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ABSTRACT

Full-graph and mini-batch Graph Neural Network (GNN) training approaches
have distinct system design demands, making it crucial to choose the appropriate
approach to develop. A core challenge in comparing these two GNN training ap-
proaches lies in characterizing their model performance (i.e., convergence and gen-
eralization) and computational efficiency. While a batch size has been an effective
lens in analyzing such behaviors in deep neural networks (DNNs), GNNs extend
this lens by introducing a fan-out size, as full-graph training can be viewed as mini-
batch training with the largest possible batch size and fan-out size. However, the im-
pact of the batch and fan-out size for GNNs remains insufficiently explored. To this
end, this paper systematically compares full-graph vs. mini-batch training of GNNs
through empirical and theoretical analyses from the view points of the batch size and
fan-out size. Our key contributions include: 1) We provide a novel generalization
analysis using the Wasserstein distance to study the impact of the graph structure,
especially the fan-out size. 2) We uncover the non-isotropic effects of the batch size
and the fan-out size in GNN convergence and generalization, providing practical
guidance for tuning these hyperparameters under resource constraints. Finally, full-
graph training does not always yield better model performance or computational
efficiency than well-tuned smaller mini-batch settings. The implementation can be
found in the anonymous link: https://anonymous.4open.science/r/
GNN_fullgraph_minibatch_training-8040/README.md.

1 INTRODUCTION

Graph neural networks (GNNs) have demonstrated exceptional performance across diverse machine
learning tasks involving graph-structured data (Zhang & Chen, 2018; Xu et al., 2018; Gilmer et al.,
2017). A defining characteristic of GNNs is their reliance on the graph structure to facilitate
message-passing, enabling the learning of rich node representations from both structural and feature
information (Gilmer et al., 2017). Consequently, the computational patterns of GNNs depend strongly
on the underlying graph structure, leading to two prominent and distinct paradigms for training GNNs:
full-graph and mini-batch training (Bajaj et al., 2024; Hamilton et al., 2017; Zheng et al., 2022).

Full-graph training and mini-batch training are distinct GNN training paradigms. In full-graph
training, the entire graph is processed simultaneously, and each node aggregates information from
its neighbors across multiple message-passing layers. In contrast, mini-batch training divides the
graph into smaller subgraphs or batches, training the model iteratively on subsets of nodes and their
(sampled) local neighborhoods. These paradigms exhibit fundamentally different computational
patterns, each requiring distinct system designs, training pipelines, and optimization strategies.
For example, full-graph training necessitates efficient communication mechanisms to synchronize
aggregations over the entire graph (Md et al., 2021; Peng et al., 2022), whereas mini-batch training
demands careful optimizations of CPU-GPU data loading to accommodate frequent batch processing
(Chen et al., 2018; Zhu et al., 2019; Liu et al., 2023) . Understanding the differences between these
two paradigms is essential for identifying suitable training methods in specific scenarios and guiding
the design of optimised training systems.

Existing Gaps. To systematically investigate the differences between full-graph and mini-batch
training, the hyperparameters batch size (the number of sampled nodes) and fan-out size (the number
of neighbors chosen per node at each hop (Hamilton et al., 2017)) offer critical lenses for analyzing
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GNN performance and computational efficiency, as full-graph training can be viewed as a special case
of mini-batch training with maximum batch and fan-out sizes. However, despite increasing attention
in the literature, the impact of these hyperparameters remains insufficiently understood. Existing
studies typically focus on individual parameters (e.g., batch size or fan-out size independently) (Hu
et al., 2021; Yuan et al., 2023) or singular aspects of evaluation (e.g., convergence (Yang et al., 2023;
Awasthi et al., 2021), accuracy (Tang & Liu, 2023; Verma & Zhang, 2019) , or system efficiency
(Naman & Simmhan, 2024)), providing limited insights into the holistic trade-offs between the two
paradigms (see Sec. 6 for further discussions). Although recent empirical studies, such as (Bajaj
et al., 2024), have attempted comparisons between full-graph and mini-batch training, their results
are largely observational and hardware- or environment-dependent, limiting their generalizability.
Meanwhile, most of the existing GNN analyses typically rely on strong simplifications, such as
infinite-width assumptions that average out per-neuron gradient noise (Yadati, 2022) or linear models
with convex losses that remove local optima (Yang et al., 2023; Lin et al., 2023), which obscure
the effects of batch sizes or fan-out sizes on training dynamics. Thus, a critical open question
remains: How do the batch size and fan-out size influence the optimization dynamics, generalization
capabilities, and computational efficiency of GNN training, particularly when comparing full-graph
and mini-batch training paradigms?

Challenges. Comparing full-graph and mini-batch GNN training paradigms presents multiple inter-
twined challenges. First, while the batch size and fan-out size are useful for analyzing differences
between these paradigms, their impacts on model performance and system efficiency inherently
depend on the hardware environment used. Therefore, meaningful comparisons necessitate measure-
ment frameworks that are hardware-agnostic and supported by rigorous theoretical analyses. Second,
both the computational dynamics of GNNs and the statistical properties of graph data are intrinsically
tied to the underlying graph structure, which is directly influenced by choices of batch size and
fan-out size. Altering these hyperparameters thus introduces complex interactions, highlighting
the need for flexible analytical frameworks that can accurately capture these dynamics. Finally,
comprehensively understanding the trade-offs between full-graph and mini-batch training demands
frameworks capable of jointly evaluating model efficiency and generalization, ultimately guiding the
development of practically optimized systems.

Contribution. To address the aforementioned research gap, in this paper, we conduct a systematic
study of full-graph and mini-batch GNN training under different batch sizes and fan-out sizes on
transductive node classification tasks. The contributions are highlighted as follows.

▷ We characterize the role of the batch size and fan-out size in GNN optimization dynamic analysis
(Theorem 1 and 2), extending the settings to irregular graphs and GNNs with non-linear activations,
better aligning with the practice. We also provide a novel GNN generalization analysis (Theorem 3)
using the Wasserstein distance to investigate the impact of graph structures, especially the fan-out size,
where this distance can quantify graph structure differences between training and testing datasets.

▷ We theoretically uncover the non-isotropic impacts of the batch size and the fan-out size in GNN
convergence and generalization, where the batch size has a greater impact on GNN optimization
dynamics (Obs.1), while the fan-out size more strongly affects GNN generalization (Obs.2). These
findings suggest that, under memory constraints, adjusting the batch size is preferable when general-
ization is the priority, given its more stable effect on generalization. In contrast, tuning the fan-out
size is preferable when convergence is the concern, given its more consistent impact on convergence
compared to batch size, while setting the fan-out size to moderate values balances convergence and
computational efficiency as the magnitude of its impact on convergence decreases with larger values.

▷ We empirically use additional iteration-based convergence metrics for hardware-agnostic compar-
isons, rather than relying solely on time-based metrics. Experiments on four real-world datasets
(Hamilton et al., 2017; Hu et al., 2020) and three GNN models (Zhang et al., 2019; Hamilton et al.,
2017; Veličković et al., 2017) validate our theoretical findings. We recommend keeping batch size
below half of the training nodes and the fan-out size under 15 for sparse graphs (Hamilton et al.,
2017; Hu et al., 2020) to balance the model performance and computational efficiency.

Our theoretical and empirical findings support that full-graph training does not always yield superior
model performance or computational efficiency compared to smaller mini-batch settings. Instead,
carefully tuning the batch size and fan-out size in mini-batch settings often leads to better trade-offs,
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such as faster convergence or improved generalization under resource constraints. These findings
provide practical guidance for selecting training paradigms under specific task requirements.

2 PRELIMINARIES

Graph. Given a homogeneous undirected graph with total n nodes and the maximal degree dmax ≤ n,
set ntrain nodes in the training set and ntest nodes in the testing set, with n = ntrain + ntest. We allow
arbitrary subsets of nodes to be selected as the training and testing sets. Let b ≤ ntrain be the batch
size and β ≤ dmax be the fan-out size in mini-batch training, where uniform neighbor sampling is
employed to select neighbors.

Each node is an instance (xi, yi) with feature xi and label yi. Let X ∈ Rn×r be the feature matrix,
where xi is the i-th row of X and r is the feature size. In the transductive learning setting, our task is
to predict the labels of nodes {xi}ni=ntrain+1 by the GNN model trained on {xi}ni=1 ∪ {yi}ntrain

i=1 . We
assume that node features are fixed, and node labels are independently sampled from distributions
conditioned on node features, which is widely adopted in the node classification task.

Let A represent the adjacency matrix of graph. We define Afull
train ∈ Rntrain×n for full-graph training,

Amini
train ∈ Rb×n for mini-batch training, and Atest ∈ Rntest×n for inference, where Amini

train is a submatrix
of Afull

train. Let Din denote a diagonal in-degree matrix with Din
ii representing the number of incoming

edges to node i. We define Din,full
train ∈ Rntrain×ntrain for full-graph training, Din,mini

train ∈ Rb×b for mini-
batch training, and Din

test ∈ Rntest×ntest for testing. Dout ∈ Rn×n denotes the respective diagonal

out-degree matrix. Ã =
(
Din + I

)− 1
2 (A+ I) (Dout + I)

− 1
2 is the respective normalized adjacency

matrix with self-loops, where self-loops ensure that each node retains its own features during
aggregation, improving the model’s learning ability. Here ãi denotes the i-th row of Ã.

GNN model. Motivated by recent theoretical advances in understanding GNNs (Su & Wu, 2025;
Awasthi et al., 2021), we analyze the training dynamics using a one-layer GNN model. This model
serves as a powerful and well-established testbed for capturing phenomena arising from finite width
and nonlinearity of GNNs. Its simplicity in model depth provides the analytical flexibility necessary to
precisely characterize how batch size and fan-out size affect GNN training dynamics. In Appendix H,
we further discuss how our analyses and results generalize to multi-layer settings. Concretely, let
W ∈ Rh×r be the learnable model parameters of the GNN model and W∗ ∈ Rh×r be the ground
truth of W, where wi is the i-th row of W and h is the finite hidden dimension. We study a
one-layer GNN with the ReLU activation, and define the output immediately after the first layer as
zi = σ

(
ãtrain,iXW⊤) ,∀i ∈ training set, where σ(x) = max (x, 0) is the ReLU activation function,

and the term ãtrain,iX represents the embedding aggregation on node i. This first-layer output may be
followed by task-specific post-processing (e.g., a linear projection in binary classification). Similarly,
during inference, the output of the first layer is given by zi = σ

(
ãtest,iXW⊤) ,∀i ∈ testing set.

In this paper, we use ∥ · ∥2, ∥ · ∥ and ∥ · ∥F to denote the 2-norm of vector, spectral norm of matrix
and Frobenius norm of vector, respectively. For two sequences {pn} and {qn}, we use pn = O(qn)
to denote that pn ≤ C1qn for some absolute constant C1 > 0. The notation table is in Appendix A.

3 OPTIMIZATION DYNAMIC

We present our theoretical studies on the GNN optimization dynamics. First, the optimization
setup is introduced, representing how to handle interactions between batch size and fan-out size in
optimization dynamics (Sec. 3.1). Next, we show the convergence results, answering our research
question in GNN optimization dynamic. We then reveal an interesting observation, yielding actionable
implications for accelerating convergence under memory constraints (Sec. 3.2).

3.1 OPTIMIZATION SETUP

Optimization algorithms. We aim to minimize the empirical risk L̂train

(
W, Ãtrain

)
=

1
ntrain

∑
i∈training set l (W, ãtrain,i), where l (·) denotes the loss function. In practice, Cross-Entropy

(CE) and Mean Squared Error (MSE) are the most commonly used losses. Under full-graph
training settings, the model parameters are updated via gradient descent (GD) as Wfull

t+1 =

Wfull
t − ηt∇Wfull

t
L̂train

(
Wfull

t ,Afull
train

)
, where ηt > 0 is the learning rate at the t-th training itera-

tion. Under mini-batch training settings, the model parameters are updated via stochastic gradient
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descent (SGD) as Wmini
t+1 = Wmini

t − ηtĜt, where Ĝt =
1
b

∑
i∈sampled nodes ∇Wmini

t+1
l
(
Wmini

t , ãmini
train,i

)
denotes the stochastic gradient at the t-th training iteration.

Handling interactions between batch size and fan-out size in optimization dynamic. To handle
these interactions, we isolate the impact of the graph structure in the loss and gradient expressions. A
key challenge is that the nonlinear activation (e.g., ReLU) processes aggregated node features as input,
making these expressions analytically intractable. To overcome this, we decouple the aggregated
node features from the activation function. For instance, we extract the aggregation from the ReLU
function by reformulating squared loss terms, or rewrite the ReLU function using a position-wise 0/1
indicator matrix that can directly multiply the aggregated node features.

3.2 CONVERGENCE RESULTS

Building on the aforementioned setup in Sec 3.1, we study GNN convergence results under suitable
assumptions on the distribution of node features as well as the boundedness of the feature matrix
norm, the ground truth parameter norm and the separation between aggregated node features with
different labels in the training data (see Assumptions B.1.-B.2. in Appendix B and Assumption E.1. in
Appendix E), with detailed proofs provided in Appendix B-E.

Theorem 1. (Convergence of Mini-batch Training with MSE) Suppose Wmini are generated by
Gaussian initialization. Under Assumptions B.1. and B.2, if the fan-out size satisfies Cmini

1 ≤ β ≤
Cmini

2 b
3
4 for constants Cmini

1 , Cmini
2 ∈ (0, 1) to ensure a sparser adjacency than a fully connected

graph, then with high probability, Ltrain
(
Wmini

T ,Amini
train

)
≤ ϵ for any ϵ ∈ (0, 1), provided that the

number of iterations T = O
(
ntrainh

2b
5
2 β− 1

2 ϵ−1 log
(
h2ϵ−1

))
under the mini-batch training.

Theorem 2. (Convergence of Mini-batch Training with CE) Suppose Wmini are generated by
Gaussian initialization. Under Assumptions B.1. and E.1, if the hidden dimension of a one-round
GNN satisfies h = Ω

(
log (ntrain)β

−1
(
n2train + ϵ−1

))
to ensure the finite width, then with high

probability, L̂train
(
Wmini

T ,Amini
train

)
≤ ϵ for any ϵ ≥ 0, provided that the number of iterations T =

O
(
n2train (log (ntrain))

1
2 α−2b−1β− 5

2

(
n2train + ϵ−1

))
under the mini-batch training.

When the fan-out size β reaches dmax and the batch size b reaches ntrain, the upper bound on the
number of iterations to convergence in mini-batch training matches that of full-graph training (see
Theorem B.4. under MSE in Appendix B and Theorem D.2. under CE in Appendix D).

Remark 3.1. Our theoretical results show that increasing the batch size b for a fixed fan-out size leads
to more iterations to convergence under MSE (Theorem 1), but fewer iterations under CE (Theorem 2)
in the mini-batch setting of one-round GNNs, different from DNN training. In contrast, increasing
the fan-out size β under a fixed batch size consistently reduces the number of iterations required for
convergence under both MSE (Theorem 1) and CE (Theorem 2).

Remark 3.2. Our theoretical analysis reveals that the magnitude of the fan-out size’s impact on
GNN convergence jointly depends on the batch size b and the fan-out size β, diminishing as either
b (under CE) or β (under MSE and CE) grows. The magnitude of this impact can be characterized
by the absolute slope |∂T/∂β| of the number of iterations T for convergence with respect to the
fan-out size β, where a steeper slope indicates a stronger impact. Specifically, Theorem 1. gives
|∂T/∂β| = O

(
β−3/2b5/2

)
under MSE and Theorem 2. gives |∂T/∂β| = O

(
β−7/2b−1

)
under CE .

Answering our research question: Remark 3.1. and Remark 3.2. represent the impact and interplay
of the batch size and the fan-out size in the GNN optimization dynamic. Therefore, we conclude
that full-graph training does not always provide superior convergence speed than smaller mini-batch
settings, especially under MSE.

Furthermore, we present an interesting observation, providing insights into accelerating GNN conver-
gence under memory constraints.

Obs.1: GNN convergence is more sensitive to batch size than to fan-out size. Remark 3.1. high-
lights a stronger dependence of GNN convergence on batch size b than on fan-out size β, as a larger
batch size b leads to opposite convergence trends under MSE and CE, while increasing the fan-out size
β exhibits a consistent trend. This observation cannot be fully interpreted by the popular explanation
of DNNs, which posits that increasing the batch size reduces gradient variance, resulting in fewer
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iterations to converge (Cong et al., 2021a; Liu et al., 2024) . We further consider the impact of
message passing on the loss and gradient, providing the interpretation of Obs.1. in Appendix F.

Implication for accelerating convergence. Under memory constraints, Obs.1. suggests that adjusting
the fan-out size β offers a more reliable way to accelerate GNN convergence, as the fan-out size β
keeps the same convergence trends under both MSE and CE. To tune the fan-out size β, Remark
3.2. highlights that a moderate value of β provides a practical balance between convergence and
computational efficiency, as the reduction in the number of iterations for convergence becomes
smaller when increasing β beyond moderate values, particularly with large batches under CE.

4 GENERALIZATION OF MINI-BATCH TRAINING

We represent our theoretical study on GNN generalization. First, problem setup is introduced,
representing how to isolate the impacts of batch size and fan-out size in generalization by employing
Wasserstein distance (Sec. 4.1). Next, we show the generalization result, answering our research
question in GNN generalization. We then present an interesting observation, yielding the actionable
implication for improving generalization under memory constraints (Sec. 4.2).

4.1 PROBLEM SETUP

Basic setup. We aim to bound the generalization gap between the expected testing risk and the
empirical training risk under the mini-batch training settings, where the expected testing risk is given
by Ltest

(
Wmini, Ãfull

test

)
= E

[
1
ntest

∑
i∈test set l

(
Wmini, ãfull

test,i

)]
, and the empirical training risk is ex-

pressed as L̂train

(
Wmini, Ãmini

train

)
= 1

ntrain

∑
i∈training set l

(
Wmini, ãmini

train,i

)
. Note that inference utilizes

all testing neighbors across the entire graph, whereas mini-batch training relies on sampled neighbors
within limited hops. We then employ the Wasserstein distance (Kantorovich, 1960) to quantify the
difference in graph structures between training and testing datasets, as the Wasserstein distance
effectively measures differences in non-i.i.d. data, particularly regarding geometric variations.

Definition 1. (Distance between Training Set and Testing Set). Define the distance
from the training set to the testing set as the Wasserstein distance given by ∆(β, b) ={
infθ∈Θ[ρtrain,ρtest]

∑
i∈train set

∑
j∈test set θi,jδ (yi, yj , β, b)

}
, where ρtrain (yi) and ρtest (yi) denote the

probability of yi appearing in training and testing sets, respectively. Θ[ρtrain, ρtest] is the joint prob-
ability of ρtrain and ρtest. The infimum in the first equality is conditioned on

∑
j∈test set θi,j =

ρtrain (yi) ,
∑
i∈training set θi,j = ρtest (yj) , θi,j ≥ 0. δ (yi,yj , β, b) is the distance function of any two

points from training and testing sets, respectively.

We set δ (yi,yj , β, b) = Cδh
2

nmin

(
δfull
i,j + δfull-mini

i

)
with a constant Cδ > 0, nmin = min{ntrain, ntest}

and δfull
i =

∥∥ãfull
test,j − ãfull

train,i

∥∥2
F
+ 2

∥∥ãfull
test,j

∥∥2
F

, as a constant, mainly capturing the difference of distri-

butions between the training and testing data in full-graph training. δfull-mini
i =

∥∥ãfull
train,i − ãmini

train,i

∥∥2
F

reflects the structural difference between full-graph and mini-batch graphs per node during training.

Isolating the impacts of batch size and fan-out size in generalization. To isolate these impacts, we
focus on the discrepancy U between expected training and testing losses before training, which is the
only term for non-i.i.d. graph data in our generalization analysis, with detailed proof in Appendix M.
Since the training and testing datasets are split beforehand, U depends on the structural difference
between training and testing graphs, which we quantify using the Wasserstein distance ∆(β, b). We
show that greater similarity between training and testing graph structures leads to a smaller U .

4.2 GENERALIZATION RESULT

Building on the aforementioned setup in Sec 4.1, we use the Wasserstein distance to study the
generalization result in PAC-Bayesian framework (McAllester, 2003) under mini-batch GNN training
with MSE, given suitable assumptions on the boundedness of the Frobenius norm of the feature matrix
and the parameter norm (see Assumptions G.1. and G.2. and the detailed proof in Appendix G).

Theorem 3. Suppose Wmini are generated by Gaussian initialization. Under Assump-
tions G.1. and G.2, with high probability, for the posterior distribution Q over hypothe-
sis space in the mini-batch training settings with MSE, we have Ltest

(
Wmini, Ãfull

test;Q
)

−

L̂train

(
Wmini, Ãmini

train;Q
)

= O
(

1
ntrain

+∆(β, b)
)

, where ∆(β, b1) ≤ ∆(β, b2) with b1 ≥ b2,

5
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∆(β, b) ∝
∑
i∈training set

∑
j∈testing set θi,jδ

full-mini
i , θi,j ∈ Θ[ρtrain, ρtest] and δfull-mini

i has an overall
non-increasing trend as the fan-out size β grows but small non-monotonic fluctuations exist. The
posterior distribution Q represents the distribution of model parameters after training, and the
hypothesis space denotes all possible models.

Remark 4.1. Theorem 3 reveals that increasing either the batch size b or the fan-out size β improves
the GNN generalization. This is because the role of b and β in GNN generalization is captured by the
Wasserstein distance ∆(β, b), where larger ∆(β, b) leads to poorer generalization performance. In
Definition 1, the Wasserstein distance ∆(β, b) is proportional to the weighted sum of δfull-mini

i (i.e.,
the structural difference between full-graph and mini-batch graphs per node during training) over all
training nodes , where δfull-mini

i decreases with either the batch size b or the fan-out size β, though
slightly non-monotonic fluctuations exist when varying β.

Answering our research question: Remark 4.1. represents how the batch size and the fan-out size
characterize GNN generalization via the Wasserstein distance ∆(β, b). While full-graph training is
expected to outperform smaller mini-batch settings, we remain cautious about the degradation in
generalization performance at very large batch sizes or fan-out sizes, as similar issues have been
observed in DNNs (You et al., 2019; 2017) . We conduct an empirical study for further investigation.

In addition, we interpret an interesting observation, providing the implication for improving GNN
generalization under memory constraints.

Obs.2: GNN generalization is more sensitive to fan-out size than to batch size. While increasing
the fan-out size β and the batch size b both help align the mini-batch with the full graph during training,
β has a greater impact on the generalization by directly controlling receptive field of each training
node. Based on Remark 4.1, this can be interpreted using the Wasserstein distance ∆(β, b), which
increases the weighted sum of δfull-mini

i over all training nodes. A larger β can include unsampled
but valid edges, turning zero terms ãmini

train,i into non-zero values in δfull-mini
i , potentially causing slight

non-monotonic fluctuations. In contrast, increasing b does not introduce these edges, as all training
nodes are included during summation of δfull-mini

i . With the more complex impact of β in ∆(β, b),
we conclude that GNN generalization is more sensitive to fan-out size β than to batch size b (see
Appendix M for the detailed proof).

Implication for improving generalization. Under memory constraints, Obs.2. suggests that adjusting
the batch size b offers a more stable way to improve GNN generalization, as the batch size b introduces
less non-monotonic fluctuations than the fan-out size β.

5 EMPIRICAL STUDY

We first explain the rationale for using the metrics (e.g., iteration-to-accuracy) in Sec. 5.1. We validate
Remarks 3.1 - 3.2. and Obs.1. on GNN convergence (Sec. 5.2), and Remark 4.1. and Obs.2. on
GNN generalization with the discussion about performance degradation (Sec. 5.3). We compare
computational efficiency across varying batch sizes and fan-out sizes, answering our research question
in computational efficiency (Sec. 5.4). Finally, we present an overall comparison of generalization
performance between full-graph and mini-batch training after tuning batch size and fan-out size,
yielding implications for tuning these two hyperparameters (Sec. 5.5).

Results overview. Non-isotropic impacts of batch size and fan-out size exist in model performance
(i.e., generalization and convergence) and computational efficiency. Full-graph training does not
always yield superior model performance or computational efficiency compared to well-tuned smaller
mini-batch settings. Carefully tuning the batch size and the fan-out size in mini-batch settings often
achieves more favorable trade-offs, such as faster convergence or better generalization.

Datasets and models: We conduct experiments on four real-world datasets: reddit (Hamilton et al.,
2017), ogbn-arxiv (Hu et al., 2020), ogbn-products (Hu et al., 2020) and ogbn-papers100M (Hu
et al., 2020). We train three representative GNN models: GCN (Zhang et al., 2019), GraphSAGE
(Hamilton et al., 2017) with mean aggregation, and GAT (Veličković et al., 2017) with 2 heads for
ogbn-papers100M and 4 heads for the other datasets. See more training settings in Appendix N.

5.1 METRIC: ITERATION-TO-ACCURACY

We evaluate convergence performance using three metrics: iteration-to-loss (i.e., the number of
iterations to reach a target training loss), iteration-to-accuracy (i.e., the number of iterations to reach a
target validation accuracy), and time-to-accuracy (i.e., the time to reach a target validation accuracy).
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(a) Time-to-acc, bw1, GPU (b) Time-to-acc, bw2, GPU (c) Time-to-acc, bw1, CPU

(d) Iter-to-acc, bw1, GPU (e) Iter-to-acc, bw2, GPU (f) Iter-to-acc, bw1, CPU
Figure 1: Time-to-acc and iteration-to-acc in mini-batch and full-graph training with varying band-
widths (i.e., two inter-GPU bandwidth values: bw1=infinity > bw2=900GB/s) and computational
capacities (i.e., GPU with 40GB of memory and CPU with 512GB of host memory ). Figure repre-
sentation updated.

Since iteration-to-loss is from the theoretical analysis in Sec. 3 and time-to-accuracy is commonly
used in empirical studies (Bajaj et al., 2024; Hu et al., 2020), we do not provide further explanation.

