RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL

Anonymous ACL submission

Abstract

Large language models (LLMs) with in-context
learning have significantly improved the perfor-
mance of text-to-SQL task. Previous works
generally focus on using exclusive SQL gener-
ation prompt to improve the LLMs’ reasoning
ability. However, they are mostly hard to han-
dle large databases with numerous tables and
columns, and usually ignore the significance
of pre-processing database and extracting valu-
able information for more efficient prompt engi-
neering. Based on above analysis, we propose
RB-SQL, a novel retrieval-based LLM frame-
work for in-context prompt engineering, which
consists of three modules that retrieve concise
tables and columns as scheme, and targeted
examples for in-context learning. Experiment
results demonstrate that our model achieves bet-
ter performance than several competitive base-
lines on public datasets BIRD and Spider '.

1 Introduction

Text-to-SQL is a task of converting natural lan-
guage questions into SQL queries that are used
to obtain the answers from the database. It has
attracted widespread research attention and appli-
cation in database querying.(Qin et al., 2022; Sun
etal., 2023). Early methods utilize pre-trained mod-
els to encode the input sequence. Some researchers
decode queries by abstract syntax trees (Wu et al.,
2023; Guo et al., 2019; Wang et al., 2020), while
others use predefined sketches (He et al., 2019).
Recent works focus on extracting the question-to-
SQL patterns generalized by training an encoder-
decoder model with text-to-SQL corpus (Hui et al.,
2022; Li et al., 2023a,b; Zheng et al., 2022; Gao
etal., 2024). More recently, there has been growing
interest in using Large Language Models (LLMs)
to explore novel approaches for guiding SQL gen-
eration, and some remarkable progress has been

1https://anonymous.4open.science/r/
Anonymize-AS5E7

Question: Dense Passage Retrieval model

DPR model
| I

Question Document t
Retrieval-based model

ot 5T ER RB —model
| |

Question Table

Database
Column
SQL skeleton

@) (b)

Figure 1: (a) An example of utilizing LLM to solve
text-to-SQL task. (b) The diagrams of DPR model and
our proposed RB-model. Compared with DPR model,
RB-model expands the input from document to other
data types (i.e., table, column, SQL skeleton).

significantly made in prompt and chain of thought.
Fig 1 (a) shows an example of utilizing LLM to
solve text-to-SQL task.

Different from prior studies, the fundamental
solution in LLM-based text-to-SQL has primarily
focused on using exclusive SQL generation prompt
approaches to obtain a fully correct SQL query
(Gao et al., 2024). Existing approaches tend to
maintain the whole tables and its corresponding
columns as the table schema in databases. Thus, it
will possibly introduce a large amount of redundant
information in the prompt that is irrelevant to the
original question, especially for the complex multi-
table queries (e.g., nested or joined queries) and
extremely large single tables. The excessive redun-
dancy can significantly introduce negative noise
and exceed the LLMs context window length limi-
tations. In addition, previous works tend to ignore
the significance of both pre-processing database
and valuable information extraction, thus limiting
the interpretability and prompt engineering effi-
ciency. Therefore, efficient information retrieval
for tables and columns could significantly improve
the performance of text-to-SQL. Moreover, the hal-
lucination in text-to-SQL is also a notorious prob-

https://anonymous.4open.science/r/Anonymize-A5E7
https://anonymous.4open.science/r/Anonymize-A5E7

lem in LLMs. We observe that the approach of
guiding through the skeleton related to SQL syn-
tactic can alleviate hallucination. Previous studies
focused on integrating the skeleton information of
SQL into sequence-to-sequence models for mod-
eling (Li et al., 2023a), without explicitly utilizing
the syntactic advantages of the skeleton to guide
correct SQL generation process.

To address the above issues, we consider using
Dense Passage Retrieval (DPR) models to retrieve
relevant tables, columns and examples from orig-
inal databases for prompt engineering. Existing
DPR models tend to calculate similarity directly
between question and document without involving
other data types, while recent research (Wang et al.,
2022) points out that DPR models can also be used
for retrieving answers from table. Therefore, we
are motivated to design Retrieval-Based (RB) mod-
els on the basis of DPR, which further calculate
similarity between SQL question and certain SQL
data types (table, column, SQL skeleton) instead
of using document. We also improve in-context
learning (ICL) approach to benefit from retrieval
effectiveness. As shown in Fig 1 (b), We use RB-
models to separately retrieve table, column, SOQL
skeleton that have high similarity with our target
question. This pre-processing method helps de-
crease redundant information in schema and search
out few-shot examples with high reference value
(similar SQL skeleton) for in-context learning.

In this paper, we propose a retrieval-based text-
to-SQL framework named RB-SQL, which mainly
contains three independent RB-models to sepa-
rately calculate similarity between question and
certain SQL data types (fables, columns, SQL skele-
ton). Table-Retriever aims to retrieve tables that
are most relevant to the question from the massive
tables in database. Column-Retriever further re-
trieves columns in the previous retrieved tables to
reduce the number of selected columns. The goal
of Table-Retriever and Column-Retriever is to play
a pre-filtering role in text-to-SQL task, which not
only reduces redundant information and minimizes
the impact of excessive tables and columns (includ-
ing their mutual effects) but also accelerates the
efficiency of subsequent SQL generation. SQL-
skeleton-Retriever is used for searching few-shot
examples having similar SQL skeleton with ques-
tions. Besides, we introduce SQL skeleton into
the stage of example organization between ques-
tion and gold SQL, which enhances the in-context
learning process. We conduct comprehensive eval-

Prompt(origin)
Question
Knowledge

Prompt
Question
Knowledge
Table Schema
Few Shot Example

Table-Retriever
| sig tablE| l

Column-Retriever

ah
: i
i ; { |
! : — \.__TableSchema .~
i H e .
IEE @B H { Few Shot Exampli gin)
\ ! i
Ny

J |
-finE SQL-skel Retri
learning JrsqL skeleton

‘\\ Few Shot Example J

SQL result

Figure 2: Framework of the RB-SQL. Table-Retriever
filter tables from database and Column-Retriever fur-
ther filter columns. SQL-skeleton-Retriever is used to
choose similar few-shot examples and add SQL skeleton
into example organization.

uations on two cross-domain text-to-SQL datasets
BIRD and Spider, experimental results indicate RB-
SQL outperforms several baselines.

