the models tend
to converge to sharp minima under large batch sizes (Keskar et al., | 2016)). Since gradient variance
decreases with larger batch and fan-out sizes, similar issues likely occur with large fan-out sizes.
This degradation is more severe with fan-out sizes than batch sizes, as aggregating information from
too many neighbors causes overfitting and weakens generalization. In contrast, such degradation
is not obvious under MSE, which produces flatter minima due to weaker gradients near prediction
boundaries (Bosman et al., [2020).

5.4 COMPUTATIONAL EFFICIENCY

Figures[6{c)-(d) show the training throughput as the number of target nodes processed per second on
a single GPU for ogbn-products (see other datasets in Appendix [N).

Answering our research question: Computational Efficiency improves with batch size as fixed
computations (e.g., parameter updates) are distributed across more data, but becomes worse with
larger fan-out sizes due to higher computational demands in message passing. Overall, mini-batch
training achieves better computational efficiency than full-graph training.

Non-isotropic impacts of batch size and fan-out size in convergence, generalization, and compu-
tational efficiency. Based on the observations in Sec.[5.2]-[5.4] the batch size and the fan-out size
exhibit distinct, non-uniform effects across different aspects of GNN training. These non-isotropic
impacts highlight the need for careful tuning of both hyperparameters to balance computational
efficiency, convergence, and generalization.

5.5 FULL-GRAPH VS. MINI-BATCH TRAINING AFTER HYPERPARAMETER TUNING
Table[T]compares the generalization performance of full-graph and mini-batch training after tuning
batch size and fan-out size via grid search. For the ogbn-papers100M dataset, two hidden layers
with a hidden dimension of 128 are used due to resource constraints, limiting representation capacity.
The best accuracy from mini-batch training is within 1.74% of full-graph training, suggesting that
full-graph training does not consistently outperform well-tuned mini-batch settings.

Implications for tuning batch size b and fan-out size /. Based on both the theoretical and empirical
observations above, we recommend keeping the batch size b below half of the training nodes and
the fan-out size 7 under 15 for datasets with an average degree less than 50, to avoid generalization
degradation and balance the trade-offs in computational efficiency and model performance.

6 RELATED WORK

The only existing comparison work (Bajaj et al., |2024) between full-graph and mini-batch GNN
training empirically evaluates overall performance but does not investigate the impact of key hyper-
parameters (e.g., batch size and fan-out size) on model performance and computational efficiency,
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thereby overlooking the trade-offs achieved by tuning these hyperparameters. Recent efforts (Yuan
et al.,[2023} |Hu et al., 2021) focus on these hyperparameters but remain limited. For instance, Yuan
et al. (Yuan et al., |2023)) lack theoretical support, consider only limited batch sizes and fan-out
values that are far smaller than those of full-graph training, and overlook the interplay of batch
size and fan-out size. Hu et al. (Hu et al., 2021)) rely on gradient variance to explain the role of
batch size but do not consider fan-out size; thus their explanation conflicts with their empirical
observations. Meanwhile, existing theoretical analyses of GNN training (Yang et al.,[2023; Tang &
Liu} 2023} [ Xu et al.| 2021; Verma & Zhang, |2019; |Yadati, [2022} |Awasthi et al., [2021)) overlook key
graph-related factors (e.g., irregular graphs, the difference between training and testing graphs in
mini-batch settings) and the impact of non-linear activation on gradients. Furthermore, due to GNN’s
message-passing process, performance insights from DNNs (You et al.} 2019; Smith, [2017; |Golmant;
et al.,|2018; Zou et al., [2020a; Bassily et al., 2018; Nabavinejad et al., 2021) cannot directly transfer
to GNNs. We provide a more comprehensive related work discussion in Appendix

7 CONCLUSION

We provide a comprehensive empirical and theoretical study of full-graph vs. mini-batch GNN training
from the view of batch size and fan-out size. We provide a novel theoretical GNN generalization
analysis employing the Wasserstein distance, to study the impact of batch size and fan-out size. We
empirically highlight the importance of iteration-based convergence metrics for hardware-independent
evaluation. Our theoretical and empirical findings reveal the non-isotropic impact of batch size and
fan-out size in GNN convergence and generalization. Finally, full-graph training does not consistently
outperform well-tuned mini-batch settings in model performance or computational efficiency. These
insights clarify the trade-offs between full-graph and mini-batch training. We further discuss the
extension (e.g., link prediction tasks) and future work (e.g., different activations) in Appendix [P}

10
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REPRODUCIBILITY STATEMENT

For the theoretical results, all assumptions and complete proofs are provided in Appen-
dices [AHE] [G| and [HM| with additional important discussions in Appendices [F| [H and [}
For the empirical study, the code is publicly available via an anonymous link provided in
the abstract: https://anonymous.4open.science/r/GNN_fullgraph_minibatch_
training-8040/README.md . Detailed experimental configurations and additional experiment
results are represented in Appendix [N} and all datasets are properly cited in the main text.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model (LLM) only as a general-purpose writing assistant to aid in grammar
checking and polishing the writing. The LLM did not contribute to research ideas, experiment design,
theoretical analysis, or result interpretation.

A NOTATIONS

Table 2: Notations

n

Number of nodes of the entire graph

Nirain / Neest

Number of nodes in the training set / the testing set

train train

Nmin The minimal value between training and testing sets
X/x; Node feature matrix / ¢-th row of node feature matrix
Yi Ground truth label of node ¢
yilyi Ground truth label in one-hot form / estimated outcomes of node ¢
T feature size
b Batch size
J6] Fan-out size
Ame/ Atfglln Adjacency matrix in each mini-batch / full-graph training iteration
D™/ Dl?alf:: ™| Diagonal in-degree matrices in each mini-batch / full-graph training iteration
Dbty Dtor‘;ti;f“” Diagonal out-degree matrices in each mini-batch / full-graph training iteration
Amini 7 Afull Normalized adjacency matrix in a mini-batch / full-graph training iteration

~mini ~ full
atrain,i / Atrain,i

i-th row of normalized adjacency matrix in a mini-batch / full-graph training iteration

Ao/ Atest, s

Normalized adjacency matrix / i-th row of Normalized adjacency matrix in testing set

Wmini /Wyl Learnable parameters of the GNN under mini-batch / full-graph training
wnint / yy full i-th row of parameters of the GNN under mini-batch / full-graph training
wWmini™  WHI™ 1 Ground truth of learnable parameters W™ / Wil
wmin /w1 i_th row of ground truth of learnable parameters W™ / Wl
h Hidden size
K Number of label categories

ReLU activation function

Dual activation function

Ltrain( / Ltrain(')

Expected / empirical training risk

train train

Expected / empirical training risk in a mini-batch

)
Lmini(_) / [A/mini(_)
Ltesl(')/LtCSt(')

Expected / empirical testing risk

G Stochastic gradient in mini-batch training

n Learning rate
P/Q Prior / Posterior distribution of model parameters
U(-) Expected loss discrepancy between training set C and testing set Z
o(+) Distance function

0 Covariance

To easily distinguish the training risk between full-graph and mini-batch training, we rewrite Liin(+)

and Lygin(+) as L

train

() during full-graph training, and the stochastic gradient G as ¥V L™mni(.),

Vﬁmn(-) as VLl

train

(-) and L™ (.) under full-graph training. Similarly, we rewrite the gradient

train

train

B PROOF OF CONVERGENCE THEOREM IN FULL-GRAPH TRAINING WITH

MSE

In this section, we provide the proof of the convergence theorem in full-graph training with MSE. We
consider multi-class node classification tasks using a one-round GNN trained with the MSE, defined

asl (W, aM!

train,?

) = 3 |I9i — yill% The ground truth label ; is rewritten as y; € R*** in the one-hot
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form, where K > 2 is the number of label categories. The final output of the GNN model is given
by yi = z; = o (aful, ;XW ), where the ReLU function is modified as o/(z) = v/2max (z,0).
Note that 1/2 in the MSE function and v/2 in the ReLU function are introduced to simplify the proof.
The hidden dimension h becomes K. Note that The rows of W are initialized independently from a

Gaussian distribution NV (O, /{21).
We decompose the analysis of GNN optimization dynamic into three steps.

Step 1: Reformulating loss and gradient expressions on irregular graphs. We decouple the activation
function from the aggregated node features. For instance, we extract the aggregation from the ReLU
function by reformulating squared loss terms.

Step 2: Bounding the norm of gradient. Based on the reformulated loss and gradient expressions, we
aim to quantify the magnitude of optimization updates by bounding the gradient norm, facilitating
convergence analysis. This can be achieved by leveraging the Polyak—}.ojasiewicz (PL) inequality
(Polyakl, [1963), where the squared norm of the gradient is lower bounded by the loss value scaled by
a factor.

Step 3: Bounding the number of iterations to Convergence. We first leverage the smoothness of the
loss function to derive a per-iteration inequality relating loss reduction to the gradient norm, and then
accumulate these iteration-wise inequalities over GD updates to obtain an upper bound on the number
of iterations required for convergence.

B.1 ASSUMPTIONS

Assumption B.1. The node feature x; is drawn i.i.d from N (0,1,.«,.) for all ¢ in the graph, with
HX||§ < C,, for a constant C,, > 0.

Assumption B.2. The rows of ground truth parameters satisfy |w;||, = 1 foralli € {1,..., h}.

Assumption [B.T] specifies the distribution of node features and bounds the norm of the feature
matrix, and Assumption [B.2]limits the norm of ground truth parameters for the GNN model. These
assumptions are also adopted in the GNN convergence analysis on regular graphs (Awasthi et al.}
2021). We emphasize Assumptions [B.1I] and [B.2] are introduced to simplify the proof. Note that
Assumption can be relaxed to be that ||w ||, is lower and upper bounded by some constants
instead of fixing ||w; ||, = 1.

Definition B.3 (Dual activation (Daniely et al., 2016)) The dual activation of ¢ is the function
6 :[-1,1] — R defined as 6 (§) = E[o (z) o (y)], where x and y are jointly Gaussian random
variables with mean zero, variance one, and covariance 6.

Definition demonstrated that dual activations hold continuity over the interval [—1,1] and
convexity within the range [0, 1].

B.2 EXPRESSIONS FOR LOSS AND GRADIENTS.

While our ultimate training objective remains empirical risk minimization, we analyze the optimiza-
tion dynamics of MSE using its expected risk formulation on node feature distribution. This is done
to simplify the proof, as expected risk offers a cleaner mathematical structure and does not affect
the graph structure. Although this approximation is more accurate in the large-sample regime, we
adopt it here as a modeling tool to study the impact of batch size and fan-out size in convergence,
even when analyzing small-sample settings.

Expression for MSE loss:  We first begin by writing an equivalent expression of Ly, (wi'') with
je{l,...,h}as:

1 Train AT 2
v, () =51 s v2 S (amx () )

Mtrain T 2
~full X full
o alrain,i w J

=1

Mrain T T
~full X full ~full X full *
O | Qtrain , Wj (e atrain, 7 wj )

i,j=1

2Mrain —
=1

M
—2E
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We next compute expressions for each of the three terms above.

Mirain 2
1 E ~full X full T
o atrain,i wj
Train i—1

Mrain
_ 1 E ~full X full T ~full X tull T
- Pij O alrain i Wj g atrain k
Mrain i1
(rdln
full full
E plj \/ Atrz\m]l . Atram]l) &

H full

Train
2
~full full\ T ~full fully T
atrain,iX (wj ) Arain, zX (Wj )
full full A full full
(Am,r) [lw| (Am1) [lw|
H full H2 Tirain qull
i,k full
E p - ﬁi,k
Nirain Qtull
ik
2
full full

where the penultimate equality follows Definition [B.3] E We use p;; = 1if ¢ = j and p;; = 0 if
i# 7, QZ“H to denote the amount of common messages between node ¢ and node j at a given training
iteration, and we define:

Mirain full

full 1 . 0, "
M=o > pud | = | VO 3
Ttrain i1 79£ujl_l -
full full full
o1 = (At), (A1) - @

Similarly, we get the second term as:

Train 2
1 w\ T
~full X full
. E E :U atrain,i (“j )

Train i—1

waull* 2 pfull (5)

We simplify the last term as:

Mirain
1 E ~full X full T ~full X full* T
Dik0 | Qtuain,i Wj Arain, k
Tltrain

ik=1

Mirain
full full * full full
E HW ‘ HW] H } plk\/ ‘Alram]1 ‘A[ram]l
ik=1

ntram
Q)
ot X ()" | [ i)
(Aumr) ws (Aumr), ws
.
— wil! ‘ H full * Z Pt o (wi") wi [9ful
Tltrdm ‘ /,L9full HWMH H HWtull)k H L
Therefore, we have the expression of L{al (wim) as:
X 1 \
e (W;pll) :§(||W;gll||2rfull + Hw;un*Hzrtun
fu“ Train full full) T qun* @)

ntral n

o (w
‘H " H Z piko /;:111 wai“H wa““*H \/@)
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full

It is easy to see that if w}'j is the initial value of wi"' with j € {1,...,h} then each subsequent

full full * full _

iteration will be a hnear combmatlon of w; and w; Hence we can assume that W

(bfull full * wfull full 1
J

, where w— is a fixed unlt vector (depending on the initialization) orthogonal

full

to wi''". Then rewriting the loss in terms of ¢!, ¢)™! and recalling that ||w§“”* || = 1 we get the

full | (yyfull),
i)

simplified expression of L

u u u 1 ull) 2 ull) 2 u u fu u
L (d)f I 11) -1 ((¢f 11) n (wf 11) n 1) P (g - () 2l @®)
where we define:

n,
1 lram full full

pfull S pud LN AT, ol )
Mrain ;57 / ¢fu11 wfull /19fu

Expression for gradient: We compute the gradient of the objective with respect to w or equivalently
with respect to ¢, ).

8qull (d)fu]] wful])

et
_ ¢fu]lrfull _ ¢fu“Tfu“
(¢full)2 + (wfu11)2
. 1 (wfull)Z Train N gmn y ¢fu11 QZul]l
mun? \ ($90)7 4 () 57 TGz gz forn
. ¢fu11frfull (10)
_ ¢f ipfull
(¢full)2 + (1/]full)2
. 1 (wfu]])Q Nrain ” .gf.“U& full tull
n[rain2 (¢full)2 + (,¢,full)2 i,j=1 eI / stull wfull /ﬂf“ljl
f full\ 2 —=full
. ¢fu]]frtull (w ) =
:¢fu]IFtull _

(¢fu11)2 + (wfull)Q ((;jfull)2 4 (wt’ull)27

where in the second equality we use 6" = o’ and o/ = /21 (x > 0) = Ogep(x), Tsiep 1s the step
function, and we define:

" 11 1 Train full full
g Z ngQz,J O'step (11
Mrain 57 / d)mu d)full /19fu
Similarly, we have:
oL (¢f“",1/)f”"> full y~full full ) full full
_ _ unphul T ¢ 2¢ = (12)
o (pfl)? 4 ()2 (6M1)” + (Pl)

B.3 THEOREMI[B.4]

Theorem B.4. (Convergence of Full-graph Training with MSE) Suppose W/ are generated
by Gaussian initialization. Under Assumptions and if the maximal degree satisfies

3 )
C{”H < dpar < Cg‘”n“ . for some constants C’f‘”,Cg‘” € (0,1), then with high probabil-

train

ity, the training loss satisfies Lygin (V\/'fT“”7 Al ) < €, provided that the number of iterations

train —
T=0 ( h2dmaxef1 log (h26’1)> forany € € (0, 1) under the full-graph GNN training.

tram
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B.4 PROOF OF THEOREM [B.4]

1

full full 3
Lemma B.5 P ALl < T < — dmz <

HAg‘zﬂn t1||1 < ntraindmax~

A 7|y, and | Y| < T where nZ

train

train

Lemma B.6 If wg-‘fg ~ N(0, x%T) and the learning rate € (0 then with probability at

s ]
least 1 — e~ it holds that for all ¢ > 0, \/ (60?4 (¢1)* < C, and \/ (@) + (v
forall t > 1, where C' = 7 + O (x+/r) is a positive constant.

Lemma B.7 If wﬁ““ ~ N(0,s?T) and the learning rate ) € (0, 5w, then for all ¢ > 1 and any
C1 € [0,1] such that (o™, ™) = (1 — Cy) (¢, ) + Cy (@, ¥ ), we have that,

max(v2qu” (¢full7 ,ll)full)) S szl-\full7

train

where Apy is the maximum eigenvalue of the population Hessian denoted by VZLM! (gl ¢ll),
and Cy =4 (1 +4/5 +O0(kyr)+o0 (1)) is a positive constant.

Lemma B.8 If wg-f‘g ~ N(0, 5T) and the learning rate 1) € (0, g7 ), then with at least 1 — 1/h?,

it holds that for all ¢ > C3 log (log h), \/(@‘“)2 + (1/),{”“)2 > 1—o0(1), where C3 > 0 is an absolute
constant.

LemmaB.9 If wfull ~ N(0, x°T) and the learning rate 1) € (0 ], then there is an absolute con-

) 67 qu

stant C, such that for all ¢ > C3log (log h), either [ < 6 - and H \/ qf)m“ wfun) <

1
2 h or we have that

HVLtf;glln ( gull, gull) H2 Z /qu”L{;l;:n ( iull’ {ull) ;

where p™' > Cyeh=2d 2™, and Cy is a positive constant.

max

Proof of Theorem. We analyze an arbitrary j {17 ..., h} and the iterates of the corresponding
wi!l vector. Setting x = 1, we have from Lemma that the smoothness parameter C™!' of the loss

function is
Cf“11§02:4(1+,/2+g+o(1)) (13)

Hence, for any ¢ > 0,

full full full full full tull full full
train J,t+1) =train train J,t+1 J,t
Liain (W ) <Lini +VL (w — W)

full
Cu full full 2
T || Wit — Wit
2 Cfull 9 (14)
full full full full n full full
SLlrain (Wj,t) - HVLLram ( ] t) + ’vzllram ( ] t)

9 full
=12 (wit) vt (wet) | (1J702 ).

