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Abstract

Large Language Models (LLMs), despite001
achieving state-of-the-art results in a number002
of evaluation tasks, struggle to maintain their003
performance when logical reasoning is strictly004
required to correctly infer a prediction. In this005
work, we propose Argument Generation as a006
method of forcing models to utilize their reason-007
ing capabilities when other approaches such as008
chain-of-thought reasoning prove insufficient.009
Our method involves the generation of argu-010
ments for each possible inference result, and011
asking the end model to rank the generated012
arguments. We show that Argument Genera-013
tion can serve as an appropriate substitute for014
zero-shot prompting techniques without the re-015
quirement to add layers of complexity. Fur-016
thermore, we argue that knowledge-probing017
techniques such as chain-of-thought reasoning018
and Argument Generation are only useful when019
further reasoning is required to infer a predic-020
tion, making them auxiliary to more common021
zero-shot approaches. Finally, we demonstrate022
that our approach forces larger gains in smaller023
language models, showcasing a complex re-024
lationship between model size and prompting025
methods.026

1 Introduction027

Large Language Models, including state-of-the-art028

models such as Llama family of LLMs (Touvron029

et al., 2023), Mistral 7B (Jiang et al., 2023), and030

Phi-3 (Abdin et al., 2024) have shown to signifi-031

cantly outperform previous generation of models032

(Wang et al., 2023b) such as BERT (Devlin et al.,033

2019) in several mainly classification tasks (Chang034

et al., 2024). However, despite their seemingly035

human-like auto-regressive behavior, Large Lan-036

guage Models do not perform well when deep rea-037

soning or analysis is required to effectively infer a038

prediction (Lee et al., 2023; Tao et al., 2023).039

In order to bolster the reasoning capabilities of040

large language models, the research community041

Figure 1: The general framework of Argument Genera-
tion Prompting

has done extensive recent work in the form of 042

chain-of-thought reasoning (Kojima et al., 2022; 043

Wang et al., 2023a), Self-Reflection (Madaan et al., 044

2023), Multi-Agent Debate (Liang et al., 2023; 045

Du et al., 2023), and Socratic prompting (Chang, 046

2023), demonstrating that prompting the model to 047

generate the reasoning behind its answer, or gener- 048

ating a step-by-step guide to reach its response can 049

help predict better results. 050

Taking inspiration from chain-of-thought rea- 051

soning, and motivated by the need to develop bet- 052

ter prompt techniques with the goal of increasing 053

model performance in reasoning tasks, we intro- 054

duce Argument Generation, a single-pass prompt- 055

ing technique that aims to utilize the reasoning 056

and argumentation capabilities of Large Language 057

Models to generate better responses where deeper 058

consideration of logic or reasoning is required to 059

infer the correct result. Argument Generation in- 060

volves a two-step process. We first prompt the 061

model to generate possible reasoning for the truth- 062

fulness of each possible option, and then we ask the 063

model to rank the generated arguments and map 064
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its ranking to a final output in accordance with the065