To summarize, our contributions are as follows:

* We propose RB-SQL, a novel retrieval-based
framework for LLMs in text-to-SQL.

* We introduce three independent RB-models to
refine SQL schema and select relevant exam-
ples for in-context learning. We also introduce
SQL skeleton as an intermediate and effective
step in the prompt example organization to
guide correct SQL generation.

* Experimental results demonstrate that our pro-
posed model outperforms several baselines on
BIRD and Spider datasets.

2 Related Work
2.1 LLM for text-to-SQL

Recently, LLMs have shown remarkable improve-
ment for various NLP tasks (Gao et al., 2024; Wang
et al., 2024). Many researchers utilize LLMs in
text-to-SQL tasks to further improve the perfor-
mance. It is the most important tasks to properly
design and use prompts to better guide LLMs for
SQL generation, as it directly affects the accuracy.
For example, Tai ef al. (Tai et al., 2023) stud-
ied how to enhance the inference ability of LLMs
through chain-of-thought style prompt, including
the original chain-of-thought prompt and least-to-
most prompt. Chang et al. (Chang and Fosler-
Lussier, 2023) comprehensively investigated the
impact of prompt constructions across various set-
tings when constructing the prompt for text-to-SQL

inputs. DAIL-SQL (Gao et al., 2024) consider
both question and queries to select few-shot ex-
ample, use a new example organization strategy
to trade-off in terms of quality and quantity, and
adopt Code Representation Prompt as the question
representation. Additionally, some researchers pro-
pose novel frameworks for simplifying databases,
query decomposition and other prompt engineer-
ing approach, like C3-SQL (Dong et al., 2023b)
and DIN-SQL (Pourreza and Rafiei, 2023). More
recently, Wang et al. propose MAC-SQL (Wang
et al., 2023), a framework centered on multi-agent
collaboration that can be utilized for more intri-
cate data scenarios and a broader spectrum of error
types for detection and correction.

2.2 Dense passage retrieval

Given a collection of M text passages, the goal
of DPR is to index all the passages in a low-
dimensional and continuous space, such that it can
retrieve efficiently the top-k passages relevant to
the input question (Karpukhin et al., 2020). Early
researchers apply representation-focused rankers,
which independently compute an embedding for
question and another for document and estimate
relevance as a single similarity score between two
vectors (Zamani et al., 2018). There are also some
researchers use all-to-all interaction, which models
the interactions between words within as well as
across question and document at the same time, as
in BERT’s transformer architecture (Nogueira and
Cho, 2019). However, the performance of the for-
mer architecture need to be further improved, while
the latter architecture has the relatively slower run-
ning efficiency. Therefore, Omar et al. propose late
interaction as a paradigm for efficient and effective
neural ranking (Khattab and Zaharia, 2020).

3 Problem Definition

Text-to-SQL is the task of converting a natural
language question () into a correct SQL query Y,
which is capable of retrieving relevant data from
a database. The database can be represented as
D ={T1,T,...T,,}, m is the number of tables in
the database. For T = {C1, Cs...C,, }, C; refers to
columns in table T', n is the number of columns
in the table. When dealing with complex database
values, we may use external knowledge evidence
K to support our model understand the inner re-
lationship between question and database better.
Ultimately, the process of text-to-SQL could be

Database: california_schools

5""pm CDSCode | Academic Year | -~ | IRC
CDSCode | NCESDist | - | LastUpdate | |

Whatis the - in H Table-Retriever
Alameda County? 3

" [cDSCode [Academic Year | = [IRC |+
{ frpm s | T T
- CDSCode | NCESDist | - [LastUpdate | i Question Table
| ST oo < 61
{cds [rtype | - [NumGE1500 | i whatisu elgible licontent:“CDSCodecte
[~ -] -] <t T

i satscores free rate udentsin Xt'|"Academic Ye:
| the schools in Alameda County? ~ Codeinteger”l-

Question

@) (b)

Figure 3: (a) The workflow of Table-Retriever. The mod-
ule calculate similarity of question with tables and re-
trieve highly relevant tables for question. (b) Framework
of Table-Retriever. We use BERT to encode question
and table separately with MaxSim-based late interaction
to calculate the similarity score.

formulated as follows:
Y =f(Q,D,K|0) (D

where f(-|0) can represent a model or neural net-
work with the parameter 6.

4 Methodology

4.1 Proposed Model

Inspired by ColBERT (Khattab and Zaharia, 2020),
we propose a retrieval-based text-to-SQL frame-
work for constructing prompt, which consists of
Table-Retriever (TR), Column-Retriever (CR) and
SQL-Skeleton-Retriever (SR). TR, CR and SR are
three different RB-models. TR filters out irrel-
evant tables which reduces the first interference
at the database tables level. CR aims to continu-
ously reduce the interference caused by columns
(ex.too many columns in a table) and obtain ap-
propriate numbers of relevant columns. TR and
CR jointly complete SQL schema construction and
involve schema linking and are served as a SQL
pre-processing function. Furthermore, SR selects
few-shot examples with similar SQL skeleton for
questions, which provides syntactic guidance to
generate more syntactically correct SQL results.
What’s else, we introduce SQL skeleton into ex-
ample organization, which enhances the in-context
learning process of LLMs.