Rationale for using iteration-to-accuracy. However, time-to-accuracy is highly sensitive to hard-
ware differences, entangling model performance improvement per iteration (e.g., accuracy) and
computational efficiency (e.g., processed nodes per second). Thus, we additionally introduce iteration-
to-accuracy, a hardware-agnostic metric, to capture this performance improvement during training.

To illustrate this rationale more clearly, we provide a simple, non-rigorous mathematical derivation,
with details in Appendix N. Let b denote the batch size, β the fan-out size, and νl the iteration-to-
accuracy. Suppose we compare two training setups under the same compute capacity but different
bandwidths in distributed systems: a full-graph setting (b = 1000, β = 50, νl = 10) and a mini-batch
setting (b = 10, β = 10, νl = 10000). At high bandwidths (1000 nodes/s), the full-graph setting
converges faster, in 5.1× 105 seconds, compared with 1.1× 106 seconds for mini-batch training. In
contrast, at low bandwidths (0.1 nodes/s), mini-batch training converges faster, requiring 2.1× 106

seconds, whereas the full-graph setting requires 5.6× 106 seconds.

Empirically, Figure 1 illustrates time-to-accuracy and iteration-to-accuracy with two training ap-
proaches under different inter-GPU bandwidth levels (i.e., bw1=infinity, simulated by a single GPU
with no inter-device communication; bw2=900GB/s, two-GPU NVLink 4.0 setup) and computation
capacities (i.e., GPU and CPU). Detailed settings are in Appendix N. For time-to-accuracy, mini-batch
training underperforms full-graph training on a single GPU but outperforms it on two GPUs or a
single CPU. In contrast, iteration-to-accuracy remains consistent across hardware environments, with
a maximum variation of 41.28%, compared to 2787.05% for time-to-accuracy.

Therefore, both mathematical and empirical examples indicate that time-to-accuracy cannot reliably
generalize convergence performance across hardware environments, while the iteration-to-accuracy
is more reliable to guide early-stage configuration decisions. For example, in a new hardware setup,
practitioners can use known iteration-to-accuracy trends to narrow the range of batch and fan-out size,
and perform short runs to consider hardware-specific runtime, thereby reducing tuning overhead.

5.2 CONVERGENCE

Empirical Validation of Remarks 3.1, 3.2. and Obs.1. Remark 3.1. and Obs.1. are empirically
validated by Figure 2 and Figures 7- 10 in Appendix N, which illustrate iteration-to-loss for three one-
layer GNNs across four real-world datasets under varying fan-out sizes or batch sizes with different
learning rates. In addition, Figure 4 in more general settings (e.g., multi-layer GraphSAGE) further
confirms Remarks 3.1, 3.2. and Obs.1. using iteration-to-loss (see detailed settings in Appendix N).
Due to more complex optimization dynamics in deeper GNNs, Figure 4 shows minor fluctuations
across varying batch and fan-out sizes, where the batch size and fan-out size increase until mini-batch
training transitions into full-graph training.

Extended experiments using iteration-to-accuracy and time-to-accuracy. To study model perfor-
mance improvement during training, Figure 5 illustrates iteration-to-accuracy and time-to-accuracy
across varying batch sizes and fan-out sizes for reddit (see more datasets in Appendix N), showing
unstable convergence trends with varying batch sizes and very large fan-out sizes (explained further in
Sec. 5.3). This is because these two metrics capture both convergence and generalization performance
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(a) Batch size, CE (b) Fan-out size, CE (c) Batch size, b, MSE (d) Fan-out size, MSE
Figure 2: Iteration-to-loss of one-layer GraphSAGE under CE and MSE across varying learning rates
and batch sizes or fan-out sizes for ogbn-products.

(a) Products, Batch size (b) Products, Fan-out size (c) Reddit, Batch size (d) Reddit, Fan-out size
Figure 3: Test accuracy of one-layer GraphSAGE under MSE across varying learning rates and batch
sizes or fan-out sizes for ogbn-products and reddit.

(a) Products, CE (b) Reddit, CE (c) Arxiv, CE (d) Papers100M, CE

(e) Products, MSE (f) Reddit, MSE (g) Arxiv, MSE (h) Papers100M, MSE
Figure 4: Iteration-to-loss of GraphSAGE under CE and MSE across varying batch and fan-out sizes.

(a) Iter-to-acc, CE (b) Iter-to-acc, MSE (c) Time-to-acc, CE (d) Time-to-acc, MSE
Figure 5: Iteration-to-accuracy and time-to-accuracy of GraphSAGE under CE and MSE across
varying batch sizes and fan-out sizes for reddit.

due to the dependency on validation accuracy. Moderate fan-out sizes (e.g., around 15) are shown to
balance convergence speed and computational efficiency (shown in time-to-accuracy), supporting the
convergence acceleration implications in Sec 3.

5.3 GENERALIZATION

Empirical Validation of Remark 4.1. and Obs.2. Remark 4.1. and Obs.2. are empirically validated
by Figure 3 and Figures 15-16 of one-layer GNNs in Appendix N, which illustrate test accuracies for
three one-layer GNNs across four datasets under varying fan-out sizes or batch sizes with different
learning rates. In addition, Figures 6(a)-(b) in more general settings for ogbn-products further confirm
Obs.2. (see more datasets and details in Appendix N), as the variation of fan-out size induces more
frequent and diverse shifts in test accuracies. Regarding Remark 4.1, Figure 6(b) under MSE generally
aligns with our theoretical prediction, while Figure 6(a) under CE further shows that performance
degradation occurs with very large fan-out sizes (typically more than 15 on these datasets) or batch
sizes (exceeding half of the training nodes). This degradation is more severe with fan-out sizes
than with batch sizes. We justify our answer in Sec. 4 to the research question: full-graph training
does not always outperform the smaller mini-batch settings in generalization due to degradation in
generalization performance.
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(a) Test accuracy, CE (b) Test accuracy, MSE

(c) Throughput, CE (d) Throughput, MSE
Figure 6: Test accuracies and training throughput (# nodes/s) of GraphSAGE under CE and MSE
across varying batch sizes and fan-out sizes for ogbn-products.

Table 1: Best test accuracies of full-graph and mini-batch training of multi-layer GraphSAGE model
without dropout layers after graph-based hyperparameter tuning.

Datasets Reddit Ogbn-arxiv Ogbn-products Ogbn-papers100M
Full-graph 96.13 70.96 77.92 59.54
Mini-batch 96.32 71.16 78.80 58.52

Understanding performance degradation. This degradation under CE arises as the models tend
to converge to sharp minima under large batch sizes (Keskar et al., 2016). Since gradient variance
decreases with larger batch and fan-out sizes, similar issues likely occur with large fan-out sizes.
This degradation is more severe with fan-out sizes than batch sizes, as aggregating information from
too many neighbors causes overfitting and weakens generalization. In contrast, such degradation
is not obvious under MSE, which produces flatter minima due to weaker gradients near prediction
boundaries (Bosman et al., 2020).

5.4 COMPUTATIONAL EFFICIENCY

Figures 6(c)-(d) show the training throughput as the number of target nodes processed per second on
a single GPU for ogbn-products (see other datasets in Appendix N).

Answering our research question: Computational Efficiency improves with batch size as fixed
computations (e.g., parameter updates) are distributed across more data, but becomes worse with
larger fan-out sizes due to higher computational demands in message passing. Overall, mini-batch
training achieves better computational efficiency than full-graph training.

Non-isotropic impacts of batch size and fan-out size in convergence, generalization, and compu-
tational efficiency. Based on the observations in Sec. 5.2 - 5.4, the batch size and the fan-out size
exhibit distinct, non-uniform effects across different aspects of GNN training. These non-isotropic
impacts highlight the need for careful tuning of both hyperparameters to balance computational
efficiency, convergence, and generalization.

5.5 FULL-GRAPH VS. MINI-BATCH TRAINING AFTER HYPERPARAMETER TUNING

Table 1 compares the generalization performance of full-graph and mini-batch training after tuning
batch size and fan-out size via grid search. For the ogbn-papers100M dataset, two hidden layers
with a hidden dimension of 128 are used due to resource constraints, limiting representation capacity.
The best accuracy from mini-batch training is within 1.74% of full-graph training, suggesting that
full-graph training does not consistently outperform well-tuned mini-batch settings.

Implications for tuning batch size b and fan-out size β. Based on both the theoretical and empirical
observations above, we recommend keeping the batch size b below half of the training nodes and
the fan-out size β under 15 for datasets with an average degree less than 50, to avoid generalization
degradation and balance the trade-offs in computational efficiency and model performance.

6 RELATED WORK
The only existing comparison work (Bajaj et al., 2024) between full-graph and mini-batch GNN
training empirically evaluates overall performance but does not investigate the impact of key hyper-
parameters (e.g., batch size and fan-out size) on model performance and computational efficiency,
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thereby overlooking the trade-offs achieved by tuning these hyperparameters. Recent efforts (Yuan
et al., 2023; Hu et al., 2021) focus on these hyperparameters but remain limited. For instance, Yuan
et al. (Yuan et al., 2023) lack theoretical support, consider only limited batch sizes and fan-out
values that are far smaller than those of full-graph training, and overlook the interplay of batch
size and fan-out size. Hu et al. (Hu et al., 2021) rely on gradient variance to explain the role of
batch size but do not consider fan-out size; thus their explanation conflicts with their empirical
observations. Meanwhile, existing theoretical analyses of GNN training (Yang et al., 2023; Tang &
Liu, 2023; Xu et al., 2021; Verma & Zhang, 2019; Yadati, 2022; Awasthi et al., 2021) overlook key
graph-related factors (e.g., irregular graphs, the difference between training and testing graphs in
mini-batch settings) and the impact of non-linear activation on gradients. Furthermore, due to GNN’s
message-passing process, performance insights from DNNs (You et al., 2019; Smith, 2017; Golmant
et al., 2018; Zou et al., 2020a; Bassily et al., 2018; Nabavinejad et al., 2021) cannot directly transfer
to GNNs. We provide a more comprehensive related work discussion in Appendix O.

7 CONCLUSION
We provide a comprehensive empirical and theoretical study of full-graph vs. mini-batch GNN training
from the view of batch size and fan-out size. We provide a novel theoretical GNN generalization
analysis employing the Wasserstein distance, to study the impact of batch size and fan-out size. We
empirically highlight the importance of iteration-based convergence metrics for hardware-independent
evaluation. Our theoretical and empirical findings reveal the non-isotropic impact of batch size and
fan-out size in GNN convergence and generalization. Finally, full-graph training does not consistently
outperform well-tuned mini-batch settings in model performance or computational efficiency. These
insights clarify the trade-offs between full-graph and mini-batch training. We further discuss the
extension (e.g., link prediction tasks) and future work (e.g., different activations) in Appendix P.
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REPRODUCIBILITY STATEMENT

For the theoretical results, all assumptions and complete proofs are provided in Appen-
dices A–E, G, and I–M, with additional important discussions in Appendices F, H, and P.
For the empirical study, the code is publicly available via an anonymous link provided in
the abstract: https://anonymous.4open.science/r/GNN_fullgraph_minibatch_
training-8040/README.md . Detailed experimental configurations and additional experiment
results are represented in Appendix N, and all datasets are properly cited in the main text.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model (LLM) only as a general-purpose writing assistant to aid in grammar
checking and polishing the writing. The LLM did not contribute to research ideas, experiment design,
theoretical analysis, or result interpretation.

A NOTATIONS

Table 2: Notations
n Number of nodes of the entire graph

ntrain / ntest Number of nodes in the training set / the testing set
nmin The minimal value between training and testing sets
X/xi Node feature matrix / i-th row of node feature matrix
yi Ground truth label of node i

yi / ŷi Ground truth label in one-hot form / estimated outcomes of node i
r feature size
b Batch size
β Fan-out size

Amini
train / Afull

train Adjacency matrix in each mini-batch / full-graph training iteration
Din,mini

train / Din,full
train Diagonal in-degree matrices in each mini-batch / full-graph training iteration

Dout,mini
train / Dout,full

train Diagonal out-degree matrices in each mini-batch / full-graph training iteration
Ãmini

train / Ãfull
train Normalized adjacency matrix in a mini-batch / full-graph training iteration

ãmini
train,i / ãfull

train,i i-th row of normalized adjacency matrix in a mini-batch / full-graph training iteration
Ãtest / ãtest,i Normalized adjacency matrix / i-th row of Normalized adjacency matrix in testing set
Wmini / Wfull Learnable parameters of the GNN under mini-batch / full-graph training
wmini
i / wfull

i i-th row of parameters of the GNN under mini-batch / full-graph training
Wmini∗ / Wfull∗ Ground truth of learnable parameters Wmini / Wfull

wmini∗
i / wfull∗

i i-th row of ground truth of learnable parameters Wmini / Wfull

h Hidden size
K Number of label categories
σ(·) ReLU activation function
σ̂(·) Dual activation function

Ltrain(·) / L̂train(·) Expected / empirical training risk
Lmini

train(·) / L̂mini
train(·) Expected / empirical training risk in a mini-batch

Ltest(·) / L̂test(·) Expected / empirical testing risk
Ĝ Stochastic gradient in mini-batch training
η Learning rate

P/Q Prior / Posterior distribution of model parameters
U(·) Expected loss discrepancy between training set C and testing set Z
δ(·) Distance function
θ Covariance

To easily distinguish the training risk between full-graph and mini-batch training, we rewrite Ltrain(·)
and L̂train(·) as Lfull

train(·) and L̂full
train(·) under full-graph training. Similarly, we rewrite the gradient

∇L̂train(·) as ∇L̂full
train(·) during full-graph training, and the stochastic gradient Ĝ as ∇L̂mini

train(·).

B PROOF OF CONVERGENCE THEOREM IN FULL-GRAPH TRAINING WITH
MSE

In this section, we provide the proof of the convergence theorem in full-graph training with MSE. We
consider multi-class node classification tasks using a one-round GNN trained with the MSE, defined
as l
(
W, ãfull

train,i

)
= 1

2 ∥ŷi − yi∥2F . The ground truth label yi is rewritten as yi ∈ R1×K in the one-hot
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form, where K ≥ 2 is the number of label categories. The final output of the GNN model is given
by ŷi = zi = σ

(
ãfull

train,iXW⊤), where the ReLU function is modified as σ(x) =
√
2max (x, 0).

Note that 1/2 in the MSE function and
√
2 in the ReLU function are introduced to simplify the proof.

The hidden dimension h becomes K. Note that The rows of W are initialized independently from a
Gaussian distribution N

(
0, κ2I

)
.

We decompose the analysis of GNN optimization dynamic into three steps.

Step 1: Reformulating loss and gradient expressions on irregular graphs. We decouple the activation
function from the aggregated node features. For instance, we extract the aggregation from the ReLU
function by reformulating squared loss terms.

Step 2: Bounding the norm of gradient. Based on the reformulated loss and gradient expressions, we
aim to quantify the magnitude of optimization updates by bounding the gradient norm, facilitating
convergence analysis. This can be achieved by leveraging the Polyak–Łojasiewicz (PL) inequality
(Polyak, 1963), where the squared norm of the gradient is lower bounded by the loss value scaled by
a factor.

Step 3: Bounding the number of iterations to Convergence. We first leverage the smoothness of the
loss function to derive a per-iteration inequality relating loss reduction to the gradient norm, and then
accumulate these iteration-wise inequalities over GD updates to obtain an upper bound on the number
of iterations required for convergence.

B.1 ASSUMPTIONS

Assumption B.1. The node feature xi is drawn i.i.d from N (0, Ir×r) for all i in the graph, with
∥X∥22 ≤ Cx for a constant Cx > 0.

Assumption B.2. The rows of ground truth parameters satisfy ∥w∗
i ∥2 = 1 for all i ∈ {1, . . . , h}.

Assumption B.1 specifies the distribution of node features and bounds the norm of the feature
matrix, and Assumption B.2 limits the norm of ground truth parameters for the GNN model. These
assumptions are also adopted in the GNN convergence analysis on regular graphs (Awasthi et al.,
2021). We emphasize Assumptions B.1 and B.2 are introduced to simplify the proof. Note that
Assumption B.2 can be relaxed to be that ∥w∗

i ∥2 is lower and upper bounded by some constants
instead of fixing ∥w∗

i ∥2 = 1.

Definition B.3 (Dual activation (Daniely et al., 2016)) The dual activation of σ is the function
σ̂ : [−1, 1] → R defined as σ̂ (θ) = E [σ (x)σ (y)], where x and y are jointly Gaussian random
variables with mean zero, variance one, and covariance θ.

Definition B.3 demonstrated that dual activations hold continuity over the interval [−1, 1] and
convexity within the range [0, 1].

B.2 EXPRESSIONS FOR LOSS AND GRADIENTS.

While our ultimate training objective remains empirical risk minimization, we analyze the optimiza-
tion dynamics of MSE using its expected risk formulation on node feature distribution. This is done
to simplify the proof, as expected risk offers a cleaner mathematical structure and does not affect
the graph structure. Although this approximation is more accurate in the large-sample regime, we
adopt it here as a modeling tool to study the impact of batch size and fan-out size in convergence,
even when analyzing small-sample settings.

Expression for MSE loss: We first begin by writing an equivalent expression of Lfull
train(w

full
j ) with

j ∈ {1, . . . , h} as:

Lfull
train

(
wfull

j

)
=

1

2ntrain
(E

[
ntrain∑
i=1

σ

(
ãfull

train,iX
(
wfull

j

)⊤)2
]
+ E

[
ntrain∑
i=1

σ

(
ãfull

train,iX
(
wfull

j

∗)⊤)2
]

− 2E

[
ntrain∑
i,j=1

σ

(
ãfull

train,iX
(
wfull

j

)⊤)
σ

(
ãfull

train,iX
(
wfull

j

∗)⊤)]
)

(1)
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We next compute expressions for each of the three terms above.

1

ntrain
E

[
ntrain∑
i=1

σ

(
ãfull

train,iX
(
wfull

j

)⊤)2
]

=
1

ntrain
E

 ntrain∑
i,k=1

pijσ

(
ãfull

train,iX
(
wfull

j

)⊤)
σ

(
ãfull

train,kX
(
wfull

j

)⊤)
=

1

ntrain
E[
∥∥∥wfull

j

∥∥∥2 ntrain∑
i,k=1

pij

√(
Ãfull

train1
)
i

(
Ãfull

train1
)
k

· σ

 ãfull
train,iX

(
wfull

j

)⊤√(
Ãfull

train1
)
i

∥∥wfull
j

∥∥
σ

 ãfull
train,iX

(
wfull

j

)⊤√(
Ãfull

train1
)
k

∥∥wfull
j

∥∥
]

=

∥∥wfull
j

∥∥2
ntrain

ntrain∑
i,k=1

pikσ̂

 ϱfull
i,k√
ϑfull
i,k

√ϑfull
i,k

=
∥∥∥wfull

j

∥∥∥2 Γfull,

(2)

where the penultimate equality follows Definition B.3. We use pij = 1 if i = j and pij = 0 if
i ̸= j, ϱfull

i,j to denote the amount of common messages between node i and node j at a given training
iteration, and we define:

Γfull =
1

ntrain

ntrain∑
i,j=1

pij σ̂

 ϱfull
i,j√
ϑfull
i,j

√ϑfull
i,j , (3)

ϑfull
i,j =

(
Ãfull

train1
)
i

(
Ãfull

train1
)
j
. (4)

Similarly, we get the second term as:

1

ntrain
E

[
ntrain∑
i=1

σ

(
ãfull

train,iX
(
wfull
j

∗)⊤)2
]
=
∥∥∥wfull

j

∗
∥∥∥2 Γfull. (5)

We simplify the last term as:

1

ntrain
E

 ntrain∑
i,k=1

pikσ

(
ãfull

train,iX
(
wfull

j

)⊤)
σ

(
ãfull

train,kX
(
wfull

j

∗)⊤)
=

1

ntrain
E[
∥∥∥wfull

j

∥∥∥∥∥∥wfull
j

∗
∥∥∥ ntrain∑

i,k=1

pik

√(
Ãfull

train1
)
i

(
Ãfull

train1
)
k

· σ

 ãfull
train,iX

(
wfull

j

)⊤√(
Ãfull

train1
)
i

∥∥wfull
j

∥∥
σ

 ãfull
train,kX

(
wfull

j
∗)⊤√(

Ãfull
train1

)
k

∥∥wfull
j

∗∥∥
]

=
1

ntrain

∥∥∥wfull
j

∥∥∥ ∥∥∥wfull
j

∗
∥∥∥ ntrain∑

i,k=1

pikσ̂

 ϱfull
i,k√
ϑfull
i,k

(
wfull

j

)⊤
wfull

j
∗∥∥wfull

j

∥∥∥∥wfull
j

∗∥∥
√ϑfull

i,k.

(6)

Therefore, we have the expression of Lfull
train(w

full
j ) as:

Lfull
train

(
wfull

j

)
=
1

2
(∥wfull

j ∥2Γfull + ∥wfull
j

∗∥2Γfull

− 2

ntrain

∥∥∥wfull
j

∥∥∥∥∥∥wfull
j

∗
∥∥∥ ntrain∑

i,k=1

pikσ̂

 ϱfull
i,k√
ϑfull
i,k

(
wfull

j

)⊤
wfull

j
∗∥∥wfull

j

∥∥ ∥∥wfull
j

∗∥∥
√ϑfull

i,k).
(7)
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It is easy to see that if wfull
j,0 is the initial value of wfull

j with j ∈ {1, . . . , h} then each subsequent
iteration will be a linear combination of wfull

j,0 and wfull
j

∗. Hence we can assume that wfull
j =

ϕfullwfull
j

∗
+ ψfullwfull

j
⊥, where w⊥ is a fixed unit vector (depending on the initialization) orthogonal

to wfull
j

∗. Then rewriting the loss in terms of ϕfull, ψfull and recalling that ∥wfull
j

∗∥ = 1 we get the
simplified expression of Lfull

train

(
wfull
j

)
:

Lfull
train

(
ϕfull, ψfull

)
=

1

2

((
ϕfull

)2
+
(
ψfull

)2
+ 1

)
Γfull −

√(
ϕfull

)2
+
(
ψfull

)2
Υfull, (8)

where we define:

Υfull =
1

ntrain

ntrain∑
i,j=1

pij σ̂

 ϕfull√(
ϕfull

)2
+
(
ψfull

)2 ϱfull
i,j√
ϑfull
i,j

√ϑfull
i,j . (9)

Expression for gradient: We compute the gradient of the objective with respect to w or equivalently
with respect to ϕ, ψ.

∂Lfull (ϕfull, ψfull)
∂ϕfull

=ϕfullΓfull − ϕfullΥfull√
(ϕfull)2 + (ψfull)2

+
1

ntrain2

 (
ψfull)2

(ϕfull)2 + (ψfull)2

ntrain∑
i,j=1

pijϱ
full
i,j σ̂

′

 ϕfull√
(ϕfull)2 + (ψfull)2

ϱfull
i,j√
ϑfull
i,j


=ϕfullΓfull − ϕfullΥfull√

(ϕfull)2 + (ψfull)2

+
1

ntrain2

 (
ψfull)2

(ϕfull)2 + (ψfull)2

ntrain∑
i,j=1

pijϱ
full
i,j σ̂step

 ϕfull√
(ϕfull)2 + (ψfull)2

ϱfull
i,j√
ϑfull
i,j

 ,

=ϕfullΓfull − ϕfullΥfull√
(ϕfull)2 + (ψfull)2

+

(
ψfull)2 Ξfull

(ϕfull)2 + (ψfull)2
,

(10)

where in the second equality we use σ̂′ = σ̂′ and σ̂′ =
√
21(x ≥ 0) = σstep(x), σstep is the step

function, and we define:

Ξfull =
1

ntrain

ntrain∑
i,j=1

pijϱ
full
i,j σ̂step

 ϕfull√(
ϕfull

)2
+
(
ψfull

)2 ϱfull
i,j√
ϑfull
i,j

 . (11)

Similarly, we have:

∂Lfull
(
ϕfull, ψfull

)
∂ψfull = ψfullΓfull − ψfullΥfull√(

ϕfull
)2

+
(
ψfull

)2 +
ϕfullψfullΞfull(
ϕfull

)2
+
(
ψfull

)2 . (12)

B.3 THEOREM B.4

Theorem B.4. (Convergence of Full-graph Training with MSE) Suppose Wfull are generated
by Gaussian initialization. Under Assumptions B.1 and B.2, if the maximal degree satisfies
C full

1 ≤ dmax ≤ C full
2 n

3
4
train for some constants C full

1 , C full
2 ∈ (0, 1), then with high probabil-

ity, the training loss satisfies Ltrain

(
Wfull

T ,Afull
train

)
≤ ϵ, provided that the number of iterations

T = O
(
n

7
2
trainh

2d
− 1

2
maxϵ−1 log

(
h2ϵ−1

))
for any ϵ ∈ (0, 1) under the full-graph GNN training.
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B.4 PROOF OF THEOREM B.4

Lemma B.5 1
πntrain

∥Afull
train1∥1 ≤ Γfull ≤ 1

ntrain
∥Afull

train1∥1, and |Υfull
t | ≤ Γfull, where n

1
2

traind
− 1

2
max ≤

∥Afull
train,t1∥1 ≤ ntraindmax.

Lemma B.6 If wfull
j,0 ∼ N(0, κ2I) and the learning rate η ∈ (0, 1

6πΓfull ], then with probability at

least 1− e−O(1), it holds that for all t > 0,
√(

ϕfull
t

)2
+
(
ψfull
t

)2 ≤ C, and
√(

ϕfull
t

)2
+
(
ψfull
t

)2
> 0

for all t ≥ 1, where C = π
2 +O (κ

√
r) is a positive constant.

Lemma B.7 If wfull
j,0 ∼ N(0, κ2I) and the learning rate η ∈ (0, 1

6πΓfull ], then for all t ≥ 1 and any
C1 ∈ [0, 1] such that

(
ϕfull, ψfull

)
= (1− C1)

(
ϕfull
t , ψfull

t

)
+ C1

(
ϕfull
t+1, ψ

full
t+1

)
, we have that,

λmax(∇2Lfull
train(ϕ

full, ψfull)) ≤ C2Γ
full,

where λmax is the maximum eigenvalue of the population Hessian denoted by ∇2Lfull
train

(
ϕfull, ψfull

)
,

and C2 = 4
(
1 +

√
π
2 +O (κ

√
r) + o (1)

)
is a positive constant.

