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ABSTRACT

Vision-language models (VLMs) pretrained on web-scale data excel at recogniz-
ing objects and scenes. However, it remains mysterious if and how the VLMs learn
and utilize rich semantic information of visual concepts, such as colors and shapes,
for recognition. While some prior work concluded that pretrained VLMs do not
capture interpretable concepts, other work observed that leveraging the concept-
based text prompts improves visual recognition accuracy, and appears to offer
some degree of interpretability. In this paper, we aim to address this discrepancy
and understand pretrained VLMs’ true capability of encoding interpretable visual
concepts. We identify that the different strategies of concept selection and con-
cept prompting lead to different conclusions from prior works, and that when class
names are included in the concept prompts, the resulting activations are highly
useful for classification, but often unrelated to the prompted concept. To address
these challenges, we propose a new framework to jointly discover and learn in-
terpretable visual concepts from pretrained VLMs. Our discovered concepts are
class-agnostic, and selected based on the visual discriminability measured by mu-
tual information between images and concepts. We then propose a self-supervised
framework to adapt the pretrained VLM to recognize the discovered concepts with
higher interpretability. Through extensive quantitative and human evaluations, we
demonstrate that our concept discovery and learning (CDL) framework signifi-
cantly improves the interpretability of the discovered concepts, while achieving
state-of-the-art performance on concept-based visual recognition. All code and
data related to this paper will be made public.

1 INTRODUCTION

Vision-and-language models (VLMs) such as CLIP (Radford et al., 2021) can perform accurate
image classification tasks in zero-shot setting by leveraging language prompts such as “a photo of a
name-of-class”. However, this paradigm is not interpretable since the prompts of class names do not
contain visual information and the reasoning clues are unclear. In order to exploit the rich semantic
information contained by the target class, researchers (Pratt et al., 2023; Menon & Vondrick, 2022)
have proposed to generate descriptors for class names with external knowledge bases such as large
language models (LLMs). For example, given the question “How to visually describe pelican?”, an
LLM may generate descriptors like “A pelican is a large bird with white plumage, a long, curved
bill, and large webbed feet”. Those descriptors visually describe specific classes of objects and may
provide better performance served as prompts for VLMs on zero-shot recognition tasks, since they
contain visual concepts as reasoning clues.

Our paper first asks the question: Do these concept-augmented text prompts actually offer inter-
pretability? As illustrated in Figure 1, we observe that the role of concepts in the LLM-generated
descriptors is insignificant. We take VDES (Menon & Vondrick, 2022), an concept-augmented
prompting method as an example: if we mask out the class names from the descriptors, the zero-
shot classification accuracy of the CLIP model drops catastrophically (see Table 7). When the
concepts are randomly shuffled but the class names are unchanged, the classification accuracy re-
mains unchanged but the retrieved concepts are uncorrelated with the class names. These obser-
vations demonstrate that the concept-enhanced text prompts, which condition the concept selection
on specific class names, do not provide interpretability for the resulting zero-shot classifier, despite
achieving higher classification accuracy.

1



Under review as a conference paper at ICLR 2024

Giant panda, which has black 
patches around the eyes.

Giant panda, which is a 
large, black and white bear. 

Giant panda, which has black 
fur on the ears.

Giant panda, which has a 
large, round head.

giant panda VDES predicts giant panda with 
these concepts:

furry bodies

long, black and 
white-striped legs

distinctive 
black-and-white ringed 
tail

black and white body

After class names removal, 
VDES predicts ring-tailed 
Lemur with these concepts:

panda bear

silver case with a 
black strap

keeps the panda warm in 
its cool mountain 
habitat

many zoos around the 
world have pandas 

Labo predicts giant panda 
with these concepts:

large, black-and-white 
bear-like mammal

black patches around 
the eyes

round ears

black fur on the ears 
and eye patches

CDL (Ours) predicts giant 
panda with these 
concepts:

VDES still predicts giant panda 
with the class name and random 
concepts:
Giant panda, which has 
black wings.

Giant panda, which has a 
long tail. 

Giant panda, which has 
rough, scaly skin.

Giant panda, which has a 
triangular head with horns.

Figure 1: Examples of how different models conduct image classification based on the concepts.
Correct predictions and concepts are in green , while wrong concepts and non-visual concepts are in

red . Though VDES (Menon & Vondrick, 2022) and LaBo (Yang et al., 2023b) can both classify the
image correctly and the concepts are mostly correlated with giant panda (highlighted in orange ),
most concepts directly contain the class name “giant panda”. After the removal of class name in
VDES, we observe that VDES classifies this image as ring tailed lemus and correlate the image with
irrelevant concepts. In addition, even with random concepts VDES can still predict giant panda
correctly based on the class name in the prompts. Our proposed method (CDL) can predict giant
panda correctly based on the class-agnostic concepts.