4.2 Schema construction

4.2.1 Table-Retriever

Table-Retriever is a module for retrieving highly
correlated tables for each question. Omar Khattab
et al. (Khattab and Zaharia, 2020) discover that

a model employing contextualized late interaction
over deep LMs is efficient for retrieval. In our
model, we use BERT as encoders and MaxSim-
based late interaction to calculate the similarity
of question ¢ and table ¢. As shown in Fig 3 (b),
we first convert the tables into continuous text by
directly concatenating table name, column names
and column types as {tie;t = name : n||”cy :
ty1” " e i ty2”|...]" ¢ ¢ ty,” }, n is table name, ¢;
is column name, ty; is data type of c¢;. We use ¢
as the input of Bertg, which computes a contex-
tualized representation of each token. Then, we
pass the output representations through a 1D-CNN
layer with no activations, which is used for dimen-
sion reduction. Following the settings of ColBERT
(Khattab and Zaharia, 2020), we typically fix the
output size m to be much smaller than BERT’s
fixed hidden dimension, which we discuss later.
After that, we normalize the output embeddings so
each has L2 norm equal to one:

Ol = Normalize (CNN (BERT}, (¢))) (2)

We use converted table as the input of Bertr, the
rest of steps are the same as above, so we can get
the output representations of table as follow:

Of = Normalize (CNN (BERTT (te01))) (3)

Next, we employ the output embeddings OqT and
O} to conduct late interaction. Concretely, we
apply each token embedding of OqT to calculate
dot-products similarity with every embedding of
O} and obtain the maximum value. We add these
value together and acquire the final similarity score
of question ¢ and table ¢:

Shi=>

i€[|OT]

T AT
e O % @

Fig 3 (a) shows the process of table retrieval. We in-
put a question and tables from a database into Table-
Retriever module, then we get similarity scores of
q with each table. If the score is higher than a
threshold 6, we assume the table is relevant to this
question. On the contrary, it is not. Table-Retriever
module is used for retrieving highly relevant tables
to help reduce the burden of inference for LLMs.

4.2.2 Column-Retriever

Column-Retriever is the downstream module of
Table-Retriever. Given the retrieved tables output
by Table-Retriever, Column-Retriever can retrieve

Table: frpm

/~ [cpSCode [Academic Year | -~ [IRC
{frpm

ic

o stion

n @) Column-Retriever

Aomoda G nty?

Figure 4: (a) The workflow of Column-Retriever. The
module retrieve highly relevant columns for question.
(b) Framework of Column-Retriever.

highly correlated columns for each question, such
as those that are identical or semantically similar
to certain entities in the question, and can further
filters out redundant information of schema. As
shown in Fig 4 (b), the framework of Column-
Retriever is the same as Table-Retriever, which
is designed to calculate the similarity of question
q and column c. We convert column features into
continuous text c;e,; by concatenating table name
thame> column name Cpqme, column description
Cdesc,» €xamples [ey...e;], value description vges.
and other knowledge k, as {Ctezt = tnamel|Cname :
Cdesc|€1---€i]Vdesck}. Then we use ¢ and Cieqr as
the input of Bertg and Bertc, and obtain output
embeddings Og and O through similar process
with Table-Retriever:

O = Normalize (CNN (BERTE, (¢))) (5)
Of = Normalize (CNN (BERTE (ctext))) (6)

In late interaction, we acquire the similarity score
by the sum of MaxSim value in the same way:

c _
Sq7c -
i€(0g]

o¢ (7

max OY . ps
J

jefogy

Fig 4 (a) shows the process of column retrieval.
We input the target question and column features
(from the retrieved tables after TR) into Column-
Retriever module to obtain similarity scores of ¢
with each column. Only if the scores are higher
than a threshold p, we reserve the related columns.
It can further reduce the overall length of the
schema in the prompt and eliminates potential in-
terference information, therefore improving the ex-
ecution performance and accuracy of LLMs.

4.2.3 Specialized handling of Large tables

In practical applications, some tables may have too
many columns that the converted tables t;.,; are so

SQL Skeleton from training set

{sk: SELECT [column_name] FROM [table name] ~~~COUNT(([column namel) > [value] }
{5k SELECT CAST(SUM(IF((column. namel-—-WHERE [column name] = [value] |
O

vesion 'S

Whatis the -~ in p _Retri
ey, m) sQL-Skeleton-Retriever

Few_-shot Of ‘

s in Alameda cour

(a) (b)

Figure 5: (a) The workflow of SQL-Skeleton-Retriever.
(b) Framework of SQL-Skeleton-Retriever.

long. Since we use BERT as our encoder, which
is not able to handle over 512 tokens, we need a
specialized design to handle large tables. In our
method, if the length of ¢, is over 512, we firstly
use Column-Retriever to perform coarse filtering
with smaller threshold y/, which can shorten the
table by reducing the number of columns. Then
we pass the shortened table back to Table-Retriever.
All the following steps are the same as before.

4.3 In-context Learning

LLMs can perform better for text-to-SQL through
in-context learning, in which only a few exam-
ples are provided in the input prompts (Gao et al.,
2024). To enhance the SQL generation capabili-
ties of LLM, we specialized design the examples
selection and examples organization for in-context
learning in the following.