By Lemma. we know that ) € (0, (mrfu"] Using Lemma | we first assume that < Amax <

T
(ﬁ) ng.., where Cg < = 1s a positive constant. Then, we setn € [

Gd
‘n'n

deax 1 Wi 3
. € are goin
ﬂ-nmm ’ 67Td"“"‘:| g g

Cs dmax <

™3, = 67Tdm|x

to prove ) € [ E } is still within the range (0

and
oin 67rd ]

1
) Gl
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For the right side of the range, we have due to T < ¢, ... For the left side of the

range, i‘;d"‘“ > 0 with the positive constant Cs. Moreover, we have:

train

1
67 dmax S 67 l"tu]]

1 Ceddy 1 ( 1 Cadiax>

67Tdmax ﬂ—nt?;uin ) 6d;"‘ax nf;ain ( 1 5)
e ak)
7T\ 6dmax 6dmax
Cﬁdmax 1 .
Withn € o dm} , we have:
cfull
pcM <~ <1 (16)
Tt max
Furthermore, using Lemma[B.9] we have
full ,__ full full full full full full full
Lt;lam(wjut+1) < Lt;lam (W]ut) (1 — K ! ) < Ltgam U(VVjL,‘O)(1 — K " )t- an
Then we have:
T<Cnlog (1) L (18)
o - 7,
= T8 T )l
where C7 is a positive constant.
Moreover, we have:
1
CaCodmaxel™ _ C4Csd3
anull > 4Cg dmax;Q > 4 6 max € (19)
T4 ain h?2
tram
7
Hence, we have T' = O ““" log
6dn%’ax
2
After T time steps, we either have Lfg}}n ( g“?) < 7, or that zbfuu <3 2 - and ((;Sf”ll) ( f““) 1<
£— . The latter implies that Wfull f-“u* < 6 . In addition, it is easy to see that L (wfll) <
p y train ],t
wa“” wil™|[2. Hence, if the latter happens then Ligt, (W) < 5. Hence Lt (W) <ee.

This completes the proof.

C PROOF OF CONVERGENCE THEOREM IN MINI-BATCH TRAINING WITH
MSE

In this section, we provide the proof of the convergence theorem in mini-batch training with MSE
of Section [3] We consider multi-class node classification tasks using a one-round GNN trained

with the MSE, defined as | (W, &% ) = 1 ||§; — y;||3.. The ground truth label y; is rewritten as

train, [
yi € R X in the one-hot form, where K > 2 is the number of label categories. The final output
of the GNN model is given by ¥; = z; = o (&% XW ), where the ReLU function is modified

atram 7

as o(r) = v/2max (z,0). Note that 1/2 in the MSE function and /2 in the ReLU function are
introduced to simplify the proof. The hidden dimension h becomes K. The rows of W are initialized
independently from a Gaussian distribution N (0, x2I).

We decompose the analysis of GNN optimization dynamic into three steps, similar to Appendix [B]

C.1 ASSUMPTION

We still use Assumptions [B.T|and [B.2]in mini-batch settings for training data and the ground truth.
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C.2 EXPRESSIONS FOR LOSS AND GRADIENTS.

While our ultimate training objective remains empirical risk minimization, we analyze the optimiza-
tion dynamics of MSE using its expected risk formulation on node feature distribution. This is done
to simplify the proof, as expected risk offers a cleaner mathematical structure and does not affect
the graph structure. Although this approximation is more accurate in the large-sample regime, we
adopt it here as a modeling tool to study the impact of batch size and fan-out size in convergence,
even when analyzing small-sample settings.

Expression for MSE loss:  We first begin by writing an equivalent expression of LN (v mlr") with

. L .
j€{l,..., h}. We can assume that Wmml = @My m"“ L/Jm““ m‘m , where w is a fixed unit

mlm

vector (dependmg on the 1n1t1allzat10n) orthogonal to w Then rewriting the loss in terms of

@™t opmint and recalling that ng““l || = 1 we get the s1mpliﬁed expressions of LI (w'in') and

train J
full mini') .
L train ( ] ) :

i (¢mini7 wmini) _ % ((¢mini)2 N (wmini)z N 1) pmini _ \/(¢mini)2 T (g T ()

and
full mini mini A mini \ __ 1 mini 2 mini 2 full mini mini  x mini
Ltrain ¢ ) w ) Atrain _5 d) + ¢ +1 r ¢ ) w ) Atrain
2D
(6m70)? 4 (i) 0 (M, AR
where we s1mp11fy Ffull <¢mini7 ¢mini7 Ami_ni) and 'rfull <¢mini7 wmini, Amini) as I\full—mini and 'rfull—mini’

train train
respectively, and we define:

T omini
mini A i,j ini
= 2N e | 2= \/19T;m 22)
b — gmini
1,j=1 i
fullmini full o 1 Mrain gr_nini
ull-mini u mini ;mini x mini N i,j /
r =r (¢ 71/) Alrdm) = e Z Pijo | —F/—— ﬁ;n;m? (23)
train ;== /ﬂgl;m

b

.. 1 ¢mini gmml
Tmlm _ = Z pija_ 3y /19;1'11[117 (24)
b, - mini m1n1 mml ’
1,7=1 (¢ ) w 19

full-mini full mini mini mini
T = T (¢ ) 1/} Alrdm)

1 Ttrain m1m Q;rjljm mml (25)
- Z 2 L
Tltrain =1 \/W /ﬁ;mjm
o = (Ammr) (Amnn) 26)
v J

where we use Pij = lifi=jandp;; = 0if ¢ # 3, gm““ to denote the amount of common messages
between node ¢ and node j at a given training 1terat10n

Expression for gradient: We compute the gradient of the objective with respect to w or equivalently
with respect to ¢, 1.

aLmlnl (¢mlnl7 ,d}lnlnl) ¢mln1 lenl ¢m1anmlnl (wmlm) Emlnl (27)
Jgpmini \/(¢mini)2 N (wmini)g (¢m1m)2 + (Q/)mml)2
and
full ( ,mini _,mini X mini . . mini\ 2 =full-mini
oL 10} P A mini ~y~full-mini P
’ rain ) gminipfullmini _ T = 28)

+ . R
a¢m1m \/(¢mini)2 N (wmini)2 (¢m1n1)2 + (wmlm)2
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where we define:

¢m1m m1m
_mml:iz: s 29
p]Q J Ubtep mlm mml ﬁmlm ( )
1,j=1 (¢ 1/}

—full-mini —full mini mini A mini
= == <¢ ) ¢ ’ Atrain)

Ttrain mm1 mini (30)

Qi,j

- > pij 0 G
train / ¢m1m wmlm /19;“;“‘

1,j=1
Similarly, we have:

H,mini ( ¢)mini7 ¢mini)

_ wminirmini B wminiTmini N ¢miniwmini5mini a1
awmini . 2 ) mini ) 2 mini) 2’
((bmlm) + (¢m1m) (¢ ) + (7/1 )
and
full ini .. ..
oL™ ((]5m1m, ’L/Jmlm A{?;P;) _ wmini Ffull—mini B ¢m1m Tfull-mlm ¢)m1n1wm1m —full-mini 32)
Drpmini \/(¢mini)2 + (wmini)2 (¢mln1)2 (¢m1m)

C.3 PROOF OF THEOREM[I]

Lemma C.1 Amml ]1”1 < ngini)]_’\iull—mini S % HAmlm]l

T ” train, train

F]t;ul]-mini’ where bgﬁ 2 < HAmlm ]1”1 < bﬁ

train,t

|’r;nini| S I\glini and |’r£ull-mini| S

Lemma C.2 If w;?jg‘i ~ N (0, kT) and the learning rate n; € (0 then with probability at

b) 671-F|'tnlnl b
least 1 —e~9() it holds that for all t > 0, \/(qﬂm“i)z + (z&{nim)Z < C,and \/(gb;nini)z + (1/1,?““)2
0 forall t > 1, where C' = 5 + O (k+/7) is a positive constant.

Lemma C.3 If w;-‘jg‘i ~ N (0, x%T) and the learning rate 7; € (0, o me,} then for all ¢ > 1 and any
Cy € [0,1] such that (g™, ™) = (1 — Cy) (@, yint) + C ( ﬂ“l‘,wﬂ“l‘), we have that,

>\max (v2 qull (d)mini7 wmini7 Amipi)) S 02 Fgull—mini’

train train
where Ap.x IS the maximum eigenvalue of the population Hessian denoted by
V2l (¢mi"i,wmini,A;§;;‘;), and Cy = 4(1—1— 2+ 0 (kyT) —|—o(1)> is a positive con-
stant.

Lemma C4 If wi'" ~ N(0,x°I) and the learning rate 7, € (0 then with at least

vl
I GWF‘;“i“i ’

1 — 1/h?, it holds that for all t > C3 log (log h), \/(gblt“ini)Q + (1,[)?‘“)2 >1—o0(1), where C5 >0
is an absolute constant.

Lemma C.5 If w“““l ~ N(0,x%I) and the learning rate € (0 then there is

1
s G ) :
an absolute constant Cj, such that for all t > Cjlog(logh), either || < £ and

= ’ S o
Vo) + pmy -1

1
< 5 or we have that

2
full mini m1n1 ﬁ mini mlm full mini mlm Q mini
Hthrain (¢ tram) ‘ Z Ltram (¢ tram) ’

where it > Cyeh =237 2Mullmini and Oy is a positive constant.
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Lemma C.6 [Lemma G.2 in (Du et al.;|2018)] Regarding n random variables u1, . . . , u, satisfying
Yo u; = 0. Let B € [n] denote a subset of [n] and [B| = b < n, the following holds,

E [uﬂ .

K2

| =

2

i€B
Proof of Theoreml: For any ¢ > 0, taking expectation conditioning on W;nﬁ_l gives:

full mini A mini mini
E [Llrain(wj,tJrla Atrain)‘wj,t ]

full mini  x mini full mini A mini mini mini mini
SLtrain (Wj,t B train) + vLtra\m ( Wit lrain) E [(Wj,t+l — Wit ) |Wj,t ] (33)
mini . 2
mini mini mini
+ E |:H Wiir1 — Wi || [Wi }
Furthermore, using Lemma|C.6] we have:
112 L.
mini mlnl mini
[H Wiit+1 — Wyt ‘Wj,t :|

mini mini x mini mml
_ntE |:HVLtmm ( j t train) H :|
mini mini  x mini full mini  x mini 2 mini
§77t HVLtram ( j t train) lel‘dln ( ] t train) H |Wj,t
full mini  x mini 2
VL
+ train wj t train )
< 2 ntram VLtull mmi A mini VLlull mmi A mini 2
STt train ] t 5 £\ train + train j t 5 4N train

ntmm
2 [ 2Nurain full mini A mini
Snt < b vLlrain (Wj,t ) 1ra|n) H )

(34

MOTCOVCT, we have:
full mini  x mini mini mini mini
V Lisain (Wj,t 5 lrain) E [(Wj,t+1 — Wit ) |Wj,t+1]
full mini x mini mini mini mini
= ntVLlrain (Wj t 7Atrain) E [v train, t (Wj,t ) E‘Wj t+1] (35)

full mini mini
=M V-Ltralin ( Wit tmm) H

Hence, we have:

full mini mini mini
]E [Ltram( ] t+1» Atraln)l ],t ]

full mmi A mini full mlni A mini 2
<Ltram j t y £ train train ] t » £\ train
Cmi"intrain 2 full mini % mini || (36)
+ T train wj,t s £ :train
oL N2 Cminiy,
full full train
<rih (wie', Amn) = e || vLi, (i A | (1 - m)
By Lemma , we know that 7; € (0, ﬁ] Using Lemma | we first assume that S <
t
Csf8° b
B < (60 ) bi where Ce < = 1s a positive constant. Then, we set 7, € |:77T7Llrainb2’ Gﬂﬂnmn}' We are
53 . . . . 1 CGBB b
going to prove 1y € [Tmbm r B, is still within the range (0, GﬂFm‘“i] and P < &= B
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: : b b mini
For the right side of the range, we have G < TS Tr— < GWme, due to I''™ < ( and
b < Nypain. For the left side of the range, ﬂg“ﬁ »z with the positive constant Cs. Moreover, we have:
b G b (i_cezﬁ)
67’1’ Ntrain ™, rainb2 _7T'I'L rain 6 b3
o [ 1 t 1 51 ®7
>—(=-—)=o.
(65 Gﬂ)
Cef® b .
With n, € [Tmmb - Bnm} we have:
Cmini Pirain Cmini
<1 38
b = Tenp o (38)
Furthermore, using Lemma|[C.5] we have
full mini A mini full mini x mini mini
Llrain(wj,t+17 Alrain) SLlrain (Wj,t ) lrain) (1 — Mt )
t
<Lin (W', Afin) H — ™) (39)

t
<Ligain (W50 Arain) (1 — n nepr™)’,
T=1
where the last inequality can be proved: f(x) = log(l — z) is a concave functionon 0 < = < 1,
then, for 0 < @; < 1 withi = {1,...,n}, wehave f(1 37  z;) > 13" | f(x ) which can be
written as log(1 — 2 3" | 2;) > L 5" log(1 — x;). Therefore, we have (1 — L 3" z;)" >
H?:l(l — .%‘l)

Then we have:

h? 1
reeme(') per “

where C'; is a positive constant.
Moreover, we have:

Z - mini > 04 CGBEFfull mini
" T Mtrain b2 h2

T 1
21 CaCoB* e 1)
T =1 T2 Nirainb 2 A2
_ CuCoBie
7r2ntrainb% h?

.50 2
Hence, we have T' = O (”‘“‘"bfh log hg)

ef2

. . L2
After T time steps, we either have L™ (wm‘"‘ Am‘m) < £, or that ¢t < eh and (o))" +

train J,t  *“*train h’
ik (]2 .. ..
(wmm‘) 1<§ 62 . The latter implies that || wi — W;?j;"‘* |” < £. In addition, it is easy to see that
Lf;g}n( gﬂtm,Ag;g;) < |[win — w2, Hence, if the latter happens, then L{s, (wiini, Amint) <

. Hence qull (Wmlm) < €.

train

Th1s completes the proof.

D PROOF OF CONVERGENCE THEOREM IN FULL-GRAPH TRAINING WITH CE

In this section, we provide the proof of the convergence theorem in full-graph training with CE. To
simplify the analysis, we focus on binary node classification using a one-round GNN trained with the
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CE, defined as [ (W, a! ) =log (1 + exp (—y;9;)). The final output of the GNN model is given

train, i
by §i = z;v' = o (afy, ,; XW ') v, Vi € training set, where v € {—1,+1} € R'*" is the fixed
output layer vector with half 1 and half —1. The rows of W are initialized independently from a

Gaussian distribution NV (O, /{21).
We decompose the analysis of GNN optimization dynamic into three steps.

Step 1: Reformulating loss and gradient expressions on irregular graphs. We represent the ReLU
function implicitly using a position-wise 0/1 indicator matrix that can directly multiply the aggregated
node features.

Step 2: Bounding the norm of gradient. Based on the reformulated loss and gradient expressions, we
aim to quantify the magnitude of optimization updates by bounding the gradient norm, facilitating
convergence analysis. We can bound the Frobenius norm of the gradient by the average of individual
node-level gradients.

Step 3: Bounding the number of iterations to Convergence. We first leverage the smoothness of the
loss function to derive a per-iteration inequality relating loss reduction to the gradient norm, and then
accumulate these iteration-wise inequalities over GD updates to obtain an upper bound on the number
of iterations required for convergence.

D.1 ASSUMPTION

We still use Assumptions[D.3]on the training data.
Assumption D.1. Vi,i’ € training set, if y; # y;, then @M X — &l _ X||; > « for some
a>0.

Assumption [D.T|requires that aggregated node features with different labels in the training data are
separated by at least a constant, which is often satisfied in practice and can be easily verified based on
the training data. A similar assumption on the non-aggregated features ||x; — x;/||2 has been adopted
in prior analyses of the DNN optimization dynamics without message passing (Zou et al., 2020a};
2018).

D.2 EXPRESSIONS FOR GRADIENTS FOR CE LOSS.

We first provide some basic expressions regarding the gradients for the CE loss in the GNN under our
setting. Note that the node classification task in this case is binary, denoted as K = 2.

Output after the 1-st layer: Given an input X, the i-th column of output after the first layer of the
GNN under the full-graph training is

. T
full ~full full ~full full fully T
z;, =0 (alrain,iX ( WV ) > = atrain,ix(zi W ) y (42)

train,?

where M = Diag (]l {éf“” X (Wf“”)T > 0}) € R"*" represents whether the j-th element

{éitrain,iX (Wil T} _is more than zero (1) or is zeroed out (0). Here we slightly abuse the notation
J

and denote 1 {x > 0} = (1 {x; > 0},...,1{x,, > 0})T for a vector x € R™.

Output of one-round GNN for the CE loss: The output of the one-round GNN for the CE loss
with input X under the full-graph training can be expressed as:

T
~full ~full full T ~full fullyxAull\ T T
Y =0 (atrain,ix (W ) ) v = alrain,ix(zi w ) v, (43)

where v € {—1,+1} € R'” is the fixed output layer weight vector with half 1 and half —1,
corresponding to the binary classification task setting in this case.
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Gradient for CE loss in GNN: The partial gradient of the training loss L™
to W under full-graph training can be expressed as:

e . 1 Mrain r r
V Ligain (Wm”) =—>7 (yiy?’“) ~yi - Vi [yi““] : (44)
0

Thrain

(W) with respect

where the gradient of the GNN is defined as Vyytu [g)f““] = (VEE””) Tafll x

train,s < *

D.3 THEOREM

Theorem D.2. (Convergence of Full-graph Training with CE) Suppose W/“! are generated by
Gaussian initialization. Under Assumptions and if the hidden dimension of a one-
round GNN satisfies h = (10g (Nuain) Ay (Nirgin + € 1)), then with high probability, the

training loss satisfies Ligin (W’;ﬁll,Az‘[Ifin> < ¢ provided that the number of iterations T =

O (n,mm (log (ntm,-n))% a’2d,;a§- (nfmm + e’l)) for any € > 0 under the full-graph training.

D.4 PROOF OF THEOREM [D.2]

We first provide the following lemmas.

Lemma D.3 (Bounded initial training loss) Under Assumptions and [D.T] with the probability
at least 1 — ¢, at the initialization the training loss satisfies L{, (W§") < C'\/dmax 10g(nugain/0),
where C is an absolute constant.

Lemma D.4 (Gradient lower and upper bound) Under Assumptions [D.3]and [D.T] with the probabil-
ity at least 1 — exp (—C1ha?/n2,,), there exist positive constants Cy, C and Cs, such that

2
A 2 293 Mrain )
HVWruuL{f;iln (Wf“”) H > % <Z I (yaﬁ““)) ,

F Mrain i=1

1 3 Ntrain
vafunf/tff;iln (wih H < _ Gsh2dinax Z ! (ysgt) .