We then ask the question: How can we utilize the class-agnostic concepts to decompose the rea-
soning of VLMs? The previous example shows that the zero-shot classification capacity of VLMs
does not work with class-agnostic concepts. Hence, to achieve both accurate and interpretable clas-
sification, it is necessary to learn a concept-class map under supervision. The Concept Bottleneck
Model (CBM) (Koh et al., 2020) is a method to decompose the end-to-end recognition of vision-
language models into concept-level predictions, which trains a linear classifier based on the model’s
predicted similarity between the images and concepts. Previous work LaBo (Yang et al., 2023b)
proposes to train CBMs with automatically discovered concepts from LLM-generated descriptors,
and it achieves competitive clssification performance. However, the learned concept-class map-
ping is often not factual and groundable, and thus not interpretable according to quantitative and
human evaluations. We observe that concepts discovered by LaBo contain many non-visual and
class-biased concepts, which may not serve as reasoning clues for visual recognition. Additionally,
previous research (Yun et al., 2023; Lewis et al., 2022) shows that the concepts directly recognized
by a pretrained VLM (e.g. CLIP) are often noisy. In order to build interpretable multi-modal recog-
nition paradigm, we need to discover a set of class-agnostic and discriminative concepts, and learn
the concepts by adapting a pretrained VLM to better recognize the discovered concepts.

For concept discovery, we propose to query LLM with more visual-focused prompts and extract a
list of general and class-agnostic visual concepts from the generated descriptors. We then design
a Mutual Information-based method to evaluate the discriminability of concepts and select a dis-
criminative and expressive concept set. With respect to concept learning, we propose to fine-tune
the pre-trained CLIP model to learn visual concepts in a self-supervised way. We turn the image-
text matching task of the CLIP model into the classification objective with a fixed concept-to-class
weight matrix initialized with LLM knowledge. To avoid extra supervision, we generate the class
labels by matching the images with class names using CLIP. Inspired by previous work (Kirichenko
et al., 2022) that shows last-layer fine-tuning is enough to map strong vision encoders to correct
concepts, we only fine-tune the projection layers of vision and text encoders of the CLIP model. In
experiments, both part of our methods significantly improve the performance and interpretability of
the CBM-based multi-modal recognition according to both automatic and human evaluated metrics.

To conclude, we make the following contributions: First, we investigate the discrepancies of prior
work on whether pretrained VLMs encode interpretable visual concepts, by closely inspecting the
VLM-based concepts for visual recognition. We reveal that the discrepancies are due to different
concept discovery mechanism, and the class-biased concept prompting to the VLM. Second, we
propose a simple and effective approach to automatically discover class-agnostic visual concepts
and build general and extensive concept dictionaries. We also propose an efficient self-supervised
method to adapt a pretrained VLM to recognize the visual concepts with higher interpretability.
Finally, we conduct comprehensive experiments including human evaluations with respect to the in-
terpretability of multi-modal recognition. Our model demonstrates the state-of-the-art performance
on both recognition accuracy and interpretability.
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2 RELATED WORK

2.1 MULTI-MODAL RECOGNITION

Vision-and-language models (VLMs) pretrained on unlabeled pairs of images and texts from the
internet have shown great success on multimodal benchmarks. Representations learned by these
VLMs can be transferred to a wide range of tasks, such as visual question answering (Li et al.,
2020; 2022; Bai et al., 2023), and image and video captioning (Lu et al., 2019; Zhang et al., 2021;
Yang et al., 2023a). These pretrained VLMs can directly recognize complex concepts in a zero-
shot setting, such as object categories with text prompts (Alayrac et al., 2022; Radford et al., 2021).
However, it remains unclear whether VLMs learns to utilize rich information of visual concepts
(e.g. colors and textures) for such zero-shot capability. Previous works (Pratt et al., 2023; Menon
& Vondrick, 2022) propose to introduce visual concept knowledge into the multi-modal recognition
process through querying large language models (LLMs). In this paper we illustrate the limitation of
those class-conditioned prompts and propose a simple yet effective method to automatically discover
concepts which can be applied to VLMs.

2.2 EMERGENCE OF CONCEPTS IN LANGUAGE MODELS

Leveraging Transformer architecture (Vaswani et al., 2017), large language models (LLMs) have
shown its impressive capability on various tasks, such as code writing (Zhang et al., 2023), mathe-
matical problem solving (Lewkowycz et al., 2022), question answering (Sanh et al., 2021; Wei et al.,
2021). However, some argue that solely training on word symbols will not lead to the emergence
of understanding of the concepts and meanings of words (Bender & Koller, 2020). On the contrary,
recent works find evidence that language models can understand simple concepts, such as colors and
spatial directions (Patel & Pavlick, 2022; Li et al., 2023).