4.3.1 Example Selection

According to prior studies (Dong et al., 2023a), in-
context learning is essentially learning from anal-
ogy, so it is effective to select examples that are
similar with the target question. In our method, we
apply a RB-model SQL-Skeleton-Retriever as the
example selection module. As shown in Fig 5 (b),
the framework of SQL-Skeleton-Retriever is the
same as the RB-model above, the input for BERT-
based encoders are question ¢ and SQL skeleton
sk. sk is the original SQL which is masked spe-
cific content by [column_name], [table_name] and
[value] token. As we have introduced RB-model
in detail , here we directly provide the formula of
SQL-Skeleton-Retriever:

O; = Normalize (CNN (BERTY) (¢))) (8)
O3, = Normalize (CNN (BERTY (sk))) (9)

S5, = max O35 -0% (10
" ie%snje[osi} S

Before we select few-shot examples for in-context
learning, we first translate all the SQL queries from
our training set into SQL skeletons as a candidate
set SK = {ski, sks...sk,}. To conduct k-shot
examples selection for a target question ¢, we ap-
ply SQL-Skeleton-Retriever to retrieve top-k SQL
skeletons from SK. Then we trace the source and
find the original samples corresponding to these
skeletons as our final selected k-shot examples.

4.3.2 Example Organization

The example organization plays an important role
in in-context learning which guides LLMs to think
step by step and finally generate SQL result. There
are two advanced methods for text-to-SQL parsing:
chain-of-thought prompt and least-to-most prompt
(Zhou et al., 2023). The former provide thinking
process to obtain an answer, while the latter decom-
pose complex question into progressively refined
sub-questions and solve them one by one. Inspired
by the previous work, we find it is efficient to de-
compose complex questions into multiple simple
steps and provide the human like thinking process
as detailed as possible.

Based on the above, we introduce SQL skele-
ton as an intermediate step in in-context learning,
which conforms to human way of thinking. Fig 5
(a) illustrates our organization process. Given the
selected few-shot question ¢;, we first decompose
it into sub-questions as the way of (Zhou et al.,
2023). Then, we generate SQL skeleton (origi-
nal SQL masked by [column_name], [table_name]
and [value]), which guides LLMs to think about
the structures of SQL first. Next, we prompts the
model to extract exact values from the sub-question
and fill the SQL skeleton to obtain gold SQL query.
After all the sub-question solved, we finally obtain
the SQL query of ¢;. In conclusion, generating and
filling SQL skeleton provide more detailed infer-
ence steps for in-context learning, which enhance
the performance of LLM.

4.4 Error Correction

Error correction module is designed to automati-
cally correct errors after generating SQL queries,
because the generated SQL usually contains cer-
tain accidental errors such as missing keywords
or syntax errors. Thus, we need an error correc-
tion module to optimize the initial SQL generation
results by automatically amending specific errors.

We firstly execute the initial SQL results to ob-
tain preliminary execution results (PER). Whether

Datasets ‘ Train ‘ Dev ‘ Test

BIRD 9428 | 1534 | 1789
Spider 8659 | 1034 | 2147

Table 1: The statistics of BIRD and Spider datasets.

to use the error correction module will be evaluated
based on execution feedback. When the PER are
empty or certain errors occur during the process,
we need integrate the SQL results and error infor-
mation together as input to generate a correct SQL
using LLMs. This iterative process continues un-
til the PER is error-free or a predefined maximum
number of correction attempts has been reached.
The appendix A introduces this module in detail.

5 Experimental Setup

This section mainly introduces experimental setups.
Table 1 shows the statistics of two datasets. The
appendix B contains the experimental settings.

5.1 Datasets

* BIRD (Li et al., 2023c¢) represents a pioneer-
ing, cross-domain dataset that examines the
impact of extensive database contents on text-
to-SQL parsing. BIRD contains over 12,751
unique question-SQL pairs, 95 big databases
with a total size of 33.4 GB. We test and verify
the effect of our proposed method on develop-
ment set, as the test set is not accessible.

* Spider (Yu et al., 2018) is a large-scale com-
plex and cross-domain semantic parsing and
text-to-SQL dataset. It consists of 10,181
questions and 5,693 unique complex SQL
queries on 200 databases with multiple tables
covering 138 different domains. Inspired by
BIRD, we generate extra evidence for Spider,
which we illustrate in appendix C.

5.2 Evaluation Metrics

Following BIRD (Li et al., 2023c), we utilize ex-
ecution accuracy (EX) and valid efficiency score
(VES) to evaluate text-to-SQL models.

¢ Execution Accuracy (EX) (Li et al., 2023c¢)
is defined as the proportion of questions in
the evaluation set for which the execution re-
sults of both the predicted and ground-truth
inquiries are identical, relative to the overall
number of queries.

Model ‘ BIRD

EX VES
ChatGPT + CoT 36.64 42.30
GPT-4 46.35 49.77
DIN-SQL + GPT-4 50.72 58.79
DAIL-SQL + GPT-4 | 54.76 56.08
RB-SQL + GPT-4 ‘ 58.07 59.72

Table 2: EX and VES on dev set of BIRD dataset.

Model \ Spider

EX (dev) EX (test)
C3 + ChatGPT 81.80 82.30
DIN-SQL + GPT-4 82.80 85.30
DAIL-SQL + GPT-4 84.40 86.60
RB-SQL + GPT-4 84.91 85.68
+ Generated Evidence 85.89 86.73

Table 3: EX on both dev and test set of Spider.

* Valid Efficiency Score (VES) (Li et al,,
2023c) is designed to measure the efficiency
of valid SQLs generated by models. It is worth
noting that the term "valid SQLs" refers to
predicted SQL queries whose result sets align
with those of the ground-truth SQLs.

5.3 Baselines

* GPT-4 (OpenAl, 2023) uses simple zero-shot
text-to-SQL prompt for SQL generation.

e DIN-SQL (Pourreza and Rafiei, 2023) de-
compose the task into smaller sub-tasks and
feed the solutions of those sub-problems into
LLMs to generate the final SQL query.