F Ttrain —
i=1

Lemma D.4 (Sufficient descent) Let Wg“” be generated via Gaussian random initialization. Let

1
Wil be the ¢-th iterate in the gradient descent. If W', Wit € B (WE!, 7) and 7 < Cq/(adiax ).
then there exist constants Cy, C5 and Cg such that, with probability at least 1 — exp(—O(1)), the
following holds:

~ ~ ~ 2
L (W) = Lith (W) < () = Caduachin®) | Vs L (WE) |

1
C5ndr?13x h%

7 full full .
vaull Lt;‘ain (Wtu )H Mrain

F / ~full
> 1 (yyt) :
Nrain T ;
1=1

Proof of Theorem[D.2:  We first prove that gradient descent can achieve the training loss at the
value of € under the condition that all iterates are staying inside the perturbation region 3 (W(f)“", T) =

{W|w—wgt, <7}
Using Lemma[D.4] there exists a constant C, such that

. 2
. 2 C hanS Mrain .
HVWNIIL{;‘;%H (Wﬁ“”)HF > L2200 Gmax <§ v (yiyf‘fil) (45)
=1

Mirain

We then set the step size 1 and the radius 7 as follows:
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1 L
- - =l h )
g 4Cydmaxh O( max ) , “6)
1
4Csn?2 . Lo
T @Td[r:z: =0 (nt?aindmaxa ) . @

Then we have
full full full full
tram (Wt+1> - lram (Wt )

< - 777 varuu Ltmm (Wﬁ“”)

C h2 ad h . Mirain Au
20 = VWFU“L{r;iln (Wi ll) HF Zl l (y’by{ 1151)

F 2
4 trdm

2
<= 2n||Vwm i (W[ + 1| £ (Wi | (48)

= - 777 vaf“” Ltmm (Wiu“) HF

< _1702;:4 d3 o <7§l:nl ( Z_Aiuil)>27

train

where the first inequality is derived from Lemma|[D.4]and the settings of 1) and 7, the second inequality
is derived from Lemma[D.4] as well as the last inequality follows the gradient lower bound in Lemma

D.4

We note that [(z) = log(1 + exp(—x)) satisfies —I'(z) = 1/(1 + exp(z)) > min {ug, u1l(z)},
where ug = 1/2, u; = 1/(21og(2)). This implies that:

Mrain

Mrain
— Z U (yzgi‘-ﬂt]) > min {uo, Z url’ (yzz}iu?) }
=0 i=0

49)
> min {U07 nlramuOLtgjlln (W?ﬂl) } .
Since min {a,b} > 1/(1/a + 1/b), we have:
£, (W) — 288, (W)
243 243 2
< pmin { 6’2;043 inax %3 ngs .dmax wl ( fan (Wi"")) }
Thirain train (50)

—1

3
2nlrain 2Mrain

<-7
Coha?d3u? Coha2dduu? ( 7 ful (Wgull)) 2

train

Rearranging terms, we have:

5 ( o (fful (W{‘ﬂ) J full (Wgun))
o (i (W) — L, (W) ¢ =L < 6
2ha dmaxug Coha?d2pu? ( 7 full (Wguu))

train

Using (v — y)/y* > y~! — 27" and taking telescope sum over #, we have:
i . —1
2 ( (i (W)™ = (L8, (W) )
Coho?dimt]

N -1
2 ((Lf:;‘}n (W) (L, (W) )

Caoha2ddu?

2nt?;an full full 7 full full
t : (er(w )7Lrin(w ))
77 = Cgha dmaxuo tra 0 tra t +

27%3 full - (pyfull

rain L rain ( )

e ha? dmax ‘ 0
(52)

Next, we guarantee that, after 7' gradient steps, the loss function Ll (W) is smaller than e.
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Nl=

Using Lemma L we have Lg‘;}n (WS‘H) =0 (déax (log (nrain))

Therefore, T satisfies:

).

T=0 (ntram (IOg (ntram)) 3 / (a dr?mx) + Ntrain (IOg (ntrain))% / (GQZdI%ax)) . (53)

Then we are going to verify the condition that all iterates stay inside the perturbation region
B (W§M, 7). Obviously, we have W{' € B(W{" 7). Hence, we need to prove Wi, €

B (WM, 7) under the induction hypothesis that Wi € B (W 7) holds for all ¢ < T'.

R 2
Since we have Ll (Will) — Ll (Whil) < 1y HVquu Ll (wikl) H for any ¢ < T, using
F

train train train
triangle inequality, we have:

full full
HW“ —wh

2
< n Z vafull Lfruilln (ng") HF

t—1

N 2

<yt | T L, (W[
k=0

(54)
< 2th (2, oWy — £t (W)
< /2l (W)
. 1 1\ . .
Using Lff;}n (W(f)“”) =0 (drﬁax (log (nyrain)) 2) in Lemma and our settings of 7, we have:
Wit = wit|| <y/amLm, (win)
2
) ) (55)
1 4 -3 1 1 1 1 4 -3 _1
=0 (1 O ) 0™t 4 o (nes)E 2o H ).
In addition, by Lemma[D.4]and our choice of 7), we have
C 1 % Ttrain
[V 28, (W) | < IR D S T (i)
train i=0 (56)

1
<O ((log (n[rain))% hi%dmai) )

where the second inequality is derived from the fact that —1 < !’(-) < 0.

Therefore, by triangle inequality, we assume that b = Q (nZ;, 108 (urain) diax + 108 (Mirain) € diay)
and we have:

full full
HWHl — W

<[ T it (W) |+ [ |
1
2

3 1 1 1 1 _q -3 _1
=0 Iram (lOg (ntfﬂ“")) Q dmai h™ 2 +n 2am (log (ntrain)) 2€e 2 dmai h™ 2

= O < lramdmdxa ) ?

which is exactly the same order of 7 in our settings.
This verifies W', € B (W, 7).

Proved.

(67
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E PROOF OF CONVERGENCE THEOREM IN MINI-BATCH TRAINING WITH CE
AND INTERPRETATION OF THE OBS[I]

In this section, we provide the proof of the convergence theorem in mini-batch training with CE. To
simplify the analysis, we focus on binary node classification using a one-round GNN trained with the
CE, defined as | (W, aqn ;) = log (1 + exp (—y;§:)). The final output of the GNN model is given
by §; = z;v' = o (amn XW ') v Vi€ training set, where v € {—1,+1} € R*" s the fixed
output layer vector with half 1 and half —1. The rows of W are initialized independently from a

Gaussian distribution IV (0, KJQI).

We decompose the analysis of GNN optimization dynamic into three steps, similar to Appendix

E.1 ASSUMPTION

We still use Assumptions [B.T]on the training data.

Assumption E.1. Vi i’ € training set, if y; # y;/, then |[|[a0N X — amini  X|, > « for some
a > 0. /

Assumption [E.T|requires that aggregated node features with different labels in the training data are
separated by at least a constant.

E.2 EXPRESSIONS FOR GRADIENTS FOR CE LOSS.

We first provide some basic expressions regarding the gradients for the CE loss in the GNN under our
setting. Note that the node classification task in this case is binary, denoted as K = 2.

mini

The i-th column of the output z™™ after the first layer, as well as the output ™" of the one-round
GNN for the CE loss under mini-batch training, are similar to those in full-graph training in Sec. D}

with W and éf}‘;}m ; replaced by W™ and iig‘;ﬂil, respectively.

train train

Gradient for CE loss in GNN: The partial gradients of the training losses L™ (Wmi“i, Ami“i)

and Ll (Wmi“i, Ag’;{;;) with respect to W™ under full-graph training can be expressed as:
i (WL ARR) = 5 D0 (5™ ) - T [57] (58)
=0
R . 1 in . .
VL (W ARR) = —— > 1 (5™ - ve - Vwma [5] (59)
train

=0

where the gradient of the GNN is defined as Vyyuni [g{™] = (vIint) T gmini x

train,

E.3 THEOREM

Theorem E.2. (Convergence of Mini-batch Training with CE) Suppose W™ are generated
by Gaussian initialization. Under Assumptions and if the hidden dimension of a one-
round GNN satisfies h = Q (nfmm log (Nyrain) B + 10g (Nirain) 571671), then with high probabil-

ity, the training loss satisfies Lurain (W’j"f"", Amini ) < ¢ provided that the number of iterations

train
T = 0(nt. E—23-5p-1 2 N L T P >0
- Nrain ( og (anam)) « + Nirain ( 0og (ntruzn)) @ € fOl’ any € =
under the mini-batch GNN training.
Our bound on the hidden dimension & reveals an over-parameterization setting in this case, where the
number of trainable parameters exceeds the number of training samples. Since the hidden dimension

h remains finite, our analysis is conducted in the finite-width setting, in contrast to the infinite-width
Neural Tangent Kernel (NTK) framework (Yang et al., 2023; [Lin et al., [2023).
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E.4 PRroor or[E2

We first provide the following lemmas.

Lemma E.3 (Bounded initial training loss) Under Assumptions [B with the probabil-
ity at least 1 — 4, at the initialization the training loss satisfies Lful (Wg‘m‘) [ mini (Wg“m) <

train train
C'\/Blog(nyain/d), where C'is an absolute constant.

Lemma E.4 (Gradient lower and upper bound) Under Assumptions|B L with the probability at
least 1 — exp (—C1ha?/ (nf)), there exist positive constants Cy, Co and Cg, such that

. 2
mini mini 02 hOéQBS nﬁ"flm ~mini
HVW‘“““LtrzEn (W Atram) H l/ (ylyz ) )

trdln i=1

Csh 5 2 N
| Vv Loy (W, K | < - Zz' v

Lemma E.5 (Sufficient descent) Let W{'™ be generated via Gaussian random initialization. Let
Wi be the t-th iterate in the stochastic gradient descent. If W™, Wiy € B (Wg““‘, 7') and

T < an% /(afB), then there exist constants Cy, Cs and Cg such that, with probability at least
1 — exp(—0O(1)), the following holds:

full mini mini mini 7 full mini  x mini
]E |:Llrdm (Wt+17 Atrdm) |W ] Ltrain (Wt 7Alrain)
046}177 Ttrain 7 full mini 7§ mini) ||2
<- <77 - va‘tm“i Ltrain (Wt 7Atrain) ’F
‘ Tirain

b
t F / ~mini
TMitrain T Z Yili,t+1

7 full vaini A mini
Vw;mm Ltrain ( t Atrain)
1=1

05775%h%

Proof of[E2}  We first prove that stochastic gradient descent can achieve the tra1n1ng loss at the value
of € under the condition that all iterates are staying inside the perturbation region 55 (Wm‘“‘ ) =

{W|[w—wgn], <7}
Using Lemmal|E.4] there exists a constant C' such that

2 n3 Mtrain . 2
[ > Gl <§j v (yy“‘t)) (60)

train

min mini mini
‘ ‘ Vi Ltra (Wt Atrain)

We then set the step size 1 and the radius 7 as follows:

b

_ b3~ h1n=1 1

K 4C4ﬁhntrain ( & tram)’ 61
4C5n 1 1 ,—

T = 702;5”‘ =0 (néaina B 1) . (62)

Then we have:
fu]l mini mini mini full mini mini
E |: train (Wt+17 AIram) ‘W ] Lram (Wt Atram)

(63)

3
2Mirain 2Mrain

s-n Czhoz253u(2) Cghoc2ﬂ3u1 (Ltull (Wmlm Amlnl))2 ’

train train

where up = 1/2, u; = 1/(21og(2)).
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Rearranging terms, we have:

2ng—ain 7 full mini  x mini mini 7 full mini x mini
C hOé2B3u2 (E |:Ltrain (Wt+17 Alrain) ‘Wt ] - Llrain (Wt aAtrain))
2 0
7 full mini A mini mini 7 full mini A mini 64
2Nirain (]E [Ltrain ( t+1> Atrain) ‘Wt ] - Ltrain (Wt 7Atrain)) ( )

+ < —n.

~ ~ 2
2133,,2 full VW mini mini
CQha B uy (Luain ( t 7Atrain))

Using (7 — y)/y? > y~! — 27! and taking telescope sum over ¢, we have:

tn < 2N ain Full - (yppmini & mini
n= CQhQQ/BSUS train 0 £train
~ full A A full AN (65)
2 ( (B [Lith (W, Az)) | = (Lo, (We, A
+ .

Coha?33u?

Next, we guarantee that, after 7' gradient steps, the loss function L (W?i“i, Ag{;{g) is smaller than
€.

Using Lemma we have Ll (W{)“i“i, A{}‘;ﬂ{) =0 (6 2 (log (ntmin))%).
Therefore, T satisfies:

T = O (iain (108 (ngain))? / (0*B7b) + nfin (l0g (ugan))? / (c5%0) ). (66)

Then we are going to verify the condition that all iterates stay inside the perturbation region
B (W§ini 7). Obviously, we have Wi € B (W{in 7). Hence, we need to prove Wy, €
B (W§ini, ) under the induction hypothesis that W, € B (Wg™™, ) holds for all ¢ < T..

train train train train

AL . AL . A o~ |12
Since we have Lmini (Wpini) _ fmini (wmini) < _Lp vam,.,i Ly (Wi, A H for any
F

t < T, using triangle inequality, we have:

mini mini
sz —W"

< |2z (wn, Agm). 67
2

Using Lmini (WS*““, A?:QE;) =0 (B% (log (nlrain))%) in Lemmaand our settings of 7, we have:

W 7mini W 7mini

2

< \/ 2Ly (W, Api) (68)

3

=0 (n (10g (i) b3a ™ B3R5 402, (log (nuwan)) ® b%e’%a’lﬁ’%h’%) .
In addition, by Lemma[E.4]and our choice of 7, we have

1,1 b
‘2 < _7703]";2/32 Zl/ (yig;nini)

< 0 (108 (1))

7 mini mini  x mini
n HVW‘"““ Lirzin (W ) Au'ain)

(69)

where the second inequality is derived from the fact that —1 < I’(-) < 0.

Therefore, by triangle inequality, we assume that b = Q (n?ram log (Nrain) B~ + log (Nygain) €158 ’1)
and we have:

mini mini
me W

<7 van.mLE;i",; (wi) H + HWQ‘“"‘ — Wy
2 2
i 1 1
— 2 - -
=0 Mrain @ ﬁ ’
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which is exactly the same order of 7 in our settings.
This verifies Wit € B (Wi, 7).

Proved.

F INTERPRETATION OF THE OBS[IlFROM CONVERGENCE THEOREMS

Understanding the impact of batch size on GNN convergence. The popular explanation posits
that increasing batch size reduces gradient variance, resulting in fewer iterations to converge (Cong
et al.l 2021a} |Zou et al.,|2020bj; [Liu et al., 2024} |Li & Liang| 2018} [Hu et al., 2021)). This explanation
does not fully account for the impact of batch size on GNN convergence, necessitating additional
consideration of the impact of message passing on the loss and gradient.

MSE: Taking the MSE as an example, the impact of batch size on GNN convergence is explained in
three steps: (1). Activation similarity: Larger batch place more sampled nodes and their neighbors
into the same graph subset in a single iteration, where message passing enables direct or indirect
information exchange, resulting in similar activations processed by the same GNN parameters. In
contrast, smaller batches spread nodes across iterations with varying graph subsets and updated
parameters, reducing such similarity. (2). Gradient similarity: As MSE penalizes the numerical
difference between predicted and target activations, the nodes with similar activations produce similar
gradients. The GNN with larger batch sizes yields more coherent update directions after gradient
averaging, capturing dominant structural patterns among nodes. (3). Bias: These updates may
reduce node representational distinctiveness and overlook graph structural diversity, introducing
bias and steering optimization toward suboptimal local minima. As batch size grows, convergence
requires more iterations to escape these biased regions. DNNs typically assume i.i.d. training
samples, enabling large batches to retain diversity and reduce gradient bias. This explains why GNN
findings on MSE differ from expectations based on gradient variance alone, highlighting how the
interplay between message passing and the loss function affects the impact of batch sizes on the GNN
optimization dynamic, diverging from DNN behavior.

CE:CE focuses on optimizing the predicted probability of the true class, rather than minimizing the
numerical differences between activations. Thus, the activation similarity does not necessarily lead to
similar gradient directions under CE. This allows larger batch sizes to benefit from reduced gradient
variance without introducing significant bias under CE, leading to fewer iterations to converge.

Understanding the impact of fan-out size on convergence. A larger fan-out size allows each node
to aggregate more neighbors, enriching the node’s embedding and enhancing the effective gradient
even when using MSE. This leads to the reduced gradient variance, thereby more stable updates and
fewer iterations for GNN convergence.

G PROOF OF GENERALIZATION THEOREM IN MINI-BATCH TRAINING

In this section, we provide the proof of Theorem [3|in Section 4]

We can characterize the GNN generalization under mini-batch training via the PAC-Bayesian frame-
work (McAllester, [2003). This framework decomposes the generalization gap into two components:
(1) the divergence between the prior distribution P and the posterior distribution Q over the hypothe-
sis space that includes all possible models that a learning algorithm can select, and (2) the discrepancy
between expected training and testing losses over P. The first component is easily re-derived follow-
ing the PAC-Bayesian framework. We mainly focus on bounding the second component, namely the
discrepancy U between expected training and testing losses over P.

As the training and testing datasets are split before training, analyzing this loss discrepancy U reflects
the structural difference between training and testing graphs. To isolate the impact of this structural
difference on generalization, we demonstrate that the discrepancy U is bounded by the Wasserstein
distance A (8, b) from the training graph to the testing graph, such that U < C,A(3,b) for a
constant C, > 0. This bound suggests that the more similar the training and testing graph structures
are, the smaller the expected loss discrepancy is.
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G.1 ASSUMPTIONS

We introduce assumptions on graph data and model parameters.
Assumption G.1. There exists a constant Cr > 0 such that ||X||§; < Cp.

Assumption G.2. There exists a constant C, > 0 such that ||w; ||§ < C,, for all 4.

Assumption [G.T|bounds the Frobenius norm of the feature matrix, and Assumption [G.2]requires the
norm of parameters to be upper-bounded during mini-batch training. These assumptions are also
employed in the analyses of GNN generalization (Tang & Liul 2023} |Garg et al.,2020; Liao et al.,
2020), which are introduced to simplify the proof.

The rows of W are initialized independently from a Gaussian distribution N (O, IiQI).