2.3 CONCEPT DISCOVERY AND LEARNING

The utilization of visual concepts such as colors and shapes can benefit various downstream tasks in
computer vision and multi-modal learning, including object detection (Yao et al., 2022) and visual
question answering (Mao et al., 2019). Concept Bottleneck Model (CBM) is a method to explicitly
decompose the stage of composite concept inference with primitive visual concepts (Koh et al.,
2020). The interpretability and performance of CBM have been investigated in (Havasi et al., 2022;
Leemann et al., 2023; Moayeri et al., 2023). Previous work introduces CBM to VLM-based image
classification with concepts generated by LLMs and observe significant performance boost on image
classification tasks (Yang et al., 2023b; Yan et al., 2023). However, when applying intervention
approach (Koh et al., 2020) to the trained CBMs, the classification performance drops, which reflects
that the model do not learn the visual concepts sufficiently (Yun et al., 2023). In this work, we further
analyze the interpretability of VLM-based zero-shot classification and CBMs.

3 METHODOLOGY

In this section, we first introduce the background of CLIP-based multi-modal recognition paradigm
and Concept Bottleneck Model (CBM) (in Sec. 3.1). After that, we detail our methods to build a
class-agnostic visual concept dictionary from LLM-generated descriptors and select discriminative
concepts for classification (in Sec. 3.2). Then we illustrate out methods to fine-tune CLIP to better
learn visual concepts with self-generated supervision (in Sec. 3.3).

3.1 BACKGROUND

CLIP-based Multi-modal Recognition. CLIP (Radford et al., 2021) is a vision-language model
that contains an image encoder and text encoder. CLIP learns to align images and texts in the embed-
ding space during pre-training. The pre-trained image and text encoders can conduct unsupervised
multi-modal recognition through the following paradigm. Given a set of categories C, we first gen-
erate a set of text prompts P, which involves text prompts of “A photo of a/an c”, for each class c ∈
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Class-agnostic Concept Discovery (Section 3.2)
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Figure 2: Illustration of our proposed concept discovery method and concept learning architecture.
For concept discovery, given the set of class labels, we first utilize a frozen LLM to discover a list
of class-agnostic concepts and carry out mutual-information-based concept selection to filter these
concepts. We process the discovered concepts into a concept-label association matrix. For concept
learning, we use CLIP (Radford et al., 2021) to compute a vector of alignment scores between an
image and each concept. To classify this image, we take dot product between the alignment vector
and the association matrix. During concept learning, we train the last projection layer in CLIP.

C. For a given image x, the label y ∈ C can be predicted through finding the most similar prompts:

y = argmax
i

Cossim(EI(x),ET(Pi)), (1)

where EI denotes the image encoder and ET denotes the text encoder and Cossim means the cosine
similarity between the image and text embeddings. In the previous research and our work, the text
prompts can be replaced by the LLM-generated descriptors and the discovered concepts.

Concept Bottleneck Model. Concept Bottleneck Model (CBM) (Koh et al., 2020) proposes to
learn a direct projection from concepts to categories to analyze the decision basis of visual recogni-
tion models. Given a set of concepts P and a set of categories C, it learns a |P| × |C| matrix W to
project the concept space to the category space. For an input image x, we first calculate the similarity
scores between the image and each concept p in P with CLIP and then feed image-concept similarity
scores into the CBM W to get the predicted label y ∈ C as shown in the following equation:

y = argmaxEI(x) ·ET(P)T ·W (2)

3.2 CLASS-AGNOSTIC CONCEPT DISCOVERY AND SELECTION

Previous works (Menon & Vondrick, 2022; Pratt et al., 2023; Yang et al., 2023b) propose various
methods to generate descriptive features through querying LLMs with designed prompts like “How
to describe a {class name} in a photo?”. However, the generated descriptions cannot provide enough
interpretability for image classification since they are class-dependent and not visually discrimina-
tive, which is illustrated by the examples in Figure 1 and experiments in Sec. 4. In our work, in order
to focus on generating visually descriptive features, we query the LLM with the prompt “What are
useful visual features for distinguishing a {category name} in a photo?” and in-context examples.

Through prompting the LLM, we can obtain a visual concept set S and a class-concept map M. If
concept j is contained by the descriptors of the category i, Mij is 1, and otherwise Mij is 0. Previous
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work (Yan et al., 2023) illustrate that in order to build a interpretable decision basis of CBM, it is
important to select an expressive subset containing a small number of discovered concepts. To
select important and discriminative concepts, we introduce Mutual Information (MI) to evaluate the
discriminability of the concepts. MI measures the mutual dependence of two variables X ∈ X and
Y ∈ Y with the following equation:

MI(X,Y) =
∑
y∈Y

∑
x∈X

PX,Y(x, y) log
PX,Y(x, y)

PX(x)PY(y)
(3)

Given a concept s ∈ S and a set of k images and their coresponding categories, we define the k-
dimensional vectors X and Y, where Xk is the cosine similarity between the concept and the k-th
image and Yk is the bool value whether the concept is contained by the categories of the images,
which can be retreived from the class-concept map M. The Mutual Information between X and Y
evaluates the mutual dependency between image-concept similarity and the “ground-truth” 1 concept
containing label of the images. Hence, high MI score indicates that the concept has high similarity
with images it describes and has low similarity with images that do not contain it, which means
that the concept is discriminative and can provide useful information for the image classification.
Therefore, we select top-k concepts with the highest MI scores to build the concept dictionary for
image classification.