* DAIL-SQL (Gao et al., 2024) consider both
question and queries to select few-shot exam-
ple, apply a new example organization strat-
egy to trade-off in terms of quality and quan-
tity, and adopt Code Representation Prompt
as the question representation.

* C3-SQL (Dong et al., 2023b) is a novel zero-
shot text-to-SQL method based on ChatGPT,
which provides a systematic treatment from
the perspective of model input, model bias,
and model output.

6 Results and Analysis

6.1 Overall Results

The overall results of all the models on BIRD and
Spider are shown in Table 2 and Table 3. We can

BIRD

Method

EX VES
(1) RB-SQL + GPT-4 58.07 59.72
(2) GPT-4 46.35(1 11.72) | 49.77(1 9.95)
(3) + Table-Retriever & Column-Retriever 54.06(J 4.01) | 56.11(] 3.61)
(4) + SQL skeleton(example organization) 54.48(] 3.59) | 56.38(] 3.34)
(5) + SQL-Skeleton-Retriever(example selection) | 55.19(] 2.88) | 56.81({ 2.91)
(6) + Error correction 58.07(, 0.0) | 59.72(] 0.0)

Table 4: Results of ablation study on BIRD. "+" means adding module on the basis of the previous row.

learn from the results that our proposed-RB-SQL
achieves better performance than several competi-
tive baselines on the two datasets.

In Table 2, we report the performance of RB-
SQL and other competitive baselines on develop-
ment set of BIRD. Firstly, as a more powerful LLM,
GPT-4 achieves better performance than Chatgpt
with chain-of-thought. Then, we can find the recent
researches DIN-SQL and DAIL-SQL beat GPT4 in
both execution accuracy and valid efficiency score,
while the former performs better in valid efficiency
score and the latter performs better in execution
accuracy. Finally, our proposed RB-SQL outper-
forms all the baselines in both metrics. Specifically,
RB-SQL achieves at least 3.31% improvement in
execution accuracy and 0.93% in valid efficiency
score than the state-of-the-art. On the other hand,
Table 3 shows the execution accuracy of RB-SQL
and other baselines on development set and test set
of Spider. Inspired by BIRD (Li et al., 2023c), ex-
ternal knowledge evidence is helpful for mapping
the natural language instructions into counterpart
database values. Thus, we generate evidence for
the Spider in advance. With the generated extra
evidence, RB-SQL reaches the new state of the art
by at least 1.49% on the development set and by
0.13% on the test set, which further demonstrate
the high efficiency of RB-SQL framework.

6.2 Ablation Study

To study the impact of the modules in RB-SQL,
we evaluate it by conducting a set of ablation stud-
ies. We use BIRD as the representative because
it is larger dataset with more tables and rows in
databases. Row(1) represents the experiment re-
sults of the whole RB-SQL framework with GPT-4,
while in the following rows, we start with GPT-4
and add Table-Retriever & Column-Retriever, SQL
skeleton organization, SQL-Skeleton-Retriever and
error correction module row by row to compare

the efficacy of each module in RB-SQL framework.
For comparison, the last row(6) represent the same
framework as the whole RB-SQL after adding all
modules. The results are shown in Table 4.

Firstly, let’s pay attention to the comparison
of rows(2)(3). After adding Table-Retriever &
Column-Retriever modules, the execution accu-
racy raise by 7.71% and the valid efficiency score
raise by 6.34%. The results imply the importance
of tables and columns retrieval, and demonstrate
that concise and direct table schema is efficient
for prompt engineering. Secondly, experiments
on rows(3)(4) illustrate the advantage of introduc-
ing SQL skeleton into example organization. By
adding SQL skeleton into in-context learning, we
provide more detailed instruction for LLM to learn
and generate SQL query step by step. As a result,
the execution accuracy raise by 0.42% and the valid
efficiency score raise by 0.27%. Furthermore, the
comparison of rows(4)(5) shows the performance
improvement brought by SQL-Skeleton-Retriever
module, which provides few-shot examples that
have high similar SQL skeleton with our target
query. Combine with the SQL skeleton step in ex-
ample organization, the retrieved examples make
the LLM easier to imitate and learn the generative
process. The execution accuracy raise by 0.71%
and the valid efficiency score raise by 0.43%. The
experiment of row(6) increase the error correction
module on the basis of row(5). We rerun samples
with empty execution results or syntax errors for
up to specific rounds or make simple corrections
by rules. The execution accuracy raise by 2.88%
and the valid efficiency score raise by 2.91%.

In conclusion, the ablation study proves that all
the modules in RB-SQL framework play important
roles for performance enhancement. Compare with
GPT-4, the whole RB-SQL framework make fur-
ther improvement by 11.72% in execution accuracy
and 9.95% in valid efficiency score.

—— rough statistic of tables

[
6, =120 O _ _
0054 6,10 —e. — fine statistic of tables "

Recall

65 =160 0.75

—— columns

—— wfo error correction

Execution Accuracy
°
&
4

025 030 035 040 045 050 055 0.4 05 0.6
Reduction ratio

(a) (b)

07 o8 3 4 s 6 71 8 s 1 1

Reduction ratio H

Figure 6: (a) Recall and reduction ratio with different 6 in Table-Retriever. (b) Recall and reduction ratio with
different 1 in Column-Retriever. (c) Execution accuracy of LLM with different ;2 while the 6 is fixed.

RB-SQL \ BIRD Spider

EX VES | EX(dev) EX(test)
0-shot 56.77 58.17 74.10 82.30
1-shot 5696 58.65 82.13 84.66
3-shot 58.07 59.72 84.75 85.85
5-shot 57.88 59.61 86.89 86.73

Table 5: Results of RB-SQL with different number of
few-shot examples on the dev set of BIRD and Spider.