G.2 PROOF OF THEOREM[3]

Definition G.3. (Expected Loss Discrepancy (Ma et al.,[2021)). For a constant C’, > 0, define the
expected loss discrepancy between training and testing datasets before GNN training as:

train

U = InEymnp (Cu (L[es[(wmml A{:‘l:) L"am(wmlm Amml))j| ’

where P represents the prior distribution over hypothesis space that includes all possible models that
a learning algorithm can select.
Definition captures the difference between training and testing datasets.

Definition G.4. (Distance between Training Set and Testing Set). Define the distance from the
training set to the testing set as the Wasserstein distance given by:

A(ﬁyb)={9€@£‘fww] ST 0056 (i, B, b)}

i €train set j Etest set

{ sup Z f yz Ptrain yz + Z pleSl y])}

()9(: >z€tnm set J Etest set

(7D

where puain (yi) and peeg (y;) denote the probability of y; appearing in training and testing sets,
respectively. ©[piain, Prest] 18 the joint probability of py,im and pregr, and f (y;) and g (y;) are func-
tions of y; with i € V. The infimum in the first equality is conditioned on 3, o o 0ij =
Prrain (Yi) , Zietraining et 0i.j = Prest (¥j) ;6 ; > 0, and the supremum in the second equality is condi-

tioned on f (y;) + g (v;) < 9 (yi, 95, 8,b). 0 (yi,¥;, 5, b) is the distance function of any two points
from training and testing sets, respectively.

The Wasserstein distance effectively measures differences in non-i.i.d. data, particularly regarding
geometric variations. A dual representation is provided in Eq (71).

Theorem G.5. (PAC-Bayesian Generalization Theorem). For any C,, > 0, for any “prior” distribu-
tion P of the output hypothesis function of a GNN that is independent of node labels from training
dataset, with probability at least 1 — C, for the distribution Q of the output hypothesis function of a
GNN, we have:

mini mini mini 1 1 02
LleSl(W AIS;L Q) < Llfll‘l;:n(w Atmm? ) + 7(DKL(Q”,P) +in—+ + U)
Cu CG 4ntram
Lemma G.6 For any C,, > 0, assume the "prior" P on hypothesis space is defined by sampling the
model parameters. If the in-degree of each node is O(3) and the out-degree of each node is O(b), we
have:

U < CLA(B, D),
and,
2 : E : full-mini 2 : § : ~full ~mini
Qi,j 52 = 91 \J atrdm i atrain,i P
1 Etrain set j Etest set 4 €train set j Etest set (72)

A(B,b1) < A(B,b2) with by > by
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where §/"Min hag a overall non-increasing trend when the fan-out size 3 increases but small non-
monotonic fluctuations can exist. Note that fan-out size 3 plays a more dominant role than batch size
b in influencing generalization.

Proof of Theorem E]: Using Theorem|G.5] m we have
Ltest (Wmini7 Af:allm Q) <L:[‘:lln (Wmini7 A{?:;ln‘:’ Q)
(73)

1 1 c?
+ = (Dkr(Q|P) +In— +

Cu Ca 4Nrain +u

Since both P and Q are normal distributions (Ma et al., 2021), assuming that me‘mH < C,, We
know that

.12 .12
Hw?lm Zh wmlqlll
Fp_ =TT o Cu
Dirr(QIIP) < 2hK2 2hk2 S 2K2’ 74
where Cr is a positive constant.
Hence,
L (W™, A2 )
7 full mini A mini 1 02
<Llram (W ,Alrain; Q) + = C (DKL(QHP) + lnci + an, + U (75)
train
7 ful mini  x mini 1 C 1 C2
SLtfrllln (W 7Atrain; Q) + Cf (F +l C + 4ntmm + C A (ﬂv )) .

H EXTENSION TO MULTI-LAYER GNNS

Our theoretical analysis readily extends to multi-layer GNNSs, as long as each layer introduces only
one non-linearity (e.g., ReLU activation). In such settings, the key difference is that the output of
each layer is recursively defined based on the previous layer.

This recursive definition preserves the same message-passing structure at each layer. In convergence
analysis, we bound the gradient norms layer by layer; in generalization analysis, the pre-training
loss discrepancy propagates across layers. These recursive structures allow our convergence and
generalization bounds to translate naturally to multi-layer GNNs.

Our key theoretical insights (from the view of batch size and fan-out size) are generalizable to
multi-layer GNNs. This is because adding more layers simply nests the same operations, without
changing the qualitative roles of batch size and fan-out size. Hence, the analytical trends observed in
the one-layer case remain consistent.

Therefore, our theoretical analyses support the multi-layer GNN settings.

I PROOF OF THE MAIN LEMMAS OF CONVERGENCE THEOREMS WITH MSE

1.1 PROOF OF LEMMA [B.AIAND[CT]

whenever > 0 (Daniely et al., [2016).

1
™

We first focus on the mini-batch training. Note that 6 (z) >
Then, the bound on I'™™ follows as:

i1 e
1< 1<
>0 Ym0 =5 3 vy (R, (Rpn),
b i,j=1 b i,j=1 J (76)
b
1 A mini
:; Z (Au‘ain]l) 9
=1
T
—— ||Aun] -
b ‘ ! 1
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To bound Y™, we notice that |6 (z)| < 6 (|z|), and & () is a non-decreasing function in [0, 1].
Hence, we get |[Y™™| < ™,
we have the normalized adjacency matrix of a graph with b nodes as:

r_1 1

/diln ail e ain /dliul

A mini
Alrain = : . : .
1 1

\/@ apr - Qb \/@
1 1 1 1 (77)

11 apt 1 1 as
where a;; € {0, 1} represents whether node 7 connects with node j (1) or not (0).

Since di* < 3 and d° < b, we have:

b
~ mini 1 1
Al = - il + -+ —F—————ain
T
ZZ lbl (azl+ +a7,n)
i=1 /32 2 (78)
b3
>— min (aj1 + -+ + ain)
gz ¢
1
>0
B2

Moreover, since Qm”“ denotes the amount of common messages between node 7 and node j at a given
mini

training iteration, we know that Q;;“m < 1. Then we have:
3

1 i ( mini
mel = p”OA' 1,]] : 195“2
b .52 Vi (79)
1
b

S 1
mini
I Awn Ll = Z \/CTW NN
K3
(80
S Z (azl + + azn)
=1
<pb,
where the last inequality holds because there exist at most 8 terms that are not equal to 0.
Similarly, for [full-mini e have:
Ffullfmim (Amlm )
7T'nu-am ; train .
M 81)
train
_ Aml:ll )
7Tn[ram g ( ran i
= ||AT
) H !
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and
Ffull-mim % HAE};E]IHI ) (82)

MOI‘COVCI‘, |'rfull—mini‘ S Ffull—mini holds.

Similarly, in the full-graph training, we can replace b and 3 by n,in and dyax, respectively. Therefore,
we have:

1 % full full I || g fun
A4]1‘§F g—A-]l). (83)
ﬂ-n[rain train 1 ntrain train 1
1
n?’am full
1 < ”Atralnﬂ”l < Nyrain@max- (84)
dr%ax
il < pfol (85)
This complete the proof.
I.2 PROOF OF LEMMA [B.6]AND[C2]
Lemma L.1 In the mini-batch training, |[ZM"| = o(Fmi“‘) \”“‘" mlnl| = o(Ff“"'mi“i) and, when
SN2 full-mini
omint > — Lo and \/(¢mn) + () > 1—o(1), then EPini > C o the
full-graph training, |Z"'| = o(I'™"), and, when ¢{*"' > — -} and \/ d)f““ 1/)f“11) —o(1),
full
then = _fuu > 21;

Proof of Lemma[B.6|and[C.2; We first focus on the mini-batch training. Considering the gradient,
we are going to analyze ((b?i“{) (1/);“4;“1‘) :

(om)" + (wemi)’

. . . 2 . . . 2
mini mini _/ mini mini mini _/ mini
— mini 6L"ai“vt ( t 7¢t ) mini 6Llrain,t ( t 7% )
=|é —m — + e —m —

8¢rtmm aw;mm
2
. SN2

P L P mint mint L

— d);mm _ nt(z);mml—‘;mm + ne d)t Tmml + ne mml(wt ) — E;mm
( mlm) (wmlm) (d) ) (’l,[)t )

2
mini mini , , mini
mini mini ~mini mini (;bt 1/% —mini (86)
S KU P il W o . T 4+ DI T —— T
(97)" + (wpm)* (950" + (V™)

.\ 2 L\ 2 . L\ 2 L\ 2 L
— (qsrtmm) + (w;mm + ntZFItme <(¢;mm) + (wimm) ) + ntET;;me
(w;nini)Q —mini 2 mini ( mini 2 mini 2)
e (E) = o (o) + (v
t (¢;mn1)2 + (1/}?11"1)2 ( t ) [l ( t ) ( ¢ )
+ 277t (¢;nini)2 + (w?im) Tmlm . 2 2me1 mini (¢;nini)2 + (w?ini)2
Hence, By Lemma[C.I]and Lemma[[.T] we have:

(o) + (v2)" < (ViorT+ @ry? (1- €)) e @7

}(Awastm et al.,|2021)), where C' <1 1s a small enough

when the learning rate 1, € [ T 67r1"‘“““

and positive constant. Hence, we can rewrite the range of 1 as 1, € (0, #]
t
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Then, for all ¢ > 1, we have:

(¢xg\ini)2 + (¢£nini)2 S (1 _ %) /(¢6nini)2 + (womini)2 + %

1-(1-9)

< (@5 + w5 + 57 ®%

< (¢glini)2+(,lp81ini)2+

IV I

Moreover, with probability at least 1 — e~("), we will have \/ (piini) gt (1/)3““1)2 = O(k/T).

Hence, we have \/ ((é;“i“i)2 + (1/),‘5“1‘“)2 < 4.
We also have that if T?‘i“i > 0, then
o\ 2 o\ 2 L\ 2 .\ 2 L.
(om) -+ (i) =((or™) + (w0™) (@~ mrp™y?
+ 2 TP ()7 () (L — ) 4+ e ®

S S

Similarly, in the full-graph training, we can replace b and 3 by i, and dpax, respectively.

This completes the proof.

1.3 PROOF OF LEMMA [B.7]AND

We first focus on the mini-batch training. From Lemma [C.2] , we immediately have

\/ (¢mint)® 4 (ymini)®> < O, where C is a positive constant.

Next, we analyze the upper bound of Apax (V2L (gmini yymini - Aminiy) e have:

train train

2 rfull ini ini A mini
Amax (V™ Liggin (6™, 0™, Aitain))

2 1 full mini ,/mini A mini 2 1 full mini ,/mini A mini
< 0 Ltrain( t %t train) 0 Ltrain( t %t train)
B a(grm)* d (ypm)* (%0)
2 1 full mini _/mini A mini 2 1 full mini ,;mini A mini
4 0 Ltrain( t awt 7Atrain) 4 0 Llrain( t awt 7Atrain)
8¢21ini 8w;§nini 8w;§ninia¢;nini
Taking the second derivatives, we get:
. L . . SN2
2 7 full full- mini
8 Ll;lain( ttmm7 ¢'?"m: A:?:r:) _Fful]-mini [tmm 6Ttu i ( t ) Tfull-mini
iniy 2 Tt B ” miniH mini S
mini wh a mini || 2
mini) 2 —full-mini mini mini) 2
(™) pEpmint 2B () —full-mini
- ini 112 mini w4t )
mini mini
[wpit||” 09 [l
2 7 full mini mini A mini
0 Llrain( t ¥t ,Alrain)
0 (vy)?
mini full-mini mini , , mini
7Ffull-mini _ wt 8Y‘t ¢t % Tfull-mini
ot ||wmini|| Dnpmini Bt (92)
it t me1m||2

Jrt
S ORI G ((97) — (UP™))

|2 Hpmini i 14 =t ’
mini mini
H“’j,t H & ij,t |

+
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2 7 full mini mini mini mini full-mini mini )/, mini
8 Ltrain( 1/)75 Atram) 1/175 aT ¢ ’()b full mini

8¢;mm 8@[)?“"1 meml H a¢m1m melm H
mini )/, mini a:full»mini mini )/, mini a:full-mini
¢ 05, Py OF;
H mlm” 8(;5?“"1 ngmthQ 8(1);“““ (93)
mini mini | 2 mini | 2
e () = (o)
—full-mini
+ memlH —t '
Jrt
2 7 full m1m mini A mini mini full-mini mini,, / mini
8 Ltrdm( t 7Atrain) _ ¢t aTt ¢ 1/1 [ull-mini
- — — 3
w;mma¢{mm melan aw;‘mm melm H 3
ini_/ mini full-mini mini (,/ mini) 2 4
P o= 2¢t (wt ) —full-mini
”Wmm.H2 Dpmini ||Wmm|H -t :
J-t
Next we have
full-mini Thtrain mlﬂl mlm mini \ 2
A Py
(’9¢"‘i"i = n E pszz k Ustep 3
t train 19m1}1:1 (z)mm, '(/)mml meml 2
VY it (95)
2 2 4
mini mini —full-mini full-mini
< (o) (o)) ] o (vt
full-mini train mlm mini m1m mini
oMl | 1S ¢ wt
8,¢Jmini B MNtrain Z plk@l k Uslep ﬁmml m1m
t : m1m mml
=1 \/ VI HW
g i,k ¢ ¢ (96)

—full-mini

(o) (o))

where we use |Zfull-mini| — o(Tfull-mini) jp the Lemma

—0 (Fiu]] mlm) ,

To dlfferentlate Zhll-mini*we employ 6(60) = 1 — %03(9) (Daniely et al., 2016) and arccos’(0) =
— i o get
—full-mini Mrain
‘ azl;ull mini _ 1 t . (g;ﬂllgl memH mm1
_ —_— i 3
3¢'¢mm Ttrain k=1 ':l;gl ,l/}mml HWmImH 2 (97)
1 Mirain 9 2 % (Qmilgi)2
mini mini 1, _ full-mini
<— ((qﬁt )+ (i )) S = o (T,
wain =) ik
6’:‘£ull-mini 1 Train (le]gl H mini ! | (bmml,d}mlm
= i
e e
k=1 , W 98)
1 Tin 2 9\ ¥ (g'"i,Zi)2
ini ini i, full-mini
<t (( wml) . ( w?ml) ) ) O(Ftu )
train k=1 i,k

Therefore, we have:
82 Ltull mini mini Am1m
tram(¢ ) wt tram)
0 (orm)?

1
. .\ 2 N2\ 4 . . . .
Sl—\iull-mlm + (( 1211111) +( 1tmm) > P;ull-mlm +o (l—\iull-mlm)
99)

Sl—xiull-mini(l + \/5+ 0(1)) _ Clriull-mini

1
. . L\ 2 N2\ 4 . . . .
Sl—xiull-mlm + (( ;mm) +( ;mm) ) Fiull-mlm +0(F;ull'mlnl)
(100)

Sl—\gull-mini(l + \/5+ 0 (1)) _ Cll—xiull-mini

0> Lt (6™, ™, A
o (vpm)?
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O Lith, (7™, ™, A
a(z);mmaw;mm

< ((¢Tini>2 + (w?ini)2> i Fiull—mini 1o (Fiu]]—mini) (o)

Sl—\iull-mini(\/@+ O( )) — C Ffull-mini

< ((¢;nini> (wgmm)2> full mini (Iﬂ;u]]-mini) (102)
) =

Sl—\iull—mini(\/é+ O( )

where C4 and (', are absolute constants.

2 7 full
0® Ligi (67™, 7™, Aiiy)
w;mm aqb;:mm

Ffull mini

Hence, we have: N o N
Amas (V* Ligin (6™, ™™, ATE)) < T2, (103)

where C'3 = 4 (1 +4/5 +O0(kr)+o0 (1)) is an absolute constant.
Similarly, in the full-graph training, we have:

Amax (V2L (o™ 9y < 0™, (104)

where Cy = 4 (1 +4/5 +O0(k/r)+o0 (1)) is an absolute constant.

1.4 PROOF OF LEMMA [B.8|ANDI[C 4]

We first focus on the mini-batch training. Due to random initialization, with probability at least

1 — 7, we have that \/(qsgﬂ“i)2 + ( 3““1)2 = o0(ky/7) and ¢P" > —Ck+/log h with a constant
C > 0. Furthermore, we have the following updates:

(omm)" + (wrmt)”

< (¢ . .)2 (w ; »)2 (1 Fmini frmini))2 2 (d);mm)2 ( i ‘)2 (105)
— mini)< 4 mini _ + + S\ . 2 — mmini ,
t t Nl el Mt (¢;mm)2 n (/l/);mm)Q t
L\ 2
mini mini mini Qﬁnini mini (@[)imm) —mini
¢t+l = d’t 1-— TItFt +m Tt + Nt .. o=t - (106)
( ) \/(¢;nini)2 4 (wi“i“i)z (¢¥nm)2 + (,d)gmm)Q
Since TP > (0 and is bounded by I'MiM and ZPini = o(TPin), if ¢t < 0 and
\/(¢;‘1i“i)2 + (1/)?““)2 > 2. we have:
V (6mm)? + (min)? > 3/ (gmin)? 4+ (pin)? (1= nerp), (107)
¢;n_~1_nll N d)mml ( %anini — o (F;nini)) ' (108)
Hence, after ¢ > C log(r log h) steps, we have that ™™ > — 1= and \/ (é;“i“if + (1/),‘5“1“)2
Next we show that from this point on ¢ and \/ ngm““ 1/)““‘“) , the conditions in this Lemma
continue to be satisfied. We have:
Viorm) + ()
(109)

(@) + (p)” — m P ( (¢7™)° + (wp)’ — 1) e (TE TP

where N .
Tlglll'll _ l—x;mm

1 b . lemm mini . Q;mm (1 10)
K Z 19"""‘ ( ( : : ) - ( ; ) ) .
b ; my.m;éo \/7 \/ﬁ ( d)mml ) (w;nini ) 2 / 19?'}“
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Once (bm““ > — 100, we have:

. ( glzl?;m m1m )_a—( Q?Em ) <o err};nl . (111)
\/ mm1 \/ ¢mm1 wmlm) /ﬁr?;m /ﬁff,i;m

: ini mini 2 mini 2
Hence, we have that if ¢ > — 15 then \/(qﬁt )7+ (i) > 11— o(1).