task expectations.066

We evaluate our method on a number of openly067

available state-of-the-art Large Language Models068

using five tasks of different natures. We find that069

Argument Generation at its weakest, does not per-070

form significantly worse than chain-of-thought rea-071

soning, and is able to significantly outperform both072

zero-shot reasoning and chain-of-thought reason-073

ing when a deeper understanding of the task options074

is required. Furthermore, we note that in compari-075

son to chain-of-thought reasoning, Argument Gen-076

eration can be used as a stronger knowledge prob-077

ing technique that is useful in instances where such078

probing is essential. However, our method does079

not necessarily increase the model performance for080

inputs that observe acceptable results under more081

common methods.082

We make the following contributions: (1) We083

introduce Argument Generation, a novel prompting084

technique that aims to access the underlying reason-085

ing capabilities of LLMs. (2) We show through a086

series of experiments that our method is able to ef-087

fectively reason under conditions that fail chain-of-088

thought reasoning. (3) We show that our prompting089

method is more effective when used with smaller090

language models, eliciting further investigation into091

the relationship between prompting and model ca-092

pabilities.093

2 Background and Motivation094

Argumentation is the cognitive capability of gener-095

ating and evaluating “reasons” for deriving a con-096

clusion (Mercier, 2016). It is a central aspect of097

human intelligence and is omnipresent in natural098

human communication. It extends the conception099

of reasoning in LLM-research (Yu et al., 2023a) by100

including the notion that conclusions drawn must101

be new. Indeed, it has been suggested that human102

reasoning evolved for the purposes of enabling hu-103

mans to persuade each other (Mercier and Sperber,104

2011) through arguments.105

We hypothesize that many day-to-day arguments106

are evaluated by humans in an intuitive (fast, sys-107

tem 1) manner, without deep thought or “epistemic108

vigilance” (Sperber et al., 2010), unless they are109

from trusted sources and appear to contradict our110

own beliefs. Thus, because LLMs were pretrained111

with human communicative interactions, we hy-112

pothesize that LLMs are capable of fast argumenta-113

tive thinking. By triggering argumentative thought,114

we hypothesize that LLMs can effectively generate 115

reasons and assess conclusions, as well as improve 116

core reasoning capabilities across a variety of do- 117

mains, including commonsense, logical, and social. 118

3 Related Work 119

General argumentation ability of LLMs have 120

begun to be explored by researchers, with a fo- 121

cus on a number of computational argumentation 122

subtasks such as argument mining, claim detec- 123

tion, evidence detection and type classification, ar- 124

gument generation, and summarization (Balikas, 125

2023; Chen et al., 2023; Holtermann et al., 2022; 126

Ruiz-Dolz and Lawrence, 2023; Thorburn and 127

Kruger; de Wynter and Yuan, 2023). Research 128

suggests that LLMs “exhibit commendable per- 129

formance” (Chen et al., 2023) in zero-shot and 130

few-shot settings thereby supplying a foundation 131

supporting our approach. 132

Delving deeper, we can explore two core as- 133

pects of argumentation. First, the ability to argue 134

for/against all sides (thinking like a lawyer). Sec- 135

ond, the ability to generate implicit assumptions 136

(necessary or sufficient warrants) needed to support 137

the argument. 138

Arguing all sides is related to “backward reason- 139

ing” suggested in (Yu et al., 2023a), where they dis- 140

cuss that it is “better to collect both supportive and 141

opposing knowledge to compare the confidence of 142

different conclusions for defeasible reasoning.” Ad- 143

ditionally (Wang et al., 2022) discuss the idea of al- 144

lowing several different reasoning paths and choos- 145

ing the “most consistent one”. Another approach 146

is contrastive chain-of-thought (Chia et al., 2023) 147

where they consider both valid and invalid reason- 148

ing demonstrations alongside original prompt – a 149

dual perspective approach. Additionally, work in 150

multiagent debate, for example (Chia et al., 2023) 151

uses a notion of a debate with multiple agents dis- 152

cussing and talking about the problem. However, 153

none of these approaches attempt at rationalizing 154

all sides of an argument. That is none of these 155

offer up the best possible argument for/against 156

each choice, and then evaluate the best argument 157

(like for example, anticipatory reflection of plans 158

in (Wang et al., 2024)). 159

Extracting implicit information relates to work 160

in “knowledge-enhanced” (Qiao et al., 2023) strate- 161

gies in which an implicit model generates knowl- 162

edge and rationales. Also Yu et al. (2023a) dis- 163
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cusses Leap-of-thought reasoning which uses im-164