7 Discussion

7.1 Hyper-parameter of Retrievers

Here we study how 6 & p influence the perfor-
mance of Table-Retriever and Column-Retriever
on the development set of BIRD. Figure 6 (a)
shows the trade-off of recall and reduction ratio of
Table-Retriever by tuning threshold 6 (fine statis-
tic means the recall of gold tables, while coarse
statistic means the recall of all gold tables for each
question). Specifically, with the growth of 6, the
reduction ratio of invalid tables increase, but the re-
call of gold tables decrease. Similarly, as shown in
Figure 6 (b), we fix #=13.0 and modify p. With the
growth of u, the reduction ratio of invalid column
increase, while the recall of gold columns decrease.
The appearance demonstrates that a higher con-
fidence threshold may filter out both invalid and
gold tables/columns, which will lead to a decrease
in recall and an increase in reduction ratio.
Furthermore, we design a set of experiments
to explore how confidence threshold of Table-
Retriever and Column-Retriever influence the final
performance of LLM. Here we use p in Column-
Retriever as the representative. Figure 6 (c) shows
the execution accuracy of LLM with the tuning
of u while the 0 is fixed, the settings of 6 and p
is the same as Figure 6 (b). In order to study the
impact for LLM clearly, we experiment without

post-processing error correction module. We can
easily find the execution accuracy first increase and
then decrease with the growth of p. As shown in ta-
ble, when p=5.0, we get the best LLM performance.
The results indicates Table-Retriever and Column-
Retriever with too small 6 and 4 may not decrease
invalid tables and columns adequately, while too
large 6 and p may lead to low recall of gold tables
and columns. Thus, it is important to fine tune
and p to obtain a suitable value.

7.2 Number of Few-shot Examples

Table 5 shows the impact on different number of
few-shot examples. As the number of shots in-
crease from O to 5, the EX and VES of BIRD first
increase and then decrease, reaching maximum
value at 3-shot, while RB-SQL achieves the best re-
sults on Spider at 5-shot. The results indicates that
few-shot examples are helpful for LLM generating
SQL query, but excessive examples may lead to a
decrease in efficiency and performance.

8 Conclusion

In this paper, we systematically propose a retrieval-
based framework (RB-SQL) by constructing effi-
cient SQL generation prompt to improve the LLMs’
reasoning performance. We design three indepen-
dent retrieval-based models to alleviate the draw-
back of redundant tables and columns which cause
excessive redundancy, and retrieve similar samples
for few-shot example selection. Then, we also in-
troduce SQL skeleton in example organization to
achieve more fine-grained SQL generation process.
Through comprehensive experiments, the results
demonstrate the effectiveness of retrieving and fil-
tering valid information in advance for constructing
LLM’s prompt engineering, and the rationality of
using skeleton to guide the correct SQL generation.

Limitations

In our work, we did not design more adaptable
RB-models for different input structure or skill-
fully integrate pre-trained models and LLMs for
more refined prompt engineering. Moreover, we
introduce SQL skeleton as only an extra step into
example organization process, which can lead to
better results with more detailed steps and instruc-
tions.

Ethics Statement

In this work, all of the datasets, models, code and
related documents are not associated with any ethi-
cal concerns.

References

Shuaichen Chang and Eric Fosler-Lussier. 2023. How
to prompt llms for text-to-sql: A study in zero-shot,
single-domain, and cross-domain settings. CoRR,
abs/2305.11853.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong
Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and
Zhifang Sui. 2023a. A survey for in-context learning.
CoRR, abs/2301.00234.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, Lu Chen, Jinshu Lin, and Dongfang Lou.
2023b. C3: zero-shot text-to-sql with chatgpt. CoRR,
abs/2307.07306.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024.
Text-to-sql empowered by large language models:
A benchmark evaluation. Proc. VLDB Endow.,
17(5):1132-1145.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-
Guang Lou, Ting Liu, and Dongmei Zhang. 2019. To-
wards complex text-to-sql in cross-domain database
with intermediate representation. In Proceedings of
the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
4524-4535. Association for Computational Linguis-
tics.

Pengcheng He, Yi Mao, Kaushik Chakrabarti, and
Weizhu Chen. 2019. X-SQL: reinforce schema repre-
sentation with context. CoRR, abs/1908.08113.

Binyuan Hui, Ruiying Geng, Lihan Wang, Bowen Qin,
Yanyang Li, Bowen Li, Jian Sun, and Yongbin Li.
2022. S2sql: Injecting syntax to question-schema
interaction graph encoder for text-to-sql parsers. In
Findings of the Association for Computational Lin-
guistics: ACL 2022, Dublin, Ireland, May 22-27,
2022, pages 1254-1262. Association for Computa-
tional Linguistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
S. H. Lewis, Ledell Wu, Sergey Edunov, Danqi Chen,
and Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 6769-6781. Associa-
tion for Computational Linguistics.

Omar Khattab and Matei Zaharia. 2020. Colbert: Ef-
ficient and effective passage search via contextual-
ized late interaction over BERT. In Proceedings of
the 43rd International ACM SIGIR conference on
research and development in Information Retrieval,
SIGIR 2020, Virtual Event, China, July 25-30, 2020,
pages 39-48. ACM.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023a. RESDSQL: decoupling schema linking and
skeleton parsing for text-to-sql. In Thirty-Seventh
AAAI Conference on Artificial Intelligence, AAAI
2023, Thirty-Fifth Conference on Innovative Applica-
tions of Artificial Intelligence, IAAI 2023, Thirteenth
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2023, Washington, DC, USA, Febru-
ary 7-14, 2023, pages 13067-13075. AAAI Press.