Next we discuss that ¢" continues to be larger than _Wlo' First, if ¢ > 0, then

\/ (¢m‘m) (wm”“) > 1 — o(1) remains. Furthermore, if 7" € [—35,0), then ZP™ is non

mini

o
negative and is at least - i Zl om0 Pi 7 \/W Hence, we have:

¢l;nri Z(b?im _ ntr?ini¢;nini (1 _ — 21 _ 2)
(()b;mm) + (w;mm)

mini

+ Nt t ’rxtnini _ F;nini (112)
(67")° + (v’ ( )
mini \ 2 Zz B g‘“‘“‘;éO Pij /19m|m
+ 1 mini(215 ) mini \ 2 4b
(@F™)” + (™)
Using ‘\/(d)ﬁfmni)z—}— (w{ni“i)z—l‘ = O(1) and the fact that if ¢f"" € [—55,0) and
V(6r)" 4 (65)° = 1~ o(1), then ( "f‘fi“} 57| 2 7 we have that g > g™
¢|21m| + 1/1121"‘“

Similarly, under the full-graph training, we can replace b by 7in.

1.5 PROOF OF LEMMA [B.9]AND[E.3

We first focus on the full-graph training. We have

| vzt (o)
full full\ 2 2
_ ¢1f£u111—\fu117 t Tﬁ"”f ( t ) :ft'ull
u 2 Ul QH
(o) + (wpny? @R @

11
full ;~full iull full gull,(piull full ’ ( 3)
+ wtu 1’\“ - ( f]]) Ttu - 2 QEtu
¢ ul

Sy @ )

_ (¢fu11)2 n (wfull)QFfull _ ypful 2 n ( iul])2 (:full)2
‘f t AT DD

On the other hand, the loss Ll

full ,/,full
ot (@1, 9 can be written as :

Lighe (08", 01™)
1 ul 2 ul 2 ul u u u
=5 ((¢J§”) + (vt +1> I =\ (@)* + (g (114)

S% <( iull)Q + (¢§UII)2 + 1) it
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Hence, we have:

2
HVqull ( full’ d)full) ||2 - ( ( gu“)Q + (¢1{UI1)2Ffull - T?H)

train, ¢
full full full = full
Ltram t ( w ) F (115)
full\ 2 (=full)2
+2 full | 2 ru(th )r(:;) full |2 '
(082 + (i) (@) + (@")? + 1) T
If \/ ngf““ ¢f““) —1 > 5, then the first term above combined with T{! < ' Jeads to
N 2
fosth, (oo ot g
lf;lahlnt (¢’rull wfull) = gp27full 4h2
If ‘\/(¢£“")2 + (1/){““)2 - ‘ <35 <z 5 < 2and |1/J£“"| > 52, then the second term leads to
Y Wl (2 Gl 2 /el 2
V28 P ut) ") (=)
full full full - .
Lt o (1™, ) ((¢§ull)2 + (¢§u]l)2) ((¢§u11)2 + (R 4 1) Tful
full\ 2 (=full) 2
NCORED
=“79(9 + 1)rnn (117)
—full\ 2
E)
901"fu11 4h2
full
So Lo €
360d2.x 4h2
Hence, we have:
2z R | R 2 RO ] (118)
where pM! > Creh=2d 2T and C is a positive constant.
Similarly, in the mini-batch training, we can replace dp.x by 3, we have:
[zt (omm, o, Amm)[* > i, (g g, A (119)

where i > Coeh =237 2Mullmini and O, is a positive constant.

Finally, we are going to consider the case in the full-graph training when \/ (¢£u11)2 + (w{ull)2 <
yhll _ \/ (¢£ull)2 + (wgull)zrfull

same bound as in . In this case, we show that ||1pf“” || must be at least 6 - and hence the bound
of (117)) can be apphcable Using &(-) is convex in [0, 1], we can get

1
— €2 'We can assume that < ST since otherwise we get the

full fuu full

ntrainpij \/ 19?'1]1 OA' QZ’] 6’ i
i [ofull [/ g . /. qfull
19111] (bf 11 wf 11 19;3]
r : . _ (120)
O = @2 (g [ g
> Dij0i Wi — 5 Ostep o
(1% + (i) NG
Summing over i, 7, we have
full full full\ 2 full
full full (¢ ) (wt ) full 0i,5
nugain (T =T > > pisol osep(—L=). (a121)
full full) 2 — full
() ) + (i) B i
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Substituting Y = \/ (qﬁﬁ“") + (wf““) vl 4 52 I we have

1
= I—\full
Train < ¢fu11 (waH) ) full + €

2h

. . (122)
l' 1 _ (d)tull) (wiull) ol - 921321

> ij 01,5 Oste .
N T > P0G 19f.uu)
t t ©J V 7,7

Using the bound on \/ (¢£“")2 + (d){“") 2, the above implies that

2 2 full
e%nlrainff“ll < (") + ()" — ¢t full « gﬁ"ljl

< > pisoiiose( )
. () + @5 Vo

Afruallln 1 || by Lemma , we have

(123)

Noticing that phal > _1_

T Mtrain

—— —— P
(qbgull) + (w’{ull) _ ¢£ull N E%HAtuu ]1||1

train,t

: (124)
2 3 ol
(¢")” + (v 20h Y, 5 pij o)) Gsiep(—kr)

o

Therefore, we have

P >4/ (R + (1) — "

1~
€2 ”Aglﬂn nai

o 2 o 2
o (™) + (i)
271'h Zz j Dij Ql JUslep( \/W)
e AR 1|

qul] (125)
QWhZ’L ]pL]QZ ]O'Slep(\/w)
i,J

e[| AN 1|,

train,t

2hNirain

Y

2hnz2 3

train dmax

full

. . ol A 03 .
where the second last inequality uses >, . pi; 01" G tep( \/W) < Tyain because there exist Nymin

nodes that have the common messages.

Similarly, in the mini-batch training, we can replace 1, and dy.x by b and 3, respectively.

J PROOF OF AUXILIARY LEMMAS OF CONVERGENCE THEOREMS WITH MSE

J.1 PROOF OF LEMMA [T}

We first focus on the mini-batch training. We are going to analyze the upper bound of =™

¢mini mm1
Hmml )
=7 § Dij Qz g Ustep L s (126)

i,j=1 \/(¢mini)2+ (wmini)2 \/ n:l;m

where each term in summation is non-zero only when lem #0ifi = j.

Hence, there are at most b non-zero terms in the summation, and Z™ is upper bounded by '™,
namely =it — o([nint),
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Note that Gep(x) > 3 whenever [z < =5 (Daniely et al., 2016), which is ensured by ¢; > — 155 and

L
100

i) 2 ) o . o .
\/ (@“““) + (w?““‘) > 1—0(1). Hence, in this case, each term in the summation in the expression
of =™ will be non-negative. Then, for i = j, each of the b terms in the summation will contributed

at least 55 (Awasthi et al., [2021). Therefore, in this case Zp > 3 > szﬁ with Tini < 3,

Similarly, we have Zfull-mini — o(Tfullmin) “and when @Pini > 7ﬁ and \/ (éf)?‘i“i)z N (w{nini)z §
1 — o(1), Zhell-mini > %
Similarly, under the full-graph training, we place b and 3 by 7ain and dmax, respectively.

K PROOF OF THE MAIN LEMMAS OF CONVERGENCE THEOREMS WITH CE

K.1 PROOF oF LEMMA [D.3]AND[E.3]

Lemma K.1 Let A be the normalized adjacency matrix with self-loops. Given a mini-batch of size
b and fan-out size (3, the following inequalities hold:

- 2
~mini
Hatrain,iHQ S Bv
and )
~full
Hatrain,iHQ S dmax>

for any ¢ in the training set.

Lemma K.2 With Gaussian random initialization, for any ¢ € (0, 1), if h > C'log (n/J) for some
large enough constant C, then with probability at least 1 — &, the following inequalities hold:

ini 3 1 rain 5
], — k1| < 1B/,
and
2], — k] < O 2B 0

for any ¢ in the training set, where C and C are absolute constants.

Proof of Lemma and Since half of the elements of v are 1’s and the other half of the
elements are —1’s, without loss of generality, we can assume that v; = --- = v, 2 =1 and

Vh/2+1 ==V = —1

Obviously, we have E (") = E (g™") = 0 for any i in the training set.

We first focus on the mini-batch training. Using the value of v, we have:
h/2

~mini ~mini mini T ~mini mini T
Yi :Z 0 | Atrain,i X (wj ) — 0 | 8ggain X (wj+h/2) 127)

i=1

With the Lipschitz property of ReLU function, we have:

. N T . . T
~mini mini ~mini mini
g (atrain,ix (wj ) ) -0 (atrain,iX (Wj+h/2) )

~mini X mini T ~mini mini T
Arain, i W — Qrain, i With/2

2

IA

2

(128)

_ || xmini X mini mini T
= || Atrain, i W, — Wiin/2
2

~mini
atrain,i

<

I, ™ = w2

2 2

-

<C3h™78%,
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for some absolute constant C's. Here the last inequality follows Lemma

Therefore, by Hoeffding’s inequality and Lemma [K.2] we have:

2

ini U
P(g;;“‘“‘ >u)§2exp _ _
_1,1
s (Csh 262) (129)
ini 202
,\x_mm < _
IP’(yl >u)_2exp( —Cgﬂ)
Taking union bound over 7, we have
mmini . 2U2
P (|07 > wi =1, nuin) < 2nguin exp (—@) : (130)
2u?\ _ .
Let 2n exp (— C%Lﬁ) = ¢, we have:
exn [ — 22 6
p 032,5 N 2ntram
_ 202 o 1)
Cg? & 2Nrain ’
131)
. C2 5 (
= !
2 & 2Nrain > 07
u = Cyy/Blog ( 0 >
TMtrain
Then P ( ﬁ?‘i“i| > Cyy /B log (n[‘; ),i =1,... ,ntmm> <.
Therefore, with the probability at least 1 — ¢, it holds that
j™| < Cay | Blog ( d ) (132)
Tltrain

for any ¢ in the training set.

Then substituting the above bound into the formula of loss function I(y; ™), we complete the proof

of Lemmal|E.3| Further, substituting the 3 with dp,x, we complete the proof of Lemma [D.3]for the
full-graph training.

K.2 PROOF OF LEMMA [D.4] AND [E/4]

Lemma K.3 There exist absolute constants C,C7,C2 > 0 such that, with the probability at
least 1 — exp (—Cha?/ (nuindmax)), for any m = (my, ..., m,,,,) € R}, there exist at least
C1ha? / (Nugaindimax) GNN nodes in {1,...,4,...,h} that satisfy:

1 Mtrain

> Csy Hm”oo d12nax'
2

— (~full X (Wmini)T) sl x

alrainti J train,

Nitrai
train

Lemma K.4 There exist absolute constants C'5, Cy, C5 > 0 such that, with the probability at
least 1 — exp (—C5ha?/ (nuainB)), for any m = (my,...,m,,,) € R}™, there exist at least
Cyha?/ (Mygain3) GNN nodes in {1,...,74,...,h} that satisfy:

1 Mtrain

> Cs |ml|, 82

J train, ¢

. T .
! Smini mini ~mint
MY O (almin’iX (W- ) ) a X

Mot
train i=1 9
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Proof of Lemma[D.4land[E.4 We first focus on the mini-batch training. We are going to prove the
gradient upper bound. The gradient Vyminil (yzyf“m) can be written as:

Tl (338 ) =1 (™) - 41 - T 97

T (133)
=1 (™) -y (vEI) EmnX.
Since "™ is a diagonal matrix with (X"™) .. € {0,1} forany j € {1,..., h}, we have (|||, =
1 for any ¢ in the training set.
Hence, we have the following upper bound on || Vyyminil (; g™ || .:
Y S |
< =1 (™) =] v | a1 (134)
< -7 ( vAmlm) Cz%héﬂ%,

where the first equality holds due to the fact that Vyyminil (yigj?‘mi) is a rank-one matrix, and the last
ineuqality follows Lemmaand vy = hz.

train train

) Z Vgl (y ‘“)

Further, we have the following for Vwmm,L in (Wm““ Am‘“‘)

7 mini W 7mini A mini
H VW"““‘ Ltrain ( ’ Auain)

F
<3 Z vam.ml (veat™) ’ (135)
1 b
C h 2 § Amlm
< GBS (™),
i=0
where Cj is a positive constant.
Then, replacing b and 3 by nyin and dpax respectively, we have:
1 1 Mrai
= 2 train
[Tw L (W) < _Coh Pl 5™y (wei™) . (136)
F Nrain -

for the full-graph training.
Next, we still focus on the mini-batch training. We are going to prove the gradient lower bound.

Given the initilization Wi and any W™ ¢ B (Wgini ), where B(W{M r) =
(W [W - W], <7}

We define: A
1nlra|n o _ A'T",,
B = e > 1 (™) o (i (W) ) i x. (137
train i—0

Then, since Wy is generated via Gaussian random initialization, by Lemma |[K.4] we have the
following inequality holds for at least C4ha® / (Nyrin3) GNN nodes:

ll (yl Aiﬂlﬂl)

5l > Cs max

82, (138)

where C4 and Cj are positive absolute constants.

mini mini .
Further, we can rewrite V, i Lmun (wJ Atram) as follows:

Mirain

T .
= full mini mini ~mini ’ mini mini ~mini
V\X/'J‘,“"‘ Lirain (WJ Atram) = ! (yzyz ) Yiv;o <atram X ( ) ) Atrain, i X- (139)

Ntrain ;—{
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Letz; ; = U’ (y; ™) y;v;, we have:

7 full W mini mini
Jllo — wmini Lrain | W5 train
leslly — |Vl A,
Mirain
_ 1 .1 [ zmini X mini T ~mini X
— o Z; ;0 alrain,i Wj,O atrain,i
train i=1 2
Mrain
1 . ! [ zmini X (w mini T ~mini
- Theoni Z;,j0 |\ Qtain,i W Ayrain, i
train
= 2 (140)
1 = / mini mini T / mini mini T mini
< o E Zi,j \ O atrain,iX (Wj,() ) -0 atrain,iX (Wj ) atrain,iX
train i=1 2
1 Mrain 1
<

> ¢ max | (sia™)

Ntrai
train i—1

—C7ﬂ2 max ‘l (yZ fmm)

)

where C'; is an absolute constant.

Therefore, there are at least C4ha® / (Nyin3) GNN nodes, satisfying:
.
§ - Crpt max |1 (™)

cmas ¢ (i) |

7 full mini mini
H v W m"" Ltlam (W] Atram)

>Cs max ‘l (yl ”mm)

(141)

Therefore, we have:
7 full X7mini R mini
H v\}'vmini Ltrain (W ) Atrain)

’2
h
2 : 7 full ~ mini { mini
= H v\i/‘]‘?i"i Llrain (Wj ) Atrain)
j=1

L
- 0% (o (157)| )’

Coha? B3 n"ai"/ ~mini ’
217,37 <Zl (yiyi )> .

train i=1

(142)

Then, replacing 3 by dp.x, we have:

ot (), > s (S ), e

ntl’dlﬂ

for the full-graph training.

Proved.

K.3 PROOF OF LEMMA [D.3]

Lemma K.5 For any § > 0, with probability at least 1 — e~ if Wl € B (W 7), it holds
that:

[wil|], < ¢+,

and
[wioll, <€,

forj € {1,...,h}, where C = k (/T + 0) is positive constant.
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Proof of Lemma|D.5;  Since ! (x) is 1/4-smooth, the following holds for any A and x:

l($+A)§l($)+ll($)A+éA2.

Then we have the following upper bound on Ll (Wl ) — Lfull /(W)

train train

(144)

Mrain
. X . X 1 A
L (Wit ) = Zigh (W) = == > [t (e ) — 1 (vl

Thtrai
train i=1

1 Mrain

=1

full ull full
where A}y 1 =y (yz t+1 ~ Yiyt )-

(145)

i ~full ul ful 2
Nitrain Z |:l <yiy;’t+1> A; t+1 + 8 (Al 2+1) :| ’

Therefore, we are going to bound Afuu The upper bound of |Af““| can be derived as:

‘ Atull

T
~full full full full yx 7full T
= yiatrain,ix (Ei,t+lwt+l - Ei,twt ) v

1 1 1 . .
5 35 3 L ||sfunl full fullyx full
< Cidauwh? |41 Wik — X W,

I

where the last inequality follows Lemma [K.1]

Hence, we have:

1
h?2

‘ A[ull

full full full
(With - W) =i,

w( )

1
5
< Crdinh? (vafu"Lt;‘gfn (wi““) H2 +C+7)

2
m

1 1
2 2
a: m

full full
Hwt+1 w!

+ ‘ ’Wtull

- Cldgaxhén (HVWQHHLU“JSH (Wﬁ”“) HF +C+ T) .

. T .
~full full W rfull T ~full tullvs iull T
yiatrain,iX (Ez t4+1 t+1) A yiatrain,ix (E’L t ) v

(146)

+ ngull (Egultl - 2fuu) H2

(147)

Note that 7 has an upper bound, the third term in the brackets on the right-hand side of the above

inequality is dominated by the first one. Then we have:

’ Amu

1 1
< Cidgaxh?n vafullLthl«glln (W,{u") HF .

Then we are going to prove the lower bound of AL

. full _  =full full full fullygrfull) | T full
SlnceA- *yiatramz (21 tr1 Wi — 2 W, ) V.o =Y (Zz t+1

full Zhull
focus on boundlng the term z"; | — z;; .