In order to diversify the concept list, we utilize the cosine similarity of CLIP text embeddings to
filter duplicate concepts. We define a similarity threshold th, if the similarity of two concepts is
higher than th, we delete the concept with low MI score.

3.3 VISUAL CONCEPT LEARNING

Previous works (Yun et al., 2023; Lewis et al., 2022) show that the image-text pair based contrastive
learning cannot endow VLMs the ability to directly predict or bind primitive visual concepts. Mean-
while, previous research illustrates that pre-trained VLMs can learn useful visual patterns and embed
visual concept knowledge in their architectures. Therefore, exploiting the powerful vision and text
encoders of the CLIP model, we propose to re-align the learned visual patterns with textual concepts
through fine-tuning their last projection layers. We also design a novel self-supervised learning ar-
chitecture to leverage the image-category alignment knowledge in the CLIP model to teach itself to
learn concepts.

Concept Learning Architecture In order to utilize the image-category alignment knowledge of
CLIP, we propose to turn the concept learning into a classification objective with the help of CBM,
which maps concepts to corresponding categories. For a given image, we conduct the dot product
between the image embedding and text embedding to get the image-concept similarity, and then
we pass the image-concept similarity into the CBM weight matrix W fixed by the concept-class
mapping M in Sec. 3.2 to get the class-label prediction.

Self-supervised Learning Paradigm Instead of using the human-labeled data, we propose to
leverage the knowledge inside CLIP to fine-tune itself. We generate the class labels using the un-
supervised recognition paradigm in Sec. 3.1 and the LLM-generated descriptors with class names.
Although containing noise, the CLIP predicted labels are of satisfactory accuracy and can provide
correct supervision for concept learning. Since we select concepts with image labels in the con-
cept discovery stage, we conduct the fine-tuning with all discovered concepts instead of the selected
concepts to avoid introducing of extra supervision.

4 LIMITATION OF PREVIOUS WORKS

In this section, we design experiments to reveal the limitations of previous works in concept-based
multi-modal recognition. We first illustrate the LLM-generated descriptors in Menon & Vondrick
(2022) might be biased by class names. Then we showcase the existence of non-visual and class-
biased concepts and their effect to the multi-modal recognition performance.

1the labels come from LLM knowledge
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ImageNet Food-101 CIFAR-100 CIFAR-10 CUB-200 Flowers-102

CLIP + Name 71.6 91.8 75.9 96.2 63.1 77.4
CLIP + Name w/ Concept 75.0 92.4 77.7 96.6 63.5 78.9
CLIP + Concept 22.1 3.6 30.9 70.7 5.3 7.0
CLIP + Name w/ Random Concept 70.1 91.6 75.4 95.0 62.1 78.7
CDL + Concept 75.7 91.5 77.8 96.5 64.7 80.9

Table 1: The unsupervised classification results of the original and our fine-tuned CLIP model with
different prompts. “Name” corresponds to the simple prompt “A photo of a class name”. “Name w/
Concept” denotes the prompts in the previous work (Menon & Vondrick, 2022), which are like “A
photo of a class name, which has “concept”. “Concept” corresponds to the pure concept. “Name
w/ Random Concept” means that we replace the correct concept with random concepts. “CDL +
Concept” means the prediction of our fine-tuned CLIP model with class-agnostic concepts.

4.1 CLASS-CONDITIONED DESCRIPTORS

Previous work (Menon & Vondrick, 2022) proposed to utilize LLM to obtain descriptive features
for categories, and then conduct recognition based on the similarity between the descriptive features
and images. However, the concepts in previous work might be biased by class names. We design
the experiment to remove the class name in the prompts and compare the zero-shot classification
accuracy of the CLIP model on different types of prompts. As shown in Table 7, we can observe
that the zero-shot classification accuracy of the CLIP model drops catastrophically when removing
the class name (“CLIP + Concept” row). In addition, we also randomly shuffle the descriptions and
keep the class names in the prompts. From the results of “CLIP + Name w/ Random Concept” row
we can see that even if the descriptors are randomly shuffled the CLIP model can correctly match
most images with the class names in the prompts. This phenomenon demonstrates that descriptors
themselves cannot bring satisfactory recognition performance because that the class names make a
decisive difference in the recognition results. Thus, it is hard to draw conclusion that LLM-generated
class-condition prompts can provide enough interpretability. The results of “CDL + Concept” row
shows that our fine-tuned CLIP model can achieve comparable performance with VDES while we
do not include any class-related information in our concepts, which illustrates that our model can
learn correct associations between concepts and classes and provide concept-level interpretability.