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin,
Chenhao Ma, Nan Huo, Fei Huang, Wenyu Du, Luo
Si, and Yongbin Li. 2023b. Graphix-t5: Mixing pre-
trained transformers with graph-aware layers for text-
to-sql parsing. In Thirty-Seventh AAAI Conference
on Artificial Intelligence, AAAI 2023, Thirty-Fifth
Conference on Innovative Applications of Artificial
Intelligence, IAAI 2023, Thirteenth Symposium on
Educational Advances in Artificial Intelligence, EAAI
2023, Washington, DC, USA, February 7-14, 2023,
pages 13076-13084. AAAI Press.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li,
Bowen Li, Bailin Wang, Bowen Qin, Ruiying Geng,
Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang
Li, Kevin Chen-Chuan Chang, Fei Huang, Reynold
Cheng, and Yongbin Li. 2023c. Can LLM already
serve as A database interface? A big bench for large-
scale database grounded text-to-sqls. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Rodrigo Frassetto Nogueira and Kyunghyun Cho.
2019. Passage re-ranking with BERT. CoRR,
abs/1901.04085.

OpenAl. 2023.
abs/2303.08774.

GPT-4 technical report. CoRR,

Mohammadreza Pourreza and Davood Rafiei. 2023.
DIN-SQL: decomposed in-context learning of text-
to-sql with self-correction. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurlIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang,
Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao,
Jian Sun, Luo Si, Fei Huang, and Yongbin Li. 2022.
A survey on text-to-sql parsing: Concepts, methods,
and future directions. CoRR, abs/2208.13629.

Ruoxi Sun, Sercan O. Arik, Hootan Nakhost, Hanjun
Dai, Rajarishi Sinha, Pengcheng Yin, and Tomas Pfis-
ter. 2023. Sql-palm: Improved large language model
adaptation for text-to-sql. CoRR, abs/2306.00739.

Chang-Yu Tai, Ziru Chen, Tianshu Zhang, Xiang Deng,
and Huan Sun. 2023. Exploring chain of thought
style prompting for text-to-sql. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2023, Singapore, De-
cember 6-10, 2023, pages 5376-5393. Association
for Computational Linguistics.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL.:
relation-aware schema encoding and linking for text-
to-sql parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2020, Online, July 5-10, 2020, pages
7567-7578. Association for Computational Linguis-
tics.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang,
Jiaqi Bai, Qian-Wen Zhang, Zhao Yan, and Zhoujun
Li. 2023. MAC-SQL: A multi-agent collaborative
framework for text-to-sql. CoRR, abs/2312.11242.

Zhiruo Wang, Zhengbao Jiang, Eric Nyberg, and
Graham Neubig. 2022. Table retrieval may not
necessitate table-specific model design. CoRR,
abs/2205.09843.

Zihan Wang, Xinzhang Liu, Shixuan Liu, Yitong Yao,
Yuyao Huang, Zhongjiang He, Xuelong Li, Yongx-
iang Li, Zhonghao Che, Zhaoxi Zhang, Yan Wang,
Xin Wang, Luwen Pu, Huihan Xu, Ruiyu Fang,
Yu Zhao, Jie Zhang, Xiaomeng Huang, Zhilong Lu,
Jiaxin Peng, Wenjun Zheng, Shiquan Wang, Bingkai
Yang, Xuewei He, Zhuoru Jiang, Qiyi Xie, Yanhan
Zhang, Zhongqiu Li, Lingling Shi, Weiwei Fu, Yin
Zhang, Zilu Huang, Sishi Xiong, Yuxiang Zhang,
Chao Wang, and Shuangyong Song. 2024. Telechat
technical report. CoRR, abs/2401.03804.

Hefeng Wu, Yandong Chen, Lingbo Liu, Tianshui Chen,
Keze Wang, and Liang Lin. 2023. Sqlnet: Scale-
modulated query and localization network for few-
shot class-agnostic counting. CoRR, abs/2311.10011.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and
Dragomir R. Radev. 2018. Spider: A large-scale
human-labeled dataset for complex and cross-domain
semantic parsing and text-to-sql task. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018, pages 3911-3921.
Association for Computational Linguistics.

10

Hamed Zamani, Mostafa Dehghani, W. Bruce Crofft,
Erik G. Learned-Miller, and Jaap Kamps. 2018.
From neural re-ranking to neural ranking: Learning
a sparse representation for inverted indexing. In Pro-
ceedings of the 27th ACM International Conference
on Information and Knowledge Management, CIKM
2018, Torino, Italy, October 22-26, 2018, pages 497—
506. ACM.

Yanzhao Zheng, Haibin Wang, Baohua Dong, Xingjun
Wang, and Changshan Li. 2022. HIE-SQL: history
information enhanced network for context-dependent
text-to-sql semantic parsing. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
Dublin, Ireland, May 22-27, 2022, pages 2997-3007.
Association for Computational Linguistics.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H.
Chi. 2023. Least-to-most prompting enables com-
plex reasoning in large language models. In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net.

A Error Correction

In this paper, we classify errors into five categories:
syntax errors, schema linking errors, internal er-
rors, empty results, and mismatched results. Our
error correction module dedicates to resolving the
first four types of errors. Specifically, syntax errors,
internal errors and empty results are caused by a
variety of complex reasons, while schema linking
errors account for the largest proportion and are
easily perceived by LLMs. Thus, we focus on dis-
cussing this type of error in the following. Among
the types of schema linking errors, the most fre-
quent ones are forging columns and forging tables.
There are two reasons for this type of error. On the
one hand, LLMs may produce hallucinations. On
the other hand, some related tables and columns
may be filtered out during the retrieval process,
which force LLMs to forge schema information
in order to match the semantics of the query. To
handle the issues above, we further enhance our
correction module. In particular, we substitute the
filtered schema with a full schema when the output
of LLMs explicitly signals the absence of schema
components or after multi iterations of error correc-
tion process.