plicit facts to answer questions. A related notion is165

that of decomposing implicit multi-hop questions166

down in connection with the general backward rea-167

soning tactic of question-decomposition (see sum-168

mary in (Yu et al., 2023a)). Work by (Sarathy169

et al., 2022) suggests extracting implicit assump-170

tions from premise-conclusion pairs, however, that171

work does not explore how such endeavor influ-172

ences an LLM’s reasoning capability. Although173

there is a growing body of work in question de-174

composition, it is unclear to what extent they take175

implicit assumptions into account.176

General LLM reasoning capabilities have been177

improving over the past several years with numer-178

ous datasets targeting different types of reasoning179

– logical, mathematical, commonsense, argumen-180

tation, and social reasoning (Qiao et al., 2023; Yu181

et al., 2023a; Huang and Chang, 2023; Yu et al.,182

2023b; Luo et al., 2023; Sahoo et al., 2024a). The183

methods have involved various techniques to evoke184

reasoning processes such as having the LLM ex-185

plicate its chain of thought (Wei et al., 2022a), re-186

flect on its own reasoning process (Wang and Zhao,187

2023), decompose complex reasoning processes188

into simpler problems that can be solved more eas-189

ily (Khot et al., 2023), explore many different rea-190

soning paths and decide on one that wins a majority191

vote (Wang et al., 2022), and others. These various192

methods have shown improvements in various rea-193

soning tasks, but none have shown cross-domain194

effectiveness. Moreover, their reasoning capabili-195

ties are limited when exposed to scenarios in which196

the model must resolve a disagreement (Lee et al.,197

2023), distinguish a correct phrase from an incor-198

rect one (Riccardi and Desai, 2023), or assign a199

nondeterministic gender to a subject (Zakizadeh200

et al., 2023). Overall, Large Language Models have201

shown promising results in a variety of reasoning202

tasks while serious challenges and shortcomings203

still remain (Chang et al., 2024). What is missing is204

a cross-domain strategy to improve an LLM’s zero-205

shot reasoning capability, which we believe to be206

enhanced by its latent capability for argumentative207

thinking.208

4 Methodology209

We now provide details regarding our approach,210

including the proposed zero-shot approach and the211

reasoning behind our choice of Argument Genera-212

tion as a prompting technique.213

Argument Generation involves two overall 214

steps. Given an initial input x with possible an- 215

swers k1, k2, ...kn, we first prompt the model to 216

generate arguments supporting and attacking each 217

answer ki, creating arguments x′1, x
′
2, ...x

′
n for each 218

possible answer. We then ask the model to choose 219

the answer with the strongest argument as the fi- 220

nal output. More concretely, the Large Language 221

Model is utilized as a proxy for an argument rank- 222

ing function that chooses the most feasible options 223

among arguments x′1, x
′
2, ...x

′
n. 224

The rationale behind our approach is twofold. 225

First, it has been shown that Large Language Mod- 226

els, when provided with a reasoning context to- 227

wards the correct output, observe significantly im- 228

proved performance (Wei et al., 2022b; Kojima 229

et al., 2022), making the reasoning behind each 230

choice an important contributor to model perfor- 231

mance. Second, Large Language Models can act 232

as effective rankers when provided with a list-wise 233

input of possible options (Ma et al., 2023), indi- 234

cating the feasibility of their possible utilization 235

for the effective ranking of arguments. As a result, 236

the proposed technique relies on the assumption 237

that the correct answer ki to the query x should 238

logically have the strongest argument supporting it, 239

forcing the ranker model to choose the argument 240

that is directly mapped to the correct answer. 241

5 Evaluation 242

To empirically evaluate the effectiveness of our 243

proposed method, we have tested the performance 244

of Argument Generation in five datasets and across 245

six models. For the remainder of this section, we 246

focus on describing our evaluation setting. 247

5.1 Models 248

We test our approach using six models, including 249

two families of models, and two independent, re- 250

cently released LLMs. These include Llama 3 fam- 251

ily of models1 (8B and 70B), Gemma family of 252

models (2B and 7B) (Mesnard et al., 2024), Phi-3 253

3.8B (Abdin et al., 2024), and Mistral 7B (Jiang 254

et al., 2023). 255

5.2 Datasets 256

Our choice of datasets includes candidates from 257

five different tasks, each representing a group of 258

tasks that aim to quantify a specific aspect of a 259

given model. We strive to cover tasks belonging to 260

1https://ai.meta.com/blog/meta-llama-3/
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different domains, including question-answering,261

