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Abstract

Explainable Artificial Intelligence (XAI) aims to make learning machines less opaque, and
offers researchers and practitioners various tools to reveal the decision-making strategies of
neural networks. In this work, we investigate how XAI methods can be used for exploring
and visualizing the diversity of feature representations learned by Bayesian Neural Networks
(BNNs). Our goal is to provide a global understanding of BNNs by making their decision-
making strategies a) visible and tangible through feature visualizations and b) quantitatively
measurable with a distance measure learned by contrastive learning. Our work provides new
insights into the posterior distribution in terms of human-understandable feature information
with regard to the underlying decision-making strategies. The main findings of our work
are the following: 1) global XAI methods can be applied to explain the diversity of decision-
making strategies of BNN instances, 2) Monte Carlo dropout with commonly used Dropout
rates exhibit increased diversity in feature representations compared to the multimodal
posterior approximation of MultiSWAG, 3) the diversity of learned feature representations
highly correlates with the uncertainty estimate for the output and 4) the inter-mode diversity
of the multimodal posterior decreases as the network width increases, while the intra-mode
diversity increases. These findings are consistent with the recent Deep Neural Networks
theory, providing additional intuitions about what the theory implies in terms of humanly
understandable concepts.
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1 Introduction

Despite the great success of Deep Neural Networks (DNN), little is known about the decision-making
strategies that they have learned. This lack of transparency is a major cause of concern since DNNs are
being used in safety-critical applications (Berkenkamp et al., 2017; Huang & Chen, 2020; Le et al., 2021) and
it has been shown that they tend to encode fallacies, including the memorization of spurious correlations
(Lapuschkin et al., 2019; Izmailov et al., 2022) or being biased towards the data set that they were trained
on (Tommasi et al., 2017; Turner Lee, 2018; Ribeiro et al., 2016). Therefore, in recent years, the field of
Explainable Artificial Intelligence (XAI) has established itself in order to make the decisions of AI models
comprehensible to humans. XAI methods allow the user to “open” the black-box of trained neural networks,
that is, understanding what the model has learned and on which features its decisions are based.

Such post-hoc XAI methods can be further categorized into local and global explanation methods. While
local XAI methods assign importance scores to input features, e.g. image pixels, that are important for a
model’s prediction (Sundararajan et al., 2017; Simonyan et al., 2014; Lapuschkin et al., 2015; Rs et al., 2017;
Smilkov et al., 2017), global XAI methods aim to explain the inner workings of a DNN, e.g. what concepts
are encoded in its parameters, by providing feature visualizations (FVs) (Olah et al., 2017; 2018; Bau et al.,
2020). XAI methods have been applied extensively on many Deep Neural Network types that were trained in
a frequentist fashion, namely Convolutional Neural Networks (Lecun et al., 1998), Recurrent Neural Networks
(Medsker & Jain, 1999), and others (Hilton et al., 2020; Schnake et al., 2021; Bau et al., 2020).

In a recent work by Bykov et al. (2021), explanation methods have been applied to neural networks that were
trained in a Bayesian fashion. Inherently, Bayesian Neural Networks (BNN) offer the property of uncertainty
estimation that results from the diversity of learned feature representations and prediction strategies of
different BNN instances. The authors apply local explanation methods on top of BNN instances and obtain a
distribution over explanations, from which they estimate explanation uncertainties. Furthermore, such an
approach of introducing stochasticity to the model parameters was shown to be successful in enhancing local
explanations of standard models trained in a frequentist fashion (Bykov et al., 2022).

In our work, our primary objective is to explore the feasibility of utilizing global explanation methods for
Bayesian Neural Networks. We aim to answer the following questions:

1. Can the diversity of BNN instances be explained by global XAI methods?

2. Does the choice of the Bayesian inference method affect the diversity of their feature visualizations?

3. Can the uncertainty estimates provided by a BNN be explained by the diversity of their feature
visualizations?

4. How does the network width affect the diversity of explanations of samples from a multimodal
posterior distribution?

The first question is to make sure that the properties of Bayesian ensembles can be visualized. The other
three questions are related to hot topics in Bayesian Deep Learning, i.e., scalable posterior approximation,
reliable uncertainty estimation, and the loss surface of Deep neural networks that have been exploited in deep
ensembles (Lakshminarayanan et al., 2017) and their extensions (Wilson & Izmailov, 2020). By answering
those questions, we show the capability of our approach in analyzing Bayesian ensembles of neural networks.
To the best of our knowledge, we are the first to use global XAI methods to explain the diversity of BNN
instances. Our results underpin the latest findings in the field of deep learning theory (Roberts et al., 2022)
in a – for the first time – illustrative way.