Lemma B.8 If wfull
j,0 ∼ N(0, κ2I) and the learning rate η ∈ (0, 1

6πΓfull ], then with at least 1− 1/h2,

it holds that for all t ≥ C3 log (log h),
√(

ϕfull
t

)2
+
(
ψfull
t

)2 ≥ 1−o (1), where C3 > 0 is an absolute
constant.

Lemma B.9 If wfull
j,0 ∼ N(0, κ2I) and the learning rate η ∈ (0, 1

6πΓfull ], then there is an absolute con-

stant C3, such that for all t ≥ C3 log (log h), either
∣∣ψfull
t

∣∣ ≤ ϵ
1
2

2h and
∥∥∥∥√(ϕfull

t

)2
+
(
ψfull
t

)2 − 1

∥∥∥∥ ≤

ϵ
1
2

2h or we have that ∥∥∇Lfull
train

(
ϕfull
t , ψfull

t

)∥∥2 ≥ µfullLfull
train

(
ϕfull
t , ψfull

t

)
,

where µfull ≥ C4ϵh
−2d−2

maxΓ
full, and C4 is a positive constant.

Proof of Theorem B.4: We analyze an arbitrary j ∈ {1, . . . , h} and the iterates of the corresponding
wfull
j vector. Setting κ = 1, we have from Lemma B.7 that the smoothness parameter C full of the loss

function is

Cfull ≤ C2 = 4

(
1 +

√
2 +

π

2
+ o (1)

)
(13)

Hence, for any t > 0,

Lfull
train(w

full
j,t+1) ≤Lfull

train

(
wfull

j,t

)
+∇Lfull

train

(
wfull

j,t

)
(wfull

j,t+1 −wfull
j,t)

+
C full

2

∥∥∥wfull
j,t+1 −wfull

j,t

∥∥∥2
≤Lfull

train

(
wfull

j,t

)
− η

∥∥∥∇Lfull
train

(
wfull

j,t

)∥∥∥2 + η2C full

2

∥∥∥∇Lfull
train

(
wfull

j,t

)∥∥∥2
=Lfull

train

(
wfull

j,t

)
− η

∥∥∥∇Lfull
train

(
wfull

j,t

)∥∥∥2(1− ηC full

2

)
.

(14)

By Lemma B.6, we know that η ∈ (0, 1
6πΓfull ]. Using Lemma B.5, we first assume that C

full

6π ≤ dmax ≤(
1

6C6

) 1
4

n
3
4

train where C6 <
1
6 is a positive constant. Then, we set η ∈

[
C6d

3
max

πn3
train
, 1
6πdmax

]
. We are going

to prove η ∈
[
C6d

3
max

πn3
train
, 1
6πdmax

]
is still within the range (0, 1

6πΓfull ] and C6d
3
max

πn3
train

≤ 1
6πdmax

.
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For the right side of the range, we have 1
6πdmax

≤ 1
6πΓfull due to Γfull ≤ dmax. For the left side of the

range, C6d
3
max

πn3
train

> 0 with the positive constant C6. Moreover, we have:

1

6πdmax
− C6d

3
max

πn3
train

=
1

π

(
1

6dmax
− C6d

3
max

n3
train

)
≥ 1

π

(
1

6dmax
− 1

6dmax

)
= 0.

(15)

With η ∈
[
C6d

3
max

πn3
train
, 1
6πdmax

]
, we have:

ηCfull ≤ Cfull

6πdmax
≤ 1. (16)

Furthermore, using Lemma B.9, we have

Lfull
train(w

full
j,t+1) < Lfull

train

(
wfull

j,t

)
(1− ηµfull) ≤ Lfull

train,0(w
full
j,0 )(1− ηµfull)t. (17)

Then we have:

T ≤ C7 log

(
h2

ϵ

)
1

ηµfull , (18)

where C7 is a positive constant.

Moreover, we have:

ηµfull ≥ C4C6dmaxϵΓ
full

πn3
trainh

2
≥ C4C6d

1
2
maxϵ

π2n
7
2

trainh
2

(19)

Hence, we have T = O

(
n

7
2
trainh

2

ϵd
1
2
max

log h2

ϵ

)
.

After T time steps, we either have Lfull
train

(
wfull
j,t

)
≤ ϵ

h , or that ψfull
t ≤ ϵ

1
2

2h and
(
ϕfull
t

)2
+
(
ψfull
t

)2 − 1 ≤
ϵ
1
2

2h . The latter implies that
∥∥wfull

j,t −wfull
j,t

∗∥∥2 ≤ ϵ
h . In addition, it is easy to see that Lfull

train

(
wfull
j,t

)
≤

∥wfull
j,t −wfull

j,t
∗∥2. Hence, if the latter happens, then Lfull

train

(
wfull
j,t

)
≤ ϵ

h . Hence Lfull
train(W

full
T ) ≤ ϵ.

This completes the proof.

C PROOF OF CONVERGENCE THEOREM IN MINI-BATCH TRAINING WITH
MSE

In this section, we provide the proof of the convergence theorem in mini-batch training with MSE
of Section 3. We consider multi-class node classification tasks using a one-round GNN trained
with the MSE, defined as l

(
W, ãmini

train,i

)
= 1

2 ∥ŷi − yi∥2F . The ground truth label yi is rewritten as
yi ∈ R1×K in the one-hot form, where K ≥ 2 is the number of label categories. The final output
of the GNN model is given by ŷi = zi = σ

(
ãmini

train,iXW⊤), where the ReLU function is modified
as σ(x) =

√
2max (x, 0). Note that 1/2 in the MSE function and

√
2 in the ReLU function are

introduced to simplify the proof. The hidden dimension h becomes K. The rows of W are initialized
independently from a Gaussian distribution N

(
0, κ2I

)
.

We decompose the analysis of GNN optimization dynamic into three steps, similar to Appendix B.

C.1 ASSUMPTION

We still use Assumptions B.1 and B.2 in mini-batch settings for training data and the ground truth.
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C.2 EXPRESSIONS FOR LOSS AND GRADIENTS.

While our ultimate training objective remains empirical risk minimization, we analyze the optimiza-
tion dynamics of MSE using its expected risk formulation on node feature distribution. This is done
to simplify the proof, as expected risk offers a cleaner mathematical structure and does not affect
the graph structure. Although this approximation is more accurate in the large-sample regime, we
adopt it here as a modeling tool to study the impact of batch size and fan-out size in convergence,
even when analyzing small-sample settings.

Expression for MSE loss: We first begin by writing an equivalent expression of Lmini
train(w

mini
j ) with

j ∈ {1, . . . , h}. We can assume that wmini
j = ϕminiwmini

j
∗
+ ψminiwmini

j
⊥, where w⊥ is a fixed unit

vector (depending on the initialization) orthogonal to wmini
j

∗. Then rewriting the loss in terms of
ϕmini, ψmini and recalling that ∥wmini

j
∗∥ = 1 we get the simplified expressions of Lmini

train

(
wmini
j

)
and

Lfull
train

(
wmini
j

)
:

Lmini
train

(
ϕmini, ψmini

)
=

1

2

((
ϕmini

)2
+
(
ψmini

)2
+ 1

)
Γmini −

√(
ϕmini

)2
+
(
ψmini

)2
Υmini, (20)

and
Lfull

train

(
ϕmini, ψmini, Ãmini

train

)
=
1

2

((
ϕmini

)2
+
(
ψmini

)2
+ 1

)
Γfull

(
ϕmini, ψmini, Ãmini

train

)
−
√

(ϕmini)2 + (ψmini)2Υfull
(
ϕmini, ψmini, Ãmini

train

)
,

(21)

where we simplify Γfull
(
ϕmini, ψmini, Ãmini

train

)
and Υfull

(
ϕmini, ψmini, Ãmini

train

)
as Γfull-mini and Υfull-mini,

respectively, and we define:

Γmini =
1

b

b∑
i,j=1

pij σ̂

 ϱmini
i,j√
ϑmini
i,j

√ϑmini
i,j , (22)

Γfull-mini = Γfull
(
ϕmini, ψmini, Ãmini

train

)
=

1

ntrain

ntrain∑
i,j=1

pij σ̂

 ϱmini
i,j√
ϑmini
i,j

√ϑmini
i,j , (23)

Υmini =
1

b

b∑
i,j=1

pij σ̂

 ϕmini√(
ϕmini

)2
+
(
ψmini

)2 ϱmini
i,j√
ϑmini
i,j

√ϑmini
i,j , (24)

Υfull-mini = Υfull
(
ϕmini, ψmini, Ãmini

train

)
=

1

ntrain

ntrain∑
i,j=1

pij σ̂

 ϕmini√
(ϕmini)2 + (ψmini)2

ϱmini
i,j√
ϑmini
i,j

√ϑmini
i,j ,

(25)

ϑmini
i,j =

(
Ãmini

train1
)
i

(
Ãmini

train1
)
j
, (26)

where we use pij = 1 if i = j and pij = 0 if i ̸= j, ϱmini
i,j to denote the amount of common messages

between node i and node j at a given training iteration

Expression for gradient: We compute the gradient of the objective with respect to w or equivalently
with respect to ϕ, ψ.

∂Lmini
(
ϕmini, ψmini

)
∂ϕmini = ϕminiΓmini − ϕminiΥmini√(

ϕmini
)2

+
(
ψmini

)2 +

(
ψmini

)2
Ξmini(

ϕmini
)2

+
(
ψmini

)2 , (27)

and

∂Lfull
(
ϕmini, ψmini, Ãmini

train

)
∂ϕmini = ϕminiΓfull-mini − ϕminiΥfull-mini√(

ϕmini
)2

+
(
ψmini

)2 +

(
ψmini

)2
Ξfull-mini(

ϕmini
)2

+
(
ψmini

)2 , (28)
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where we define:

Ξmini =
1

b

b∑
i,j=1

pijϱ
mini
i,j σ̂step

 ϕmini√(
ϕmini

)2
+
(
ψmini

)2 ϱmini
i,j√
ϑmini
i,j

 , (29)

Ξfull-mini =Ξfull
(
ϕmini, ψmini, Ãmini

train

)
=

1

ntrain

ntrain∑
i,j=1

pijϱ
mini
i,j σ̂step

 ϕmini√
(ϕmini)2 + (ψmini)2

ϱmini
i,j√
ϑmini
i,j

 .
(30)

Similarly, we have:

∂Lmini
(
ϕmini, ψmini

)
∂ψmini = ψminiΓmini − ψminiΥmini√(

ϕmini
)2

+
(
ψmini

)2 +
ϕminiψminiΞmini(
ϕmini

)2
+
(
ψmini

)2 , (31)

and

∂Lfull
(
ϕmini, ψmini, Ãmini

train

)
∂ψmini = ψminiΓfull-mini − ψminiΥfull-mini√(

ϕmini
)2

+
(
ψmini

)2 +
ϕminiψminiΞfull-mini(
ϕmini

)2
+
(
ψmini

)2 . (32)

C.3 PROOF OF THEOREM 1

Lemma C.1 1
πb∥A

mini
train,t1∥1 ≤ Γmini

t ,Γfull-mini
t ≤ 1

b

∥∥∥Ãmini
train1

∥∥∥
1
, |Υmini

t | ≤ Γmini
t and |Υfull-mini

t | ≤

Γfull-mini
t , where b

1
2 β− 1

2 ≤ ∥Amini
train,t1∥1 ≤ bβ.

Lemma C.2 If wmini
j,0 ∼ N(0, κ2I) and the learning rate ηt ∈ (0, 1

6πΓmini
t

], then with probability at

least 1−e−O(1), it holds that for all t > 0,
√(

ϕmini
t

)2
+
(
ψmini
t

)2 ≤ C, and
√(

ϕmini
t

)2
+
(
ψmini
t

)2
>

0 for all t ≥ 1, where C = π
2 +O (κ

√
r) is a positive constant.

Lemma C.3 If wmini
j,0 ∼ N(0, κ2I) and the learning rate ηt ∈ (0, 1

6πΓmini
t

], then for all t ≥ 1 and any

C1 ∈ [0, 1] such that
(
ϕmini, ψmini

)
= (1− C1)

(
ϕmini
t , ψmini

t

)
+ C1

(
ϕmini
t+1, ψ

mini
t+1

)
, we have that,

λmax(∇2Lfull
train(ϕ

mini, ψmini, Ãmini
train)) ≤ C2Γ

full-mini
t ,

where λmax is the maximum eigenvalue of the population Hessian denoted by

∇2Lfull
train

(
ϕmini, ψmini, Ãmini

train

)
, and C2 = 4

(
1 +

√
π
2 +O (κ

√
r) + o (1)

)
is a positive con-

stant.

Lemma C.4 If wmini
j,0 ∼ N(0, κ2I) and the learning rate ηt ∈ (0, 1

6πΓmini
t

], then with at least

1− 1/h2, it holds that for all t ≥ C3 log (log h),
√(

ϕmini
t

)2
+
(
ψmini
t

)2 ≥ 1− o (1), where C3 > 0

is an absolute constant.

Lemma C.5 If wmini
j,0 ∼ N(0, κ2I) and the learning rate η ∈ (0, 1

6πΓmini ], then there is

an absolute constant C3, such that for all t ≥ C3 log (log h), either
∣∣ψmini
t

∣∣ ≤ ϵ
1
2

2h and∥∥∥∥√(ϕmini
t

)2
+
(
ψmini
t

)2 − 1

∥∥∥∥ ≤ ϵ
1
2

2h or we have that

∥∥∥∇Lfull
train

(
ϕmini
t , ψmini

t , Ãmini
train

)∥∥∥2 ≥ µmini
t Lfull

train

(
ϕmini
t , ψmini

t , Ãmini
train

)
,

where µmini
t ≥ C4ϵh

−2β−2Γfull-mini, and C4 is a positive constant.
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Lemma C.6 [Lemma G.2 in (Du et al., 2018)] Regarding n random variables u1, . . . , un satisfying∑n
i=1 ui = 0. Let B ∈ [n] denote a subset of [n] and |B| = b ≤ n, the following holds,

E

(1

b

∑
i∈B

ui

)2
 ≤ 1

b
E
[
u2i
]
.

Proof of Theorem 1: For any t > 0, taking expectation conditioning on wmini
j,t+1 gives:

E
[
Lfull

train(w
mini
j,t+1, Ã

mini
train)|wmini

j,t

]
≤Lfull

train

(
wmini

j,t , Ã
mini
train

)
+∇Lfull

train

(
wmini

j,t , Ã
mini
train

)
E
[(

wmini
j,t+1 −wmini

j,t

)
|wmini

j,t

]
+
Cmini

2
E
[∥∥∥wmini

j,t+1 −wmini
j,t

∥∥∥2 |wmini
j,t

] (33)

Furthermore, using Lemma C.6, we have:

E
[∥∥∥wmini

j,t+1 −wmini
j,t

∥∥∥2 |wmini
j,t

]
=η2tE

[∥∥∥∇Lmini
train

(
wmini

j,t , Ã
mini
train

)∥∥∥2
F
|wmini

j,t

]
≤η2t (E

[∥∥∥∇Lmini
train

(
wmini

j,t , Ã
mini
train

)
−∇Lfull

train

(
wmini

j,t , Ã
mini
train

)∥∥∥2 |wmini
j,t

]
+
∥∥∥∇Lfull

train

(
wmini

j,t , Ã
mini
train

)∥∥∥2)
≤η2t

(
n2

train

ntrainb

∥∥∥∇Lfull
train

(
wmini

j,t , Ã
mini
train

)∥∥∥2 + ∥∥∥∇Lfull
train

(
wmini

j,t , Ã
mini
train

)∥∥∥2)
≤η2t

(
2ntrain

b

∥∥∥∇Lfull
train

(
wmini

j,t , Ã
mini
train

)∥∥∥2) .

(34)

Moreover, we have:

∇Lfull
train

(
wmini

j,t , Ã
mini
train

)
E
[(

wmini
j,t+1 −wmini

j,t

)
|wmini

j,t+1

]
=− ηt∇Lfull

train

(
wmini

j,t , Ã
mini
train

)
E
[
∇Lmini

train,t

(
wmini

j,t

)
E|wmini

j,t+1

]
=− ηt

∥∥∥∇Lfull
train

(
wmini

j,t , Ã
mini
train

)∥∥∥2
(35)

Hence, we have:

E
[
Lfull

train(w
mini
j,t+1, Ã

mini
train)|wmini

j,t

]
≤Lfull

train

(
wmini

j,t , Ã
mini
train

)
− ηt

∥∥∥∇Lfull
train

(
wmini

j,t , Ã
mini
train

)∥∥∥2
+
Cminintrain

b
η2t

∥∥∥∇Lfull
train

(
wmini

j,t , Ã
mini
train

)∥∥∥2
≤Lfull

train

(
wmini

j,t , Ã
mini
train

)
− ηt

∥∥∥∇Lfull
train

(
wmini

j,t , Ã
mini
train

)∥∥∥2(1− Cminintrain

b
ηt

)
(36)

By Lemma C.2, we know that ηt ∈ (0, 1
6πΓmini

t
]. Using Lemma C.1, we first assume that C

mini

6π ≤

β ≤
(

1
6C6

) 1
4

b
3
4 where C6 <

1
6 is a positive constant. Then, we set ηt ∈

[
C6β

3

πntrainb2
, b
6πβntrain

]
. We are

going to prove ηt ∈
[
C6β

3

πntrainb2
, b
6πβntrain

]
is still within the range (0, 1

6πΓmini ] and C6β
3

πntrainb2
≤ b

6πβntrain
.
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For the right side of the range, we have b
6πβntrain

≤ b
6πΓmini

t ntrain
≤ 1

6πΓmini
t

due to Γmini
t ≤ β and

b ≤ ntrain. For the left side of the range, C6β
3

πntrainb2
with the positive constant C6. Moreover, we have:

b

6πβntrain
− C6β

3

πntrainb2
=

b

πntrain

(
1

6β
− C6β

3

b3

)
≥ 1

π

(
1

6β
− 1

6β

)
= 0.

(37)

With ηt ∈
[
C6β

3

πntrainb2
, b
6πβntrain

]
, we have:

Cminintrain
b

ηt ≤
Cmini

6πβ
≤ 1. (38)

Furthermore, using Lemma C.5, we have

Lfull
train(w

mini
j,t+1, Ã

mini
train) ≤Lfull

train

(
wmini

j,t , Ã
mini
train

)
(1− ηtµ

mini
t )

≤Lmini
train(w

mini
j,0 , Ã

mini
train)

t∏
τ=1

(1− ητµ
mini
τ )

≤Lmini
train(w

mini
j,0 , Ã

mini
train)(1−

1

t

t∑
τ=1

ητµ
mini
τ )t,

(39)

where the last inequality can be proved: f(x) = log(1 − x) is a concave function on 0 < x < 1,
then, for 0 < xi < 1 with i = {1, . . . , n}, we have f( 1n

∑n
i=1 xi) ≥

1
n

∑n
i=1 f(xi), which can be

written as log(1 − 1
n

∑n
i=1 xi) ≥

1
n

∑n
i=1 log(1 − xi). Therefore, we have (1 − 1

n

∑n
i=1 xi)

n ≥∏n
i=1(1− xi).

Then we have:
T ≤ C7 log

(
h2

ϵ

)
1

1
T

∑T
τ=1 ητµ

mini
τ

, (40)

where C7 is a positive constant.

Moreover, we have:
1

T

T∑
τ=1

ητµ
mini
τ ≥ 1

T

T∑
τ=1

C4C6βϵΓ
full-mini
τ

πntrainb2h2

≥ 1

T

T∑
τ=1

C4C6β
1
2 ϵ

π2ntrainb
5
2 h2

=
C4C6β

1
2 ϵ

π2ntrainb
5
2 h2

(41)

Hence, we have T = O

(
ntrainb

5
2 h2

ϵβ
1
2

log h2

ϵ

)
.

After T time steps, we either have Lfull
train

(
wmini
j,t , Ã

mini
train

)
≤ ϵ

h , or that ψmini
t ≤ ϵ

1
2

2h and
(
ϕmini
t

)2
+(

ψmini
t

)2 − 1 ≤ ϵ
1
2

2h . The latter implies that
∥∥wmini

j,t −wmini
j,t

∗∥∥2 ≤ ϵ
h . In addition, it is easy to see that

Lfull
train

(
wmini
j,t , Ã

mini
train

)
≤ ∥wmini

j,t −wmini
j,t

∗∥2. Hence, if the latter happens, then Lfull
train

(
wmini
j,t , Ã

mini
train

)
≤

ϵ
h . Hence Lfull

train(W
mini
T ) ≤ ϵ.

This completes the proof.

D PROOF OF CONVERGENCE THEOREM IN FULL-GRAPH TRAINING WITH CE

In this section, we provide the proof of the convergence theorem in full-graph training with CE. To
simplify the analysis, we focus on binary node classification using a one-round GNN trained with the
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CE, defined as l
(
W, ãfull

train,i

)
= log (1 + exp (−yiŷi)). The final output of the GNN model is given

by ŷi = ziv
⊤ = σ

(
ãfull

train,iXW⊤)v⊤,∀i ∈ training set, where v ∈ {−1,+1} ∈ R1×h is the fixed
output layer vector with half 1 and half −1. The rows of W are initialized independently from a
Gaussian distribution N

(
0, κ2I

)
.

We decompose the analysis of GNN optimization dynamic into three steps.

Step 1: Reformulating loss and gradient expressions on irregular graphs. We represent the ReLU
function implicitly using a position-wise 0/1 indicator matrix that can directly multiply the aggregated
node features.

Step 2: Bounding the norm of gradient. Based on the reformulated loss and gradient expressions, we
aim to quantify the magnitude of optimization updates by bounding the gradient norm, facilitating
convergence analysis. We can bound the Frobenius norm of the gradient by the average of individual
node-level gradients.

Step 3: Bounding the number of iterations to Convergence. We first leverage the smoothness of the
loss function to derive a per-iteration inequality relating loss reduction to the gradient norm, and then
accumulate these iteration-wise inequalities over GD updates to obtain an upper bound on the number
of iterations required for convergence.

D.1 ASSUMPTION

We still use Assumptions D.3 on the training data.

Assumption D.1. ∀i, i′ ∈ training set, if yi ̸= yi′ , then ∥ãfull
train,iX − ãfull

train,i′X∥2 ≥ α for some
α > 0.

Assumption D.1 requires that aggregated node features with different labels in the training data are
separated by at least a constant, which is often satisfied in practice and can be easily verified based on
the training data. A similar assumption on the non-aggregated features ∥xi − xi′∥2 has been adopted
in prior analyses of the DNN optimization dynamics without message passing (Zou et al., 2020a;
2018).

D.2 EXPRESSIONS FOR GRADIENTS FOR CE LOSS.

We first provide some basic expressions regarding the gradients for the CE loss in the GNN under our
setting. Note that the node classification task in this case is binary, denoted as K = 2.

Output after the 1-st layer: Given an input X, the i-th column of output after the first layer of the
GNN under the full-graph training is

zfull
i = σ

(
ãfull

train,iX
(
Wfull

)⊤)
= ãfull

train,iX(Σfull
i Wfull)⊤, (42)

where Σfull
i = Diag

(
1
{
ãfull

train,iX
(
Wfull

)⊤
> 0
})

∈ Rh×h represents whether the j-th element{
ãtrain,iX

(
Wfull

)⊤}
j

is more than zero (1) or is zeroed out (0). Here we slightly abuse the notation

and denote 1 {x > 0} = (1 {x1 > 0} , . . . ,1 {xm > 0})⊤ for a vector x ∈ Rm.

Output of one-round GNN for the CE loss: The output of the one-round GNN for the CE loss
with input X under the full-graph training can be expressed as:

ŷfull
i = σ

(
ãfull

train,iX
(
Wfull

)⊤)
v⊤ = ãfull

train,iX(Σfull
i Wfull)⊤v⊤, (43)

where v ∈ {−1,+1} ∈ R1×h is the fixed output layer weight vector with half 1 and half −1,
corresponding to the binary classification task setting in this case.
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Gradient for CE loss in GNN: The partial gradient of the training loss L̂full
train

(
Wfull

)
with respect

to Wfull under full-graph training can be expressed as:

∇L̂full
train

(
Wfull

)
=

1

ntrain

ntrain∑
i=0

l′
(
yiŷ

full
i

)
· yi · ∇Wfull

[
ŷfull
i

]
, (44)

where the gradient of the GNN is defined as ∇Wfull

[
ŷfull
i

]
=
(
vΣfull

i

)⊤
ãfull

train,iX.

D.3 THEOREM D.2.

Theorem D.2. (Convergence of Full-graph Training with CE) Suppose Wfull are generated by
Gaussian initialization. Under Assumptions D.3 and D.1, if the hidden dimension of a one-
round GNN satisfies h = Ω

(
log (ntrain) d

−1
max

(
n2train + ϵ−1

))
, then with high probability, the

training loss satisfies L̂train

(
Wfull

T ,Afull
train

)
≤ ϵ, provided that the number of iterations T =

O
(
ntrain (log (ntrain))

1
2 α−2d

− 5
2

max
(
n2train + ϵ−1

))
for any ϵ ≥ 0 under the full-graph training.

D.4 PROOF OF THEOREM D.2.

We first provide the following lemmas.

Lemma D.3 (Bounded initial training loss) Under Assumptions D.3 and D.1, with the probability
at least 1 − δ, at the initialization the training loss satisfies L̂full

train

(
Wfull

0

)
≤ C

√
dmax log(ntrain/δ),

where C is an absolute constant.