argumentation, reasoning, and bias evaluation.262

CommonSenseQA (Talmor et al., 2019) in-263

cludes multiple choice questions that quantify the264

common sense reasoning of the LLM that is being265

tested. The goal of these questions is to evaluate266

the capabilities of a model in connecting a ques-267

tion with complex semantics to a likely answer.268

We report the simple accuracy score for Common-269

SenseQA.270

DiFair (Zakizadeh et al., 2023) is designed as271

a gender bias quantification dataset and tasks the272

model with the determination of gender for a given273

noun/pronoun in a setting where the presence of274

sufficient information for gender assignment is not275

guaranteed. We report the Gender Invariance score276

as defined by the paper.277

IBM-30K (Gretz et al., 2020) contains 30,000278

topic-argument pairs with the goal of determining279

if the argument is sufficiently valid in a given topic.280

They utilize the weighted average of the annotator281

score as the gold label and report the ranking corre-282

lation against the gold label. In place of the original283

metric, we report 1−MAE as the main score to284

be consistent with other metrics and to showcase285

the model response quality per individual instance.286

TruthfulQA (Lin et al., 2022) measures the287

model truthfulness by quantifying the model like-288

lihood of mimicking human falsehoods as seen in289

text. We utilize the MC1 task definition of Truth-290

fulQA which involves 880 multiple-choice ques-291

tions designed to surface the model misinformation.292

We additionally generate 60 questions by randomly293

sampling %15 of the original dataset and replacing294

the correct option with ‘None of the Answers are295

Correct’. This is done in order to further evalu-296

ate model performance when no clear answer ex-297

ists. We report the accuracy score of the generated298

dataset.299

StereoSet (Nadeem et al., 2021) strives to mea-300

sure the stereotypical bias inherent in language301

models by requiring the model to select among302

stereotypical, anti-stereotypical, and unrelated op-303

tions given a context sentence. They argue that304

an ideal model should never choose an unrelated305

option as it directly contradicts the language mod-306

eling capabilities of the model. In addition, an307

ideally fair model should rank a stereotypical an-308

swer over an anti-stereotypical one only 50% of309

the time, demonstrating the fact that it does not 310

prefer a commonly associated stereotypical or anti- 311

stereotypical view of the context. We run our tests 312

on the subset of the dataset that targets racial and 313

gender bias and report the Idealized Cat (icat) score 314

of this subset. 315

5.3 Argument Generation 316

Algorithm 1 Argument Generation

Require: Input x, List of Possible Answers K
Ensure: Final Response ki

1: procedure GENERATION(x, K)
2: function IMPLICITASSUMPTION(x, K)
3: Let A := ø
4: for all ki ∈ K do
5: A := A ∪ ASSUMPTION(x, ki)
6: Let Ranking := RANKING(A)
7: return Ranking[0] ▷ Return the Top

Ranking Answer
8: function ARGUMENTGENERATION(x, K)
9: Let A := ø

10: for all ki ∈ K do
11: A := A ∪ {ARGUMENT(x, ki),

ARGUMENT(x, ¬ki)}
12: Let Ranking := LWR(A)
13: return Ranking[0] ▷ Return the Top

Ranking Answer

We perform our evaluations using two different 317

Argument Generation settings. In the first approach, 318

given an input x and a possible answer k, we ex- 319

plicitly ask the model to generate an implicit as- 320

sumption under which k is a valid response to x. 321

An implicit assumption is a set of logical proposi- 322

tions P such that every proposition in P must hold 323

in order for the answer to follow logically from 324

x. We then ask the model to rank these implicit 325

assumptions by the feasibility of all pi ∈ P to 326

hold simultaneously. We finally take the implicit 327

assumption with the highest feasibility ranking as 328

the final answer to the input. 329

In the second approach, given an input x and 330

a possible answer k, we ask the model to both 331

generate an argument for accepting k as a correct 332

answer to x and generate an argument for rejecting 333

k as a correct answer to x. We then apply this 334

process to all candidate answers k1 through kn 335

such that n tuples of arguments are generated by 336

the model. We finally prompt the model to rank 337

these tuples and generate the final answer to input 338
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Model Prompt CommonenseQA DiFair IBM-30K TruthfulQA StereoSet

Gemma 7B

Zero-Shot 43.24% 0.0% 59.46% 20.63% 63.70%
Chain of Thought 41.85% 12.65% 49.98% 18.61% 36.17%
Argument Generation w/ Implicit Assumptions 37.18% 34.54% 62.63% 47.97% 44.97%
Argument Generation 39.80% 55.39% 80.93% 31.27% 34.3%

Gemma 7B

Zero-Shot 69.28% 0.0% 70.85% 28.93% 88.87%
Chain of Thought 69.12% 32.52% 63.14% 41.48% 66.98%
Argument Generation w/ Implicit Assumptions 66.33% 47.51% 69.31% 33.05% 64.05%
Argument Generation 66.66% 55.84% 72.94% 25.21% 73.88%

Llama3 8B

Zero-Shot 71.33% 22.19% 60.51% 47.97% 42.47%
Chain of Thought 71.41% 10.80% 66.03% 44.57% 54.36%
Argument Generation w/ Implicit Assumptions 63.22% 55.88% 71.22% 51.70% 55.73%
Argument Generation 64.12% 58.57% 73.50% 33.93% 45.90%

Llama3 70B

Zero-Shot 79.85% 78.08% 76.04% 69.04% 41.91%
Chain of Thought 80.26% 82.79% 64.46% 70.53% 39.04%
Argument Generation w/ Implicit Assumptions 74.44% 72.45% 76.98% 56.91% 73.44%
Argument Generation 75.34% 79.16% 76.13% 68.93% 52.05%