4.2 NON-VISUAL CONCEPTS

As shown in the examples, the discovered concepts in LaBo (Yang et al., 2023b) contain a lot of
visually non-discriminative concepts such as “found in North America” and “a magnificent animal”,
which cannot provide visual clues to interpret the decision of the model. In addition, many of LaBo
concepts are also biased by class names. We conduct a human evaluation to compare our discovered
concepts with LaBo on the proportion of non-visual concepts and concepts containing class names.
We first use the concept selection methods of our work and LaBo to select 400 concepts in the CUB
dataset and let human annotators to evaluate them. The details of our human evaluation can be found
in the appendix. According to the human evaluation, 36.50% of LaBo concepts are not visually dis-
criminative while only 19.75% of our discovered concepts are not visually discriminative. 33.25%
of LaBo selected concepts contain class name information such as “one of the largest altrobass” for
the class “black-footed altrobass”, while only 8.75% of our discovered concepts contain class name
information. The results illustrate that our discovered concept are much more visually discrimina-
tive and class agnostic compared to LaBo. Hence, our concepts can serve as better reasoning clues
and provide more interpretability for multi-modal recognition.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets We conduct experiments on several general and fine-grained image classification datasets
including ImageNet (Deng et al., 2009), Food-101 (Bossard et al., 2014), CIFAR-100 (Krizhevsky
et al., 2009), CIFAR-10, CUB-200 (Wah et al., 2011) and Flowers-102 (Nilsback & Zisserman,
2008). The statistics of the datasets are shown in the appendix.
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ImageNet Food-101 CIFAR-100 CIFAR-10 CUB-200 Flowers-102

#Concepts 1000 2000 101 202 100 200 10 20 200 400 102 204

CLIP+LaBo 83.2 83.6 89.8 91.1 80.5 84.1 77.8 92.2 79.7 81.3 95.5 94.9
CLIP+CDL 83.6 83.7 94.3 94.8 83.2 85.1 80.9 92.6 83.2 83.4 96.3 95.7
CDL+CDL 83.8 83.9 94.4 94.9 83.6 85.3 96.1 96.5 82.5 82.1 96.6 96.2

Table 2: Comparison with LaBo on classification accuracy with different bottleneck size.

ImageNet* Food-101 CIFAR-100 CIFAR-10 CUB-200 Flowers-102

#Concepts 397 794 101 202 100 200 10 20 200 400 102 204

LM4CV 75.7 75.8 80.2 81.9 75.1 77.3 80.1 88.0 63.9 64.1 87.3 89.0
CDL 75.4 75.8 85.9 86.9 74.9 77.6 85.6 89.4 67.3 69.6 88.7 89.2

Table 3: Comparison with LM4CV (Yan et al., 2023) on classification accuracy with different bot-
tleneck size. For ImageNet, we use the same ImageNet-Animal subset with LM4CV.

Baselines We compare with LaBo (Yang et al., 2023b) and LM4CV (Yan et al., 2023), which is
the state-of-the-art works in CBM-based image classification. Following the setting in LM4CV, we
control the bottleneck size (number of concepts) to be the same for baselines and our model for fair
comparison. For LM4CV, we can only compare the classification performance with the reported
results since we cannot access the code and data of this work.

Implementation Details We also use the same LLM (GPT-3-text-davinci-002) to obtain descrip-
tors and the same CLIP backbone (Vit-L-14 to compare with LaBo and Vit-B-32 to compare with
LM4CV) for image and text encoding. For concept discovery, we utilize the sklearn toolkit “Mutual
Information Regression” to calculate the Mutual Information of continuous values by entropy esti-
mation from k-nearest neighbors. The similarity threshold to filter duplicate concepts is set to 0.9.
Lower threshold will select less concepts and higher threshold will include more similar concepts.
We showcase the performance of different threshold in the Appendix. Following Yun et al. (2023),
we use logistic regression to train the concept bottleneck models. We used the default sklearn hy-
perparameters for all datasets. We observe that the performance of CBM is robust to the choice of
hyperparameters. For concept learning, we use the AdamW optimizer with 5e-4 learning rate and
1e-4 weight decay to fine-tune the CLIP model, and we use the validation loss to select checkpoints.
More implementation details can be referred in our attached code. For human evaluation experi-
ments, we hire workers from Amazon Mechanical Turk. For each data we ask three human worker
to annotate and use the majority vote to obtain the result. More details about our human evaluation
can be found in appendix.

5.2 CLASSIFICATION PERFORMANCE

Following the settings in LM4CV, we control the bottleneck size to 1 and 2 times of class num-
ber and evaluate the classification performance of our proposed method compared with baselines.
The results are shown in Table 2 and Table 3. From the results we can observe that our method
can outperform state-of-the-art works on concept-based image classification, and both our concept
discovery and concept learning method can provide improvement.