Lemma D.4 (Gradient lower and upper bound) Under Assumptions D.3 and D.1, with the probabil-
ity at least 1− exp

(
−C1hα

2/n2
train

)
, there exist positive constants C1, C2 and C3, such that

∥∥∥∇WfullL̂full
train

(
Wfull)∥∥∥2

F
≥ C2hα

2d3max

n3train

(
ntrain∑
i=1

l′
(
yiŷ

full
i

))2

,

∥∥∥∇WfullL̂full
train

(
Wfull)∥∥∥

F
≤ −C3h

1
2 d

1
2
max

ntrain

ntrain∑
i=1

l′
(
yiŷ

full
i

)
.

Lemma D.4 (Sufficient descent) Let Wfull
0 be generated via Gaussian random initialization. Let

Wfull
t be the t-th iterate in the gradient descent. If Wfull

t ,Wfull
t+1 ∈ B

(
Wfull

0 , τ
)

and τ ≤ C6/(αd
1
2
max),

then there exist constants C4, C5 and C6 such that, with probability at least 1 − exp(−O(1)), the
following holds:

L̂full
train

(
Wfull

t+1

)
− L̂full

train

(
Wfull

t

)
≤ −(η − C4dmaxhη

2)
∥∥∥∇Wfull L̂

full
train

(
Wfull

t

)∥∥∥2
F

−
C5ηd

1
2
maxh

1
2

∥∥∥∇Wfull L̂full
train

(
Wfull

t

)∥∥∥
F

ntrainτ

ntrain∑
i=1

l′
(
yiŷ

full
i,t

)
.

Proof of Theorem D.2: We first prove that gradient descent can achieve the training loss at the
value of ϵ under the condition that all iterates are staying inside the perturbation region B

(
Wfull

0 , τ
)
={

W :
∥∥W −Wfull

0

∥∥
2
≤ τ

}
.

Using Lemma D.4, there exists a constant C2 such that

∥∥∥∇Wfull L̂
full
train

(
Wfull

t

)∥∥∥2
F
≥ C2hα

2d3max
n3

train

(
ntrain∑
i=1

l′
(
yiŷ

full
i,t

))2

(45)

We then set the step size η and the radius τ as follows:
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η =
1

4C4dmaxh
= O

(
d−1

maxh
−1) , (46)

τ =
4C5n

1
2

train
C2αdmax

= O

(
n

1
2

traind
−1
maxα

−1

)
. (47)

Then we have

L̂full
train

(
Wfull

t+1

)
− L̂full

train

(
Wfull

t

)
≤− 3

4
η
∥∥∥∇Wfull L̂

full
train

(
Wfull

t

)∥∥∥2
F
− C2ηh

1
2αd

3
2
max

4n
3
2
train

∥∥∥∇Wfull L̂
full
train

(
Wfull

t

)∥∥∥
F

ntrain∑
i=1

l′
(
yiŷ

full
i,t

)
≤− 3

4
η
∥∥∥∇Wfull L̂

full
train

(
Wfull

t

)∥∥∥2
F
+
η

4

∥∥∥∇Wfull L̂
full
train

(
Wfull

t

)∥∥∥2
F

=− 1

2
η
∥∥∥∇Wfull L̂

full
train

(
Wfull

t

)∥∥∥2
F

≤− η
C2hα

2d3max

2n3
train

(
ntrain∑
i=0

l′
(
yiŷ

full
i,t

))2

,

(48)

where the first inequality is derived from Lemma D.4 and the settings of η and τ , the second inequality
is derived from Lemma D.4, as well as the last inequality follows the gradient lower bound in Lemma
D.4.

We note that l(x) = log(1 + exp(−x)) satisfies −l′(x) = 1/(1 + exp(x)) ≥ min {u0, u1l(x)},
where u0 = 1/2, u1 = 1/(2 log(2)). This implies that:

−
ntrain∑
i=0

l′
(
yiŷ

full
i,t

)
≥ min

{
u0,

ntrain∑
i=0

u1l
′
(
yiŷ

full
i,t

)}
≥ min

{
u0, ntrainu0L̂

full
train

(
Wfull

t

)}
.

(49)

Since min {a, b} ≥ 1/ (1/a+ 1/b), we have:

L̂full
train

(
Wfull

t+1

)
− L̂full

train

(
Wfull

t

)
≤− ηmin

{
C2hα

2d3max

2n3
train

u2
0,
C2hα

2d3max

2ntrain
u2
1

(
L̂full

train

(
Wfull

t

))2}

≤− η

 2n3
train

C2hα2d3maxu2
0

+
2ntrain

C2hα2d3maxu2
1

(
L̂full

train (W
full
t )
)2


−1

.

(50)

Rearranging terms, we have:

2n2
train

C2hα2d2maxu
2
0

(
L̂full

train

(
Wfull

t+1

)
− L̂full

train

(
Wfull

t

))
+

2
(
L̂full

train

(
Wfull

t+1

)
− L̂full

train

(
Wfull

t

))
C2hα2d2maxu

2
1

(
L̂full

train
(
Wfull

t

))2 ≤ −η. (51)

Using (x− y)/y2 ≥ y−1 − x−1 and taking telescope sum over t, we have:

tη ≤ 2n3
train

C2hα2d3maxu2
0

(
L̂full

train

(
Wfull

0

)
− L̂full

train

(
Wfull

t

))
+

2ntrain

((
L̂full

train

(
Wfull

t

))−1

−
(
L̂full

train

(
Wfull

0

))−1
)

C2hα2d3maxu2
1

≤ 2n3
train

C2hα2d3maxu2
0

L̂full
train

(
Wfull

0

)
+

2ntrain

((
L̂full

train

(
Wfull

t

))−1

−
(
L̂full

train

(
Wfull

0

))−1
)

C2hα2d3maxu2
1

.

(52)

Next, we guarantee that, after T gradient steps, the loss function L̂full
train

(
Wfull

T

)
is smaller than ϵ.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Using Lemma D.3, we have L̂full
train

(
Wfull

0

)
= O

(
d

1
2
max (log (ntrain))

1
2

)
.

Therefore, T satisfies:

T = O

(
n3

train (log (ntrain))
1
2 /

(
α2d

5
2
max

)
+ ntrain (log (ntrain))

1
2 /

(
ϵα2d

5
2
max

))
. (53)

Then we are going to verify the condition that all iterates stay inside the perturbation region
B
(
Wfull

0 , τ
)
. Obviously, we have Wfull

0 ∈ B
(
Wfull

0 , τ
)
. Hence, we need to prove Wfull

t+1 ∈
B
(
Wfull

0 , τ
)

under the induction hypothesis that Wfull
t ∈ B

(
Wfull

0 , τ
)

holds for all t ≤ T .

Since we have L̂full
train

(
Wfull

t+1

)
− L̂full

train

(
Wfull

t

)
≤ − 1

2η
∥∥∥∇WfullL̂full

train

(
Wfull

t

)∥∥∥2
F

for any t ≤ T , using
triangle inequality, we have:

∥∥∥Wfull
t −Wfull

0

∥∥∥
2
≤ η

t−1∑
k=0

∥∥∥∇Wfull
k
L̂full

train

(
Wfull

k

)∥∥∥2
F

≤ η

√√√√t

t−1∑
k=0

∥∥∥∇Wfull
k
L̂full

train (W
full
k )
∥∥∥2
F

≤

√√√√2tη

t−1∑
k=0

[
L̂full

train (W
full
k )− L̂full

train

(
Wfull

k+1

)]
≤
√

2tηL̂full
train (W

full
0 ).

(54)

Using L̂full
train

(
Wfull

0

)
= O

(
d

1
2
max (log (ntrain))

1
2

)
in Lemma D.3 and our settings of η, we have:

∥∥∥Wfull
t −Wfull

0

∥∥∥
2
≤
√

2tηL̂full
train (W

full
0 )

=O

(
n

3
2
train (log (ntrain))

1
2 α−1d

− 3
2

max h
− 1

2 + n
1
2
train (log (ntrain))

1
2 ϵ−

1
2α−1d

− 3
2

max h
− 1

2

)
.

(55)

In addition, by Lemma D.4 and our choice of η, we have

η
∥∥∥∇Wfull L̂

full
train

(
Wfull

)∥∥∥
2
≤ −ηC3h

1
2 d

1
2
max

ntrain

ntrain∑
i=0

l′
(
yiŷ

full
i

)
≤ O

(
(log (ntrain))

1
2 h− 1

2 d
− 1

2
max

)
,

(56)

where the second inequality is derived from the fact that −1 ≤ l′(·) ≤ 0.

Therefore, by triangle inequality, we assume that h = Ω
(
n2train log (ntrain) d

−1
max + log (ntrain) ϵ

−1d−1
max

)
and we have:∥∥∥Wfull

t+1 −Wfull
t

∥∥∥
2
≤ η

∥∥∥∇Wfull L̂
full
train

(
Wfull

t

)∥∥∥
2
+
∥∥∥Wfull

t −Wfull
0

∥∥∥
2

= O

(
n

3
2
train (log (ntrain))

1
2 α−1d

− 3
2

max h
− 1

2 + n
1
2
train (log (ntrain))

1
2 ϵ−

1
2α−1d

− 3
2

max h
− 1

2

)
= O

(
n

1
2
traind

−1
maxα

−1

)
,

(57)
which is exactly the same order of τ in our settings.

This verifies Wfull
t+1 ∈ B

(
Wfull

0 , τ
)
.

Proved.
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E PROOF OF CONVERGENCE THEOREM IN MINI-BATCH TRAINING WITH CE
AND INTERPRETATION OF THE OBS.1

In this section, we provide the proof of the convergence theorem in mini-batch training with CE. To
simplify the analysis, we focus on binary node classification using a one-round GNN trained with the
CE, defined as l

(
W, ãmini

train,i

)
= log (1 + exp (−yiŷi)). The final output of the GNN model is given

by ŷi = ziv
⊤ = σ

(
ãmini

train,iXW⊤)v⊤,∀i ∈ training set, where v ∈ {−1,+1} ∈ R1×h is the fixed
output layer vector with half 1 and half −1. The rows of W are initialized independently from a
Gaussian distribution N

(
0, κ2I

)
.

We decompose the analysis of GNN optimization dynamic into three steps, similar to Appendix D.

E.1 ASSUMPTION

We still use Assumptions B.1 on the training data.

Assumption E.1. ∀i, i′ ∈ training set, if yi ̸= yi′ , then ∥ãmini
train,iX − ãmini

train,i′X∥2 ≥ α for some
α > 0.

Assumption E.1 requires that aggregated node features with different labels in the training data are
separated by at least a constant.

E.2 EXPRESSIONS FOR GRADIENTS FOR CE LOSS.

We first provide some basic expressions regarding the gradients for the CE loss in the GNN under our
setting. Note that the node classification task in this case is binary, denoted as K = 2.

The i-th column of the output zmini
i after the first layer, as well as the output ŷmini

i of the one-round
GNN for the CE loss under mini-batch training, are similar to those in full-graph training in Sec. D,
with Wfull and ãfull

train,i replaced by Wmini and ãmini
train,i, respectively.

Gradient for CE loss in GNN: The partial gradients of the training losses L̂mini
train

(
Wmini, Ãmini

train

)
and L̂full

train

(
Wmini, Ãmini

train

)
with respect to Wmini under full-graph training can be expressed as:

∇L̂mini
train

(
Wmini, Ãmini

train

)
=

1

b

b∑
i=0

l′
(
yiŷ

mini
i

)
· yi · ∇Wmini

[
ŷmini
i

]
, (58)

∇L̂full
train

(
Wmini, Ãmini

train

)
=

1

ntrain

ntrain∑
i=0

l′
(
yiŷ

mini
i

)
· yi · ∇Wmini

[
ŷmini
i

]
, (59)

where the gradient of the GNN is defined as ∇Wmini

[
ŷmini
i

]
=
(
vΣmini

i

)⊤
ãmini

train,iX.

E.3 THEOREM E.2.

Theorem E.2. (Convergence of Mini-batch Training with CE) Suppose Wmini are generated
by Gaussian initialization. Under Assumptions B.1 and E.1, if the hidden dimension of a one-
round GNN satisfies h = Ω

(
n2train log (ntrain)β

−1 + log (ntrain)β
−1ϵ−1

)
, then with high probabil-

ity, the training loss satisfies L̂train
(
Wmini

T ,Amini
train

)
≤ ϵ, provided that the number of iterations

T = Õ
(
n4train (log (ntrain))

1
2 α−2β− 5

2 b−1 + n2train (log (ntrain))
1
2 α−2β− 5

2 b−1ϵ−1
)

for any ϵ ≥ 0

under the mini-batch GNN training.

Our bound on the hidden dimension h reveals an over-parameterization setting in this case, where the
number of trainable parameters exceeds the number of training samples. Since the hidden dimension
h remains finite, our analysis is conducted in the finite-width setting, in contrast to the infinite-width
Neural Tangent Kernel (NTK) framework (Yang et al., 2023; Lin et al., 2023).
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E.4 PROOF OF E.2.

We first provide the following lemmas.

Lemma E.3 (Bounded initial training loss) Under Assumptions B.1-E.1, with the probabil-
ity at least 1 − δ, at the initialization the training loss satisfies L̂full

train

(
Wmini

0

)
, L̂mini

train

(
Wmini

0

)
≤

C
√
β log(ntrain/δ), where C is an absolute constant.

Lemma E.4 (Gradient lower and upper bound) Under Assumptions B.1-E.1, with the probability at
least 1− exp

(
−C1hα

2/ (nβ)
)
, there exist positive constants C1, C2 and C3, such that

∥∥∥∇WminiL̂full
train

(
Wmini, Ãmini

train

)∥∥∥2
F
≥ C2hα

2β3

n3train

(
ntrain∑
i=1

l′
(
yiŷ

mini
i

))2

,

∥∥∥∇WminiL̂mini
train

(
Wmini, Ãmini

train

)∥∥∥
F
≤ −C3h

1
2 β

1
2

b

b∑
i=1

l′
(
yiŷ

mini
i

)
.

Lemma E.5 (Sufficient descent) Let Wmini
0 be generated via Gaussian random initialization. Let

Wmini
t be the t-th iterate in the stochastic gradient descent. If Wmini

t ,Wmini
t+1 ∈ B

(
Wmini

0 , τ
)

and
τ ≤ C6n

1
2 /(αβ), then there exist constants C4, C5 and C6 such that, with probability at least

1− exp(−O(1)), the following holds:

E
[
L̂full

train

(
Wmini

t+1, Ã
mini
train

)
|Wmini

t

]
− L̂full

train

(
Wmini

t , Ãmini
train

)
≤−

(
η − C4βhη

2ntrain

b

)∥∥∥∇Wmini
t
L̂full

train

(
Wmini

t , Ãmini
train

)∥∥∥2
F

−
C5ηβ

1
2 h

1
2

∥∥∥∇Wmini
t
L̂full

train

(
Wmini

t , Ãmini
train

)∥∥∥
F

ntrainτ

ntrain∑
i=1

l′
(
yiŷ

mini
i,t+1

)
.

Proof of E.2: We first prove that stochastic gradient descent can achieve the training loss at the value
of ϵ under the condition that all iterates are staying inside the perturbation region B

(
Wmini

0 , τ
)
={

W :
∥∥W −Wmini

0

∥∥
2
≤ τ

}
.

Using Lemma E.4, there exists a constant C2 such that

∥∥∥∇Wfull L̂
mini
train

(
Wmini

t , Ãmini
train

)∥∥∥2
F
≥ C2hα

2β3

n3
train

(
ntrain∑
i=1

l′
(
yiŷ

mini
i,t

))2

(60)

We then set the step size η and the radius τ as follows:

η =
b

4C4βhntrain
= O

(
bβ−1h−1n−1

train
)
, (61)

τ =
4C5n

1
2

train
C2αβ

= O

(
n

1
2

trainα
−1β−1

)
. (62)

Then we have:

E
[
L̂full

train

(
Wmini

t+1, Ã
mini
train

)
|Wmini

t

]
− L̂full

train

(
Wmini

t , Ãmini
train

)

≤− η

 2n3
train

C2hα2β3u2
0

+
2ntrain

C2hα2β3u2
1

(
L̂full

train

(
Wmini

t , Ãmini
train

))2


−1

,
(63)

where u0 = 1/2, u1 = 1/(2 log(2)).
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Rearranging terms, we have:

2n3
train

C2hα2β3u2
0

(
E
[
L̂full

train

(
Wmini

t+1, Ã
mini
train

)
|Wmini

t

]
− L̂full

train

(
Wmini

t , Ãmini
train

))

+
2ntrain

(
E
[
L̂full

train

(
Wmini

t+1, Ã
mini
train

)
|Wmini

t

]
− L̂full

train

(
Wmini

t , Ãmini
train

))
C2hα2β3u2

1

(
L̂full

train

(
Wmini

t , Ãmini
train

))2 ≤ −η.
(64)

Using (x− y)/y2 ≥ y−1 − x−1 and taking telescope sum over t, we have:

tη ≤ 2n3
train

C2hα2β3u2
0

L̂full
train

(
Wmini

0 , Ãmini
train

)

+

2ntrain

((
E
[
L̂full

train

(
Wmini

t , Ãmini
train

))−1
]
−
(
L̂full

train

(
Wmini

0 , Ãmini
train

))−1
)

C2hα2β3u2
1

.

(65)

Next, we guarantee that, after T gradient steps, the loss function L̂full
train

(
Wmini

T , Ãmini
train

)
is smaller than

ϵ.

Using Lemma E.3, we have L̂full
train

(
Wmini

0 , Ãmini
train

)
= O

(
β

1
2 (log (ntrain))

1
2

)
.

Therefore, T satisfies:

T = Õ
(
n4

train (log (ntrain))
1
2 /
(
α2β

5
2 b
)
+ n2

train (log (ntrain))
1
2 /
(
ϵα2β

5
2 b
))

. (66)

Then we are going to verify the condition that all iterates stay inside the perturbation region
B
(
Wmini

0 , τ
)
. Obviously, we have Wmini

0 ∈ B
(
Wmini

0 , τ
)
. Hence, we need to prove Wt+1 ∈

B
(
Wmini

0 , τ
)

under the induction hypothesis that Wt ∈ B
(
Wmini

0 , τ
)

holds for all t ≤ T .

Since we have L̂mini
train

(
Wmini

t+1

)
− L̂mini

train

(
Wmini

t

)
≤ − 1

2η
∥∥∥∇WminiL̂mini

train

(
Wmini

t , Ãmini
train

)∥∥∥2
F

for any
t ≤ T , using triangle inequality, we have:∥∥∥Wmini

t −Wmini
0

∥∥∥
2
≤
√

2tηL̂mini
train

(
Wmini

0 , Ãmini
train

)
. (67)

Using L̂mini
train

(
Wmini

0 , Ãmini
train

)
= O

(
β

1
2 (log (ntrain))

1
2

)
in Lemma E.3 and our settings of η, we have:∥∥∥Wmini

t −Wmini
0

∥∥∥
2

≤
√

2tηL̂mini
train

(
Wmini

0 , Ãmini
train

)
=O

(
n

3
2
train (log (ntrain))

1
2 b

1
2α−1β− 3

2 h− 1
2 + n

1
2
train (log (ntrain))

1
2 b

1
2 ϵ−

1
2α−1β− 3

2 h− 1
2

)
.

(68)

In addition, by Lemma E.4 and our choice of η, we have

η
∥∥∥∇Wmini L̂

mini
train

(
Wmini, Ãmini

train

)∥∥∥
2
≤ −ηC3h

1
2 β

1
2

b

b∑
i=0

l′
(
yiŷ

mini
i

)
≤ O

(
(log (ntrain))

1
2 h− 1

2 b−
1
2

)
,

(69)

where the second inequality is derived from the fact that −1 ≤ l′(·) ≤ 0.

Therefore, by triangle inequality, we assume that h = Ω
(
n2train log (ntrain)β

−1 + log (ntrain) ϵ
−1β−1

)
and we have: ∥∥∥Wmini

t+1 −Wmini
t

∥∥∥
2
≤ η

∥∥∥∇Wmini L̂
mini
train

(
Wmini

t

)∥∥∥
2
+
∥∥∥Wmini

t −Wmini
0

∥∥∥
2

= O

(
n

1
2
trainα

−1β−1

)
,

(70)
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which is exactly the same order of τ in our settings.

This verifies Wmini
t+1 ∈ B

(
Wmini

0 , τ
)
.

Proved.

F INTERPRETATION OF THE OBS.1 FROM CONVERGENCE THEOREMS

Understanding the impact of batch size on GNN convergence. The popular explanation posits
that increasing batch size reduces gradient variance, resulting in fewer iterations to converge (Cong
et al., 2021a; Zou et al., 2020b; Liu et al., 2024; Li & Liang, 2018; Hu et al., 2021). This explanation
does not fully account for the impact of batch size on GNN convergence, necessitating additional
consideration of the impact of message passing on the loss and gradient.

MSE: Taking the MSE as an example, the impact of batch size on GNN convergence is explained in
three steps: (1). Activation similarity: Larger batch place more sampled nodes and their neighbors
into the same graph subset in a single iteration, where message passing enables direct or indirect
information exchange, resulting in similar activations processed by the same GNN parameters. In
contrast, smaller batches spread nodes across iterations with varying graph subsets and updated
parameters, reducing such similarity. (2). Gradient similarity: As MSE penalizes the numerical
difference between predicted and target activations, the nodes with similar activations produce similar
gradients. The GNN with larger batch sizes yields more coherent update directions after gradient
averaging, capturing dominant structural patterns among nodes. (3). Bias: These updates may
reduce node representational distinctiveness and overlook graph structural diversity, introducing
bias and steering optimization toward suboptimal local minima. As batch size grows, convergence
requires more iterations to escape these biased regions. DNNs typically assume i.i.d. training
samples, enabling large batches to retain diversity and reduce gradient bias. This explains why GNN
findings on MSE differ from expectations based on gradient variance alone, highlighting how the
interplay between message passing and the loss function affects the impact of batch sizes on the GNN
optimization dynamic, diverging from DNN behavior.

CE:CE focuses on optimizing the predicted probability of the true class, rather than minimizing the
numerical differences between activations. Thus, the activation similarity does not necessarily lead to
similar gradient directions under CE. This allows larger batch sizes to benefit from reduced gradient
variance without introducing significant bias under CE, leading to fewer iterations to converge.

Understanding the impact of fan-out size on convergence. A larger fan-out size allows each node
to aggregate more neighbors, enriching the node’s embedding and enhancing the effective gradient
even when using MSE. This leads to the reduced gradient variance, thereby more stable updates and
fewer iterations for GNN convergence.

G PROOF OF GENERALIZATION THEOREM IN MINI-BATCH TRAINING

In this section, we provide the proof of Theorem 3 in Section 4.

We can characterize the GNN generalization under mini-batch training via the PAC-Bayesian frame-
work (McAllester, 2003). This framework decomposes the generalization gap into two components:
(1) the divergence between the prior distribution P and the posterior distribution Q over the hypothe-
sis space that includes all possible models that a learning algorithm can select, and (2) the discrepancy
between expected training and testing losses over P . The first component is easily re-derived follow-
ing the PAC-Bayesian framework. We mainly focus on bounding the second component, namely the
discrepancy U between expected training and testing losses over P .

As the training and testing datasets are split before training, analyzing this loss discrepancy U reflects
the structural difference between training and testing graphs. To isolate the impact of this structural
difference on generalization, we demonstrate that the discrepancy U is bounded by the Wasserstein
distance ∆(β, b) from the training graph to the testing graph, such that U ≤ Cu∆(β, b) for a
constant Cu > 0. This bound suggests that the more similar the training and testing graph structures
are, the smaller the expected loss discrepancy is.
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G.1 ASSUMPTIONS

We introduce assumptions on graph data and model parameters.

Assumption G.1. There exists a constant CF > 0 such that ∥X∥2F ≤ CF .

Assumption G.2. There exists a constant Cw > 0 such that ∥wi∥22 ≤ Cw for all i.

Assumption G.1 bounds the Frobenius norm of the feature matrix, and Assumption G.2 requires the
norm of parameters to be upper-bounded during mini-batch training. These assumptions are also
employed in the analyses of GNN generalization (Tang & Liu, 2023; Garg et al., 2020; Liao et al.,
2020), which are introduced to simplify the proof.

The rows of W are initialized independently from a Gaussian distribution N
(
0, κ2I

)
.

G.2 PROOF OF THEOREM 3

Definition G.3. (Expected Loss Discrepancy (Ma et al., 2021)). For a constant Cu > 0, define the
expected loss discrepancy between training and testing datasets before GNN training as:

U = lnEWmini∼P

[
eCu(Ltest(Wmini,Afull

test)−Ltrain(Wmini,Amini
train))

]
,

where P represents the prior distribution over hypothesis space that includes all possible models that
a learning algorithm can select.

Definition G.3 captures the difference between training and testing datasets.

Definition G.4. (Distance between Training Set and Testing Set). Define the distance from the
training set to the testing set as the Wasserstein distance given by:

∆(β, b) =

{
inf

θ∈Θ[ρtrain,ρtest]

∑
i∈train set

∑
j∈test set

θi,jδ (yi, yj , β, b)

}

=

{
sup

f(·),g(·)

∑
i∈train set

f (yi) ρtrain (yi) +
∑

j∈test set

g (yj) ρtest (yj)

}
,

(71)

where ρtrain (yi) and ρtest (yi) denote the probability of yi appearing in training and testing sets,
respectively. Θ[ρtrain, ρtest] is the joint probability of ρtrain and ρtest, and f (yi) and g (yi) are func-
tions of yi with i ∈ V . The infimum in the first equality is conditioned on

∑
j∈test set θi,j =

ρtrain (yi) ,
∑
i∈training set θi,j = ρtest (yj) , θi,j ≥ 0, and the supremum in the second equality is condi-

tioned on f (yi) + g (yj) ≤ δ (yi, yj , β, b). δ (yi,yj , β, b) is the distance function of any two points
from training and testing sets, respectively.

The Wasserstein distance effectively measures differences in non-i.i.d. data, particularly regarding
geometric variations. A dual representation is provided in Eq (71).