2 Background

In this section, we provide a brief overview of Bayesian Neural Networks and global explanation methods,
which are used in the subsequent sections.
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2.1 Bayesian neural networks

Bayesian machine learning estimates the posterior distribution over unknown variables rather than estimating
a single value. We focus on neural network classifiers, where the conditional distribution of the model is given
as

p(y|x, θ) = SoftMax(fθ(x)), (1)

with fθ(x) being the network output parameterized with θ. Let D := {(x(1), y(1)), . . . , (x(N), y(N))| x(n) ∈
RD, y(n) ∈ {0, 1}C ∀n = 1, . . . , N} be a training data set, where N is the number of training samples, and
C is the number of distinct classes. The label y(n) is a one-hot encoded vector, where the vector-entry
corresponding to the correct class is one and the rest is set to zero. Given a prior distribution p(θ) on the
network parameter, the posterior distribution is given by Bayes’ theorem (Pearson et al., 1959):

p(θ|D) = p(D|θ)p(θ)
p(D) = p(D|θ)p(θ)∫

p(D|θ)p(θ)dθ
. (2)

Then, the predictive distribution p(y∗|x∗,D) for a test point x∗ is given by marginalizing over all possible
model parameter setups:

p(y∗|x∗,D) =
∫

p(y∗|x∗, θ)p(θ|D)dθ, (3)

encoding the models uncertainty regarding the predicted label y∗ for a given test point x∗.

Since the integrals in Eqs.(2) and (3) are computationally intractable for DNNs, several approximation
methods have been proposed (Mackay et al., 1999; Neal, 2012; Graves, 2011; Blundell et al., 2015; Zhang
et al., 2019). Those methods approximate the posterior (2) by q(θ|D) ≈ p(θ|D), and estimate the predictive
(3) with T Monte Carlo samples:

p(y∗|x∗,D) ≈ 1
T

T∑
t=1

p(y∗|x∗, θt), θt ∼ q(θ|D). (4)

The resulting averaged output probability vector of the BNN is usually referred to as Bayesian Model Average
(BMA).

Below we introduce four popular methods for approximating the posterior with unimodal or multimodal
distribution families.

2.1.1 Kronecker-Factored Approximation Curvature (KFAC)

KFAC (Martens & Grosse, 2015) approximates the true posterior distribution by learning the following
unimodal multivariate normal distribution:

qMAP(θ|D) = N (θ; θ̂MAP, F̂ −1),

where N (µ, Σ) denotes the Gaussian distribution with mean µ and covariance Σ. The approximate posterior
mean θ̂MAP is the Maximum A Posteriori (MAP) estimate, which is obtained by a standard training algorithm
such as Stochastic Gradient Descent (SGD). The posterior covariance F̂ −1 is the inverse of a regularized
approximation of the Fisher information matrix F . For computational efficiency, the inverse Fisher information
matrix F̂ −1 is approximated by the sum of a diagonal matrix and a low-rank matrix expressed as a Kronecker
factorization.

2.1.2 Monte-Carlo Dropout (MCDO)

Deep Neural Networks of arbitrary depth including non-linearities that are trained with dropout can be
used to perform approximate Bayesian inference (Gal & Ghahramani, 2016). In MCDO, samples from the
approximate posterior are drawn by

θl = θ∗
l · diag([zl,ml

]Ml−1
ml=1), zl,ml

∼ Bernoulli(γl),
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where θ∗
l is the weight matrix of layer l of dimensions Ml ×Ml−1 before Dropout is applied, diag(·) is a

function that maps the vector [zl,ml
]Ml−1
ml=1 to a diagonal matrix of dimension Ml−1 ×Ml−1 with zl,ml

being
the diagonal element in row ml and column ml for ml = 1, ..., Ml. The elements zl,ml

are independent binary
random variables that follow the Bernoulli distribution, e.g. zl,ml

∼ Bernoulli(γl) and γl is the dropout rate.
In practice, users can choose a fixed value of γl that optimizes some metric, e.g. the test accuracy.