Phi3 3.8B

Zero-Shot 67.97% 6% 63.04% 47.55% 56.0%
Chain of Thought 66.66% 71.59% 62.57% 51.48% 61.52%
Argument Generation w/ Implicit Assumptions 66.91% 57.24% 69.50% 51.70% 61.15%
Argument Generation 67.97% 52.39% 69.17% 52.12% 61.67%

Mistral 7B

Zero-Shot 67.81% 45.66% 64.83% 8% 46.61%
Chain of Thought 67.89% 62.19% 59.82% 55.95% 41.10%
Argument Generation w/ Implicit Assumptions 64.29% 63.44% 66.58% 50.63% 46.28%
Argument Generation 64.70% 66.51% 66.85% 51.27% 49.24%

Table 1: Prompting results using Argument Generation, Chain of Thought Reasoning, and Zero-Shot Prompting in
five different datasets.

x.339

Algorithm 1 showcases both of the aforemen-340

tioned techniques, where ASSUMPTION(x, K)341

refers to the generation of implicit assumptions342

for each candidate answer, and ranking them via343

a list-wise ranking technique, and ARGUMENT(x,344

K) refers to the generation of tuples of arguments345

for each candidate answer that both support and at-346

tack the corresponding candidate answer, and then347

ranking them via a list-wise ranking approach.348

We acknowledge that it is possible to extend349

our approach to a multi-agent setting, where the350

argument generation is done by an external model351

that is separate from the ranking model. How-352

ever, we focus on single-pass prompting for the353

purpose of this study to (i) provide a single-pass,354

easy-to-implement approach that is comparable to355

zero-shot chain-of-thought reasoning both in per-356

formance, and running time, and (ii) refrain from357

unnecessarily increasing the computational require-358

ment of the approach, as seen in other multi-agent359

techniques. However, we hypothesize that general-360

izing our algorithm to utilize multiple agents is both361

simple and observes an increase in performance.362

6 Evaluation Results363

We now showcase our results as tested against the364

datasets mentioned in section 5. We additionally365

show that Argument Generation, when outperform- 366

ing zero-shot chain-of-thought reasoning, demon- 367

strates significantly higher performance gain, and 368

suffers smaller losses in cases where it does not 369

result in increased performance. We finally pro- 370

vide a model size analysis to better understand the 371

relationship between prompting methods and the 372

number of parameters present in a given Large Lan- 373

guage Model. 374

6.1 Performance Analysis 375

Table 1 showcases the evaluation results when us- 376

ing Argument Generation against zero-shot chain- 377

of-thought prompting (Kojima et al., 2022) and 378

common zero-shot prompting (Radford et al., 379

2019). 380

We observe that our method is able to out- 381

perform both zero-shot prompting and chain-of- 382

thought reasoning in 18 of the 30 test settings, 383

amounting to a win rate of 60%. Additionally, our 384

approach outperforms chain-of-thought reasoning 385

in 20 of the 30 settings, showcasing that Argument 386

Generation yields better results in 66.66% of the 387

test cases. Among the 20 cases where our proposed 388

method performs better, there are 15 cases (75%) in 389

which both proposed approaches outperform chain- 390

of-thought reasoning, while Argument Generation 391

with implicit assumptions is able to yield better re- 392
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sults in 18 cases (90%), and Argument Generation393