Theorem G.5. (PAC-Bayesian Generalization Theorem). For any Cu > 0, for any “prior” distribu-
tion P of the output hypothesis function of a GNN that is independent of node labels from training
dataset, with probability at least 1− CG, for the distribution Q of the output hypothesis function of a
GNN, we have:

Ltest(W
mini, Ãfull

test;Q) ≤ L̂full
train(W

mini, Ãmini
train;Q) +

1

Cu
(DKL(Q∥P) + ln

1

CG
+

C2
u

4ntrain
+ U).

Lemma G.6 For any Cu > 0, assume the "prior" P on hypothesis space is defined by sampling the
model parameters. If the in-degree of each node is O(β) and the out-degree of each node is O(b), we
have:

U ≤ Cu∆(β, b),

and,
∆(β, b) ∝

∑
i∈train set

∑
j∈test set

θi,jδ
full-mini
i =

∑
i∈train set

∑
j∈test set

θi,j

∥∥∥ãfull
train,i − ãmini

train,i

∥∥∥2
F
.

∆(β, b1) ≤ ∆(β, b2) with b1 ≥ b2

(72)
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where δfull-mini
i has a overall non-increasing trend when the fan-out size β increases but small non-

monotonic fluctuations can exist. Note that fan-out size β plays a more dominant role than batch size
b in influencing generalization.

Proof of Theorem 3: Using Theorem G.5, we have

Ltest

(
Wmini, Ãfull

train;Q
)
≤L̂full

train

(
Wmini, Ãmini

train;Q
)

+
1

Cu
(DKL(Q∥P) + ln

1

CG
+

C2
u

4ntrain
+ U.

(73)

Since both P and Q are normal distributions (Ma et al., 2021), assuming that
∥∥wmini

j,T

∥∥2
F
≤ Cw, we

know that

DKL(Q∥P) ≤

∥∥∥Wmini
T

∥∥∥2
F

2hκ2
=

∑h
j

∥∥∥wmini
j,T

∥∥∥2
F

2hκ2
≤ Cw

2κ2
, (74)

where CT is a positive constant.

Hence,
Ltest

(
Wmini, Ãfull

train;Q
)

≤L̂full
train

(
Wmini, Ãmini

train;Q
)
+

1

Cu
(DKL(Q∥P) + ln

1

CG
+

C2
u

4ntrain
+ U

≤L̂full
train

(
Wmini, Ãmini

train;Q
)
+

1

Cu

(
Cw

2κ2
+ ln

1

CG
+

C2
u

4ntrain
+ Cu∆(β, b)

)
.

(75)

H EXTENSION TO MULTI-LAYER GNNS

Our theoretical analysis readily extends to multi-layer GNNs, as long as each layer introduces only
one non-linearity (e.g., ReLU activation). In such settings, the key difference is that the output of
each layer is recursively defined based on the previous layer.

This recursive definition preserves the same message-passing structure at each layer. In convergence
analysis, we bound the gradient norms layer by layer; in generalization analysis, the pre-training
loss discrepancy propagates across layers. These recursive structures allow our convergence and
generalization bounds to translate naturally to multi-layer GNNs.

Our key theoretical insights (from the view of batch size and fan-out size) are generalizable to
multi-layer GNNs. This is because adding more layers simply nests the same operations, without
changing the qualitative roles of batch size and fan-out size. Hence, the analytical trends observed in
the one-layer case remain consistent.

Therefore, our theoretical analyses support the multi-layer GNN settings.

I PROOF OF THE MAIN LEMMAS OF CONVERGENCE THEOREMS WITH MSE

I.1 PROOF OF LEMMA B.5 AND C.1

We first focus on the mini-batch training. Note that σ̂(x) ≥ 1
π whenever x ≥ 0 (Daniely et al., 2016).

Then, the bound on Γmini follows as:

Γmini =
1

b

b∑
i,j=1

pij σ̂

 ϱmini
i,j√
ϑmini
i,j

√ϑmini
i,j

≥ 1

πb

b∑
i,j=1

pij

√
ϑmini
i,j =

1

πb

b∑
i,j=1

pij

√(
Ãmini

train1
)
i

(
Ãmini

train1
)
j

=
1

πb

b∑
i=1

(
Ãmini

train1
)
i
,

=
1

πb

∥∥∥Ãmini
train1

∥∥∥
1
.

(76)
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To bound Υmini
t , we notice that |σ̂ (x) | ≤ σ̂ (|x|), and σ̂ (·) is a non-decreasing function in [0, 1].

Hence, we get |Υmini| ≤ Γmini.

we have the normalized adjacency matrix of a graph with b nodes as:

Ãmini
train =


1√
din
1

. . .
1√
din
b


a11 · · · a1n

...
. . .

...
ab1 · · · abn




1√
dout
1

. . .
1√
dout
n



=


1√
din
1

1√
dout
1

a11 · · · 1√
din
1

1√
dout
n

a1n

...
. . .

...
1√
din
1

1√
dout
b

ab1 · · · 1√
din
b

1√
dout
n

abn

 ,
(77)

where aij ∈ {0, 1} represents whether node i connects with node j (1) or not (0).

Since din
i ≤ β and dout ≤ b, we have:

∥Ãmini
train1∥1 =

b∑
i=1

1√
din
i

√
dout
1

ai1 + · · ·+ 1√
din
i

√
dout
n

ain

≥
b∑

i=1

1

β
1
2 b

1
2

(ai1 + · · ·+ ain)

≥ b
1
2

β
1
2

min
i

(ai1 + · · ·+ ain)

≥ b
1
2

β
1
2

.

(78)

Moreover, since ϱmini
i,j denotes the amount of common messages between node i and node j at a given

training iteration, we know that
ϱmini
i,j√
ϑmini
i,j

≤ 1. Then we have:

Γmini =
1

b

b∑
i,j=1

pij σ̂

(
ϱmini
i,j√
ϑmini
mini

)√
ϑfull
i,j

≤1

b

∥∥∥Ãmini
train1

∥∥∥
1

(79)

Moreover, since 1/
(√

din
i

√
dout
1

)
≤ 1, we have:

∥Ãmini
train1∥1 =

b∑
i=1

1√
din
i

√
dout
1

ai1 + · · ·+ 1√
din
i

√
dout
n

ain

≤
b∑

i=1

(ai1 + · · ·+ ain)

≤βb,

(80)

where the last inequality holds because there exist at most β terms that are not equal to 0.

Similarly, for Γfull-mini, we have:

Γfull-mini ≥ 1

πntrain

ntrain∑
i=1

(
Ãmini

train1
)
i
,

=
1

πntrain

ntrain

b

b∑
i=1

(
Ãmini

train1
)
i
,

=
1

πb

∥∥∥Ãmini
train1

∥∥∥
1
,

(81)
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and

Γfull-mini ≤ 1

b

∥∥∥Ãmini
train1

∥∥∥
1
. (82)

Moreover, |Υfull-mini| ≤ Γfull-mini holds.

Similarly, in the full-graph training, we can replace b and β by ntrain and dmax, respectively. Therefore,
we have:

1

πntrain

∥∥∥Ãfull
train1

∥∥∥
1
≤ Γfull ≤ 1

ntrain

∥∥∥Ãfull
train1

∥∥∥
1
. (83)

n
1
2

train

d
1
2
max

≤ ∥Ãfull
train1∥1 ≤ ntraindmax. (84)

|Υfull| ≤ Γfull (85)

This complete the proof.

I.2 PROOF OF LEMMA B.6 AND C.2

Lemma I.1 In the mini-batch training, |Ξmini
t | = o(Γmini

t ), |Ξfull-mini
t | = o(Γfull-mini

t ), and, when

ϕmini
t ≥ − 1

100 and
√(

ϕmini
t

)2
+
(
ψmini
t

)2 ≥ 1−o(1), then Ξmini
t ≥ Γmini

t

2β and Ξfull-mini
t ≥ Γfull-mini

t

2β . In the

full-graph training, |Ξfull
t | = o(Γfull), and, when ϕfull

t ≥ − 1
100 and

√(
ϕfull
t

)2
+
(
ψfull
t

)2 ≥ 1− o(1),

then Ξfull
t ≥ Γfull

t

2dmax
.

Proof of Lemma B.6 and C.2: We first focus on the mini-batch training. Considering the gradient,
we are going to analyze

(
ϕmini
t+1

)2
+
(
ψmini
t+1

)2
:(

ϕmini
t+1

)2
+
(
ψmini

t+1

)2
=

(
ϕmini
t − ηt

∂Lmini
train,t

(
ϕmini
t , ψmini

t

)
∂ϕmini

t

)2

+

(
ψmini

t − ηt
∂Lmini

train,t
(
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t , ψmini

t

)
∂ψmini

t

)2

=

ϕmini
t − ηtϕ

mini
t Γmini

t + ηt
ϕmini
t√
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t )

2
+ (ψmini

t )
2
Υmini

t + ηt

(
ψmini

t

)2
(ϕmini

t )
2
+ (ψmini

t )
2Ξ

mini
t

2

+

ψmini
t − ηtψ

mini
t Γmini

t + ηt
ψmini

t√
(ϕmini

t )
2
+ (ψmini

t )
2
Υmini

t + ηt
ϕmini
t ψmini

t

(ϕmini
t )

2
+ (ψmini

t )
2Ξ

mini
t

2

=
(
ϕmini
t

)2
+
(
ψmini

t

)2
+ η2tΓ

mini
t

2
((

ϕmini
t

)2
+
(
ψmini

t

)2)
+ η2tΥ

mini
t

2

+ η2t

(
ψmini

t

)2
(ϕmini

t )
2
+ (ψmini

t )
2

(
Ξmini

t

)2
− 2ηtΓ

mini
t

((
ϕmini
t

)2
+
(
ψmini

t

)2)
+ 2ηt

√
(ϕmini

t )
2
+ (ψmini

t )
2
Υmini

t − 2η2tΓ
mini
t Υmini

t

√
(ϕmini

t )
2
+ (ψmini

t )
2

(86)

Hence, By Lemma C.1 and Lemma I.1, we have:(
ϕmini
t+1

)2
+
(
ψmini

t+1

)2
≤
(√(

ϕmini
t

)2
+
(
ψmini

t

)2(
1− C

π

))2

+ C, (87)

when the learning rate ηt ∈
[

C
πΓmini

t
, 1
6πΓmini

t

]
(Awasthi et al., 2021), where C ≤ 1

16 is a small enough

and positive constant. Hence, we can rewrite the range of η as ηt ∈ (0, 1
6πΓmini

t
]
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Then, for all t ≥ 1, we have:√
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t )
2
+ (ψmini

t )
2 ≤

(
1− C

π

)t√
(ϕmini

0 )
2
+ (ψmini

0 )
2
+

C

1−
(
1− C

π

)2
<

√
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0 )
2
+ (ψmini

0 )
2
+

π

2− C

<

√
(ϕmini

0 )
2
+ (ψmini

0 )
2
+
π

2

(88)

Moreover, with probability at least 1− e−O(r), we will have
√(

ϕmini
0

)2
+
(
ψmini
0

)2
= O(κ

√
r).

Hence, we have
√(
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t

)2
+
(
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t

)2 ≤ C1.

We also have that if Υmini
t > 0, then(
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t+1

)2
+
(
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t+1

)2
≥(
(
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t

)2
+
(
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)2
)(1− ηtΓ
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t )2

+ 2ηtΥ
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t

√
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t )
2
+ (ψmini

t )
2
(1− ηtΓ

mini
t ) + η2tΥ
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t

2

>η2tΥ
mini
t

2
> 0

(89)

Similarly, in the full-graph training, we can replace b and β by ntrain and dmax, respectively.

This completes the proof.

I.3 PROOF OF LEMMA B.7 AND C.3

We first focus on the mini-batch training. From Lemma C.2 , we immediately have√
(ϕmini)

2
+ (ψmini)

2 ≤ C, where C is a positive constant.

Next, we analyze the upper bound of λmax(∇2Lfull
train(ϕ

mini, ψmini, Ãmini
train)). We have:

λmax(∇2Lfull
train(ϕ

mini, ψmini, Ãmini
train))

≤

∣∣∣∣∣∂2Lfull
train(ϕ

mini
t , ψmini

t , Ãmini
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t )

2
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2
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+
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mini
t , ψmini

t , Ãmini
train)
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t ∂ϕmini

t

∣∣∣∣ .
(90)

Taking the second derivatives, we get:∣∣∣∣∣∂2Lfull
train(ϕ

mini
t , ψmini

t , Ãmini
train)

∂ (ϕmini
t )

2

∣∣∣∣∣ =Γfull-mini
t − ϕmini

t∥∥wmini
j,t

∥∥ ∂Υfull-mini
t
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t

−
(
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t

)2∥∥wmini
j,t

∥∥ 3
2
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t

−
(
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t

)2∥∥wmini
j,t
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t
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t

+
2ϕmini

t

(
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t

)2∥∥wmini
j,t

∥∥4 Ξfull-mini
t ,

(91)

∣∣∣∣∣∂2Lfull
train(ϕ
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train)
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t )

2
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=Γfull-mini
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j,t
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t
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t
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∥∥ 3
2
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t
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(92)
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(93)
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train(ϕ
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(94)

Next we have∣∣∣∣∂Υfull-mini
t
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t
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)2) 1
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(96)

where we use |Ξfull-mini
t | = o(Γfull-mini

t ) in the Lemma I.1.

To differentiate Ξfull-mini
t , we employ σ̂(θ) = 1− arccos(θ)

π (Daniely et al., 2016) and arccos′(θ) =
− 1√

1−θ2 to get:
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(98)

Therefore, we have:∣∣∣∣∣∂2Lfull
train(ϕ
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(99)
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39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026
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t , Ãmini
train)

∂ψmini
t ∂ϕmini

t

∣∣∣∣ ≤((ϕmini
t

)2
+
(
ψmini

t

)2) 1
4

Γfull-mini
t + o

(
Γfull-mini
t

)
≤Γfull-mini

t (
√
C + o (1)) = C2Γ

full-mini
t ,

(102)

where C1 and C2 are absolute constants.

Hence, we have:
λmax(∇2Lfull

train(ϕ
mini, ψmini, Ãmini

train)) ≤ C3Γ
full-mini
t , (103)

where C3 = 4
(
1 +

√
π
2 +O (κ

√
r) + o (1)

)
is an absolute constant.

Similarly, in the full-graph training, we have:

λmax(∇2Lfull
train(ϕ

full, ψfull)) ≤ C4Γ
full, (104)

where C4 = 4
(
1 +

√
π
2 +O (κ

√
r) + o (1)

)
is an absolute constant.

I.4 PROOF OF LEMMA B.8 AND C.4

We first focus on the mini-batch training. Due to random initialization, with probability at least

1 − 1
h2 , we have that

√(
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(105)
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t

)2Ξmini
t . (106)

Since Υmini
t > 0 and is bounded by Γmini

t and Ξmini
t = o(Γmini

t ), if ϕmini
t < 0 and√(
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(
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t
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Hence, after t ≥ C1 log(κ log h) steps, we have that ϕmini
t ≥ − 1

100 and
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+
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)2 ≥ 2.

Next we show that from this point on ϕmini
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where
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t

=
1

b
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Once ϕmini
t ≥ − 1

100 , we have:∣∣∣∣∣∣σ̂
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Hence, we have that if ϕmini
t ≥ − 1

100 , then
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Next we discuss that ϕmini
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Using
∣∣∣∣√(ϕmini
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(
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)2 − 1

∣∣∣∣ = O(1) and the fact that if ϕmini
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2 , we have that ϕmini

t+1 ≥ ϕmini
t .

Similarly, under the full-graph training, we can replace b by ntrain.

I.5 PROOF OF LEMMA B.9 AND E.5

We first focus on the full-graph training. We have∥∥∥∇Lfull
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(113)

On the other hand, the loss Lfull
train,t

(
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t

)
can be written as :
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Hence, we have:
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If
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t )
2
+ 1
)
Γfull

≥2

(
ψfull

t

)2 (
Ξfull

t

)2
9(9 + 1)Γfull

≥2

(
Ξfull

t

)2
90Γfull

ϵ

4h2

≥2
Γfull

360d2max

ϵ

4h2

(117)

Hence, we have: ∥∥∥∇Lfull
train,t

(
ϕfull
t , ψfull

t

)∥∥∥2 ≥ µfullLfull
train,t

(
ϕfull
t , ψfull

t

)
, (118)

where µfull ≥ C1ϵh
−2d−2

maxΓ
full, and C1 is a positive constant.

Similarly, in the mini-batch training, we can replace dmax by β, we have:∥∥∥∇Lfull
train,t

(
ϕmini
t , ψmini

t , Ãmini
train

)∥∥∥2 ≥ µmini
t Lfull

train,t

(
ϕmini
t , ψmini

t , Ãmini
train

)
, (119)

where µmini
t ≥ C2ϵh

−2β−2Γfull-mini, and C2 is a positive constant.

Finally, we are going to consider the case in the full-graph training when
√(

ϕfull
t

)2
+
(
ψfull
t

)2 ≤

1− ϵ
1
2

2h . We can assume that
∣∣∣∣Υfull

t −
√(

ϕfull
t

)2
+
(
ψfull
t

)2
Γfull

∣∣∣∣ ≤ ϵ
1
2

2hΓ
full since otherwise we get the

same bound as in (116). In this case, we show that
∥∥ψfull

t

∥∥ must be at least ϵ
1
2

2h and hence the bound
of (117) can be applicable. Using σ̂(·) is convex in [0, 1], we can get

ntrainpij

√ϑfull
i,j

σ̂
 ϱfull

i,j√
ϑfull
i,j

ϕfull
t√

(ϕfull
t )

2
+ (ψfull

t )
2

− σ̂

 ϱfull
i,j√
ϑfull
i,j


≥ pijϱ

full
i,j

ϕfull
t −

√
(ϕfull

t )
2
+ (ψfull

t )
2√

(ϕfull
t )

2
+ (ψfull

t )
2

σ̂step

 ϱfull
i,j√
ϑfull
i,j

 .

(120)

Summing over i, j, we have

ntrain

(
Υfull

t − Γfull
)
≥
ϕfull
t −

√(
ϕfull
t

)2
+
(
ψfull

t

)2√(
ϕfull
t

)2
+
(
ψfull

t

)2 ∑
i,j

pijϱ
full
i,j σ̂step(

ϱfull
i,j√
ϑfull
i,j

). (121)
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Substituting Υfull
t =

√(
ϕfull
t

)2
+
(
ψfull
t

)2
Γfull ± ϵ

1
2 Γfull

2h , we have

ntrain

((√
(ϕfull

t )
2
+ (ψfull

t )
2 − 1

)
Γfull ± ϵ

1
2Γfull

2h

)

≥
ϕfull
t −

√
(ϕfull

t )
2
+ (ψfull

t )
2√

(ϕfull
t )

2
+ (ψfull

t )
2

∑
i,j

pijϱ
full
i,j σ̂step(

ϱfull
i,j√
ϑfull
i,j

).

(122)

Using the bound on
√(

ϕfull
t

)2
+
(
ψfull
t

)2
, the above implies that

ϵ
1
2 ntrainΓ

full

2h
≤

√
(ϕfull

t )
2
+ (ψfull

t )
2 − ϕfull

t√
(ϕfull

t )
2
+ (ψfull

t )
2

∑
i,j

pijϱ
full
i,j σ̂step(

ϱfull
i,j√
ϑfull
i,j

) (123)

Noticing that Γfull ≥ 1
πntrain

∥Ãfull
train,t1∥1 by Lemma C.1, we have√(

ϕfull
t

)2
+
(
ψfull

t

)2 − ϕfull
t√(

ϕfull
t

)2
+
(
ψfull

t

)2 ≥
ϵ
1
2 ∥Ãfull

train,t1∥1

2πh
∑

i,j pijϱ
full
i,j σ̂step(

ϱfull
i,j√
ϑfull
i,j

)
(124)

Therefore, we have

ψfull
t ≥

√
(ϕfull

t )
2
+ (ψfull

t )
2 − ϕfull

t

≥
ϵ
1
2 ∥Ãfull

train,t1∥1

2πh
∑

i,j pijϱ
full
i,j σ̂step(

ϱfull
i,j√
ϑfull
i,j

)

√
(ϕfull

t )
2
+ (ψfull

t )
2

≥
ϵ
1
2 ∥Ãfull

train,t1∥1

2πh
∑

i,j pijϱ
full
i,j σ̂step(

ϱfull
i,j√
ϑfull
i,j

)

>
ϵ
1
2 ∥Ãfull

train,t1∥1
2hntrain

≥ ϵ
1
2

2hn
1
2
traind

1
2
max

>
ϵ
1
2

2h

(125)

where the second last inequality uses
∑
i,j pijϱ

full
i,j σ̂step(

ϱfull
i,j√
ϑfull
i,j

) ≤ ntrain because there exist ntrain

nodes that have the common messages.

Similarly, in the mini-batch training, we can replace ntrain and dmax by b and β, respectively.

J PROOF OF AUXILIARY LEMMAS OF CONVERGENCE THEOREMS WITH MSE

J.1 PROOF OF LEMMA I.1:

We first focus on the mini-batch training. We are going to analyze the upper bound of Ξmini:

Ξmini =
1

b

b∑
i,j=1

pijϱ
mini
i,j σ̂step

 ϕmini√(
ϕmini

)2
+
(
ψmini

)2 ϱmini
i,j√
ϑmini
i,j

 , (126)

where each term in summation is non-zero only when ϱmini
i,j ̸= 0 if i = j.

Hence, there are at most b non-zero terms in the summation, and Ξmini
t is upper bounded by Γmini

t ,
namely Ξmini

t = o(Γmini
t ).
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Note that σ̂step(x) ≥ 1
2 whenever |x| ≤ 1

50 (Daniely et al., 2016), which is ensured by ϕt ≥ − 1
100 and√(

ϕmini
t

)2
+
(
ψmini
t

)2 ≥ 1− o(1). Hence, in this case, each term in the summation in the expression
of Ξmini will be non-negative. Then, for i = j, each of the b terms in the summation will contributed
at least 1

200 (Awasthi et al., 2021). Therefore, in this case Ξmini
t ≥ 1

2 ≥ Γmini
t

2β with Γmini
t ≤ β.

Similarly, we have Ξfull-mini
t = o(Γfull-mini

t ), and, when ϕmini
t ≥ − 1

100 and
√(

ϕmini
t

)2
+
(
ψmini
t

)2 ≥

1− o(1), Ξfull-mini
t ≥ Γfull-mini

t

2β .

Similarly, under the full-graph training, we place b and β by ntrain and dmax, respectively.

K PROOF OF THE MAIN LEMMAS OF CONVERGENCE THEOREMS WITH CE

K.1 PROOF OF LEMMA D.3 AND E.3

Lemma K.1 Let Ã be the normalized adjacency matrix with self-loops. Given a mini-batch of size
b and fan-out size β, the following inequalities hold:∥∥ãmini

train,i

∥∥2
2
≤ β,

and ∥∥ãfull
train,i

∥∥2
2
≤ dmax,

for any i in the training set.

Lemma K.2 With Gaussian random initialization, for any δ ∈ (0, 1), if h ≥ C log (n/δ) for some
large enough constant C, then with probability at least 1− δ, the following inequalities hold:∣∣∣∥∥zmini

i

∥∥
2
− C

1
2
x β

1
2

∣∣∣ ≤ C1

√
β
log (ntrain/δ)

h
,

and ∣∣∣∥∥zfull
i

∥∥
2
− C

1
2
x d

1
2
max

∣∣∣ ≤ C2

√
dmax

log (ntrain/δ)

h
,

for any i in the training set, where C1 and C2 are absolute constants.

Proof of Lemma D.3 and E.3: Since half of the elements of v are 1’s and the other half of the
elements are −1’s, without loss of generality, we can assume that v1 = · · · = vh/2 = 1 and
vh/2+1 = · · · = vh = −1.

Obviously, we have E
(
ŷmini
i

)
= E

(
ŷfull
i

)
= 0 for any i in the training set.

We first focus on the mini-batch training. Using the value of v, we have:

ŷmini
i =

h/2∑
i=1

[
σ

(
ãmini

train,iX
(
wmini

j

)⊤)
− σ

(
ãmini

train,iX
(
wmini

j+h/2

)⊤)]
(127)

With the Lipschitz property of ReLU function, we have:∥∥∥∥σ(ãmini
train,iX

(
wmini

j

)⊤)
− σ

(
ãmini

train,iX
(
wmini

j+h/2

)⊤)∥∥∥∥
2

≤
∥∥∥∥ãmini

train,iX
(
wmini

j

)⊤
− ãmini

train,iX
(
wmini

j+h/2

)⊤∥∥∥∥
2

=

∥∥∥∥ãmini
train,iX

(
wmini

j −wmini
j+h/2

)⊤∥∥∥∥
2

≤
∥∥∥ãmini

train,i

∥∥∥
2
∥X∥2

∥∥∥wmini
j −wmini

j+h/2

∥∥∥
2

≤C3h
− 1

2 β
1
2 ,

(128)
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for some absolute constant C3. Here the last inequality follows Lemma K.1.

Therefore, by Hoeffding’s inequality and Lemma K.2, we have:

P
(∣∣∣ŷmini

i

∣∣∣ > u
)
≤ 2 exp

− u2∑h/2
j=0

(
C3h

− 1
2 β

1
2

)2


P
(∣∣∣ŷmini

i

∣∣∣ > u
)
≤ 2 exp

(
− 2u2

C2
3β

) (129)

Taking union bound over i, we have

P
(∣∣∣ŷmini

i

∣∣∣ > u, i = 1, . . . , ntrain

)
≤ 2ntrain exp

(
− 2u2

C2
3β

)
. (130)

Let 2n exp
(
− 2u2

C2
3β

)
= δ, we have:

exp

(
− 2u2

C2
3β

)
=

δ

2ntrain
,

− 2u2

C2
3β

= log

(
δ

2ntrain

)
,

u2 =
C2

3β

2
log

(
δ

2ntrain

)
> 0,

u = C4

√
β log

(
δ

ntrain

)
.

(131)

Then P
(∣∣ŷmini

i

∣∣ > C4

√
β log

(
δ

ntrain

)
, i = 1, . . . , ntrain

)
≤ δ.