We also compare with LaBo following their few-shot settings. In the concept-learning part, to
learn the representation for all concepts it needs to fine-tune CLIP with enough training examples.
Therefore, we only compare our concept discovery and selection method with LaBo in few-shot
settings. For few-shot settings, we also select concepts with few-shot training examples to avoid
seeing extra examples.

From the results in Figure 3 we can observe that our discovered concepts consistently outperform
LaBo with different bottleneck size in different benchmarks and our concepts can provide significant
improvement when limited training examples are available.
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Figure 3: Comparison of test accuracy between LaBo and our method on few shot settings. The
number in “Labo-number” and “CDL-number” is the size of the bottleneck (number of concepts).

5.3 INTERPRETABILITY OF MULTI-MODAL RECOGNITION

In this subsection, we compare the interpretability of our proposed method and LaBo (Yang et al.,
2023b) based on following automatic and human-annotated evaluation metrics.

Intervention Accuracy To quantify the interpretability of the CBM on visual concept learning,
we introduce the intervention method proposed in Yun et al. (2023). Given a trained CBM, it inputs
binary ground-truth concept value (1 if the image contains the corresponding concept otherwise 0) to
predict the category. Therefore, high intervention accuracy means that the CBM can learn a accurate
concept-category map.

Factuality Besides automatic methods, it is also important to judge whether the decision basis
of the CBM (the top-weighted concepts) really describe the corresponding categories. Hence, we
introduce the metric “Factuality” in LaBo, which evaluate whether the top-k weighted concepts for
a category actually appear in the ground truth images of that category. Following their setup, we
randomly select 10 categories for each dataset and 10 images from the test dataset for each category.
For each concept c in the top-k weighted concepts for each category, we ask human annotators to
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Figure 4: The evaluation of interpretability on different datasets. “CDL” means original CLIP with
our discovered concepts and “CDL-learn” means the fine-tuned CLIP with our discovered concepts.

judge whether this concept appears in the images of the corresponding category. The factuality of
each concept c is calculated by:

Factuality(c) =
number of images containing c

10 ground-truth images of this category
(4)

We represent the factuality of the classification model on a dataset with the mean factuality of all
top-k concepts.

Groundability Following LaBo, we also evaluate the vision-language model grounding of the
concepts that serve as the decision basis. We utilize the metric “Groundability”, which evaluate
whether a concept actually appear in the top-10 aligned images ranked by CLIP image-concept sim-
ilarity score. We use the same human evaluation setting as “Factuality” to evaluate the groundability,
that is,

Groundability(c) =
number of images containing c

top-10 alignment images of c
(5)

Figure 4 shows the evaluation results of the interpretability of LaBo and our method on different
datasets. From the results we can observe that although achieving high classification performance,
the LaBo model might not provide enough interpretability because of the low intervention, factual-
ity and groundability of the trained CBM, which is also illustrated in the examples in Figure 1. In
the mean time, the results show that our discovered class-agnostic concepts and concept-learning
method can provide significant improvement on the interpretability metrics and ameliorate the clas-
sification performance. The experimental results prove that our proposed concept discovery and
learning framework can build a more factual and groundable multi-modal recognition system.

6 CONCLUSION

In this paper, we first dive into the interpretability of VLM-based multi-modal recognition and reveal
the limitations of previous works including classname-biased descriptors and non-visual concepts.
To overcome these limitations, we proposed a method to automatically discover and select class-
agnostic and discriminative visual concepts and fine-tune the CLIP model with a self-supervised
concept learning objective. Experimental results on various metrics demonstrated the effectiveness
of both concept discovery and learning parts of our approach, with significant improvements in
classification accuracy and interpretability. Our work contributes to understanding and improving
the concept learning of foundational VLMs.
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7 REPRODUCIBILITY

We provide the implementation details and hyperparamemters to reproduce our experiments in Sec-
tion 5.1. We also attach our code for concept discovery and learning in the supplementary meterials.
Our code, models, and result files will be publicly released upon acceptance.
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A DETAILS OF DATASETS

The table 4 shows the statistical details of the datasets we choose.

Dataset #Class #Train #Valid #Test
ImageNet 1000 128,1167 50,000 -
Food-101 101 60,600 15,150 25,250

CIFAR-100 100 40,000 10,000 10,000
CIFAR-10 10 40,000 10,000 10,000
CUB-200 200 4,794 1,200 5,794
Flowers 102 4,093 1,633 2,463

Table 4: Statistical details of datasets. “#Class” means the number of classifications. “#Train”,
“#Valid”, and “#Test” denote the instance numbers of each dataset respectively.

B CHOICE OF DIFFERENT PROMPTS

In this section, we discuss the choice of different prompts in concept discovery and compare the
performance of concepts discovered with different prompts on the CUB dataset. From the result we
can observe that different prompts provide similar performance, which is because the large language
model is not sensitive to the prompts and give similar concepts.

C PERFORMANCE OF DIFFERENT SIMILARITY THRESHOLD

In this section, we show the performance of our CDL model with different similarity threshold on
the CUB dataset. From the results we can observe that the threshold of 0.9 can achieve the best
performance.