We define the diagonal matrix %! as

full
W .
Sfull full full ( J’t“)
(Ei’t> i (2’ 1T 2”) i (< full fully T’
77 37 (Wit = wity)
forany j € {1,...,h}.
Then we have:
full full

Z;t+1 — Zi
T T
~full full full full | <afull
=&pain,s X (Wt+1 - W, ) (Zi,t + Ei,t)

N N N T
~full 7 full full full o full
— M Qrain, 'LXVWfU“Ltrain ( Wi ) (Ei,t + Ei,t)

48

qull) VT

(148)

it , thus we mainly

(149)

(150)
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Thus, the following holds:
A =y (s — )T
= A XV L (W) (v (20 4 5))
= i, XV L, (W) (vE0) as

-
~full 7 full full full
— NYiQiain, iwig"“ Ltrain (Wt ) (VEi,t)

=ul) +Uul?,
where we define: .
full full S full
U(l) 7"7ylatram zXVWf““Ll;]aln (Wtu ) ( Ezl,lt) s (152)
and T
=full full full full
Ui,z = —NYiQrain zwif““LtFam (Wtu ) ( 21?15) . (153)
For UE}Q, we notice that:
H 2fuu < Ivll, Hzfull
: (w fult1+1)
<h? max (Efull Ef_uH) Wi,
> p i+l T it r (W?ﬁul qull)T (154)
full  \ T
Sh% max (Wj,t+1) _
vt i)
Using Lemma[K-3] and noticing that 7 has a upper bound, we have:
T - .
full full
(wita) [l e s
A T | = Tregfull full s bt
(Wit = wit) [witteall, = wsstll, — T
where ¢ represents a positive small enough constant and C’ is a positive constant.
Then we have va]zf-“i' < Cyhz7™!, thereby we know that ‘Ul(-_lt) <
1
Condaahd 7 || Vg L (W)
F
Moreover, we have:
1 Mirain
I ( fiu“) U(z)
Ntrain Z ¢
Tirain T
= - n,r]. Zl (yzg{uy) yzatram zwif"”Llram (Wgu“) (Vz?jltl) (156)
train
=—"n waunL‘fru;:n (Wiuu) HF
Therefore, putting everything together, we have:
el (WEL) - 1, (Wit
1 Mrain 2
i Z [l (%@?Ll) AZut+1 + < (Aius‘l-&-l) :|
train i1
< Ly (y-g‘f““ ) (U“’ + U<2>) + Cadmah? Hv o L1 (Wf““) H2
77’Ludin 1Ji,t+1 max W train t F (157)

— (1= Cadmash® HVWMLL;‘}}" (Wi“")HF

full hl" .
waull Llram ‘ ‘ Mirain

F / Afull
E l (yiyi,t+1)~
NrainT =1

CSndrgath
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Since we both have the condition "with the probability at least 1 —exp (—O (ha®/ (nuaindmax) ) ) " and

"with the probability at least 1 — exp (—O (1))", we can write the condition as "with the probability
atleast 1 — exp (—O (1))".

Proved.

K.4 PROOF OF LEMMA [E.3

Lemma K.6 For any § > 0, with probability at least 1 — e~9(1), if Wini € 8 (Wi 1), it holds
that:

lwmii[|, < ¢ + 7,

and
[whe'(l, < €.

forj € {1,...,h}, where C' = k (y/r + ¢) is positive constant.
Proof of Lemma|E.5}  Since [ (2) is 1/4-smooth, the following holds for any A and a:

Lz +A) <l(z)+1 (x)A+%A2. (158)

Then we have the following upper bound on Ll (Wrini) — Lfull \(ya7mini).

train train

full ‘N7mm| mini full W 7mini mini
lram ( t+1> Au‘am ) lram ( t Alram)

Train

1 - -
— l ( .A;;T‘llnl ) _ l ( _Ai?ﬂlﬂl)]
S ;:1 [ YilYi,t+1 Yilit (159)
1 Mtrain o 1 o 2
— l ( A;mm ) Al;ﬂlnl - ( ;.Illl"ll ) ,
P— ;:1 [ YiYi,t+1 1T ) 41

~mini ~ mlm)

mini  __
where Ai,t+1 =Yi (yz t+1 — Yit

Then, taking expectation conditioning Wi gives:

7 full mini  x mini mini 7 full mini  § mini
E |:Ltrain (Wt+1a Atrain) |Wt ] - Ltrain (Wt 7Alrain)

1 ™ ~mini mini mini 1 mini mini ( 160)
= Z U (ytyz t+1)E[ ii+1| W ]"‘gE ( 1t+1) W3
ramn i=1
Similar to the proof of Lemma|[D.3] we have:
1 Train - -
> U (vt ) E AT W]
ramn i=1
S e 2
-7 HVW"“"‘ lem (Wftmma A:::?x;) F (161)
CrngEht || Vg L, (W™ A )| e
B Nirain T Zl (yiyi’t'H) '
ramn i=1
..\ 2 .. L.
In terms of E [(Aﬂ'ﬁ‘rl) |W2‘“m] , similar to the proof of Lemma we have:
ini 7 mini mini ' mini 2 mini
E { ( 2"ft"'+1) |Wm.m} < CoBhi*E {va.tmm Ly (we A || rwe ] : (162)
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Furthermore, using Lemma E.6, we have:

7 mini mini  } mini
E |:vaff"iﬂi Ltrain (Wt 7Atrain)

‘2 |Wm1m
F

<E {vagﬁm £ (W, A — Vg E, (W, A [ |wm"“}
. L. .. 2
7 full A
||V Ll (Wi, )| (163)
< train nlram 7 full mini Amini 2 7 full mini Amini 2
vWml“' Ltrdln Wt ) train + va‘“' Ltrain Wt ) train
nlmm F t I
2n full 2
<= | Lt (W, A |
Hence, the following holds:
. CaB8h N2
| (ams) twen| < < CoPMan” |G i, (W )| (164)
Therefore, we have:
B (L (Wi AR (Wi | - Lit, (W™, ARh)
Csnuain S full ini % mini ||2
<= (- ) [y it (Wi A s

11
Uy L, (wm'"' A;";;;) ) i

l . Amml
z 7,t+1
NrainT

Since we both have the condition "with the probability at least 1 — exp (—O (ha?/ (nyin/3)))" and

"with the probability at least 1 — exp (—O (1))", we can write the condition as "with the probability
atleast 1 — exp (—O (1))".

Proved.

CinBzh2

L. PROOF OF AUXILIARY LEMMAS OF CONVERGENCE THEOREMS WITH CE

L.1 PRroor oF LEMMA [K T}

We first focus on the mini-batch training. The normalized adjacency matrix can be expressed as:

r_1 1
/diln all cen A1n /dtiul
A mini . . . .
Atrain = . : .. : .
1 ... 1
i /—di}? ap1 Apn o
1 ! ¥ (166)

1

where a;; € {0, 1} for any node ¢ in the mini batch and j € {1,...,n}.

Then, the following inequality holds on the l3-norm of a™n

tram 7°
~mini 1 1
Atrain i |, < Jngout o +--+ Jin ot <8, (167)
where the first inequality has at most 3 terms because there exist at most 3 terms with a;; = 1, and
the last inequality follows P d"“‘ <1.

Similarly, under the full-graph training, we have:

~full 1 1
H Aain |l < + o+ ——— < dmax- (168)
ain, dm dout dlin d%ut

This completes the proof.
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L.2 PROOF OF LEMMA [K2}

We first focus on the mini-batch training.

For any fixed i € {1,...,nuin} and j € {1,..., h}, conditioned on a™1 X we have:

train, i

~mini mini T ~mini 1 ~mini mini ~mini
E |:UQ (atrain,ix (Wj ) ) |aLrain,iX:| *iE |:< Atrain zX( ) ) ‘atramz :|

(169)
= [laz x|+
iy T - .
where the last inequality is due to afy ;X (w;""") ~ N (O, mini X|| ) conditioned on
&l X
Then, since zMn = é{ﬁﬂi X (Zminiywmini) T by Bernstein inequality, for any £ > 0, we have:
.12
P ([l s x| = [l x| e x ) o
< 2exp (fC'hmin {f ,f}) .
Taking union bound over ¢, we have:
mini 2 ~mini 2 ~mini 2 .
P z; atrain,ix S atmin,iX '57 1= 17 «« s Nirain
2 2 2 171)

< 1 — 2Nypain €XP (—C’h min {52, 5}) ,
which further implies that, if b > C? log (n4ain/d), then with probability at least 1 — &, we have:

[ — it x| < o i x| 208 (ain ), an)
forany i = 1,..., Ny, where C1 is an absolute constant.
This inequality implies that:
1
e < oy B0 x|
1
10y 1B /?) 5)] e (a7

<c2ph <1+01 W»

where the last inequality fowllows by the fact that (1 + m)% < 1+ z for x > 0, which is applicable
here.

Similarly, we can also prove that:

=] > e (1 Syer log(”‘h/‘”) , (174)
for some absolute constant C'y. Hence, we have:
mini||? Cl | < oy 6log (nzain/6)7 (175)
where Cj3 is an absolute constant.
For the full-graph training, we can replace 3 by dj.x as:
[} — €2 | < iy 28 i/ ) (176)

where C} is an absolute constant.

This completes the proof.
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L.3 Proor oF LEMMA [K31AND [K 4]

Lemma L.1 Assume that for i # j such that y; # y;, |lam, X —aut, X[, > «

train,? tram, 7
Smini S mini — Mirain
and ||apn X —apn X[, > o For any m = (my,...,m,,) € R},
full — T = full full) T\ sfull mini —
we define A (wil) = YU myyo (atrain’iX (with) ) api, ;X and h(wih) o =

ll’dll’l A

7 =1,..., h. There exist absolute constant C, C7, Cy, C3 > 0 such that:

-
Mtrain mini mlm mint
Yo m,yo ( X (winini) )atmmX where w; is a Gaussian random vector for any

u a2
B {ln (W), 2 € i) = €20
and a?
P{IIn (w5, > 2 il ] = €52
tl’dlﬂ

Proof of Lemma[K.3land[K.4;  We first focus on the mini-batch training. Under the assumptlon
we know that for i 7 j and y; # y;, ||amm ;X — agun X||, > . For any given j = {1,...,h} and

alram % alram N

th with [|h| , = 1, by Lemma|L.1] we have:

Mrain 2
1 o /[ ~mini mini\ |\ =mini C> Cza
P E m;Yi0 | Qain, zX ( W ) alrain,iX > > (177)
Train 5 Nrain Nirain B

Let St~ = {m € R™ : |m]|| , = 1}, and U = U [SZ=n"1, Cy/ (4nain)| be @ Ca/ (4nain)-
net covering S:c"j“j__l in loo-norm. Then we have:

|Z/[| < (4ntrain/c2)nlmi" . (178)

For j =1,..., h, we define:

Mrain T C
P 7 [ ~mini mini ~mini 2
Z;; =1 - E m;y;o (alrain,i (Wj ) ) alrain,iX > - 179)
Thrain S Nrain
= 2
Csa?

Let po, = —k by Bernstein ineuqality and union bound, with probability at least 1 —
exp (—Cyhpa + Nurain 10g (4nurain/C2)) > 1 — exp (—C5ha®/ (nyainB) ), we have:

h
1 Pa
— E > — 180
h = = 927 ( )
where C4 and C'5 are absolute constants.

For any m € S;g’jfl, there exists m € U/ such that:

lm — x| < Co/ (4ain) - (181)

Therefore, we have:

1 Mirain T
o ) zmini X mini ~mini
m;y;o atrain,i Wj atrain,i

Nt
train i1

o 2 (182)
1 - ~ /[ ~mini mini T - mini 2
T § m;y;o atrain,ix W alrain,iX | < CGB .
train %
%

=1 2

where Cj is an absolute constant.

It is clear that with probability 1 — exp (—Csha?/ (ngain/3))), for any m € S”‘“‘“ , there exist at
least C3ha? / (Niyrain/3) GNN nodes that satisfy:

Mrain
1

- N T ..
tigyio’ (5{‘:;{‘.:,1-)( (wi™) > apn X|| > Cof? = Cof? mll,,.  (183)

Mot
train ;= 5
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Similarly, for the full-graph training, we replace /3 by dyx. It is clear that with probability 1 —
exp (—Cr7ho? / (Niaindmax)) ), for any m € 8;1;'5"{1, there exist at least Cgha/ (Nyain@max) GNN
nodes that satisfy:

S e X (wi) ) 5 x
Z m;Yio | Atrain,i W Arain, i

Thrain =

> Codimax = Codimax | m|| . - (184)

2

where C'7, C's and Cy are absolute constants.

This completes the proof.

L.4 PROOF OF LEMMA AND

We first focus on the mini-batch training. Under the assumption, we know that each row of Wini
follows N (0, xT). We define:

whini _ .7, (185)
where Z € R"*" with Z; € R™" ~ N(0,1).

Using Vershynin’s result, we have:
52
P(|\z||2gﬁ+\/ﬁ+5) >1—e 'z, (186)

and )
P(|Zs]l, < Vr+6)>1—e 7. (187)

2
Therefore, with probability at least 1 — e_%, we have:

W SR (Vr+o) (188)
Since Wini € B (Wi, 7), we have:
i <k (Vo) +r (189)

Similarly, under the full-graph training, we have:

[wie|| < (vr+o) (190)
2
and
[wit], <w(vrso)+7 (191)
L.5 PROOF OF LEMMA[L.T}
We first focus on the mini-batch training. Without loss of generality, we assume that m; = |[m|| __.

LetZ; = amni X/ Ha{ﬂ?ﬁlxl

train, 1

,» We can construct an orthonormal matrix Q = [Z1, Q'] € R™".

Letu = QTw;m“i ~N (0, nQI) be a Gaussian random vector with 0 < x < 1. Then we have:

mini ~mini ~mini ~mini 1ot
W = atrain,IXH2 Qu = ulatrain,lx + alrain,l)(H2 Q u, (192)
T
where v’ = (ug, ..., u,)

We define the following two events based on a parameter y € (0, 1]:
Ei(y) ={CuB | < v}, (193)

and

£2(7) = {|< |am x| Qw. & X >| <+
2 (194)
~mini ’

for all &y ;X such that

~mini ~mini
alrain,i - alrain,1XH2 2 Oé}
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Let () = &1(y) N E(y). We first give lower bound for P (£) =P (£;) P (&2).

Since u; ~ N (0, x2), we have:

w2

= ({Czﬁ [wa| < #%5})
1

__ = Cab _1 214
Var )2 TP T2 ) (195)
>y 228
- e Cf3
Moreover, by definition, for any ¢ = 1, . .., Nin, We have:
<@ x| Q' x>
. 2 . 2 . 2 (196)
~ o e x| x| - ((ammeax) e x) |-

Let T = {z :||amini X — i X[ > a}. For any i € Z, we have:

~mini ~mini
Qyrain, zX — Qrain, 1XH2

. (197)
= ||amx |+ [amn x| -2 < amax an.x >
Then we have:
o’ ~mini ~mini o’
—Cuf + 5 << atrain,i)( Atrain, 1X>< OB — 50 (198)
and if o < 2C, /3, then:
2
czp — ((sun.x) . x)
2
>C28% — (CQBQ_CL> (199)
- xT x 2
2
>C28° > %
4
Therefore, for any ¢ € Z, we have:
P< a:‘:;?,:le Q& X >| <4
1
~|T|l|ll ~mini Smint ~mini 2|2
/ Arain, 1X||§||almm IXHQ ((all’dm lx) Arain zx) ] 2’Y ( 1 2) d
1 exp|—=x T
NEE i ] e e (G SRR S R R 2
1
/ [e262— (a1 x) Tat x)*] % ( 1 2) .
< 1 exXp|\—zx X 200
= Var ez (a1 %) e x)°] 7 2 (200)
S - i 1
™ 2] 2
[0352 - (@) s x)’|
<\/§ i
—V ma?/2
Taking union bound over Z, we have:
2v/2 _
P(&)>1— 2Vt 01)

Nirain Y&
ﬁ
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Therefore, we have:

[ 2 ykK? 2V2 ' 9
P () > ECzﬂ (1 - Fnuam’ya ) . (202)
N

Setting v = Tan > We obtain:

2 2 2
P (5) Z \/ i al ﬁa (1 - 2\/intrain \/Eaioé_2>
e Czﬁ 4\/§nlrain ﬁ 4\/§nmain

(203)
_ KQ()(Q
Sﬁcznlrainﬁ '
Let Z' = [nuain)\ (Z U {1}). Conditioning on event £, we have:
h (Wr_nini)
J
Mtrain T
s —mini . .
= mao’ (a2 (wp) ) ax
=1
, .
=miy10" (U1) Agin1 X
/ ~mini ~mini ~mini /1 ~mini ~mini
+ E m;y;o (ul < alrziin,lxa alrair:,ix >, < ‘ alrztin,l)(H2 Q u 7alrair:,iX >) atrair:,i
i€Z (204)
/ ~mini ~mini ~mini /_ 1 ~mini ~mini
+ Z m;y;o (ul < atrain,lxa atrain,iX >, < ‘ atrain,IXH2 Q u 7alrain,iX >) alrain,iX
i€’

/ ~mini / ~mini /_ /1 ~mini ~mini
=miyi0 (ul) atrain,lx + E m;y;o (< ’ atrain,1XH2 Q u 7alrain,iX >) alrain,iX
i€l

/ ~mini ~mini
+ g m;y;o (ul < atralin,l)ia atrain,iX >, < ‘
€T’

~mini /__/ ~mini ~mini
atrain,l){H2 Q u 7a1rain,iX >) atrain,iX7

where the last equality follows from the fact that conditioning on event &, for all ¢ € Z, it hold that:

~mini /.1 ~mini ~mini ~mini
‘< ‘ atrain,lch2 Qu aaLrain,z’X >‘ > wCyf| > ‘ul < aLrain,lxa atrain,ix >‘ . (205)

We then consider two cases: u; > 0 and u; < 0, which occur equally likely conditioning on &.

Therefore, we have:

(I r, s () L (=) ] 3 o

u{M>0,ul{? <0

where we define wj™"(") = u{Vamn X + [|aps X||, Qw’ and w™ ) = uPapn X +
I8 X ], Qw.
By the inequality max {[/al|, , [|b[[,} > ||a — b||5 /2, we have:
el 2 ) () o] 2 o
2 uMso0uP<o 2
By Eq[204]} we have:
B (W) < b (W) = g X Y miydn, X, (208)

i€Z’
where we define:

~mini

r ’ (1) ~mini
m; = 1m; [0- (ul < atrain,1X7 atrain,ix >7 < ’

~mini /__/ ~mini

atruin,1XH Q u 7atrain,iX >)

" 2 (209)
/ 2 ~mini ~mini

-0 (ul < almin,1X7 atrain,iX >, < ’

~mini /_ ./ ~mini
alrain,1XH2 Q u 7atrain,iX >>]
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Note that for all i € Z', we have y; = y; and < amn | X, ape X >> C,8 — /2 > 0. Therefore,
(1) (2)

since u; ’ > 0 > u;™’, we have:

o (uf < & X, amn, X >, < amn, x| Qv anmx >)
- N o g (210)
o' (uf? < & X, A X >, < |[anmx]| Qw am.X >) > 0.
2
Therefore, m/ > 0 for all ¢ € Z’ and
B (w0 ) = (W) =y (mla?;;?;,lx + > miapn, ) : @11)
i€z
Then we have:
mini, (1) mini, (2)
[ (o) = (w5 )]
> |y (mlétr?eiirg,lx + Z miﬁ:l;;l".;zX)
i€z’ 9 (212)
> < miE X+ Y miE X, A X > /& x|
ieT! 2
Zml.
Since the inequality above holds for an u(l) > (0 and u(2) < 0, taking infimum, we have:
q y y u; 1 g
inf - |n (W) < (W) | > . 213)
u{M>0,u{? <0 2
Therefore, we have:
P [Hh (w;m"‘) l > m1/2|5] > 2. 214)
2
. 2
Since m; = |jm||_ and P (&) > §7/2C. 5 We have:
L. 2
P [Hh (wg"‘"‘) ‘ > CHme] > G 15)
2 Nyrain B
where C and C; are absolute constants.
Similarly, for the full-graph training, we can replace 3 by dyax as:
Yy grap g 1Y y
2
Pln (™| >c,m|_] > - (216)
J [e'e)
2 Nyrain@max

where C5 and C3 are absolute constants.