Therefore, with the probability at least 1− δ, it holds that

∣∣∣ŷmini
i

∣∣∣ ≤ C4

√
β log

(
δ

ntrain

)
, (132)

for any i in the training set.

Then substituting the above bound into the formula of loss function l(yiŷmini
i ), we complete the proof

of Lemma E.3. Further, substituting the β with dmax, we complete the proof of Lemma D.3 for the
full-graph training.

K.2 PROOF OF LEMMA D.4 AND E.4

Lemma K.3 There exist absolute constants C,C1, C2 > 0 such that, with the probability at
least 1 − exp

(
−Chα2/ (ntraindmax)

)
, for any m = (m1, . . . ,mntrain) ∈ Rntrain

+ , there exist at least
C1hα

2/ (ntraindmax) GNN nodes in {1, . . . , j, . . . , h} that satisfy:∥∥∥∥∥ 1

ntrain

ntrain∑
i=1

miyiσ
′
(
ãfull

train,iX
(
wmini
j

)⊤)
ãfull

train,iX

∥∥∥∥∥
2

≥ C2 ∥m∥∞ d2max.

Lemma K.4 There exist absolute constants C3, C4, C5 > 0 such that, with the probability at
least 1 − exp

(
−C3hα

2/ (ntrainβ)
)
, for any m = (m1, . . . ,mntrain) ∈ Rntrain

+ , there exist at least
C4hα

2/ (ntrainβ) GNN nodes in {1, . . . , j, . . . , h} that satisfy:∥∥∥∥∥ 1

ntrain

ntrain∑
i=1

miyiσ
′
(
ãmini

train,iX
(
wmini
j

)⊤)
ãmini

train,iX

∥∥∥∥∥
2

≥ C5 ∥m∥∞ β2.
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Proof of Lemma D.4 and E.4: We first focus on the mini-batch training. We are going to prove the
gradient upper bound. The gradient ∇Wmini l

(
yiŷ

mini
i

)
can be written as:

∇Wmini l
(
yiŷ

mini
i

)
= l′

(
yiŷ

mini
i

)
· yi · ∇Wmini ŷ

mini
i

= l′
(
yiŷ

mini
i

)
· yi ·

(
vΣmini

i

)⊤
ãmini

train,iX.
(133)

Since Σmini
i is a diagonal matrix with

(
Σmini
i

)
jj

∈ {0, 1} for any j ∈ {1, . . . , h}, we have
∥∥Σmini

i

∥∥
2
=

1 for any i in the training set.

Hence, we have the following upper bound on
∥∥∇Wmini l

(
yiŷ

mini
i

)∥∥
F

:∥∥∥∇Wmini l
(
yiŷ

mini
i

)∥∥∥
F
=
∥∥∥∇Wmini l

(
yiŷ

mini
i

)∥∥∥
2

≤ −l′
(
yiŷ

mini
i

)∥∥∥Σmini
i

∥∥∥
2
∥v∥2

∥∥∥ãmini
train,i

∥∥∥
2
∥X∥2

≤ −l′
(
yiŷ

mini
i

)
C

1
2
x h

1
2 β

1
2 ,

(134)

where the first equality holds due to the fact that ∇Wmini l
(
yiŷ

mini
i

)
is a rank-one matrix, and the last

ineuqality follows Lemma K.1 and ∥v∥2 = h
1
2 .

Further, we have the following for ∇WminiL̂mini
train

(
Wmini, Ãmini

train

)
:

∥∥∥∇Wmini L̂
mini
train

(
Wmini, Ãmini

train

)∥∥∥
F
=

∥∥∥∥∥1b
b∑

i=0

∇Wmini l
(
yiŷ

mini
i

)∥∥∥∥∥
F

≤ 1

b

b∑
i=0

∥∥∥∇Wmini l
(
yiŷ

mini
i

)∥∥∥
F

≤ −C6h
1
2 β

1
2

b

b∑
i=0

l′
(
yiŷ

mini
i

)
,

(135)

where C6 is a positive constant.

Then, replacing b and β by ntrain and dmax respectively, we have:∥∥∥∇Wfull L̂
full
train

(
Wfull

)∥∥∥
F
≤ −C6h

1
2 d

1
2
max

ntrain

ntrain∑
i=1

l′
(
yiŷ

full
i

)
, (136)

for the full-graph training.

Next, we still focus on the mini-batch training. We are going to prove the gradient lower bound.

Given the initilization Wmini
0 and any W̃mini ∈ B

(
Wmini

0 , τ
)
, where B

(
Wmini

0 , τ
)

={
W :

∥∥W −Wmini
0

∥∥
2
≤ τ

}
.

We define:

gj =
1

ntrain

ntrain∑
i=0

l′
(
yiŷ

mini
i

)
yivjσ

′
(
ãmini

train,iX
(
Wmini

i,0

)⊤)
ãmini

train,iX. (137)

Then, since W0 is generated via Gaussian random initialization, by Lemma K.4, we have the
following inequality holds for at least C4hα

2/ (ntrainβ) GNN nodes:

∥gj∥2 ≥ C5 max
i

∣∣∣l′ (yiŷmini
i

)∣∣∣β2, (138)

where C4 and C5 are positive absolute constants.

Further, we can rewrite ∇wmini
j
L̂full

train

(
wmini
j , Ãmini

train

)
as follows:

∇w̃mini
j
L̂full

train

(
w̃mini

j , Ãmini
train

)
=

1

ntrain

ntrain∑
i=1

l′
(
yiŷ

mini
i

)
yivjσ

′
(
ãmini

train,iX
(
w̃mini

j

)⊤)
ãmini

train,iX. (139)
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Let zi,j = l′
(
yiŷ

mini
i

)
yivj , we have:

∥gj∥2 −
∥∥∥∇w̃mini

j
L̂full

train

(
w̃mini

j , Ãmini
train

)∥∥∥
2

=

∥∥∥∥∥ 1

ntrain

ntrain∑
i=1

zi,jσ
′
(
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train,iX
(
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)⊤)
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train,iX

∥∥∥∥∥
2

−

∥∥∥∥∥ 1

ntrain

ntrain∑
i=1

zi,jσ
′
(
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train,iX
(
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j

)⊤)
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∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

ntrain

ntrain∑
i=1

zi,j

(
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(
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train,iX
(
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)⊤)
− σ′

(
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train,iX
(
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j

)⊤))
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train,iX

∥∥∥∥∥
2

≤ 1

ntrain

ntrain∑
i=1

C
1
2
x β

1
2 max

i

∣∣∣l′ (yiŷmini
i

)∣∣∣
=C7β

1
2 max

i

∣∣∣l′ (yiŷmini
i

)∣∣∣ ,

(140)

where C7 is an absolute constant.

Therefore, there are at least C4hα
2/ (ntrainβ) GNN nodes, satisfying:∥∥∥∇w̃mini

j
L̂full

train

(
w̃mini

j , Ãmini
train

)∥∥∥
2

≥C5 max
i

∣∣∣l′ (yiŷmini
i

)∣∣∣β2 − C7β
1
2 max

i

∣∣∣l′ (yiŷmini
i

)∣∣∣
≥C8 max

i

∣∣∣l′ (yiŷmini
i

)∣∣∣β2.

(141)

Therefore, we have: ∥∥∥∇W̃mini L̂
full
train

(
W̃mini, Ãmini

train

)∥∥∥
2

=

h∑
j=1

∥∥∥∇w̃mini
j
L̂full

train

(
w̃mini

j , Ãmini
train

)∥∥∥
2

≥C4hα
2

ntrainβ

(
C8 max

i

∣∣∣l′ (yiŷmini
i

)∣∣∣β2
)2

≥C9hα
2β3

n3
train

(
ntrain∑
i=1

l′
(
yiŷ

mini
i

))2

.

(142)

Then, replacing β by dmax, we have:

∥∥∥∇W̃full L̂
full
train

(
W̃full

)∥∥∥
2
≥ C9hα

2d3max
n3

train

(
ntrain∑
i=1

l′
(
yiŷ

full
i

))2

, (143)

for the full-graph training.

Proved.

K.3 PROOF OF LEMMA D.5

Lemma K.5 For any δ > 0, with probability at least 1− e−O(1), if Wfull
t ∈ B

(
Wfull

0 , τ
)
, it holds

that: ∥∥wfull
j,t

∥∥
2
≤ C + τ,

and ∥∥wfull
j,0

∥∥
2
≤ C,

for j ∈ {1, . . . , h}, where C = κ (
√
r + δ) is positive constant.

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Proof of Lemma D.5: Since l (x) is 1/4-smooth, the following holds for any ∆ and x:

l (x+∆) ≤ l (x) + l′ (x)∆ +
1

8
∆2. (144)

Then we have the following upper bound on L̂full
train

(
Wfull

t+1

)
− L̂full

train

(
Wfull

t

)
:

L̂full
train

(
Wfull

t+1

)
− L̂full

train

(
Wfull

t

)
=

1

ntrain

ntrain∑
i=1

[
l
(
yiŷ

full
i,t+1

)
− l
(
yiŷ

full
i,t

)]
=

1

ntrain

ntrain∑
i=1

[
l′
(
yiŷ

full
i,t+1

)
∆full

i,t+1 +
1

8

(
∆full

i,t+1

)2]
,

(145)

where ∆full
i,t+1 = yi

(
ŷfull
i,t+1 − ŷfull

i,t

)
.

Therefore, we are going to bound ∆full
i,t . The upper bound of

∣∣∆full
i,t

∣∣ can be derived as:∣∣∣∆full
i,t

∣∣∣ = ∣∣∣∣yiãfull
train,iX

(
Σfull

i,t+1W
full
t+1

)⊤
v⊤ − yiã

full
train,iX

(
Σfull

i,tW
full
t

)⊤
v⊤
∣∣∣∣

=

∣∣∣∣yiãfull
train,iX

(
Σfull

i,t+1W
full
t+1 −Σfull

i,tW
full
t

)⊤
v⊤
∣∣∣∣

≤ C
1
2
x d

1
2
maxh

1
2

∥∥∥Σfull
i,t+1W

full
t+1 −Σfull

i,tW
full
t

∥∥∥
2
,

(146)

where the last inequality follows Lemma K.1.

Hence, we have:∣∣∣∆full
i,t

∣∣∣ ≤ C
1
2
x d

1
2
maxh

1
2

∥∥∥(Wfull
t+1 −Wfull

t

)
Σfull

i,t+1

∥∥∥
2
+
∥∥∥Wfull

t

(
Σfull

i,t+1 −Σfull
i,t

)∥∥∥
2

≤ 2C
1
2
x d

1
2
maxh

1
2

(∥∥∥Wfull
t+1 −Wfull

t

∥∥∥
2
+
∥∥∥Wfull

t

∥∥∥
2

)
≤ C1d

1
2
maxh

1
2 η
(∥∥∥∇Wfull

t
L̂full

train

(
Wfull

t

)∥∥∥
2
+ C + τ

)
= C1d

1
2
maxh

1
2 η
(∥∥∥∇Wfull

t
L̂full

train

(
Wfull

t

)∥∥∥
F
+ C + τ

)
.

(147)

Note that τ has an upper bound, the third term in the brackets on the right-hand side of the above
inequality is dominated by the first one. Then we have:∣∣∣∆full

i,t

∣∣∣ ≤ C1d
1
2
maxh

1
2 η
∥∥∥∇Wfull

t
L̂full

train

(
Wfull

t

)∥∥∥
F
. (148)

Then we are going to prove the lower bound of ∆full
i,t .

Since ∆full
i,t = yiã

full
train,iX

(
Σfull
i,t+1W

full
t+1 −Σfull

i,tW
full
t

)⊤
v⊤ = yi

(
zfull
i,t+1 − zfull

i,t

)
v⊤, thus we mainly

focus on bounding the term zfull
i,t+1 − zfull

i,t .

We define the diagonal matrix Σ̃full
i,t as:

(
Σ̃full

i,t

)
jj

=
(
Σfull

i,t+1 −Σfull
i,t

)
jj

(
wfull

j,t+1

)⊤
(
wfull

j,t+1 −wfull
j,t

)⊤ , (149)

for any j ∈ {1, . . . , h}.

Then we have:
zfull
i,t+1 − zfull

i,t

=ãfull
train,iX

(
Wfull

t+1 −Wfull
t

)⊤ (
Σfull

i,t + Σ̃full
i,t

)⊤
=− ηãfull

train,iX∇Wfull
t
L̂full

train

(
Wfull

t

)(
Σfull

i,t + Σ̃full
i,t

)⊤
.

(150)
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Thus, the following holds:

∆full
i,t =yi

(
zfull
i,t+1 − zfull

i,t

)
v⊤

=− ηyiã
full
train,iX∇Wfull

t
L̂full

train

(
Wfull

t

)(
v
(
Σfull

i,t + Σ̃full
i,t

))⊤
=− ηyiã

full
train,iX∇Wfull

t
L̂full

train

(
Wfull

t

)(
vΣ̃full

i,t

)⊤
− ηyiã

full
train,iX∇Wfull

t
L̂full

train

(
Wfull

t

)(
vΣfull

i,t

)⊤
=U

(1)
i,t +U

(2)
i,t ,

(151)

where we define:
U

(1)
i,t = −ηyiãfull

train,iX∇Wfull
t
L̂full

train

(
Wfull

t

)(
vΣ̃full

i,t

)⊤
, (152)

and
U

(2)
i,t = −ηyiãfull

train,iX∇Wfull
t
L̂full

train

(
Wfull

t

)(
vΣfull

i,t

)⊤
. (153)

For U(1)
i,t , we notice that:∥∥∥vΣ̃full

i,t

∥∥∥
2
≤∥v∥2

∥∥∥Σ̃full
i,t

∥∥∥
2

≤h
1
2 max

j

∣∣∣∣∣(Σfull
i,t+1 −Σfull

i,t

)
jj

(
wfull

j,t+1

)⊤(
wfull

j,t+1 −wfull
j,t

)⊤
∣∣∣∣∣

≤h
1
2 max

j

∣∣∣∣∣
(
wfull

j,t+1

)⊤(
wfull

j,t+1 −wfull
j,t

)⊤
∣∣∣∣∣ .

(154)

Using Lemma K.5 and noticing that τ has a upper bound, we have:∣∣∣∣∣∣∣
(
wfull

j,t+1

)⊤
(
wfull

j,t+1 −wfull
j,t

)⊤
∣∣∣∣∣∣∣ ≤

∥∥∥wfull
j,t+1

∥∥∥
2∥∥wfull

j,t+1

∥∥
2
−
∥∥wfull

j,t

∥∥
2

≤

∥∥∥wfull
j,0

∥∥∥
2
+ τ

ετ
≤ C2τ

−1, (155)

where ε represents a positive small enough constant and C2 is a positive constant.

Then we have
∥∥∥vΣ̃full

i,t

∥∥∥
2

≤ C2h
1
2 τ−1, thereby we know that

∣∣∣U(1)
i,t

∣∣∣ ≤

C3ηd
1
2
maxh

1
2 τ−1

∥∥∥∇Wfull
t
L̂full

train

(
Wfull

t

)∥∥∥
F

.

Moreover, we have:

1
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ntrain∑
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(
yiŷ

full
i,t

)
U

(2)
i,t

=− η
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(
yiŷ
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)
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t
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)⊤
=− η
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t
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(
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t

)∥∥∥2
F
.

(156)

Therefore, putting everything together, we have:

L̂full
train

(
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t+1

)
− L̂full

train

(
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t

)
=

1
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[
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)
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8

(
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≤ 1
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)
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2
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train

(
Wfull

t
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F
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(
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(
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(157)
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Since we both have the condition "with the probability at least 1−exp
(
−O

(
hα2/ (ntraindmax)

))
" and

"with the probability at least 1− exp (−O (1))", we can write the condition as "with the probability
at least 1− exp (−O (1))".

Proved.

K.4 PROOF OF LEMMA E.5

Lemma K.6 For any δ > 0, with probability at least 1− e−O(1), if Wmini
t ∈ B

(
Wmini

0 , τ
)
, it holds

that: ∥∥wmini
j,t

∥∥
2
≤ C + τ,

and ∥∥wmini
j,0

∥∥
2
≤ C,

for j ∈ {1, . . . , h}, where C = κ (
√
r + δ) is positive constant.

Proof of Lemma E.5: Since l (x) is 1/4-smooth, the following holds for any ∆ and x:

l (x+∆) ≤ l (x) + l′ (x)∆ +
1

8
∆2. (158)

Then we have the following upper bound on L̂full
train

(
Wmini

t+1

)
− L̂full

train

(
Wmini

t

)
:

L̂full
train

(
Wmini

t+1, Ã
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)
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(
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)
=

1
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[
l
(
yiŷ
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)
− l
(
yiŷ
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)]
=

1
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[
l′
(
yiŷ

mini
i,t+1

)
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i,t+1 +
1

8

(
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i,t+1

)2]
,

(159)

where ∆mini
i,t+1 = yi

(
ŷmini
i,t+1 − ŷmini

i,t

)
.

Then, taking expectation conditioning Wmini
t gives:

E
[
L̂full

train

(
Wmini

t+1, Ã
mini
train

)
|Wmini

t

]
− L̂full

train

(
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t , Ãmini
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)
=

1
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[
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(
yiŷ

mini
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)
E
[
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i,t+1|Wmini
t

]
+

1

8
E
[(
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)2
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t

]]
.

(160)

Similar to the proof of Lemma D.5, we have:

1

ntrain

ntrain∑
i=1

l′
(
yiŷ

mini
i,t+1

)
E
[
∆mini

i,t+1|Wmini
t

]
≤− η

∥∥∥∇Wmini
t
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(
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t , Ãmini
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)∥∥∥2
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−
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1
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F
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(
yiŷ
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)
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(161)

In terms of E
[(
∆mini
i,t+1

)2 |Wmini
t

]
, similar to the proof of Lemma D.5, we have:

E
[(

∆mini
i,t+1

)2
|Wmini

t

]
≤ C2βhη

2E
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t
L̂mini

train

(
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t , Ãmini
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)∥∥∥2
F
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t

]
. (162)
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Furthermore, using Lemma E.6, we have:

E
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t
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train

(
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t , Ãmini
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)∥∥∥2
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F
+
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b
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t , Ãmini
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)∥∥∥2
F
.

(163)

Hence, the following holds:

E
[(

∆mini
i,t+1

)2
|Wmini

t

]
≤ C3βhntrainη

2

b

∥∥∥∇Wmini
t
L̂full

train

(
Wmini

t , Ãmini
train

)∥∥∥2
F

(164)

Therefore, we have:
E
[
L̂full

train

(
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t+1, Ã
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)
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t

]
− L̂full

train
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)
≤−

(
η − C3ntrainβhη

2

b
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t
L̂full
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(
Wmini
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−
C1ηβ

1
2 h

1
2
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t
L̂full
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t , Ãmini
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)∥∥∥
F

ntrainτ

ntrain∑
i=1
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(
yiŷ

mini
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) (165)

Since we both have the condition "with the probability at least 1− exp
(
−O

(
hα2/ (ntrainβ)

))
" and

"with the probability at least 1− exp (−O (1))", we can write the condition as "with the probability
at least 1− exp (−O (1))".

Proved.

L PROOF OF AUXILIARY LEMMAS OF CONVERGENCE THEOREMS WITH CE

L.1 PROOF OF LEMMA K.1:

We first focus on the mini-batch training. The normalized adjacency matrix can be expressed as:

Ãmini
train =


1√
din
1

. . .
1√
din
b


a11 · · · a1n

...
. . .

...
ab1 · · · abn




1√
dout
1

. . .
1√
dout
n



=


1√
din
1

1√
dout
1

a11 · · · 1√
din
1

1√
dout
n

a1n

...
. . .

...
1√
din
1

1√
dout
b

ab1 · · · 1√
din
b

1√
dout
n

abn

 ,
(166)

where aij ∈ {0, 1} for any node i in the mini batch and j ∈ {1, . . . , n}.

Then, the following inequality holds on the l2-norm of ãmini
train,i:∥∥∥ãmini

train,i

∥∥∥2
2
≤ 1

din
i d

out
1

+ · · ·+ 1

din
i d

out
n

≤ β, (167)

where the first inequality has at most β terms because there exist at most β terms with aij = 1, and
the last inequality follows 1

din
i d

out
j

≤ 1.

Similarly, under the full-graph training, we have:∥∥∥ãfull
train,i

∥∥∥2
2
≤ 1

din
i d

out
1

+ · · ·+ 1

din
i d

out
n

≤ dmax. (168)

This completes the proof.
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L.2 PROOF OF LEMMA K.2:

We first focus on the mini-batch training.

For any fixed i ∈ {1, . . . , ntrain} and j ∈ {1, . . . , h}, conditioned on ãmini
train,iX, we have:

E
[
σ2

(
ãmini

train,iX
(
wmini

j

)⊤)
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train,iX

]
=
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2
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(
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j

)⊤)2
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train,iX

]

=
∥∥∥ãmini

train,iX
∥∥∥2
2
κ2,

(169)

where the last inequality is due to ãmini
train,iX

(
wmini
j

)⊤ ∼ N
(
0,
∥∥ãmini

train,iX
∥∥2
2
κ2I
)

conditioned on

ãmini
train,iX.

Then, since zmini
i = ãmini

train,iX(Σmini
i Wmini)⊤, by Bernstein inequality, for any ξ ≥ 0, we have:

P
(∣∣∣∣∥∥∥zmini

i
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2
−
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∥∥∥2
2
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2
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)
≤ 2 exp

(
−Chmin

{
ξ2, ξ

})
.

(170)

Taking union bound over i, we have:

P
(∣∣∣∣∥∥∥zmini

i

∥∥∥2
2
−
∥∥∥ãmini

train,iX
∥∥∥2
2
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2
ξ, i = 1, . . . , ntrain

)
≤ 1− 2ntrain exp

(
−Chmin

{
ξ2, ξ
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,

(171)

which further implies that, if h ≥ C2
1 log (ntrain/δ), then with probability at least 1− δ, we have:∣∣∣∣∥∥∥zmini

i

∥∥∥2
2
−
∥∥∥ãmini

train,iX
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2

∣∣∣∣ ≤ C1

∥∥∥ãmini
train,iX
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2

√
log (ntrain/δ)

h
, (172)

for any i = 1, . . . , ntrain, where C1 is an absolute constant.

This inequality implies that:∥∥∥zmini
i

∥∥∥2
2
≤

[
1 + C1

√
log (ntrain/δ)

h

] 1
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≤
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√
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h

] 1
2 ∥∥∥ãmini
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2
∥X∥22
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1
2
x β

1
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√
log (ntrain/δ)

h

)
,

(173)

where the last inequality fowllows by the fact that (1 + x)
1
2 ≤ 1 + x for x > 0, which is applicable

here.

Similarly, we can also prove that:∥∥∥zmini
i

∥∥∥2
2
≥ C

1
2
x β

1
2

(
1− C2

√
log (ntrain/δ)

h

)
, (174)

for some absolute constant C2. Hence, we have:∣∣∣∣∥∥∥zmini
i

∥∥∥2
2
− C

1
2
x β

1
2

∣∣∣∣ ≤ C3

√
β
log (ntrain/δ)

h
, (175)

where C3 is an absolute constant.

For the full-graph training, we can replace β by dmax as:∣∣∣∣∥∥∥zmini
i

∥∥∥2
2
− C

1
2
x d

1
2
max

∣∣∣∣ ≤ C4

√
dmax

log (ntrain/δ)

h
, (176)

where C4 is an absolute constant.

This completes the proof.
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L.3 PROOF OF LEMMA K.3 AND K.4

Lemma L.1 Assume that for i ̸= j such that yi ̸= yj ,
∥∥ãfull

train,iX− ãfull
train,jX

∥∥
2

≥ α

and
∥∥ãmini

train,iX− ãmini
train,jX

∥∥
2

≥ α. For any m = (m1, . . . ,mntrain) ∈ Rntrain
+ ,

we define h
(
wfull
j

)
=

∑ntrain
i=1 miyiσ

′
(
ãfull

train,iX
(
wfull
j

)⊤)
ãfull

train,iX and h
(
wmini
j

)
=∑ntrain

i=1 miyiσ
′
(
ãmini

train,iX
(
wmini
j

)⊤)
ãmini

train,iX, where wj is a Gaussian random vector for any
j = 1, . . . , h. There exist absolute constant C,C1, C2, C3 > 0 such that:

P
[∥∥h (wfull

j

)∥∥
2
≥ C ∥m∥∞

]
≥ C1

α2

ntraindmax
.

and

P
[∥∥h (wmini

j

)∥∥
2
≥ C2 ∥m∥∞

]
≥ C3

α2

ntrainβ
.

Proof of Lemma K.3 and K.4: We first focus on the mini-batch training. Under the assumption,
we know that for i ̸= j and yi ̸= yj ,

∥∥ãmini
train,iX− ãmini

train,jX
∥∥
2
≥ α. For any given j = {1, . . . , h} and

m̂ with ∥m̂∥∞ = 1, by Lemma L.1, we have:

P

[∥∥∥∥∥ 1

ntrain

ntrain∑
i=1

m̂iyiσ
′
(
ãmini

train,iX
(
wmini

j

)⊤)
ãmini

train,iX

∥∥∥∥∥
2

≥ C2

ntrain

]
≥ C3α

2

ntrainβ
. (177)

Let Sntrain−1
∞,+ =

{
m ∈ Rntrain

+ : ∥m∥∞ = 1
}

, and U = U
[
Sntrain−1
∞,+ , C2/ (4ntrain)

]
be a C2/ (4ntrain)-

net covering Sntrain−1
∞,+ in l∞-norm. Then we have:

|U| ≤ (4ntrain/C2)
ntrain . (178)

For j = 1, . . . , h, we define:

Zij = 1

[∥∥∥∥∥ 1

ntrain

ntrain∑
i=1

m̂iyiσ
′
(
ãmini

train,iX
(
wmini

j

)⊤)
ãmini

train,iX

∥∥∥∥∥
2

≥ C2

ntrain

]
. (179)

Let pα = C3α
2

ntrainβ
, by Bernstein ineuqality and union bound, with probability at least 1 −

exp (−C4hpα + ntrain log (4ntrain/C2)) ≥ 1− exp
(
−C5hα

2/ (ntrainβ)
)
, we have:

1

h

h∑
j=1

Zj ≥ pα
2
, (180)

where C4 and C5 are absolute constants.