without implicit assumptions has a better perfor-394

mance in 17 cases (85%), demonstrating that both395

methods have better overall results in comparison396

to zero-shot chain-of-thought reasoning.397

With respect to individual datasets, we find that398

our method enjoys a significant performance boost399

when tested against instances of IBM-30K (Gretz400

et al., 2020), with both methods showing improved401

results over the two other baselines in all models.402

This behavior is expected as IBM-30K measures403

a model’s capability to correctly discern a valid404

argument from an invalid one, and our approach405

operates via generating arguments that both support406

and attack the given input, meaning that invalid407

arguments will have weaker support, allowing the408

model to correctly rank the inputs based on their409

strength.410

Additionally, we observe that Argument Genera-411

tion is able to increase model performance for 8 out412

of 12 instances (66.66%) against all methods, and413

for 10 out of 12 instances (83.33%) against chain-414

of-thought reasoning in DiFair (Zakizadeh et al.,415

2023) and StereoSet (Nadeem et al., 2021) datasets,416

showcasing that argumentation might serve as a re-417

liable debiasing method for Large Language Mod-418

els. Interestingly, the correlation between our ap-419

proach’s improving effects and a given model’s420

general capability is not strictly positive in this421

case, meaning that it is possible for larger models422

to observe lower, or no gains when prompted with423

Argument Generation. We attribute this observation424

to the possibility of more capable models deceiving425

themselves via supporting an incorrect candidate426

when the initial knowledge is sufficient to make427

a prediction, meaning that Argument Generation428

might force an artificial and unwanted decrease in429

model confidence. We provide further details and430

analysis in section 6.3.431

6.2 Performance Difference Analysis432

In order to observe the expected performance met-433

ric difference, we define ∆min as the mean differ-434

ence between chain-of-thought reasoning and the435

worst-performing Argument Generation method436

when chain-of-thought reasoning is performing bet-437

ter than our approach, and ∆max as the mean dif-438

ference between chain-of-thought reasoning and439

the best-performing Argument Generation method440

when chain-of-thought reasoning is performing441

better than our approach. Conversely, we define442

Γmin and Γmax similarly for cases in which Argu-443

ment Generation is performing better than chain- 444

of-thought reasoning. More concretely, ∆ values 445

show the performance decrease of Argument Gen- 446

eration with respect to chain-of-thought reason- 447

ing when the second approach is able to outper- 448

form our method, while Γ values demonstrate the 449

performance increase when Argument Generation 450

produces better results in comparison to chain-of- 451

thought reasoning. 452

Model Name ∆min ∆max Γmin Γmax

Gemma 2B 4.67 2.05 15.73 34.35
Gemma 7B 9.53 5.44 10.57 16.56
Llama3 8B 8.18 7.28 25.13 27.61
Llama3 70B 9.92 3.38 12.34 23.46
Phi3 3.8B 19.2 14.35 2.35 2.96
Mistral 7B 4.45 3.93 4.39 6.49

Overall 8.98 5.26 10.90 17.77

Table 2: Observed results of ∆min, ∆max, Γmin, and
Γmax for all tested models. We find that in cases where
our method performs better, it generally holds that it has
a larger performance gain in comparison to the cases
where Chain-of-Thought reasoning outperforms our ap-
proach.

Table 2 showcases our empirical results. We 453

find that except for the Phi3 3.8B model, all LLMs 454

demonstrate significantly higher performance in 455

instances where our method outperforms zero-shot 456

chain-of-thought reasoning. Most significantly, 457

Llama3 8B has a mean performance difference 458

of 25.13% between the worst-performing Argu- 459

ment Generation approach and zero-shot chain- 460

of-thought reasoning (Γmin) in tasks that our 461

method performs better. Looking at Γmax, the 462

best-performing proposed method is able to boost 463

Gemma 2B model performance by 34.35%, and 464

Llama3 8B performance by 27.61%, showcasing 465

that overall when such an increase in model per- 466

formance is observed, the increase is significant. 467

Conversely, Phi3 3.8B, when prompted using our 468

method, only has an increased output value of 469

2.96% at best, while performing 19.2% better than 470

the worst-performing Argument Generation ap- 471

proach, and 14.35% better than the best-performing 472

approach in instances that chain-of-thought reason- 473

ing yields better results. We attribute this behavior 474

to the model’s lower argument ranking capabili- 475

ties, meaning that Phi3 cannot effectively rank the 476

arguments based on their validity. This notion is 477

further bolstered by the model’s relatively low per- 478
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Figure 2: Mean Performance in models of different size