D UNSURPERVISED CLASSIFICATION RESULT WITH DIFFERENT
BACKBONES

In this section we compare the unsupervised classification result of our fine-tuned CLIP and previous
method (VDES) on different backbones. The comparison with “ViT-L/14” backbone is shown in Sec
4.1. Here we show the comparison with “ViT-B/32” backbone.

E HUMAN EVALUATION DETAILS

We hire workers on https://www.mturk.com to conduct human evaluation. In order to make sure
the correctness of human annotation, for one data point we ask three human workers to annotate.
For the factuality and groundability metric, we randomly sample 10 classes from each dataset and
annotate the factuality and groundability of the top-3 concepts of each class. In order to calculate
the factuality and groundability, we select 10 images for each concept to annotate. Therefore, we
annotate 10,800 data points in total for those two task. For the visual discriminability and classname
containing, we conduct annotation on selected 400 concepts of LaBo and our method on the CUB

Prompts\#Concepts 200 400

What are useful visual features for distinguishing a {category name} in a photo? 83.2 83.4

What visual features do you use to recognize a {category name} in a photo? 83.0 83.3

What are the identifying features of a {category name} in a photo? 82.9 83.3

Table 5: Classification Performance of concepts generated by different prompts on the CUB dataset.
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#Concepts 200 400

Threshold = 0.8 81.8 82.5

Threshold = 0.85 82.3 82.7

Threshold = 0.9 83.2 83.4
Threshold = 0.95 82.9 83.1

Table 6: The performance of CDLwith different threshold on the CUB dataset.

ImageNet Food-101 CIFAR-100 CIFAR-10 CUB-200 Flowers-102

CLIP + Name 58.5 79.3 63.5 89.0 52.0 65.9
CLIP + Name w/ Concept 63.0 83.6 64.7 90.3 52.6 66.1
CLIP + Concept 16.2 2.5 22.8 59.4 3.2 4.6
CLIP + Name w/ Random Concept 61.2 80.4 63.3 90.1 52.6 66.3
CDL + Concept 62.7 82.0 65.2 90.7 53.9 67.4

Table 7: The unsupervised classification results of the original and our fine-tuned CLIP model with
different prompts. “Name” corresponds to the simple prompt “A photo of a class name”. “Name w/
Concept” denotes the prompts in the previous work (Menon & Vondrick, 2022), which are like “A
photo of a class name, which has “concept”. “Concept” corresponds to the pure concept. “Name
w/ Random Concept” means that we replace the correct concept with random concepts. The large
gap between “Name w/ Concept” and “Concept” and the small gap between “Name w/ Random
Concept” and “Name w/ Concept” mean that the class names instead of the descriptive features in
the prompts make the main contribution to the decision of the CLIP model. “CDL + Concept” means
the prediction of our fine-tuned CLIP model with class-agnostic concepts.

dataset. Hence we annotate 1,600 data points for those two task. We pay the human workers $0.05
each data point. The total cost of human annotation is $1,860. In the annotation, we randomly
shuffle the order of instances to remove possible biases.

In order to validate the effectiveness of our human evaluation, we calculate the pairwise annota-
tor agreement score following previous work Yang et al. (2023b). The average pairwise annotator
agreement propotion on all datasets is 69.2%, which is comparable with the 69.8% propotion in the
previous work.

We conduct Students’ T-test to evaluate the statistical significance of the human evaluation results.
We set the threshold of p-value to be 0.05 following previous works. When p-value is lower than
0.05, the null hypothesis is rejected and out method performs significantly better than the base-
line method. From the results we can observe that both our concept learning and concept discov-
ery method significantly outperform the baseline methods regarding the intervention, factuality and
groundability metrics.

We show some examples about the interface of our human annotation. In the annotation platform,
the workers can see an image and is asked to select whether the given concept describes the image.

Figure 5: Examples of the annotation interface.
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Dataset Method Intervention Factuality Groundability
p-value significance p-value significance p-value significance

ImageNet CLIP + CDL v.s. CLIP + LaBo 2.6e-22 ✓ 4.3e-29 ✓ 0.34 ×
CDL + CDL v.s. CLIP + CDL 5.6e-2 × 5.2e-4 ✓ 8.4e-2 ×

Food-101 CLIP + CDL v.s. CLIP + LaBo 1.3e-106 ✓ 5.5e-12 ✓ 5.3e-3 ✓
CDL + CDL v.s. CLIP + CDL 8.5e-5 ✓ 3.4e-3 ✓ 0.80 ×

CIFAR-100 CLIP + CDL v.s. CLIP + LaBo 9.2e-45 ✓ 1.1e-50 ✓ 1.8e-6 ✓
CDL + CDL v.s. CLIP + CDL 1.3e-3 ✓ 0.82 × 0.62 ×