For any m ∈ Sntrain−1
∞,+ , there exists m̂ ∈ U such that:

∥m− m̂∥∞ ≤ C2/ (4ntrain) . (181)

Therefore, we have:

|

∥∥∥∥∥ 1

ntrain

ntrain∑
i=1

miyiσ
′
(
ãmini

train,iX
(
wmini

j

)⊤)
ãmini

train,iX

∥∥∥∥∥
2

−

∥∥∥∥∥ 1

ntrain

ntrain∑
i=1

m̂iyiσ
′
(
ãmini

train,iX
(
wmini

j

)⊤)
ãmini

train,iX

∥∥∥∥∥
2

| ≤ C6β
2.

(182)

where C6 is an absolute constant.

It is clear that with probability 1− exp
(
−C5hα

2/ (ntrainβ)
)
), for any m ∈ Sntrain−1

∞,+ , there exist at
least C3hα

2/ (ntrainβ) GNN nodes that satisfy:∥∥∥∥∥ 1

ntrain

ntrain∑
i=1

m̂iyiσ
′
(
ãmini

train,iX
(
wmini

j

)⊤)
ãmini

train,iX

∥∥∥∥∥
2

≥ C6β
2 = C6β

2 ∥m∥∞ . (183)

53



2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

Similarly, for the full-graph training, we replace β by dmax. It is clear that with probability 1 −
exp

(
−C7hα

2/ (ntraindmax)
)
), for any m ∈ Sntrain−1

∞,+ , there exist at least C8hα
2/ (ntraindmax) GNN

nodes that satisfy:∥∥∥∥∥ 1

ntrain

ntrain∑
i=1

m̂iyiσ
′
(
ãfull

train,iX
(
wfull

j

)⊤)
ãfull

train,iX

∥∥∥∥∥
2

≥ C9d
2
max = C9d

2
max ∥m∥∞ . (184)

where C7, C8 and C9 are absolute constants.

This completes the proof.

L.4 PROOF OF LEMMA K.5 AND K.6:

We first focus on the mini-batch training. Under the assumption, we know that each row of Wmini
0

follows N
(
0, κ2I

)
. We define:

Wmini
0 = κZ, (185)

where Z ∈ Rh×r with Zj ∈ R1×r ∼ N (0, I).

Using Vershynin’s result, we have:

P
(
∥Z∥2 ≤

√
r +

√
h+ δ

)
≥ 1− e−

δ2

2 , (186)

and
P
(
∥Zj∥2 ≤

√
r + δ

)
≥ 1− e−

δ2

2 . (187)

Therefore, with probability at least 1− e−
δ2

2 , we have:∥∥∥wmini
j,0

∥∥∥
2
≤ κ

(√
r + δ

)
(188)

Since Wmini
t ∈ B

(
Wmini

0 , τ
)
, we have:∥∥∥wmini

j,t

∥∥∥
2
≤ κ

(√
r + δ

)
+ τ (189)

Similarly, under the full-graph training, we have:∥∥∥wfull
j,0

∥∥∥
2
≤ κ

(√
r + δ

)
(190)

and ∥∥∥wfull
j,t

∥∥∥
2
≤ κ

(√
r + δ

)
+ τ (191)

L.5 PROOF OF LEMMA L.1:

We first focus on the mini-batch training. Without loss of generality, we assume that m1 = ∥m∥∞.
Let z̃1 = ãmini

train,1X/
∥∥ãmini

train,1X
∥∥
2
, we can construct an orthonormal matrix Q = [z̃1,Q

′] ∈ Rr×r.

Let u = Q⊤wmini
j ∼ N

(
0, κ2I

)
be a Gaussian random vector with 0 < κ ≤ 1. Then we have:

wmini
j =

∥∥∥ãmini
train,1X

∥∥∥
2
Qu = u1ã

mini
train,1X+

∥∥∥ãmini
train,1X

∥∥∥
2
Q′u′, (192)

where u′ = (u2, . . . ,ur)
⊤.

We define the following two events based on a parameter γ ∈ (0, 1]:

E1(γ) = {Cxβ |u1| ≤ γ} , (193)

and
E2(γ) = {

∣∣∣< ∥∥∥ãmini
train,1X

∥∥∥
2
Q′u′, ãmini

train,iX >
∣∣∣ ≤ γ

for all ãmini
train,iX such that

∥∥∥ãmini
train,iX− ãmini

train,1X
∥∥∥
2
≥ α}.

(194)
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Let E(γ) = E1(γ) ∩ E2(γ). We first give lower bound for P (E) = P (E1)P (E2).

Since u1 ∼ N
(
0, κ2

)
, we have:

P (E1) ≥P
({
Cxβ |u1| ≤ κ2γ

})
=

1√
2π

∫ γκ2

Cxβ

− γκ2

Cxβ

exp

(
−1

2
x2
)
dx

≥
√

2

πe

γκ2

Cxβ
.

(195)

Moreover, by definition, for any i = 1, . . . , ntrain, we have:

<
∥∥∥ãmini

train,1X
∥∥∥
2
Q′u′, ãmini

train,iX >

∼ N

[
0,
∥∥∥ãmini

train,1X
∥∥∥2
2

∥∥∥ãmini
train,iX

∥∥∥2
2
−
((

ãmini
train,1X

)⊤
ãmini

train,iX

)2
]
.

(196)

Let I =
{
i :
∥∥ãmini

train,iX− ãmini
train,1X

∥∥
2
≥ α

}
. For any i ∈ I, we have:∥∥∥ãmini

train,iX− ãmini
train,1X

∥∥∥
2

=
∥∥∥ãmini

train,iX
∥∥∥
2
+
∥∥∥ãmini

train,1X
∥∥∥
2
− 2 < ãmini

train,iX, ã
mini
train,1X > .

(197)

Then we have:

−Cxβ +
α2

2
≤< ãmini

train,iX, ã
mini
train,1X >≤ Cxβ − α2

2
, (198)

and if α2 ≤ 2Cxβ, then:

C2
xβ

2 −
((

ãmini
train,1X

)⊤
ãmini

train,iX

)2

≥C2
xβ

2 −
(
C2

xβ
2 − α2

2

)2

≥C2
xβ

2 ≥ α2

4

(199)

Therefore, for any i ∈ I, we have:

P
[∣∣∣< ∥∥∥ãmini

train,1X
∥∥∥
2
Q′u′, ãmini

train,iX >
∣∣∣ ≤ γ

]
=

1√
2π

∫ [
∥ãmini

train,1X∥2

2
∥ãmini

train,iX∥2

2
−
(
(ãmini

train,1X)
⊤
ãmini

train,iX
)2

] 1
2
γ

−
[
∥ãmini

train,1X∥2

2
∥ãmini

train,iX∥2

2
−
(
(ãmini

train,1X)
⊤
ãmini

train,iX
)2

] 1
2
γ

exp

(
−1

2
x2
)
dx

≤ 1√
2π

∫ [
C2

xβ2−
(
(ãmini

train,1X)
⊤
ãmini

train,iX
)2

] 1
2
γ

−
[
C2

xβ2−
(
(ãmini

train,1X)
⊤
ãmini

train,iX
)2

] 1
2
γ

exp

(
−1

2
x2
)
dx

≤
√

2

π

γ[
C2

xβ2 −
((

ãmini
train,1X

)⊤
ãmini

train,iX
)2] 1

2

≤
√

2

π

γ

α2/2

(200)

Taking union bound over I, we have:

P (E2) ≥ 1− 2
√
2√
π
ntrainγα

−2. (201)
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Therefore, we have:

P (E) ≥
√

2

πe

γκ2

Cxβ

(
1− 2

√
2√
π
ntrainγα

−2

)
. (202)

Setting γ =
√
πα2

4
√
2ntrain

, we obtain:

P (E) ≥
√

2

πe

κ2

Cxβ

√
πα2

4
√
2ntrain

(
1− 2

√
2√
π
ntrain

√
πα2

4
√
2ntrain

α−2

)
=

κ2α2

8
√
eCxntrainβ

.

(203)

Let I ′ = [ntrain]\ (I ∪ {1}). Conditioning on event E , we have:

h
(
wmini

j

)
=

ntrain∑
i=1

miyiσ
′
(
ãmini

train,iX
(
wmini

j

)⊤)
ãmini

train,iX

=m1y1σ
′ (u1) ã

mini
train,1X

+
∑
i∈I

miyiσ
′
(
u1 < ãmini

train,1X, ã
mini
train,iX >,<

∥∥∥ãmini
train,1X

∥∥∥
2
Q′u′, ãmini

train,iX >
)
ãmini

train,iX

+
∑
i∈I′

miyiσ
′
(
u1 < ãmini

train,1X, ã
mini
train,iX >,<

∥∥∥ãmini
train,1X

∥∥∥
2
Q′u′, ãmini

train,iX >
)
ãmini

train,iX

=m1y1σ
′ (u1) ã

mini
train,1X+

∑
i∈I

miyiσ
′
(
<
∥∥∥ãmini

train,1X
∥∥∥
2
Q′u′, ãmini

train,iX >
)
ãmini

train,iX

+
∑
i∈I′

miyiσ
′
(
u1 < ãmini

train,1X, ã
mini
train,iX >,<

∥∥∥ãmini
train,1X

∥∥∥
2
Q′u′, ãmini

train,iX >
)
ãmini

train,iX,

(204)

where the last equality follows from the fact that conditioning on event E , for all i ∈ I, it hold that:∣∣∣< ∥∥∥ãmini
train,1X

∥∥∥
2
Q′u′, ãmini

train,iX >
∣∣∣ ≥ |u1Cxβ| ≥

∣∣∣u1 < ãmini
train,1X, ã

mini
train,iX >

∣∣∣ . (205)

We then consider two cases: u1 > 0 and u1 < 0, which occur equally likely conditioning on E .

Therefore, we have:

P

[∥∥∥h(wmini
j

)∥∥∥
2
≥ inf

u
(1)
1 >0,u

(2)
1 <0

max
{∥∥∥h(wmini,(1)

j

)∥∥∥
2
,
∥∥∥h(wmini,(2)

j

)∥∥∥
2

}
|E

]
≥ 1

2
, (206)

where we define w
mini,(1)
j = u

(1)
1 ãmini

train,1X +
∥∥ãmini

train,1X
∥∥
2
Q′u′ and w

mini,(2)
j = u

(2)
1 ãmini

train,1X +∥∥ãmini
train,1X

∥∥
2
Q′u′.

By the inequality max {∥a∥2 , ∥b∥2} ≥ ∥a− b∥2 /2, we have:

P

[∥∥∥h(wmini
j

)∥∥∥
2
≥ inf

u
(1)
1 >0,u

(2)
1 <0

∥∥∥h(wmini,(1)
j

)
− h

(
w

mini,(2)
j

)∥∥∥
2
/2|E

]
≥ 1

2
, (207)

By Eq 204, we have:

h
(
w

mini,(1)
j

)
− h

(
w

mini,(2)
j

)
= m1y1ã

mini
train,1X+

∑
i∈I′

m′
iyiã

mini
train,iX, (208)

where we define:

m′
i = mi[σ

′
(
u
(1)
1 < ãmini

train,1X, ã
mini
train,iX >,<

∥∥∥ãmini
train,1X

∥∥∥
2
Q′u′, ãmini

train,iX >
)

− σ′
(
u
(2)
1 < ãmini

train,1X, ã
mini
train,iX >,<

∥∥∥ãmini
train,1X

∥∥∥
2
Q′u′, ãmini
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)
].

(209)
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Note that for all i ∈ I ′, we have yi = y1 and < ãmini
train,1X, ã

mini
train,iX >≥ Cxβ − α2/2 ≥ 0. Therefore,

since u
(1)
1 > 0 > u

(2)
1 , we have:

σ′
(
u
(1)
1 < ãmini

train,1X, ã
mini
train,iX >,<

∥∥∥ãmini
train,1X

∥∥∥
2
Q′u′, ãmini

train,iX >
)

− σ′
(
u
(2)
1 < ãmini

train,1X, ã
mini
train,iX >,<

∥∥∥ãmini
train,1X

∥∥∥
2
Q′u′, ãmini

train,iX >
)
≥ 0.

(210)

Therefore, m′
i ≥ 0 for all i ∈ I ′ and

h
(
w

mini,(1)
j

)
− h

(
w

mini,(2)
j

)
= y1

(
m1ã

mini
train,1X+

∑
i∈I′

m′
iã

mini
train,iX

)
. (211)

Then we have: ∥∥∥h(wmini,(1)
j

)
− h

(
w

mini,(2)
j

)∥∥∥
2

≥

∥∥∥∥∥y1
(
m1ã

mini
train,1X+

∑
i∈I′

m′
iã

mini
train,iX

)∥∥∥∥∥
2

≥ <m1ã
mini
train,1X+

∑
i∈I′

m′
iã

mini
train,iX, ã

mini
train,1X > /

∥∥∥ãmini
train,1X

∥∥∥
2

≥m1.

(212)

Since the inequality above holds for any u
(1)
1 > 0 and u

(2)
1 < 0, taking infimum, we have:

inf
u
(1)
1 >0,u

(2)
1 <0

∥∥∥h(wmini,(1)
j

)
− h

(
w

mini,(2)
j

)∥∥∥
2
≥ m1. (213)

Therefore, we have:
P
[∥∥∥h(wmini

j

)∥∥∥
2
≥ m1/2|E

]
≥ 1

2
. (214)

Since m1 = ∥m∥∞ and P (E) ≥ κ2α2

8
√
eCxntrainβ

, we have:

P
[∥∥∥h(wmini

j

)∥∥∥
2
≥ C ∥m∥∞

]
≥ C1α

2

ntrainβ
, (215)

where C and C1 are absolute constants.

Similarly, for the full-graph training, we can replace β by dmax as:

P
[∥∥∥h(wfull

j

)∥∥∥
2
≥ C2 ∥m∥∞

]
≥ C3α

2

ntraindmax
, (216)

where C2 and C3 are absolute constants.

Proved.

M PROOFS OF THE MAIN THEOREM AND LEMMA OF THEOREM 5

M.1 PROOF OF THEOREM G.5

Lemma M.1. (Lemma 4 in (Ma et al., 2021)) For any two distributions P and Q defined on the
hypothesis space, and any function f(·) ∈ R with domf in this hypothesis space, we have:

Ex∼Q ≤ DKL (Q∥P) + Ex∼Pe
f(x).

Lemma M.2. (Lemma 2 in (Ma et al., 2021)) Suppose x1, x2, . . . , xn are independent random
variables with ai ≤ xi ≤ bi, ∀i = 1, 2, . . . , n. Let x = 1

n

∑n
i=1 xi. Then, for any C > 0,

P (|x− E (x) | > C) ≤ 2e
− n2C2∑n

i=1(bi−ai)
2
.
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Lemma M.3. (Lemma 3 in (Ma et al., 2021)) If x is a centered random variable, i.e., E (x) = 0,
and if ∃C1 > 0, for any C2 > 0,

P (|x| > C2) ≤ 2e−C1C
2
2 .

Then, for any Cu > 0,

E
(
eCux

)
≤ e

C2
u

2C1 .

Proof of Theorem G.5: We are going to prove the result by upper-bounding the quantity
Cu(Ltest

(
Wmini, Ãfull

test;Q
)
− L̂full

train

(
Wmini, Ãmini

train;Q
)

. First, we have:

Cu(Ltest

(
Wmini, Ãfull

test;Q
)
− L̂full

train

(
Wmini, Ãmini

train;Q
)

≤EWmini∼Q

[
Cu

(
Ltest

(
Wmini, Ãfull

test

)
− L̂full

train

(
Wmini, Ãmini

train

))]
≤DKL(Q∥P) + lnEWmini∼P

[
e(Ltest(Wmini,Ãfull

test)−L̂full
train(W

mini,Ãmini
train))

]
,

(217)

where the last inequality uses Lemma M.1.

Next, we upper-bound the second term in the RHS of (217). Here the term Λ =

EWmini∼P

[
e(Ltest(Wmini,Ãfull

test)−L̂
full
train(W

mini,Ãmini
train))

]
is a random variable with the randomness coming

from the sample of node labels in training dataset, and P is independent of node labels y from train-
ing dataset. Applying Markov’s inequality to the term Λ, we have for any CG > 0, with probability
at least 1− CG over y from training set,

Λ ≤ 1

CG
Ey∼training set [Λ] , (218)

and hence,
lnΛ ≤ ln

1

CG
Ey∼training set [Λ] = ln

1

CG
+ lnEy∼training set [Λ] . (219)

Then we need to upper-bound lnEy∼training set [Λ]. We can rewrite it as:

lnEy∼training set [Λ]

= lnEy∼training setEWmini∼P

[
e(Ltest(Wmini,Ãfull

test)−L̂full
train(W

mini,Ãmini
train))

]
= lnEWmini∼PEy∼training set

[
e(Ltest(Wmini,Ãfull

test)−L̂full
train(W

mini,Ãmini
train))

]
.

(220)

For a fixed model with model parameters Wmini, we have

Ey∼training set

[
e(Ltest(Wmini,Ãfull

test)−L̂full
train(W

mini,Ãmini
train))

]
=Ey∼training set

[
e(Ltest(Wmini,Ãfull

test)−Lfull
train(W

mini,Ãmini
train)+Lfull

train(W
mini,Ãmini

train)−L̂full
train(W

mini,Ãmini
train))

]
=Ey∼training set

[
e(Ltest(Wmini,Ãfull

test)−Lfull
train(W

mini,Ãmini
train))e(L

full
train(W

mini,Ãmini
train)−L̂full

train(W
mini,Ãmini

train))
]

=e(Ltest(Wmini,Ãfull
test)−Lfull

train(W
mini,Ãmini

train))Ey∼training set

[
e(L

full
train(W

mini,Ãmini
train)−L̂full

train(W
mini,Ãmini

train))
]
.

(221)

In the following, we wil give an upper bound on Ey∼training set

[
e(L

full
train(W

mini,Ãmini
train)−L̂

full
train(W

mini,Ãmini
train))

]
that is independent of Wmini. For the entire training dataset, L̂full

train

(
Wmini, Ãmini

train

)
can be written as:

L̂full
train

(
Wmini, Ãmini

train

)
=

1

ntrain

∑
i∈training set

∥ŷmini
i − yi∥2F , (222)

where the node labels are independently sampled. Hence, L̂full
train

(
Wmini, Ãmini

train

)
is the empirical

mean of ntrain independent Bernoulli random variables and Lfull
train

(
Wmini, Ãmini

train

)
is the expectation

of L̂full
train

(
Wmini, Ãmini

train

)
. By Lemma M.2, for any C1 > 0,

P
(∣∣∣Lfull

train

(
Wmini, Ãmini

train

)
− L̂full

train

(
Wmini, Ãmini

train

)∣∣∣ ≥ C1

)
≤ 2e−2ntrainC

2
1 , (223)
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and hence, by Lemma M.1, we have

Ey∼training set

[
eCu(Lfull

train(W
mini,Ãmini

train)−L̂full
train(W

mini,Ãmini
train))

]
≤ e

C2
u

4ntrain . (224)

Therefore, we have

lnΛ ≤ lnEWmini∼P

[
e(Ltest(Wmini,Ãfull

test)−Lfull
train(W

mini,Ãmini
train))e

C2
u

4ntrain

]

=U +
C2

u

4ntrain
.

(225)

Finally, we get

Cu(Ltest

(
Wmini, Ãfull

test;Q
)
− L̂full

train

(
Wmini, Ãmini

train;Q
)

≤DKL(Q∥P) + lnEWmini∼P

[
e(Ltest(Wmini,Ãfull

test)−L̂full
train(W

mini,Ãmini
train))

]
≤DKL(Q∥P) + ln

1

CG
+

C2
u

4ntrain
+ U.

(226)

Hence, we have the final result

Ltest

(
Wmini, Ãfull

test;Q
)

≤L̂full
train

(
Wmini, Ãmini

train;Q
)
+

1

Cu

(
DKL(Q∥P) + ln

1

CG
+

C2
u

4ntrain
+ U

)
.

(227)

M.2 PROOF OF LEMMA G.6

Recall that
U = lnEWmini∼P

[
eCu(Ltest(Wmini,Ãfull

test)−Lfull
train(W

mini,Ãmini
train))

]
. (228)

First, we focus on the term Ltest

(
Wmini, Ãfull

test

)
− Lfull

train

(
Wmini, Ãmini

train

)
. Set lmini

train(yi) = ∥ŷmini
i −

yi∥2F ,∀i ∈ train set and lmini
test (yj) =

∥∥ŷmini
i − yj

∥∥2
F
,∀i ∈ test set. Then we have

Ltest

(
Wmini, Ãfull

test

)
− Lfull

train

(
Wmini, Ãmini

train

)
=Ey∼test set

[
1

ntest

∑
j∈test set

lmini
test (yj)

]
− Ey∼train set

[
1

ntrain

∑
i∈train set

lmini
train(yi)

]

=
1

ntest

∑
j∈test set

lmini
test (yj)ρtest(yj)−

1

ntrain

∑
i∈train set

lmini
train(yi)ρtrain(yi)

(229)

Furthermore, we define Σtrain,i = Diag
(
1
{
ãmini

train,iX
(
Wmini

)⊤
> 0
})

∈ Rh×h to represent

whether the j-th element
{
ãtrain,iX

(
Wfull

)⊤}
j

is more than zero (1) or is zeroed out (0). Then we

have:
σ

(
ãmini

train,iX
(
Wmini

)⊤)
= ãmini

train,iX(Σtrain,iW
mini)⊤. (230)

Similarly, we have σ
(
ãmini

train,iX
(
Wmini∗)⊤) = ãmini

train,iX(Σ∗
train,iW

mini∗)⊤,

σ
(
ãfull

test,iX
(
Wmini

)⊤)
= ãfull

test,iX(Σtest,iW
mini)⊤, and σ

(
ãfull

test,iX
(
Wmini∗)⊤) =

ãfull
test,iX(Σ∗

test,iW
mini∗)⊤.

we set f(yi) = − 1
ntrain

lmini
train(yi) with ∀i ∈ train set and g(yj) = 1

ntest
lmini
test (yj) with ∀j ∈ test set and

nmin = min{ntrain, ntest}.
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Hence, we have:

f(yi) + g(yj)

=
1

ntest
lmini
test (yj)−

1

ntrain
lmini
train(yi)

≤ 1

nmin

(
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(231)

where the penultimate inequality follows ∥Σtrain,i∥2F ,
∥∥Σ∗

train,i

∥∥2
F

≤ h,∥∥Σ∗
train,i −Σ∗

test,i

∥∥2
F
, ∥Σtrain,i −Σtest,i∥2F ≤ 2h because Σi is a diagonal matrix with

(Σi)jj ∈ {0, 1} for any j ∈ {1, . . . , h}. The penultimate expression is exactly the distance function

defined in Definition 1., δfull-mini
i,j =

∥∥ãfull
train,i − ãmini

train,i

∥∥2
F

, and δfull
i,j =

∥∥ãfull
test,j − ãfull

train,i

∥∥2
F
+2
∥∥ãfull

test,j

∥∥2
F

is a constant based on the split of training and testing.

Hence, we have
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(
Wmini, Ãfull

test

)
− Lfull

train

(
Wmini, Ãmini

train

)
=

1

2ntest

∑
j∈test set

lmini
test (yj)ρtest(yj)−

1

2ntrain

∑
i∈train set

lmini
train(yi)ρtrain(yi)

≤∆train,test(β, b) = min
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i∈train set
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∑
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∑
j∈test set

θi,j
CF (Cw + 1)h2

nmin

(
δfull
i,j + δfull-mini

i

)
(232)

Then we mainly focus on the elements of δfull-mini
i .

Recall that ãfull
train,i,j = 1√

din,full
i

√
dout,full
j

afull
ij and ãmini

train,i,j = 1√
din,mini
i

√
dout,mini
j

amini
ij , where afull

ij , a
mini
ij ∈

{0, 1} represents whether node i receives a message from node j (1) or not (0).
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Hence, we have:

∥∥∥ãfull
train,i − ãmini

train,i

∥∥∥2
F
=

n∑
j=1

∣∣∣∣∣∣∣
1√

din,full
i

√
dout,full
j

afull
ij − 1√

din,mini
i

√
dout,mini
j

amini
ij

∣∣∣∣∣∣∣
2

, (233)

where 1√
din,full
i

√
dout,full
j

≤ 1√
din,mini
i

√
dout,mini
j

.

We fix the batch size b. Notice that when the fan-out size β increases, dout,mini
j may increase and

we have four cases: (1). amini
ij keeps as 0 given afull

ij = 0, (2). amini
ij keeps as 0 given afull

ij = 1,
(3). amini

ij keeps as 1 given afull
ij = 1, (4). amini

ij becomes 1 from 0 given afull
ij = 1. Then

we have
∑n
j=1

∣∣∣∣∣ 1√
din,full
i

√
dout,full
j

afull
ij − 1√

din,mini
i

√
dout,mini
j

amini
ij

∣∣∣∣∣
2

are non-increasing when β increases

at the first three cases. However, at the fourth case, we may both have

∣∣∣∣∣ 1√
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i

√
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j

∣∣∣∣∣
2

≤∣∣∣∣∣ 1√
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√
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j

− 1√
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i

√
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∣∣∣∣∣
2

and

∣∣∣∣∣ 1√
din,full
i

√
dout,full
j

∣∣∣∣∣
2

≥

∣∣∣∣∣ 1√
din,full
i

√
dout,full
j

− 1√
din,mini
i

√
dout,mini
j

∣∣∣∣∣
2

.

Hence, δfull-mini
i has a overall non-increasing trend when β increases but small non-monotonic

fluctuations can exist.

We fix the fan-out size β. Notice that when the batch size b increases, din,mini
j may increase and we

have three situations: (1). amini
ij keeps as 0 given afull

ij = 0, (2). amini
ij keeps as 0 given afull

ij = 1, (3).
amini
ij keeps as 1 given afull

ij = 1. Then we have δfull-mini
i is non-increasing when b increases.