2.1.3 Stochastic Weight Averaging Gaussian (SWAG)

SWAG (Maddox et al., 2019) is an efficient method to fit a Gaussian distribution around a local solution.
The algorithm consists of an initial training phase followed by a model collection phase. The initial training
is performed in a standard way, e.g., by SGD with a decaying learning rate. After the convergence, the
collection phase starts, where the SGD update continues with either a cyclical or a high constant learning
rate for collecting SGD iterates. The trajectory of those iterates is then used to estimate the mean and the
covariance of the approximate Gaussian posterior distribution:

qSWAG(θ|D) = N (θ; θ̂SWAG, Σ̂SWAG).

The covariance Σ̂SWAG is approximated by the sum of a diagonal and a low-rank matrix, similarly to KFAC,
for stable estimation from a small number of SGD iterates during the collection phase.

2.1.4 Deep Ensemble of SWAG (MultiSWAG)

MultiSWAG (Wilson & Izmailov, 2020) combines the ideas of SWAG and deep ensemble (Lakshminarayanan
et al., 2017). It simply performs the SWAG training multiple times from different weight initializations, and
each SGD trajectory during the collection phase is used to compute the mean θ̂k and the covariance Σ̂k of a
Gaussian distribution. The estimated Gaussians are combined to express the approximate posterior as a
(equally-weighted) mixture of Gaussians (MoG):

qMultiSWAG(θ|D) = 1
K

K∑
k=1
N (θ; θ̂k, Σ̂k). (5)

Since each SWAG trajectory is expected to converge to a different local solution or mode, MultiSWAG
provides a multimodal approximation of the true posterior. MultiSWAG was shown to improve generalization
performance and uncertainty estimation quality (Wilson & Izmailov, 2020).

2.2 Global XAI methods

XAI methods that are decoupled from the architectural choice of a neural network and its training procedure are
referred to as post-hoc XAI methods, which can be further categorized into local and global explanation methods.
Global XAI methods aim to explain the general decision-making strategies learned by the representations of
DNNs. They reveal the concepts to which a particular neuron responds the most (Olah et al., 2017; 2018; Bau
et al., 2020; Nguyen et al., 2016) by decomposing and quantifying the activations of certain neural network
layers in terms of human-understandable concepts (Kim et al., 2018; Koh et al., 2020), or by identifying and
understanding causal relationships that are encoded between neurons (Reimers et al., 2020).

In this work, we focus on the Activation Maximization (AM) framework (Nguyen et al., 2016). The general
idea of AM is to artificially generate an input that maximizes the activation of a particular neuron in a
certain layer of a neural network. The optimization problem can be formulated as follows:

v̂ = argmax
v∈RV

a(v) + R(v), (6)

where v is the input variable, a(·) is the activation of the neuron of interest, and R(·) is a regularizer. This
can be easily extended to maximize the activation of a certain channel or layer by maximizing a norm
of the channel’s or layer’s activation vectors. We refer to the resulting image, v̂ in Eq.(6), as a Feature
Visualization (FV) vector. To generate FV that are not full of high-frequency noise, as is the case for
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Data set image size classes Training size Test size
Places365 256× 256× 3 365 ∼1.4mil 365k

CIFAR-100 32× 32× 3 100 50k 10k
STL-10 96× 96× 3 10 5k 8k
SVHN 32× 32× 3 10 ∼73k ∼26k

Table 1: Data sets used in the experiments.