formance in the IBM-30K dataset as seen in Table479

1. Additionally, Phi family of models enjoy a signif-480

icant performance boost when paired with chain-of-481

thought reasoning 2, which we believe contributes482

to the observation that our approach does not sig-483

nificantly increase the model performance in this484

instance relative to other models.485

6.3 Model Size Analysis486

We now provide our results on the effects of487

prompting on models of different sizes. In order488

to conduct our evaluation, we divide the models489

under test into three subcategories. The first cate-490

gory constitutes Gemma 2B and Phi3 3.8B and is491

demonstrative of small language models (below 7492

billion parameters). The second category contains493

Gemma 7B, Llama3 8B, and Mistral 7B, and show-494

cases language models of medium size. Finally,495

Llama 3 70B is the sole member of the third cate-496

gory and acts as a sample member for the largest497

of language models by parameter count.498

Figure 2 demonstrates the mean performance499

of the four prompting methods across different500

sizes, grouped by the aforementioned categoriza-501

tion where ZS, COT, AGIP, and AG stand for zero-502

shot, chain-of-thought, Argument Generation with503

Implicit Assumptions, and Argument Generation,504

respectively. Our findings show that generally, all505

models experience a performance increase when506

prompted either with chain-of-thought reasoning,507

or Argument Generation with the exception of508

Gemma 2B and Llama3 70B for COT. We observe509

that models of smaller sizes (medium and small)510

experience a significant performance boost when511

prompted via Argument Generation (for 100% of512

2Open COT Leaderboard

the models) and chain-of-thought reasoning (for 513

80% of the models). 514

Furthermore, smaller models show a higher per- 515

formance gain when compared to the largest Llama 516

3 instance. More specifically, the mean perfor- 517

mance gain when utilizing Argument Generation 518

compared to zero-shot prompting is 12.06% for 519

small models, and 10.36% for medium models, 520

while the performance gain for the 70B model is 521

1.86%. We hypothesize that the reason behind the 522

lower performance gain in larger models is due 523

to their already impressive capability to infer the 524

correct results without the requirement to intro- 525

duce further information probing techniques such 526

as chain-of-thought reasoning and Argument Gen- 527

eration. More concretely, forcing the model to 528

perform self-reasoning or rank the validity of argu- 529

ments and responses does not expose the model to 530

previously hidden information, and does not nec- 531

essarily increase the performance when additional 532

information is not strictly required to respond to the 533

input. This phenomenon is especially observable 534

in CommonSenseQA and TruthfulQA as seen in 535

table 1, where the introduction of prompting does 536

not improve the model performance in all instances. 537

These observations are in line with those reported 538

by Kojima et al. (2022) and lead us to believe that 539

knowledge probing prompting methods are only 540

useful in cases where this additional information is 541

required to make strong predictions. 542

To further investigate the effects of prompting 543

on model performance, and its relationship with 544

the number of model parameters, we report the 545

mean performance across the number of parame- 546

ters in figure 3. We find that although both our 547

proposed method and chain-of-thought reasoning 548

7
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Figure 3: Mean Performance trend across model parameters