B Experimental settings

We reproduce all baselines with their original exper-
imental settings. For three RB-models, We use the
popular transformers library for pre-trained BERT.
Similar to previous work (Khattab and Zaharia,
2020), we fine-tune all RB-models with learning
rate 3 x 1076 with a batch size 32. We fix the num-
ber of embeddings per question at 32 with [mask]
tokens padding or truncating it to the first 32 to-
kens. Our RB-models embedding dimension m
is set to 128. In condition, we adopt L2 normal-
ization for output dimension, and cosine similarity
as the final similarity score. We construct train-
ing set for Table-Retriever and Column-Retriever
by paring each positive one with negative ones in
the same database, and paring each positive SQL
skeleton with random 100 negative SQL skeletons
for SQL-Skeleton-Retriever as [+,-]. Taking BIRD
as an example, we finally construct training sets
for three RB-models with size of 181416, 288444
and 942800 (we provide the processed training
sets in https://anonymous.4open.science/r/
Anonymize-A5E7/RB-model). Finally, we train
models for a maximum of 5 epochs which is
enough for convergence.

11

As we have analysed in section 7.1, for achiev-
ing the best retrieval effects, hyper-parameter 0
& p should be neither too large, nor too small.
Thus, we use grid-search strategy to tune the hyper-
parameters. We tune 6 in {11,12,13,14,15,16} and
win {1,3,5,7,9,11}, and we finally obtain the best
result at =13 and p=5.

We use a single Tesla V100 GPU with 32 GiBs
of memory on a server to pre-train RB-models, the
total number of parameters for each model is ap-
proximately 220 million, the training time is about
3~6 hours for each. All the experiments utilize
gpt-4-turbo version, the context window is 128000,
the temperature is set to 0.1. We enable five threads
to run RB-SQL (approximately 200-500 samples
for each according to the size of dataset), it costs
about 4~6 hours to generate all results.

C Evidence generation for Spider

Inspired by BIRD, we find that evidence of
database provides extra knowledge that can help
SQL generation process. Thus, we generate evi-
dence for Spider by using LLM. Concretely, we
give out [question], [schema] and instructions to
guide gpt-4 generate evidence for each sample. We
show detailed instructions and an example as fol-
lows (https://anonymous.4open.science/r/
Anonymize-A5E7/prompt_for_evidence. txt):

C.1 Instruction:

Given a [Database schema] description and the
[Question], you need to use valid SQLite and un-
derstand the database knowledge, and then generate
the [Evidence] of the [Question].

When generating [Evidence], we should always
consider constraints:

[Constraints]

1. Map the entities or metadata from user questions
to the schema.

2. Take into account the examples in the schema
and convert the natural language descriptions in
user input into the standard format in the database.
3. Evidence should be a single sentence describ-
ing the relationship between user queries and the
schema.

C.2 An example:

[Question]

How many singers do we have?
[Database schema]

Table: stadium [Stadium_ID,Location,...]

https://anonymous.4open.science/r/Anonymize-A5E7/RB-model
https://anonymous.4open.science/r/Anonymize-A5E7/RB-model
https://anonymous.4open.science/r/Anonymize-A5E7/RB-model
https://anonymous.4open.science/r/Anonymize-A5E7/prompt_for_evidence.txt
https://anonymous.4open.science/r/Anonymize-A5E7/prompt_for_evidence.txt
https://anonymous.4open.science/r/Anonymize-A5E7/prompt_for_evidence.txt

Table: singer [Singer_ID,Name,...]

Table: concert [concert_ID,concert_Name,...]
Table: singer_in_concert [concert_ID,Singer_ID]
[Foreign keys]

concert. ‘Stadium_ID* = stadium. ‘Stadium_ID*
singer_in_concert.‘Singer_ID* = singer. ‘Singe_ID*

singer_in_concert. ‘concert_ID ‘=concert. ‘concert_ID*

[Evidence]
The total number of singers is represented by the
count of distinct ‘Singer_ID* in the table singer.

D Prompt details of RB-SQL

We provide an example in https://anonymous.
4open.science/r/Anonymize-A5E7/prompt_
case.txt to illustrate the prompt details of
RB-SQL, which contains 3-shot examples and all
the instructions.

12

https://anonymous.4open.science/r/Anonymize-A5E7/prompt_case.txt
https://anonymous.4open.science/r/Anonymize-A5E7/prompt_case.txt
https://anonymous.4open.science/r/Anonymize-A5E7/prompt_case.txt
https://anonymous.4open.science/r/Anonymize-A5E7/prompt_case.txt
https://anonymous.4open.science/r/Anonymize-A5E7/prompt_case.txt

	Introduction
	Related Work
	LLM for text-to-SQL
	Dense passage retrieval

	Problem Definition
	Methodology
	Proposed Model
	Schema construction
	Table-Retriever
	Column-Retriever
	Specialized handling of Large tables

	In-context Learning
	Example Selection
	Example Organization

	Error Correction

	Experimental Setup
	Datasets
	Evaluation Metrics
	Baselines

	Results and Analysis
	Overall Results
	Ablation Study

	Discussion
	Hyper-parameter of Retrievers
	Number of Few-shot Examples

	Conclusion
	Error Correction
	Experimental settings
	Evidence generation for Spider
	Instruction:
	An example:

	Prompt details of RB-SQL