Proved.

M PROOFS OF THE MAIN THEOREM AND LEMMA OF THEOREM 5

M.1 PROOF OF THEOREM [G.3

Lemma M.1. (Lemma 4 in (Ma et al.}[2021)) For any two distributions P and Q defined on the
hypothesis space, and any function f(-) € R with dom in this hypothesis space, we have:

Esno < Dir (QHP) + EINPGJC(I).

Lemma M.2. (Lemma 2 in (Ma et al.,|2021)) Suppose =1, zo, ..., z, are independent random
variables with a; < z; < b;, Vi =1,2,...,n. LetT = = > | x;. Then, for any C' > 0,

w202

P(7 —E(@)| > C) <2 Zima(hime)”,
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Lemma M.3. (Lemma 3 in (Ma et al.,[2021)) If z is a centered random variable, i.e., E (z) = 0,
and if 3C7 > 0, for any C5 > 0,

P(|z| > Cs) < 2~ 1C%.
Then, for any C,, > 0,

Proof of Theorem [G.5; We are going to prove the result by upper-bounding the quantity
Cu(Liest (Wmi“i, Aful, Q) — [l (Wmi“i, Amini. Q). First, we have:

train train’
mini  y full 7 full mini A mini
Cu(LtCSl (W ) Alest: Q) - Ltrain (W ) Alraim Q)

Eywmn [Cu (o (W AEL) - 188, (W, Az) )] @
<Dxi(QIIP) + In Eyymnp [t (W™ A =Hin (W AT
where the last inequality uses Lemma [M.T}

Next, we upper-bound the second term in the RHS of (ZI7). Here the term A =

mini A full \ _ 7 full mini A mini . . . .
(Luea (W™ A = Lo (W ’A“‘m"))} is a random variable with the randomness coming

Ewmini,\/p |:€
from the sample of node labels in training dataset, and P is independent of node labels y from train-
ing dataset. Applying Markov’s inequality to the term A, we have for any C'¢ > 0, with probability

at least 1 — C'¢ over y from training set,

1
A< FGEyNtraining set [A] ’ (218)
and hence,
1 1
InA<In FG]EyAatraining set [A] =In 076' +1n IEywlraining set [A] . (219)

Then we need to upper-bound In Ey, aining set [A]. We can rewrite it as:
In IEyrvtraining set [A]

trai train

|:6(Llesl (Wmini ,A::g) _ ﬁfu]ln (Wmini 7Amini ) ) i|

=In IEyrvtraining sclEW"‘i"iNP (220)
i e R
—In Ewmim pEyNtraining ol |:6(L\es& (Wmml 7Au‘;!:) _L!;le}iln (Wmlnl7A{lr|;3:))] .
For a fixed model with model parameters W™ we have
Ey ainingsr [ {70 (7" A180) = Ein (W ALE)) |
g e eV )~ (WA L8 (8 A~ L (W A
(221)

test train train train train train train

mini A full full mini A mini full mini A mini 7 full mini A mini
s [P OV AR L (W AE)) (148 (0 A 48 (W A |

train train train train train train

_e(Llesl(wmmi’A{s;D _Ll'ull (Wmini ’Amini)>E » |:6(qu11 (Wmil1i7Amini) _Ll’ull (Wmim ’Amini))]
= y ~training set .

. . . full mini A mini\ __ 7 full mini A mini
In the following, we wil give an upper bound on Ey  raining set {e(me(W AR — L, (W 7Au-am)):|

that is independent of W™, For the entire training dataset, L (Wmi"i, Ag‘;ﬂ;) can be written as:

e . 1 e
Lighy (W™, AR = S Iyl (222)

Thtrai —
train i€training set

where the node labels are independently sampled. Hence, Lot (Wmmi, Ami“i) is the empirical

train train

mean of n,, independent Bernoulli random variables and L (Wmini, Ami“i> is the expectation

train train
of Lful (Wmi“i, Amini). By Lemma|M.2{ for any C; > 0,

train train

e " e 2
P (|2 (WL ARR) - Linh (WL ARR) | 2 €1) < 267, (223)
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and hence, by Lemma [M.I] we have

A A c?
full full u
Cy (Llruin (Wmlm ’A:?::lr:) - Ll;:dn (Wmlm ’Am?‘:))] < e Anqrain . (224)

Ey ~trainin g set [e

Therefore, we have

o A c2
full full
In A <InEgmini . p [e(LleSl(wmml Atet) = Ligan (W™ ALE)) ¢ T :|

(225)
O,Q
=U “.
+ ANrain
Finally, we get
Cu (Lo (W, AL ) — L2, (W™, Azt )
SDKL(QHP) +1In EwmimN’P [e(Ltest(wmmi’Atrg;D_i‘trrualnln (Wmim’Ag’g:}:))} (226)
<Dis(QIP) +1n -+ S 4p
=KL CG ANyrain '
Hence, we have the final result
Liegt (Wminiy Atfg::a Q)
il (yyymini - A mini ! D 1 ! Ci =20
< ull mini mini - u .
—~train ( ) train » Q) + C“ ( KL(QHP) + n CG + 4nlrain + U)
M.2 PROOF OF LEMMA[G.6]
Recall that o o
U = In Egyumini.p [ecu (stt(Wm'"'vAfé’ﬂ)*Lffiiln(wmmlvAi‘rﬁ?é))] ] (228)

test train train train

First, we focus on the term Ly (Wmi“i, Af”") — Lful (Wmi"i, Ami“i). Set [mini(y,) = ||ymini —

Smini

yill%, Vi € train set and [0 (y ;) = ||ymint — yjH? , Vi € test set. Then we have

mini  x full full mini  x mini
Ltest (W 7Alesl) - Lu‘ain (W 7Alrain)

1 mini 1 mini
=Foymtest set [ Z Liest (yj)] — Ey ~train set [ Z ltrain(yi):| (229)

Mtest . Nitrai .
e J Etest set AN Etrain set

1 L.
— ST Iy pen(ys) —

Test

E l:?(:lnr: (yz ) Ptrain (yz )
Mrain

J Etest set 4 Etrain set

train,

Furthermore, we define Xy, = Diag (]1 {:’:i‘“i“i X (Wmi“i)T > O}) € R to represent

whether the j-th element {EyraimiX (Wil T} _is more than zero (1) or is zeroed out (0). Then we

j
have:

o (a2 (W) ") = B X (P W 230

o R T o .
Similarly, we have o (a{‘rﬁf‘n‘ X (Wm““*) ) = amm X (E i in‘“I*)T,
B T B L B T

o (A X (W) )= A X (B W), and o (a0 X (W) ) =
~ full ini*\ T
atgst,ix(zt*est,iwmlm ) -
we set f(y;) = — =l (y;) with Vi € train set and g(y;) = -l (y;) with Vj € test set and

Nomin = DIN{ Nyrain, Neest }-
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Hence, we have:
flyi) +9(ys5)
_ 1 mini . 1 mini /-
_ntest test (YJ) Niain tram(Yz)
(i vy) — {:;x:(y»)
~full mml ~full mini ¥ i
O | Aest ] W lesl,JX W
F
1 ~mini mml ~mini mini * T
g atrain 7 ( ) au'ain,iX (W )
Tmin
1 ; AT " N T
<—|o (é{:il,jx (W) ) ~o (aisil,jx (W) )
Mmin
~mini mini T ~mini mini * T 2
-\ atrain,iX (W ) —0 atrain,ix (W ) HF

1 ~full mini T T ~full mini * T * T
A, X (W) Bl - X (W) s
n

<
Tmin
2

Tmin

2

F

(231)
~mini X Wmini T ET ~mini X Wmini* T 2* T 2
- a[rain,i train,z — a[rain,i train, ¢ HF
HX||2 N2 5 2 X -
F mini * mini 2 ~full ~mini
Si( HW ||Euain,i||F + HW ||Elmi“;i”F alesl,j - a(rain,i
TMmin F F F
.. 2
mini* * ~full
+ HW F ”Elmin,i - Elest,g HF Qest, j
. 2
i 2 || ~full
s = S 8 )
F F
Cr (Cw +1)h* (|| < ~mini ||? ~ful ||?
<———— ' Qest,j — Atrain, i +2 ’ Quest, j
Tmin F F
CF (Cw + 1) h2 ~full ~full ~full 2 ~full ~mini 2
Si l test,j — au'ain,z + 2 Qegt ,J + alrain,i - au‘ain,i ’
Tmin F F
Cr(Cw + 1) (| chullmini
R AR
1
=0(yi,¥5,5,b)
. . . 2 %
where  the penultimate  inequality  follows  ||Siainil| 7 || Ziain lH - < h,
2 2 . . .
||§]tram | oo [ Bain i — Beesti < 2h because X; is a diagonal matrix with

(%:);; € {0,1} forany j € {1,...,h}. The penultimate expression is exactly the distance function

full __ || zfull ~full |2 ~full |2
and(si,j - Hatestj aTIdln’L’|F+2HaTeSK7]HF

: 143 full-mini _ full ~mini
defined in Deﬁnmon ;5 = Hamm i — At H o
is a constant based on the split of training and testing.
Hence, we have

L (Wmini Afull) full (Wmlm Amlm)
test ) test | T lram train

mml 1 mini
Z llesl ptest (YJ ) Z lirain (yi)ptrain (yl)

2 Thest J Etest set Qn(rain 1 Etrain set
. (232)
SAIrain,test(ﬁ7 b) = min Z Z Qi,jé(yiv Yi, 67 b)
i€train set j Etest set
Cr(Cow+ 1A% /. cu-
—min 3 Y 6 ; ) (o1 + o)
1Etrain set j Etest set min
Then we mainly focus on the elements of §fu!l-mini,
~full _ 1 full ~mini _ 1 m1m full  mini

Recall that a = ——— and ag,i ;o = = — , where a;5°, aii" €

train, i, in, full out, full l] in, mini out, mini Z] ij
A dlht [ do V" da:
1 2] i j

{0, 1} represents whether node 7 receives a message from node j (1) or not (0).
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Hence, we have:

full mlm 7 (233)

/dm Jfull /dout full /dm ,mini /dout mini
1

/dm ful]\/ qou il — / i, mini \/d(\u[ mini *

We fix the batch size b. Notice that when the fan-out size 3 increases, clom’mmi may increase and
full

~full ~mini
atram i alrdm i

where

we have four cases: (1). afj™ keeps as 0 given afs' = 0, (2). aj™ keeps as 0 given oy = 1,

(3). ajj™ keeps as 1 given aff! = 1, (4). a‘;;-““ becomes 1 from 0 given ap! = 1. Then
2

n 1 full __ mini : : H
we have g . — (1, - a; are non-increasing when /B mcreases
7j=1 in, full out,full 2] / in, mini out,mini ~ 1J
\/di \/ d_;’ d; \/ d;

2

I S
in, full out, full
VP fdS

2 2 2

1 1 1 1 _ 1
\/d?ufuu\/d;m,fuu - \/di;l,mini\/d;u(,mini and /diin,ful] /d;ul,ful] Z \/diin,full\/d«;ul,ful] \/diin,mini\/d;ul,mini
Hence, 0f!'™ini has a overall non-increasing trend when f3 increases but small non-monotonic

fluctuations can exist.

at the first three cases. However, at the fourth case, we may both have

We fix the fan-out size 3. Notice that when the batch size b increases, ™™™
have three situations: (1). afj" keeps as 0 given @} = 0, (2). afj™ keeps as 0 given 3! = 1, (3).

afi™ keeps as 1 given afy! = 1. Then we have §""™ni jg non-increasing when b increases.

may increase and we

Note that fan-out size 5 plays a more dominant role than batch size b in influencing generalization.
This is because the variation in fan-out size 8 not only increases the number of sampled neighbors
but also potentially alters the structure of the adjacency matrix of node ¢ — by introducing new
connections during mini-batch sampling (i.e., the fourth case). This structural change can lead to more
significant variations in generalization performance. In contrast, changes in batch size b primarily
supplement the number of sampled nodes without modifying the adjacency structure of the node i.

full S mini

Since 0(yi, y;, 3,b) is proporional to ;""" = Hamm ; —amn z” and A(B,b) is proporional
to (y;, y;, 5, b), we have the upper bound A(3,b) of Ly (Wm‘“‘ Af““) Lful (Wm‘m Am"“>

test train train
keeps non-increasing when b increases, and overall have the non-increasing trend when /3 increases
but small non-monotonic fluctuations exist.

Finally, we have

U =InEwminip [ecu(st‘(wm"“»Afe“!') L (W, Ar:::‘n'))}

) CuA(B,b)
< I Eyminp [e ] 234

—In(eCuA D)

This completes the proof.

N EXPERIMENTS

N.1 TRAINING SETTINGS

Testbed: The experiments, except those on the ogbn-papers100M, are conducted on a machine with
512GB of host memory and four NVIDIA A100 GPUs, each with 40GB of memory, inter-connected
via 900GB/s NVLink 4.0. The experiments on ogbn-papers100M are run on two machines without
GPUs, each equipped with 1024GB of host memory and an interconnect bandwidth of 50 Gbps.
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Table 3: Datasets Infol.

Datasets #Nodes #Edges Avg. Degree | #Classes | #Features
Reddit 232,965 11,606,919 50 41 602
Ogbn-arxiv 169,343 1,166,243 7 40 128
Ogbn-products 2,449,029 61,859,140 25 47 100
Ogbn-papers100M | 111,059,956 | 1,615,685,872 15 172 128
Table 4: Datasets Info2.

Datasets Train/Val/Test

Reddit 152,410/23,699/55,334

Ogbn-arxiv 90,941/29,799/48,603

195,922/48,980/2,204,127
1,207,179 / 125,265/214,338

Ogbn-products
Ogbn-papers100M

Metrics: 1). We evaluate convergence performance using three metrics: iteration-to-loss, iteration-to-
accuracy, and time-to-accuracy. These metrics measure training progress towards a target convergence
point in terms of training loss or validation accuracy. For all GNN models and datasets except ogbn-
papers100M, the target training loss is defined as the maximum loss observed over 100 consecutive
iterations at the smallest batch size, provided that the variance of these loss values is below 5 x 10~
Similarly, the target validation accuracy is defined as the minimum accuracy over 100 consecutive
iterations at the smallest batch size, provided that the variance of these accuracies is below 4 x 1074
Note that the defined target training loss and the defined target validation accuracy are applied across
all hyperparameter settings for the specific model and dataset. For ogbn-papers100M, training is
limited to 200 iterations due to the extremely large graph size and training time constraints. Note
that using the smallest batch size as the reference is common in prior works (Bajaj et al.| 2024), and
serves as a conservative criterion: because fluctuations are most pronounced under the smallest batch
size, requiring stability in this setting to prevent mistaking transient variations for convergence and to
provide a uniform benchmark across batch sizes. Moreover, by enforcing a variance threshold, this
definition remains unbiased toward larger or smaller batch sizes and offers a fair basis for comparing
convergence across settings. 2). For generalization, test accuracy is used as the metric in the training
iteration. 3).For system efficiency, we measure the training throughput in terms of the number of
target nodes processed per second (number of nodes/s). This metric ensures that throughput reflects
the rate of training examples processed.

We run all implementations using Python 3.8.10 and dgl>=1.0.0. The uniform neighbor sampling
is used for mini-batch training. Due to the massive comparisons, adding error bars to every figure
would make them overly cluttered and difficult to interpret. We have repeated all experiments at least
three times using different seeds and observed low variance. For example, in Figure[6] the standard
deviation of the final accuracy is less than 3.17%. This small variance does not affect the observed
convergence trends, which remain consistent across runs.

N.2 METRICS: ITERATION-TO-LOSS

Simple mathematical derivation. In distributed systems with two devices, assuming:

* Per-iteration calculation time t.q;: t.q; = (b * 8+ b)/C, where b is batch size, 3 is fan-out
size, and C' is compute capacity (nodes/s);

* Per-iteration communication time teomm : teomm = b/H for mini-batch training and
teomm = (b B+ b)/H for full-graph training, where H is the bandwidth.

* time-to-accuracy t: t = n X (teal + teomm ), Where m is iteration-to-accuracy.
Consider two training setups:
* Full-graph training: b; = 1000, 5; = 50, n; = 10 iterations to converge

* Mini-batch training: b = 10, 8, = 10, ns, = 10000 iterations to converge
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Under the same compute power C' = 1 node/s, but different bandwidths:

* High bandwidth: H;, = 1000 nodes/s
¢ Low bandwidth: H; = 0.1 nodes/s

Plugging into the formulas:

* High bandwidth: 1).Full-graph: ¢ = 10 x (1090:304+1000 4 1000-3041000) — 51051 x 10° s
2). Mini-batch: ¢ = 10000 x (1910410 4 10y —1.1001 x 10% s
Therefore, Full-graph training is faster.

« Low bandwidth: 1). Full-graph: ¢ = 10 x (2000-204+1000 4 1000:50.£1000) — 5 61 x 106 s
2). Mini-batch: ¢ = 10000 x (101910 4 18y — 977 x 106 5
Therefore, Mini-batch training is faster.

This example shows that time-to-accuracy may flip conclusions depending on hardware, while
iteration-to-accuracy remains stable.

Experiments. The vanilla distributed system (i.e., the standard implementation without any optimiza-
tions) is used for full-graph training, and the Distributed Data Parallel (DDP) technique (Li et al.,
2020) is applied for mini-batch training. We examine a three-layer GraphSAGE model on Reddit
and a three-layer GCN model on ogbn-products. These models include normalization layers and are
trained using a cross-entropy loss function and Adam optimizer with a learning rate of 0.01. The
target validation accuracy is set at 0.9 for ogbn-products and 0.95 for Reddit. The total batch size is
2000 and the fan-out size is [5,10,15]. To simulate infinite bandwidth (i.e., bw1), we use a single GPU
or CPU. For limited bandwidth (i.e., bw2), we use two GPUs interconnected via 900GB/s NVLink.