provide improved performance in models of larger549

size, their impact diminishes as the models grow550

larger. More specifically, we find that the mean551

difference between zero-shot prompting and Argu-552

ment Generation methods is 11.81% for models553

with less than 7 billion parameters, 8.92% for mod-554

els of 7 billion to 8 billion parameters, and 1.59%555

for the largest model. Further investigation is re-556

quired to fully confirm our observations, however,557

this finding bolsters the previous hypothesis that558

Argument Generation as a prompting technique,559

is more effective in increasing the performance560

of smaller models. This behavior may stem from561

the fact that large models are able to generate con-562

vincing arguments for incorrect options, making563

the task of discerning an invalid argument from564

a valid one difficult. Conversely, smaller models565

are not able to generate arguments of high quality566

for incorrect candidates, thus goading the model567

to rank the valid argument over the incorrect one.568

Similarly, the observed mean differences between569

Argument Generation and chain-of-thought reason-570

ing are 6.63%, 4.12%, and 3.16% respectively for571

models of small (<7B), medium (7B and 8B), and572

large (>8B) sizes.573

Based on the above observation, a multi-agent574

technique to increase performance might be to gen-575

erate arguments using a less capable model, while576

utilizing a more performant model to rank the ar-577

guments. We delegate further analysis to future578

work.579

7 Discussion and Future Work580

Prompting has been proposed as a method of im-581

proving model performance in either task-specific582

settings or broader, task-agnostic environments (Sa-583

hoo et al., 2024b). Despite the visible gains of 584

employing prompting to yield better model results, 585

the literature showcasing how, and when prompting 586

works is limited (Petrov et al., 2024). We observe 587

that the proposed method is able to significantly 588

boost the model performance in smaller models 589

while gaining marginal improvements as the model 590

size increases, which is contrary to the previous 591

work showing that larger models have higher gains 592

through prompting (Wei et al., 2022b). This leads 593

us to believe that the relationship between prompt- 594

ing and the nature of the model is complex, and 595

might be affected both by the model size, and its 596

relative task-specific knowledge and capabilities. 597

Further work is required to demonstrate the effects 598

of prompting when models hold knowledge of vary- 599

ing degrees with respect to a task description. In- 600

vestigation of the learning resources used in model 601

training can provide invaluable insight into the rela- 602

tionship between prompting and model reasoning. 603

8 Conclusion 604

In this work, we have proposed Argument Gener- 605

ation as a novel, zero-shot prompting technique. 606

Through empirical evaluation using a number of 607

datasets, we observe that our method is able to out- 608

perform both zero-shot prompting and zero-shot 609

chain-of-thought reasoning in the majority of the 610

conducted tests, making it a likely candidate when 611

improving the model performance in a zero-shot 612

setting is required. Furthermore, we show that 613

our approach yields larger gains in smaller mod- 614

els, both offering an effective method that can be 615

used in small models and providing a possible fu- 616

ture direction to better understand the relationship 617

between model capabilities and prompting. 618

8



9 Limitations619

Despite the observation that Argument Generation620

is able to generally outperform other common zero-621

shot prompting methods, its reliance on the exis-622

tence of a predefined number of options from which623

the model can arguments is an inherent limitation624

of our work. While it is true that all questions can625

be modified to behave as either a multi-choice ques-626

tion or a yes-no question, this conversion relies on627

the background knowledge of the user that is inter-628

acting with the model, meaning that in cases where629

the user has no information regarding the possible630

answer for an open question, the correct formula-631

tion of the input to fit our criteria can prove difficult.632

We plan to address this limitation in future work633

via the possible introduction of automatic option634

generation.635

In addition, while we have made the best effort636

to cover datasets pertaining to different tasks that637

evaluate various model capabilities, it is possible638

that other task-agnostic prompting methods out-639

perform our approach in a number of yet untested640

metrics. Further investigation is required to fully641

confirm the effects of our approach on different642

models and tasks.643

10 Ethical Considerations644

Previous work has shown that Large Language645

Models are limited in their capability to understand646

their own lack of knowledge (Yin et al., 2023). As647

such, it is possible to generate prompts that exacer-648

bate model hallucinations, and even force models649

to generate misinformation. The proposed method650

can especially be prone to attacks of a similar kind651

as a malicious agent can force the model to show-652

case generally unwanted behavior by providing the653

model with incorrect, and even dangerous options.654

As such, we encourage the research community to655

continue the work in hallucination reduction and656

use all prompting methods both responsibly and657

skeptically.658
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A Model Details993

We utilize the Ollama framework 3 to conduct all994

evaluations described in the paper. Generally, we995

make use of the 4-bit quantized (Rokh et al., 2023)996

versions of the tested models to maintain consis-997

tency, and due to hardware limitations. Table 3998

demonstrates all the tested models, their Ollama999

hub links, as well as their quantization methods.1000

Model Name Hub Link Quantization Method

Gemma 2B Link Q4
Gemma 7B Link Q4
Llama3 7B Link Q4
Llama3 80B Link Q4
Phi3 3.8B Link Q5
Mistral 7B Link Q4

Table 3: All model sources as well as their quantization
method.

Additionally, in order to minimize output vari-1001

ance and generate reproducible evaluations, all1002

tests were performed with a model temperature1003

of 0 and a random seed of 42. Furthermore, our1004

test setting involved a workstation containing an1005

Nvidia A6000, and an Nvidia RTX 4090, with 1281006

GB of available RAM. All testing code will be1007

made publicly available upon the publication of the1008

work.1009

B Evaluation Method and Prompt Strings1010

Table 4 lists the tested prompting methods as well1011

as the special instruction used for each prompt. A1012

special instruction is a text string that is appended1013

to the end of the input question and aims to guide1014

the model behavior while responding to that spe-1015

cific input.1016

For the case of zero-shot prompting, we simply1017

ask the model to only respond with the correct an-1018

swer without providing any instructions to reason1019

about the input. Chain-of-thought reasoning is ad-1020

ditionally employed via the guidelines provided1021

by Kojima et al. (2022). Finally, we showcase the1022

special instructions for the proposed method, both1023

containing the implicit assumption generation, and1024

common argument generation.1025

3https://github.com/ollama/ollama-python
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Prompting Method Special Instruction

Zero-Shot Only respond with the correct answer

Chain-of-Thought Let’s think about each option step by step

Argument Generation w/ Implicit As-
sumptions

When answering, first reason about each choice, and make
an argument for why it can be the answer and why it cannot
be the answer. Then identify, for each choice, what implicit
assumptions you might be making for each of your arguments.
By implicit assumption, we mean those propositions that are
necessary so that the choice logically follows the question. Then
select one of the choices based on the strongest argument

Argument Generation When answering, first reason about each choice, and make an
argument for why it can be the answer and why it cannot be the
answer. Then select one of the choices based on the strongest
argument.

Table 4: Special model instructions corresponding to each prompting method.
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