CIFAR-10 CLIP + CDL v.s. CLIP + LaBo 1.3e-2 × 0.14 × 7.0e-2 ×
CDL + CDL v.s. CLIP + CDL 2.7e-29 ✓ 7.8e-5 ✓ 5.6e-2 ×

CUB-200 CLIP + CDL v.s. CLIP + LaBo 8.9e-20 ✓ 2.8e-15 ✓ 0.73 ×
CDL + CDL v.s. CLIP + CDL 2.0e-9 ✓ 1.9e-2 ✓ 7.2e-5 ✓

Flowers-102 CLIP + CDL v.s. CLIP + LaBo 1.5e-39 ✓ 1.2e-23 ✓ 1.8e-5 ✓
CDL + CDL v.s. CLIP + CDL 4.2e-3 ✓ 2.4e-4 ✓ 0.25 ×

Table 8: The statistical significance of the human evaluation results.

Category Concept Selected Concept Excluded

Giant Panda
black patches around eyes
large, round head
black fur on ears

a rare animal
popular in zoo

Black-footed Albatross
black and white
a long, hooked bill
long, narrow wings

found in North America
dive to depths of over 30 meters

Grey Whale
long, curved mouth
dark grey or black
white patches on the skin

large marine mammal
long-distance magrition

Table 9: The examples of selected and excluded concepts by our Mutual Information based concept
selection method

F EXAMPLES OF MUTUAL INFORMATION BASED CONCEPT SELECTION

In this section we showcase some examples of the concepts selected by our Mutual Information
based method. From the examples we can see that our method can effectively select visually dis-
criminative concepts and exclude non-visual ones.

G EXAMPLES OF CONCEPT-BASED MULTI-MODAL RECOGNITION

In this section we show some examples of different concept-based image classification methods.
From the examples in Figure 6 we can observe that previous works suffer from class-conditional
and non-visual concepts, while our method can learn interpretable concept-class map based on class-
agnostic concepts.
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Great pyrenees dog, which 
has bushy tail. 

Great pyrenees dog, which 
has thick coat of fur. 

Great pyrenees dog, which is 
a large, white, fluffy dog. 

Great pyrenees dog, which 
has big, round eyes.

great pyrenees dog VDES predicts great pyrenees 
dog with these concepts:

large, pointy ears 

short-legged dog 

a large, white, fluffy dog 

thick fur

After class names removal, VDES 
predicts cardigan welsh corgi 
with these concepts:

wise and regal dog 

gentle giant, known for 
being calm and patient 

known for its thick fur 

comes from the pyrenees 
mountain range

Labo predicts great pyrenees dog 
with these concepts:

white and fluffy 

thick mane around the neck 

thick coat of fur 

white, cream, or 
biscuit-colored

CDL (Ours) predicts great pyrenees 
dog with these concepts:

Paella, which is made of 
metal or ceramic 

Paella, which has has rice, 
seafood, and vegetables 

Paella, which is a 
brightly-colored rice-based 
dish.

paella VDES predicts paella with these 
concepts:

onions, peppers, and herbs 

garnished with avocado, 
lime, or cilantro 

brightly-colored rice-based 
dish

After class names removal, VDES 
predicts ceviche with these 
concepts:

made with either fresh or 
frozen seafood 

popular Spanish dish 

popular choice for large 
gatherings

Labo predicts paella with these 
concepts:

rice, seafood, vegetables, 
and meats 

cooked in broth 

bright-colored seafood rice 
served with lemon wedges

CDL (Ours) predicts paella with 
these concepts:

Black-footed Albatross, which 
is a black and white bird. 

Black-footed Albatross, which 
has black wingtips.

Black-footed Albatross, which 
can be seen gliding over the 
ocean. 

Black-footed Albatross, which 
is a  large, long-winged, 
seabird.

black-footed albatross
VDES predicts black-footed 
albatross with these concepts:

black or dark grey plumage

long, black legs 

webbed feet 

a white band around its neck

After class names removal, VDES 
predicts sooty albatross with 
these concepts:

most abundant albatross 
species 

one of the largest 
albatrosses 

help protect black-footed 
albatrosses by supporting 
organizations

only albatross species that 
has completely black legs 
and feet

Labo predicts black-footed 
albatross with these concepts:

wlong, narrow wings 

a long, hooked bill 

webbed feet 

black or grey body

CDL (Ours) predicts black-footed 
albatross with these concepts:

Figure 6: Examples of how different models conduct image classification based on the concepts.
Correct predictions and concepts are in green , while wrong concepts and non-visual concepts are

in red . Though VDES (Menon & Vondrick, 2022) and LaBo (Yang et al., 2023b) can both classify
the image correctly and the concepts are mostly correlated with the class names (highlighted in
orange ). After the removal of class name in VDES, we observe that VDES classifies this image as

ring tailed lemus and correlate the image with irrelevant concepts. Our proposed method (CDL) can
predict giant panda correctly based on the class-agnostic concepts.
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