N.3 CONVERGENCE

For experiments on one-layer GNN models, the basic setups are without drop-out or normalization
layers and with ReLU activation, and SGD optimizer for both full-graph and mini-batch training. For
experiments in more general settings, multiple-layer GNNs are adopted without dropout layers and
with ReLU activation and Adam optimizer for both full-graph and mini-batch training. The SAR
system (Mostafal, 2022) is used for full-graph and mini-batch training on ogbn-papers100M via the
gloo backend, while other datasets are mainly trained on a single GPU.

Convergence of one-round GNN trained with MSE. To align with theoretical analysis, we use
iteration-to-loss here. The details are as follows: 1). The target training losses are 0.0226 for
ogbn-arxiv, 0.0225 for reddit and ogbn-products, and [0.005, 0.0054, 0.0065] for ogbn-papers100M
on GCN, GraphSAGE, GAT, respectively. 2). When varying the batch sizes, the fan-out size is 5. 3).
When varying the fan-out sizes, the batch size is 500 for ogbn-arxiv, ogbn-products and reddit, as
well as is 10000 for for ogbn-papers100M.

Figure E]-[E_?] shows the iteration-to-loss for four datasets under GAT, GCN, and GraphSAGE trained
with MSE across different learning rates and either varying batch sizes or varying fan-out sizes.

Convergence of one-round GNN trained with CE. To align with theoretical analysis, we use
iteration-to-loss here. We set the original multi-class node classification task as the binary node
classification task. The details are as follows: 1). The target training losses are 0.51 for ogbn-arxiv,
[0.325,0.325,0.2] for reddit on GCN, GraphSAGE, GAT, respectively, [0.08,0.051,0.051] for ogbn-
products on GCN, GraphSAGE, GAT, respectively, and [0.009, 0.0087, 0.0087] for ogbn-papers100M
on GCN, GraphSAGE, GAT, respectively. 2). When varying the batch sizes, the fan-out size is 5. 3).
When varying the fan-out sizes, the batch size is 500 for ogbn-arxiv, ogbn-products and reddit, as
well as is 10000 for for ogbn-papers100M.

Figure [OHI0] shows the iteration-to-loss for four datasets under GAT, GCN, and GraphSAGE trained
with MSE across different learning rates and either varying batch sizes or varying fan-out sizes.

Convergence in more general settings. For the comparison at the dimension of batch size and fan-
out size, we use 3-layer GraphSAGE models with hidden dimension of 256 for reddit, ogbn-products,
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Figure 7: Iteration-to-loss for real-world datasets for one-round GAT,

different batch sizes and learning rates under MSE.
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Figure 8: Iteration-to-loss for real-world datasets for one-round GAT,
different fan-out sizes and learning rates under MSE.

GCN, GraphSAGE across

and ogbn-arxiv, and 2-layer GraphSAGE models with hidden dimension of 128 for ogbn-papers100M.
The activation function is ReLU function. The optimizer is Adam with a learning rate of 0.001 and a
weight decay of 0. Due to the extremely large graph size of the ogbn-papers100M dataset and limited
computational resources, we use separate machines for full-graph and mini-batch training on this
dataset, making it infeasible to compare system efficiency between the two methods.

The target losses are [0.2, 0.1, 0.8, 1.52] under CE, and [0.005, 0.005, 0.013, 0.0055] under MSE
for the products, reddit, arXiv, and papers100M datasets, respectively. The corresponding target
accuracies are [0.918, 0.962, 0.708, 0.599] under CE, and [0.89, 0.946, 0.676, 0.5] under MSE for
the same datasets.

Figure[IT] (under CE) and[I2] (under MSE) illustrate time-to-accuracy on GraphSAGE across varying
batch sizes and fan-out sizes for ogbn-products, ogbn-arxiv and ogbn-papers100M.

Figure [T4] (under MSE) and[T3] (under CE) illustrate time-to-accuracy on GraphSAGE across varying
batch sizes and fan-out sizes for ogbn-products, ogbn-arxiv and ogbn-papers100M.
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Figure 9: Iteration-to-loss for one-round real-world datasets for GAT, GCN, GraphSAGE across
different batch sizes and learning rates under CE.
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Figure 10: Iteration-to-loss for one-round real-world datasets for GAT, GCN, GraphSAGE across
different fan-out sizes and learning rates under CE.
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Figure 11: Iteration-to-acc of multi-layer GraphSAGE under CE across varying batch sizes and
fan-out sizes.

N.4 GENERALIZATION

Generalization of one-round GNN trained with MSE. For test accuracy, the numbder of iterations
are 5 x 10° for GraphSAGE and GCN, or 1 x 105 for GAT, for ogbn-arxiv, ogbn-products, and reddit.
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Figure 13: Time-to-accuracy (s) of multi-layer GraphSAGE under CE across varying batch sizes and
fan-out sizes.
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Figure 14: Time-to-accuracy (s) of multi-layer GraphSAGE under MSE across varying batch sizes
and fan-out sizes.

And the number of iterations are 1 x 10* for ogbn-papers100M across all GNN models. The learning
rates are [0.015,0.02,0.025] for ogbn-arxiv, ogbn-products, and reddit, and [0.00025, 0.0002] for
ogbn-papers100M. The batch sizes and the fan-out sizes are consistent with the settings used in the
experiments measuring time-to-accuracy. Other settings are the same as Appendix [N.3]

Figure[T5HI6] shows the test accuracies for four datasets under GAT, GCN, and GraphSAGE trained
with MSE across different learning rates and either varying batch sizes or varying fan-out sizes.

Generalization in more general settings. The settings are the same as the general settings in
Appendix[N.3]

Figure 7] (under CE) and[I8](under MSE) illustrate test accuracies on GraphSAGE across varying
batch sizes and fan-out sizes for reddit, ogbn-arxiv and ogbn-papers100M.

N.5 COMPUTATIONAL EFFICIENCY

The settings are the same as the general settings in Appendix [N.3]

Figure[I7] (under CE) and [T8] (under MSE) illustrate training throughput as the number of processed
nodes per second on GraphSAGE across varying batch sizes and fan-out sizes for reddit, ogbn-arxiv
and ogbn-papers100M.

N.6 FULL-GRAPH VS. MINI-BATCH TRAINING AFTER HYPERPARAMETER TUNING.

The settings are the same as the general settings in Appendix [N.3]
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Figure 15: Test accuracy for real-world datasets for one-round GAT, GCN, GraphSAGE across
different batch sizes and learning rates under MSE.
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Figure 16: Test accuracy for real-world datasets for one-round GAT, GCN, GraphSAGE across
different fan-out sizes and learning rates under MSE.

N.7 ADDITIONAL RUNS FOR KEY EXPERIMENTS

The Tables[BH{I2] are as follows. We use b as the batch size and 3 as the fan-out size.
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Figure 17: Test accuracies of multi-layer GraphSAGE trained with CE across varying batch sizes and

fan-out sizes.
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Figure 18: Test accuracies of multi-layer GraphSAGE trained with MSE across varying batch sizes

and fan-out sizes.
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Figure 19: Training throughput (# nodes/s) of multi-layer GraphSAGE trained with CE across

varying batch sizes and fan-out sizes.
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Figure 20: Training throughput (# nodes/s) of multi-layer GraphSAGE trained with MSE across

varying batch sizes and fan-out sizes.

O RELATED WORK

For full-graph vs. mini-batch GNN training, the existing literature presents conflicting empirical
findings on the GNN performance (i.e., convergence and generalization) and computational efficiency:
some studies (Cai et al.| 2021;[Wan et al.,[2022aljb; [2023)) argue that full-graph training achieves higher
model accuracy and faster convergence than mini-batch training, while others (Kaler et al.} [2022;
[Zheng et al.l 2022} [Zhao et al.l 2021}, [Bajaj et al,[2024) present contrasting findings. Furthermore,

due to the message-passing process, performance insights from DNNs (Keskar et al., 2016; You et al.|
2019; [Smith|, 2017} |Golmant et al., 2018}, [Zou et al, [2020a; [Bassily et al.,2018; [Nabavinejad et al.

2021;|Hauswald et al., 2015)) cannot directly transfer to
The only existing comparison work (Bajaj et al., 2024

GNNGs.
) between full-graph and mini-batch GNN

training empirically evaluates overall performance but d
parameters (e.g., batch size and fan-out size) on model

oes not investigate the impact of key hyper-
performance and computational efficiency,

thereby overlooking the trade-offs achieved by tuning these hyperparameters. Recent efforts
let al.} 2023} [Hu et al., 2021) focus on these hyperparameters but remain limited. For instance, Yuan
et al. (Yuan et al., 2023) lack theoretical support, consider only limited batch sizes and fan-out values

that are far smaller than those of full-graph training, and
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Table 5: Run 1 for Figure ffa).

Test acc B=5|=10| =15 | =50 | all
b = 1000 747 671 618 427 481
b = 10000 525 356 342 283 277
b= 100000 | 416 308 291 245 232
b= 150000 | 409 302 283 239 238
full batch 399 303 275 242 229

Table 6: Run 2 for Figure f]a).
Test acc =5 |p=10] =15 | =50 | al
b= 1000 743 682 621 435 497
b = 10000 515 355 342 291 278
b = 100000 423 322 289 258 242
b = 150000 417 315 287 246 240
full batch 387 306 279 232 210

the fan-out size. Hu et al. (Hu et al.} 2021)) rely on gradient variance to explain the role of batch size
but do not consider fan-out size, thus their explanation conflicts with their empirical observations.

Existing theoretical analyses of GNN training typically focus on singular aspects (e.g., convergence,
or generalization), overlooking key graph-related factors (e.g., irregular graphs with nodes of varying
degrees, the difference between training and testing graphs in mini-batch settings) and the impact of
non-linear activation on gradients. For convergence analysis, Yang et al. (Yang et al.,[2023)) and Lin et
al. (Lin et al.} 2023)) apply the NTK framework by assuming infinite-width GNNs. Xu et al. (Xu et al.
2021)) analyze multi-layer linear GNNs. Awasthi et al. (Awasthi et al.|[2021) employ PL conditions to
study one-round GNNs with ReL.U activation, simplifying the analysis to regular graphs. All these
convergence analyses are solely on full-graph training. For generalization analysis, full-graph GNN
training has been studied (Scarselli et al., [2018; Vapnik & Chervonenkis, 20155 |Garg et al., [2020; [Lv,
2021} |El-Yaniv & Pechyonyl |2009; Oono & Suzuki, [2020; [Koltchinskii, [2001; (Cong et al., [2021bj Du
et al.,[2019; Liao et al.| [2020) under the well-established frameworks (e.g., PAC-Bayesian framework
(McAllester, [2003)), while the previous analyses of mini-batch training impractically assume the
same graph structures used in training and testing (Tang & Liul |2023; |Verma & Zhang| 2019). The
difference among graph structures in training and testing can result in generalization performance
degradation or overfitting to graph structures used in training.

P EXTENSIONS AND FUTURE WORK

P.1 EXTENSIONS

Multi-layer GNN models in theoretical analysis. We focus on a one-layer GNN with ReLLU
activation in theoretical analysis. We discuss the extension of theoretical results to multi-layer settings
in Appendix [H] and conduct experiments using multi-layer GNNs in Sec [5|and Appendix [N The
results validate that our key insights remain applicable in such settings. Therefore, our theoretical
and empirical analyses support the multi-layer GNN settings.

Sampling methods. We focus on uniform neighbor sampling before mini-batch training. There
exist many other sampling methods (Hamilton et al.,|2017;|Chen et al.| 2018; |Zou et al., 2019;|Chiang
et al.,[2019; |Zeng et al., [2019)) that have been proposed at the layer- or subgraph-level to enhance
performance. Our core insights could extend to more sampling methods.

For example, compared to uniform neighbor sampling, the key difference in some advanced samplers
lies in introducing specific constraints on the effective fan-out size by either assigning non-uniform
sampling probabilities (Chen et al., 2018)), or imposing layer-wise upper bounds on the number of
neighbors per node (Zou et al.,2019). These specific constraints preserve the qualitative trend of the
amount of aggregated information per node in the message-passing when varying fan-out sizes. In
convergence analysis, following our analysis in Appendix |G} increasing the effective fan-out size
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Table 7: Run 1 for Figurefe).

Test acc B=5|=10| =20] B=50 | all
b = 1000 1167 928 854 817 801
b = 10000 1232 1028 991 907 861

b= 100000 | 1250 1025 1005 919 902
b = 150000 | 1256 1047 1013 928 909
full batch 1295 1035 1007 945 925

Table 8: Run 2 for Figure fe).
Test acc =5 |p=10] p=20| =50 | al
b= 1000 1169 943 872 809 787
b = 10000 1222 1016 993 923 847
b= 100000 | 1257 943 936 929 886
b = 150000 | 1230 1037 978 923 902
full batch 1279 998 946 938 927

can enrich each target node’s aggregated neighbors, improving embeddings and reducing gradient
variance. Therefore, the mechanism “larger fan-out size — more iterations to convergence’ still
holds in GNN training under these samplers. For generalization, a larger fan-out size can reduce
the Wasserstein distance A(f3, b) under these constraints, which leads to improved generalization.
While these advanced samplers may lessen the sensitivity of generalization to fan-out size, they
cannot completely eliminate the effect of including unsampled but valid edges as fan-out increases
(see Obs.[2)). Consequently, generalization remains more sensitive to fan-out size than to batch size.
Overall, our key insights remain applicable to these sampling methods.

On the other hand, we notice that some advanced works (Chen et al.,|2017;|Shi et al.| 2023} [Fey et al.,
2021} [Shi et al., |2025)) use historical embeddings to incorporate nearly full-graph information at each
iteration. Therefore, from a model performance perspective, these methods reduce the variance caused
by different batch sizes and behave more like full-graph training. From a system design perspective,
they also rely on additional memory to store historical embeddings, making them closer to full-graph
training systems than typical mini-batch ones. In contrast, we preserve and study the effects of batch
size and fan-out, rather than eliminating them. Hence, we adopt the standard neighbor-aggregation
scheme that is commonly used in practice and do not consider these sampling methods.

Link prediction tasks. We focus on node classification tasks in GNN training, which can be
easily extended to graph classification. Different from node classification, link prediction tasks use
node pairs (connected and unconnected) for edge prediction, which can be transformed to node
classification tasks using the line graph method in the graph theory. The new line graph L(G) is
constructed in the following way: for each edge in the original graph GG, make a vertex in L(G);
for every two edges in GG that have a vertex in common, make an edge between their corresponding
vertices in L(G). Hence, our analyses and core insights naturally carry over to link prediction tasks.

Inductive GNN tasks. We focus on transductive GNN tasks. Unlike transductive tasks, inductive
tasks apply different graphs between testing and training. For convergence, our analysis can be
applied to inductive tasks without considering the testing graphs. For generalization, our analysis can
be easily extended to inductive tasks by revising 5{“;' in the Wasserstein distance to consider graph
structure differences between testing and training graphs.

P.2 FUTURE WORK

Different activations: GeLU and Tanh. Our theoretical analysis readily extends to the GeLU and
Tanh functions as the activation under our settings. The key difference lies in how the activation
affects the gradient norm bound. GeLU is a smooth approximation of ReLU and shares a similar
upper bound, while Tanh is even smoother with bounded high-order derivatives that control the
gradient norm. As a result, both our convergence and generalization methodology naturally translate
to these activation functions.
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Table 9: Run 1 for Figure[6fa).

Test acc B=511B=15| =25 | B=50 all

b = 1000 0.7767 | 0.7832 | 0.7821 | 0.7810 | 0.7789
b = 5000 0.7817 | 0.7846 | 0.7825 | 0.7803 | 0.7698
b=10000 | 0.7851 | 0.7818 | 0.7812 | 0.7775 | 0.7713
b= 100000 | 0.7869 | 0.7823 | 0.7818 | 0.7783 | 0.7753
b= 150000 | 0.7852 | 0.7818 | 0.7809 | 0.7781 | 0.7761
full batch 0.7868 | 0.7810 | 0.7778 | 0.7778 | 0.7803

Table 10: Run 2 for Figure [6a).

Test acc =5 |pB=15| =25 =50 all

b = 1000 0.7793 | 0.7840 | 0.7820 | 0.7818 | 0.7792
b = 5000 0.7825 | 0.7842 | 0.7833 | 0.7817 | 0.7702
b=10000 | 0.7852 | 0.7821 | 0.7818 | 0.7771 | 0.7713
b= 100000 | 0.7862 | 0.7825 | 0.7816 | 0.7780 | 0.7762
b = 150000 | 0.7860 | 0.7818 | 0.7800 | 0.7768 | 0.7760
full batch 0.7864 | 0.7808 | 0.7778 | 0.7775 | 0.7808

Our core insights are clearly generalizable to GeLU due to its similarity with ReLU. However,
whether the same insights hold for Tanh is less certain, as its bounded and more intricate derivative
structure may affect the theoretical bounds in a nontrivial way.

Heterogeneous graphs. Different from homogeneous graphs, heterogeneous graphs require spe-
cialized handling to address different types of nodes and edges, involving distinct aggregation and
transformation functions for each type, such as using separate neural networks for different edge

types. This can be explored.
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Table 11: Run 1 for Figure[6(b).

Test acc =5 1B=10| =20 | =50 all

b = 1000 0.6617 | 0.6891 | 0.7117 | 0.7241 | 0.7242

b = 5000 0.7113 | 0.7207 | 0.7336 | 0.7345 | 0.7369

b=10000 | 0.7209 | 0.7292 | 0.7341 | 0.7344 | 0.7362

b =100000 | 0.7318 | 0.7348 | 0.7373 | 0.7403 | 0.7415

b = 150000 | 0.7329 | 0.7357 | 0.7372 | 0.7378 | 0.7401

full batch 0.7345 | 0.7391 | 0.7386 | 0.7384 | 0.7385

Table 12: Run 2 for Figure [6[b).

Test acc =5 |p=10| =20 | =50 all

b= 1000 0.7295 | 0.7321 | 0.7344 | 0.7345 | 0.7341

b = 5000 0.7307 | 0.7343 | 0.7361 | 0.7364 | 0.7371

b=10000 | 0.7326 | 0.7353 | 0.7366 | 0.7365 | 0.7381

b =100000 | 0.7342 | 0.7372 | 0.7392 | 0.7400 | 0.7411

b= 150000 | 0.7343 | 0.7361 | 0.7385 | 0.7393 | 0.7405

full batch 0.7341 | 0.7396 | 0.7391 | 0.7389 | 0.7403
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