Note that fan-out size β plays a more dominant role than batch size b in influencing generalization.
This is because the variation in fan-out size β not only increases the number of sampled neighbors
but also potentially alters the structure of the adjacency matrix of node i — by introducing new
connections during mini-batch sampling (i.e., the fourth case). This structural change can lead to more
significant variations in generalization performance. In contrast, changes in batch size b primarily
supplement the number of sampled nodes without modifying the adjacency structure of the node i.

Since δ(yi,yj , β, b) is proporional to δfull-mini
i,j =

∥∥ãfull
train,i − ãmini

train,i

∥∥2
F

and ∆(β, b) is proporional

to δ(yi,yj , β, b), we have the upper bound ∆(β, b) of Ltest

(
Wmini, Ãfull

test

)
− Lfull

train

(
Wmini, Ãmini

train

)
keeps non-increasing when b increases, and overall have the non-increasing trend when β increases
but small non-monotonic fluctuations exist.

Finally, we have

U = lnEWmini∼P

[
eCu(Ltest(Wmini,Ãfull

test)−Lfull
train(W

mini,Ãmini
train))

]
≤ lnEWmini∼P

[
eCu∆(β,b)

]
= ln(eCu∆(β,b))

=Cu∆(β, b).

(234)

This completes the proof.

N EXPERIMENTS

N.1 TRAINING SETTINGS

Testbed: The experiments, except those on the ogbn-papers100M, are conducted on a machine with
512GB of host memory and four NVIDIA A100 GPUs, each with 40GB of memory, inter-connected
via 900GB/s NVLink 4.0. The experiments on ogbn-papers100M are run on two machines without
GPUs, each equipped with 1024GB of host memory and an interconnect bandwidth of 50 Gbps.
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Table 3: Datasets Info1.
Datasets #Nodes #Edges Avg. Degree #Classes #Features
Reddit 232,965 11,606,919 50 41 602
Ogbn-arxiv 169,343 1,166,243 7 40 128
Ogbn-products 2,449,029 61,859,140 25 47 100
Ogbn-papers100M 111,059,956 1,615,685,872 15 172 128

Table 4: Datasets Info2.
Datasets Train/Val/Test
Reddit 152,410/23,699/55,334
Ogbn-arxiv 90,941/29,799/48,603
Ogbn-products 195,922/48,980/2,204,127
Ogbn-papers100M 1,207,179 / 125,265/214,338

Metrics: 1). We evaluate convergence performance using three metrics: iteration-to-loss, iteration-to-
accuracy, and time-to-accuracy. These metrics measure training progress towards a target convergence
point in terms of training loss or validation accuracy. For all GNN models and datasets except ogbn-
papers100M, the target training loss is defined as the maximum loss observed over 100 consecutive
iterations at the smallest batch size, provided that the variance of these loss values is below 5× 10−4.
Similarly, the target validation accuracy is defined as the minimum accuracy over 100 consecutive
iterations at the smallest batch size, provided that the variance of these accuracies is below 4× 10−4.
Note that the defined target training loss and the defined target validation accuracy are applied across
all hyperparameter settings for the specific model and dataset. For ogbn-papers100M, training is
limited to 200 iterations due to the extremely large graph size and training time constraints. Note
that using the smallest batch size as the reference is common in prior works (Bajaj et al., 2024), and
serves as a conservative criterion: because fluctuations are most pronounced under the smallest batch
size, requiring stability in this setting to prevent mistaking transient variations for convergence and to
provide a uniform benchmark across batch sizes. Moreover, by enforcing a variance threshold, this
definition remains unbiased toward larger or smaller batch sizes and offers a fair basis for comparing
convergence across settings. 2). For generalization, test accuracy is used as the metric in the training
iteration. 3).For system efficiency, we measure the training throughput in terms of the number of
target nodes processed per second (number of nodes/s). This metric ensures that throughput reflects
the rate of training examples processed.

We run all implementations using Python 3.8.10 and dgl>=1.0.0. The uniform neighbor sampling
is used for mini-batch training. Due to the massive comparisons, adding error bars to every figure
would make them overly cluttered and difficult to interpret. We have repeated all experiments at least
three times using different seeds and observed low variance. For example, in Figure 6, the standard
deviation of the final accuracy is less than 3.17%. This small variance does not affect the observed
convergence trends, which remain consistent across runs.

N.2 METRICS: ITERATION-TO-LOSS

Simple mathematical derivation. In distributed systems with two devices, assuming:

• Per-iteration calculation time tcal: tcal = (b ∗ β + b)/C, where b is batch size, β is fan-out
size, and C is compute capacity (nodes/s);

• Per-iteration communication time tcomm : tcomm = b/H for mini-batch training and
tcomm = (b ∗ β + b)/H for full-graph training, where H is the bandwidth.

• time-to-accuracy t: t = n× (tcal + tcomm), where n is iteration-to-accuracy.

Consider two training setups:

• Full-graph training: bl = 1000, βl = 50, nl = 10 iterations to converge

• Mini-batch training: bs = 10, βs = 10, ns = 10000 iterations to converge
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Under the same compute power C = 1 node/s, but different bandwidths:

• High bandwidth: Hh = 1000 nodes/s
• Low bandwidth: Hs = 0.1 nodes/s

Plugging into the formulas:

• High bandwidth: 1).Full-graph: t = 10×
(
1000·50+1000

1 + 1000·50+1000
1000

)
= 5.1051× 105 s

2). Mini-batch: t = 10000×
(
10·10+10

1 + 10
1000

)
= 1.1001× 106 s

Therefore, Full-graph training is faster.
• Low bandwidth: 1). Full-graph: t = 10×

(
1000·50+1000

1 + 1000·50+1000
0.1

)
= 5.61× 106 s

2). Mini-batch: t = 10000×
(
10·10+10

1 + 10
0.1

)
= 2.1× 106 s

Therefore, Mini-batch training is faster.

This example shows that time-to-accuracy may flip conclusions depending on hardware, while
iteration-to-accuracy remains stable.

Experiments. The vanilla distributed system (i.e., the standard implementation without any optimiza-
tions) is used for full-graph training, and the Distributed Data Parallel (DDP) technique (Li et al.,
2020) is applied for mini-batch training. We examine a three-layer GraphSAGE model on Reddit
and a three-layer GCN model on ogbn-products. These models include normalization layers and are
trained using a cross-entropy loss function and Adam optimizer with a learning rate of 0.01. The
target validation accuracy is set at 0.9 for ogbn-products and 0.95 for Reddit. The total batch size is
2000 and the fan-out size is [5,10,15]. To simulate infinite bandwidth (i.e., bw1), we use a single GPU
or CPU. For limited bandwidth (i.e., bw2), we use two GPUs interconnected via 900GB/s NVLink.

N.3 CONVERGENCE

For experiments on one-layer GNN models, the basic setups are without drop-out or normalization
layers and with ReLU activation, and SGD optimizer for both full-graph and mini-batch training. For
experiments in more general settings, multiple-layer GNNs are adopted without dropout layers and
with ReLU activation and Adam optimizer for both full-graph and mini-batch training. The SAR
system (Mostafa, 2022) is used for full-graph and mini-batch training on ogbn-papers100M via the
gloo backend, while other datasets are mainly trained on a single GPU.

Convergence of one-round GNN trained with MSE. To align with theoretical analysis, we use
iteration-to-loss here. The details are as follows: 1). The target training losses are 0.0226 for
ogbn-arxiv, 0.0225 for reddit and ogbn-products, and [0.005, 0.0054, 0.0065] for ogbn-papers100M
on GCN, GraphSAGE, GAT, respectively. 2). When varying the batch sizes, the fan-out size is 5. 3).
When varying the fan-out sizes, the batch size is 500 for ogbn-arxiv, ogbn-products and reddit, as
well as is 10000 for for ogbn-papers100M.

Figure 7-8 shows the iteration-to-loss for four datasets under GAT, GCN, and GraphSAGE trained
with MSE across different learning rates and either varying batch sizes or varying fan-out sizes.

Convergence of one-round GNN trained with CE. To align with theoretical analysis, we use
iteration-to-loss here. We set the original multi-class node classification task as the binary node
classification task. The details are as follows: 1). The target training losses are 0.51 for ogbn-arxiv,
[0.325,0.325,0.2] for reddit on GCN, GraphSAGE, GAT, respectively, [0.08,0.051,0.051] for ogbn-
products on GCN, GraphSAGE, GAT, respectively, and [0.009, 0.0087, 0.0087] for ogbn-papers100M
on GCN, GraphSAGE, GAT, respectively. 2). When varying the batch sizes, the fan-out size is 5. 3).
When varying the fan-out sizes, the batch size is 500 for ogbn-arxiv, ogbn-products and reddit, as
well as is 10000 for for ogbn-papers100M.

Figure 9-10 shows the iteration-to-loss for four datasets under GAT, GCN, and GraphSAGE trained
with MSE across different learning rates and either varying batch sizes or varying fan-out sizes.

Convergence in more general settings. For the comparison at the dimension of batch size and fan-
out size, we use 3-layer GraphSAGE models with hidden dimension of 256 for reddit, ogbn-products,
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Figure 7: Iteration-to-loss for real-world datasets for one-round GAT, GCN, GraphSAGE across
different batch sizes and learning rates under MSE.

(a) Reddit, GAT (b) Products, GAT (c) Arxiv, GAT (d) Papers100M, GAT

(e) Reddit, GCN (f) Products, GCN (g) Arxiv, GCN (h) Papers100M, GCN

(i) Reddit, SAGE (j) Products, SAGE (k) Arxiv, SAGE (l) Papers100M, SAGE

Figure 8: Iteration-to-loss for real-world datasets for one-round GAT, GCN, GraphSAGE across
different fan-out sizes and learning rates under MSE.

and ogbn-arxiv, and 2-layer GraphSAGE models with hidden dimension of 128 for ogbn-papers100M.
The activation function is ReLU function. The optimizer is Adam with a learning rate of 0.001 and a
weight decay of 0. Due to the extremely large graph size of the ogbn-papers100M dataset and limited
computational resources, we use separate machines for full-graph and mini-batch training on this
dataset, making it infeasible to compare system efficiency between the two methods.

The target losses are [0.2, 0.1, 0.8, 1.52] under CE, and [0.005, 0.005, 0.013, 0.0055] under MSE
for the products, reddit, arXiv, and papers100M datasets, respectively. The corresponding target
accuracies are [0.918, 0.962, 0.708, 0.599] under CE, and [0.89, 0.946, 0.676, 0.5] under MSE for
the same datasets.

Figure 11 (under CE) and 12 (under MSE) illustrate time-to-accuracy on GraphSAGE across varying
batch sizes and fan-out sizes for ogbn-products, ogbn-arxiv and ogbn-papers100M.

Figure 14 (under MSE) and 13 (under CE) illustrate time-to-accuracy on GraphSAGE across varying
batch sizes and fan-out sizes for ogbn-products, ogbn-arxiv and ogbn-papers100M.
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Figure 9: Iteration-to-loss for one-round real-world datasets for GAT, GCN, GraphSAGE across
different batch sizes and learning rates under CE.

(a) Reddit, GAT (b) Products, GAT (c) Arxiv, GAT (d) Papers100M, GAT

(e) Reddit, GCN (f) Products, GCN (g) Arxiv, GCN (h) Papers100M, GCN

(i) Reddit, SAGE (j) Products, SAGE (k) Arxiv, SAGE (l) Papers100M, SAGE

Figure 10: Iteration-to-loss for one-round real-world datasets for GAT, GCN, GraphSAGE across
different fan-out sizes and learning rates under CE.

(a) Products (b) Arxiv (c) Papers100M

Figure 11: Iteration-to-acc of multi-layer GraphSAGE under CE across varying batch sizes and
fan-out sizes.

N.4 GENERALIZATION

Generalization of one-round GNN trained with MSE. For test accuracy, the numbder of iterations
are 5× 105 for GraphSAGE and GCN, or 1× 105 for GAT, for ogbn-arxiv, ogbn-products, and reddit.
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(a) Products (b) Arxiv (c) Papers100M

Figure 12: Iteration-to-acc of multi-layer GraphSAGE under MSE across varying batch sizes and
fan-out sizes.

(a) Products (b) Arxiv (c) Papers100M

Figure 13: Time-to-accuracy (s) of multi-layer GraphSAGE under CE across varying batch sizes and
fan-out sizes.

(a) Products (b) Arxiv (c) Papers100M

Figure 14: Time-to-accuracy (s) of multi-layer GraphSAGE under MSE across varying batch sizes
and fan-out sizes.

And the number of iterations are 1× 104 for ogbn-papers100M across all GNN models. The learning
rates are [0.015,0.02,0.025] for ogbn-arxiv, ogbn-products, and reddit, and [0.00025, 0.0002] for
ogbn-papers100M. The batch sizes and the fan-out sizes are consistent with the settings used in the
experiments measuring time-to-accuracy. Other settings are the same as Appendix N.3.

Figure 15-16 shows the test accuracies for four datasets under GAT, GCN, and GraphSAGE trained
with MSE across different learning rates and either varying batch sizes or varying fan-out sizes.

Generalization in more general settings. The settings are the same as the general settings in
Appendix N.3.

Figure 17 (under CE) and 18 (under MSE) illustrate test accuracies on GraphSAGE across varying
batch sizes and fan-out sizes for reddit, ogbn-arxiv and ogbn-papers100M.

N.5 COMPUTATIONAL EFFICIENCY

The settings are the same as the general settings in Appendix N.3.

Figure 17 (under CE) and 18 (under MSE) illustrate training throughput as the number of processed
nodes per second on GraphSAGE across varying batch sizes and fan-out sizes for reddit, ogbn-arxiv
and ogbn-papers100M.

N.6 FULL-GRAPH VS. MINI-BATCH TRAINING AFTER HYPERPARAMETER TUNING.

The settings are the same as the general settings in Appendix N.3.
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Figure 15: Test accuracy for real-world datasets for one-round GAT, GCN, GraphSAGE across
different batch sizes and learning rates under MSE.

(a) Reddit, SAGE (b) Products, SAGE (c) Arxiv, SAGE (d) Papers100M, SAGE

(e) Reddit, GCN (f) Products, GCN (g) Arxiv, GCN (h) Papers100M, GCN

(i) Reddit, GAT (j) Products, GAT (k) Arxiv, GAT (l) Papers100M, GAT

Figure 16: Test accuracy for real-world datasets for one-round GAT, GCN, GraphSAGE across
different fan-out sizes and learning rates under MSE.

N.7 ADDITIONAL RUNS FOR KEY EXPERIMENTS

The Tables 5-12 are as follows. We use b as the batch size and β as the fan-out size.
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(a) Reddit (b) Arxiv (c) Papers100M

Figure 17: Test accuracies of multi-layer GraphSAGE trained with CE across varying batch sizes and
fan-out sizes.

(a) Reddit (b) Arxiv (c) Arxiv

Figure 18: Test accuracies of multi-layer GraphSAGE trained with MSE across varying batch sizes
and fan-out sizes.

(a) Reddit (b) Arxiv (c) Papers100M

Figure 19: Training throughput (# nodes/s) of multi-layer GraphSAGE trained with CE across
varying batch sizes and fan-out sizes.

(a) Reddit (b) Arxiv (c) Papers100M

Figure 20: Training throughput (# nodes/s) of multi-layer GraphSAGE trained with MSE across
varying batch sizes and fan-out sizes.

O RELATED WORK

For full-graph vs. mini-batch GNN training, the existing literature presents conflicting empirical
findings on the GNN performance (i.e., convergence and generalization) and computational efficiency:
some studies (Cai et al., 2021; Wan et al., 2022a;b; 2023) argue that full-graph training achieves higher
model accuracy and faster convergence than mini-batch training, while others (Kaler et al., 2022;
Zheng et al., 2022; Zhao et al., 2021; Bajaj et al., 2024) present contrasting findings. Furthermore,
due to the message-passing process, performance insights from DNNs (Keskar et al., 2016; You et al.,
2019; Smith, 2017; Golmant et al., 2018; Zou et al., 2020a; Bassily et al., 2018; Nabavinejad et al.,
2021; Hauswald et al., 2015) cannot directly transfer to GNNs.

The only existing comparison work (Bajaj et al., 2024) between full-graph and mini-batch GNN
training empirically evaluates overall performance but does not investigate the impact of key hyper-
parameters (e.g., batch size and fan-out size) on model performance and computational efficiency,
thereby overlooking the trade-offs achieved by tuning these hyperparameters. Recent efforts (Yuan
et al., 2023; Hu et al., 2021) focus on these hyperparameters but remain limited. For instance, Yuan
et al. (Yuan et al., 2023) lack theoretical support, consider only limited batch sizes and fan-out values
that are far smaller than those of full-graph training, and overlook the interplay of the batch size and
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Table 5: Run 1 for Figure 4(a).
Test acc β = 5 β = 10 β = 15 β = 50 all
b = 1000 747 671 618 427 481
b = 10000 525 356 342 283 277
b = 100000 416 308 291 245 232
b = 150000 409 302 283 239 238
full batch 399 303 275 242 229

Table 6: Run 2 for Figure 4(a).
Test acc β = 5 β = 10 β = 15 β = 50 all
b = 1000 743 682 621 435 497
b = 10000 515 355 342 291 278
b = 100000 423 322 289 258 242
b = 150000 417 315 287 246 240
full batch 387 306 279 232 210

the fan-out size. Hu et al. (Hu et al., 2021) rely on gradient variance to explain the role of batch size
but do not consider fan-out size, thus their explanation conflicts with their empirical observations.

Existing theoretical analyses of GNN training typically focus on singular aspects (e.g., convergence,
or generalization), overlooking key graph-related factors (e.g., irregular graphs with nodes of varying
degrees, the difference between training and testing graphs in mini-batch settings) and the impact of
non-linear activation on gradients. For convergence analysis, Yang et al. (Yang et al., 2023) and Lin et
al. (Lin et al., 2023) apply the NTK framework by assuming infinite-width GNNs. Xu et al. (Xu et al.,
2021) analyze multi-layer linear GNNs. Awasthi et al. (Awasthi et al., 2021) employ PL conditions to
study one-round GNNs with ReLU activation, simplifying the analysis to regular graphs. All these
convergence analyses are solely on full-graph training. For generalization analysis, full-graph GNN
training has been studied (Scarselli et al., 2018; Vapnik & Chervonenkis, 2015; Garg et al., 2020; Lv,
2021; El-Yaniv & Pechyony, 2009; Oono & Suzuki, 2020; Koltchinskii, 2001; Cong et al., 2021b; Du
et al., 2019; Liao et al., 2020) under the well-established frameworks (e.g., PAC-Bayesian framework
(McAllester, 2003)), while the previous analyses of mini-batch training impractically assume the
same graph structures used in training and testing (Tang & Liu, 2023; Verma & Zhang, 2019). The
difference among graph structures in training and testing can result in generalization performance
degradation or overfitting to graph structures used in training.

P EXTENSIONS AND FUTURE WORK

P.1 EXTENSIONS

Multi-layer GNN models in theoretical analysis. We focus on a one-layer GNN with ReLU
activation in theoretical analysis. We discuss the extension of theoretical results to multi-layer settings
in Appendix H, and conduct experiments using multi-layer GNNs in Sec 5 and Appendix N. The
results validate that our key insights remain applicable in such settings. Therefore, our theoretical
and empirical analyses support the multi-layer GNN settings.

Sampling methods. We focus on uniform neighbor sampling before mini-batch training. There
exist many other sampling methods (Hamilton et al., 2017; Chen et al., 2018; Zou et al., 2019; Chiang
et al., 2019; Zeng et al., 2019) that have been proposed at the layer- or subgraph-level to enhance
performance. Our core insights could extend to more sampling methods.

For example, compared to uniform neighbor sampling, the key difference in some advanced samplers
lies in introducing specific constraints on the effective fan-out size by either assigning non-uniform
sampling probabilities (Chen et al., 2018), or imposing layer-wise upper bounds on the number of
neighbors per node (Zou et al., 2019). These specific constraints preserve the qualitative trend of the
amount of aggregated information per node in the message-passing when varying fan-out sizes. In
convergence analysis, following our analysis in Appendix G, increasing the effective fan-out size
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Table 7: Run 1 for Figure 4(e).
Test acc β = 5 β = 10 β = 20 β = 50 all
b = 1000 1167 928 854 817 801
b = 10000 1232 1028 991 907 861
b = 100000 1250 1025 1005 919 902
b = 150000 1256 1047 1013 928 909
full batch 1295 1035 1007 945 925

Table 8: Run 2 for Figure 4(e).
Test acc β = 5 β = 10 β = 20 β = 50 all
b = 1000 1169 943 872 809 787
b = 10000 1222 1016 993 923 847
b = 100000 1257 943 936 929 886
b = 150000 1230 1037 978 923 902
full batch 1279 998 946 938 927

can enrich each target node’s aggregated neighbors, improving embeddings and reducing gradient
variance. Therefore, the mechanism “larger fan-out size → more iterations to convergence” still
holds in GNN training under these samplers. For generalization, a larger fan-out size can reduce
the Wasserstein distance ∆(β, b) under these constraints, which leads to improved generalization.
While these advanced samplers may lessen the sensitivity of generalization to fan-out size, they
cannot completely eliminate the effect of including unsampled but valid edges as fan-out increases
(see Obs. 2). Consequently, generalization remains more sensitive to fan-out size than to batch size.
Overall, our key insights remain applicable to these sampling methods.

On the other hand, we notice that some advanced works (Chen et al., 2017; Shi et al., 2023; Fey et al.,
2021; Shi et al., 2025) use historical embeddings to incorporate nearly full-graph information at each
iteration. Therefore, from a model performance perspective, these methods reduce the variance caused
by different batch sizes and behave more like full-graph training. From a system design perspective,
they also rely on additional memory to store historical embeddings, making them closer to full-graph
training systems than typical mini-batch ones. In contrast, we preserve and study the effects of batch
size and fan-out, rather than eliminating them. Hence, we adopt the standard neighbor-aggregation
scheme that is commonly used in practice and do not consider these sampling methods.

Link prediction tasks. We focus on node classification tasks in GNN training, which can be
easily extended to graph classification. Different from node classification, link prediction tasks use
node pairs (connected and unconnected) for edge prediction, which can be transformed to node
classification tasks using the line graph method in the graph theory. The new line graph L(G) is
constructed in the following way: for each edge in the original graph G, make a vertex in L(G);
for every two edges in G that have a vertex in common, make an edge between their corresponding
vertices in L(G). Hence, our analyses and core insights naturally carry over to link prediction tasks.

Inductive GNN tasks. We focus on transductive GNN tasks. Unlike transductive tasks, inductive
tasks apply different graphs between testing and training. For convergence, our analysis can be
applied to inductive tasks without considering the testing graphs. For generalization, our analysis can
be easily extended to inductive tasks by revising δfull

i,j in the Wasserstein distance to consider graph
structure differences between testing and training graphs.

P.2 FUTURE WORK

Different activations: GeLU and Tanh. Our theoretical analysis readily extends to the GeLU and
Tanh functions as the activation under our settings. The key difference lies in how the activation
affects the gradient norm bound. GeLU is a smooth approximation of ReLU and shares a similar
upper bound, while Tanh is even smoother with bounded high-order derivatives that control the
gradient norm. As a result, both our convergence and generalization methodology naturally translate
to these activation functions.
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Table 9: Run 1 for Figure 6(a).
Test acc β = 5 β = 15 β = 25 β = 50 all
b = 1000 0.7767 0.7832 0.7821 0.7810 0.7789
b = 5000 0.7817 0.7846 0.7825 0.7803 0.7698
b = 10000 0.7851 0.7818 0.7812 0.7775 0.7713
b = 100000 0.7869 0.7823 0.7818 0.7783 0.7753
b = 150000 0.7852 0.7818 0.7809 0.7781 0.7761
full batch 0.7868 0.7810 0.7778 0.7778 0.7803

Table 10: Run 2 for Figure 6(a).
Test acc β = 5 β = 15 β = 25 β = 50 all
b = 1000 0.7793 0.7840 0.7820 0.7818 0.7792
b = 5000 0.7825 0.7842 0.7833 0.7817 0.7702
b = 10000 0.7852 0.7821 0.7818 0.7771 0.7713
b = 100000 0.7862 0.7825 0.7816 0.7780 0.7762
b = 150000 0.7860 0.7818 0.7800 0.7768 0.7760
full batch 0.7864 0.7808 0.7778 0.7775 0.7808

Our core insights are clearly generalizable to GeLU due to its similarity with ReLU. However,
whether the same insights hold for Tanh is less certain, as its bounded and more intricate derivative
structure may affect the theoretical bounds in a nontrivial way.

Heterogeneous graphs. Different from homogeneous graphs, heterogeneous graphs require spe-
cialized handling to address different types of nodes and edges, involving distinct aggregation and
transformation functions for each type, such as using separate neural networks for different edge
types. This can be explored.
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Table 11: Run 1 for Figure 6(b).
Test acc β = 5 β = 10 β = 20 β = 50 all
b = 1000 0.6617 0.6891 0.7117 0.7241 0.7242
b = 5000 0.7113 0.7207 0.7336 0.7345 0.7369
b = 10000 0.7209 0.7292 0.7341 0.7344 0.7362
b = 100000 0.7318 0.7348 0.7373 0.7403 0.7415
b = 150000 0.7329 0.7357 0.7372 0.7378 0.7401
full batch 0.7345 0.7391 0.7386 0.7384 0.7385

Table 12: Run 2 for Figure 6(b).
Test acc β = 5 β = 10 β = 20 β = 50 all
b = 1000 0.7295 0.7321 0.7344 0.7345 0.7341
b = 5000 0.7307 0.7343 0.7361 0.7364 0.7371
b = 10000 0.7326 0.7353 0.7366 0.7365 0.7381
b = 100000 0.7342 0.7372 0.7392 0.7400 0.7411
b = 150000 0.7343 0.7361 0.7385 0.7393 0.7405
full batch 0.7341 0.7396 0.7391 0.7389 0.7403
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