Model # Trainable parameters Test accuracy
ResNet50 25,557,032 55.57%
WRes10 36,546,980 82.75%
WRes2 1,481,252 77.45%

WRes1 (WideResNet28) 376,356 72.57%
WRes0.7 88,448 62.54%
WRes0.2 5,008 27.96%

Table 2: Network architectures. WRes1 corresponds to the original WideResNet28, and WResβ for β ̸= 1 is
the network with the number of channels β times more than the original in each convolutional layer. The
test accuracy is on Places365 for ResNet50, and on CIFAR-100 for WResβ, respectively.

adversarial examples (Szegedy et al., 2013; Goodfellow et al., 2014; Athalye et al., 2018), several regularization
techniques have been proposed (Olah et al., 2017; Mordvintsev et al., 2018): transformation robustness
applies several stochastic image transformations, e.g., jittering, rotating, and scaling, before each optimization
step; frequency penalization either explicitly penalizes the variance between neighboring pixels or applies
bilateral filters on top of the input. In order to even further reduce high-frequency patterns that correspond
to noise, it was proposed to perform the optimization in a spatially decorrelated and whitened space, instead
of the original image space. This space corresponds to the Fourier transformation of the image based on the
spatially decorrelated colors. In this way, high-frequency components are successfully reduced.

Feature Visualization methods have proven effective in explaining the concepts learned within Deep neural
Networks (Goh et al., 2021). These methods have also been employed for the purpose of explaining the
circuits within DNNs, which represent computational subgraphs responsible for the transformation of various
features (Cammarata et al., 2020). Additionally, Activation Maximisation approaches have been used to
identify neurons responsible for spurious correlations (Bykov et al., 2023) and human-implanted backdoors
(Casper et al., 2023).

3 Experimental Setup

Here we describe our experimental setup including the methodologies for the quantitative analysis of feature
visualizations.

3.1 Datasets

In our experiments, we use four data sets, Places365 (Zhou et al. (2017)), CIFAR-100 (Krizhevsky et al.
(2009)), STL-10 (Coates et al. (2011b)), and SVHN (Yuval (2011)), of which some statistics are listed in
Table 1. When training a classifier, the Places365 images are clipped to 224× 224× 3, and the other data sets
are clipped to 32×32×3. Places365 dataset encompasses numerous classes with diverse human-understandable
concepts, such as the farm class, which typically includes concepts like farm animals, barns, fields, and others.
In computationally intensive experiments with MultiSWAG, we use CIFAR-100 and clipped images of STL-10
and SVHN.
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Inference method Test accuracy
KFAC 54.78%

MultiSWAG 56.64%
MCDO-5% 55.68%
MCDO-10% 55.07%
MCDO-25% 51.69%

Table 3: Approximate Bayesian inference methods analyzed in the experiments. For each inference method,
the test accuracy of ResNet50 on the Places365 test set is evaluated on the predictive distribution that we
approximate with T = 50 MC samples.

3.2 Network Architectures

We train ResNet50 (He et al., 2016) on Places365, and WideResNet28 (Zagoruyko & Komodakis, 2016) on
CIFAR-100, respectively. To study the network width dependence, we also use WideResNet28 with increased
and decreased numbers of channels in each layer. Therefore, we scale the number of channels of the original
WideResNet28 by a scaling factor β, which we refer to as WResβ. For example, WRes2 corresponds to a
network that is twice as wide as the original network. The number of parameters and the test accuracy are
shown in Table2, where the test accuracies are obtained by evaluating the MAP estimates of the corresponding
models.

3.3 Inference Methods

The approximate Bayesian inference methods that we analyzed are listed in Table 3. MCDO-γ% is the MC
dropout model with dropout rate γ%, applied to each layer of the CNN encoders except for the last one
(same dropout rate for all layers). For MultiSWAG, the approximate posterior is a mixture (5) of K = 10
Gaussians. In Table 3, the test accuracy of ResNet50 on the Places365 test set with each inference method is
evaluated according to Eq.(4) with T = 50 MC samples.

3.4 Feature Visualization

In all experiments, we use the AM framework (6) to obtain the FV vectors and analyze their behavior. The
FV vector is by default of the same size as the input image. However, since the images in CIFAR-100 are
small and therefore not very informative in terms of the concepts that we can extract from them qualitatively,
we expand the input to 128× 128× 3 using bilinear interpolation in PyTorch. We solve the AM optimization
problem (6) by 512 steps of gradient descent with the step size of α = 0.05. For regularization, we apply
the transformation robustness with random rotation, random scaling, and random jittering. Moreover, the
optimization is performed in the decorrelated and whitened space. All transformations correspond to the
default setting in Olah et al. (2017), for which we used the PyTorch (Paszke et al., 2019) version of the
published source code available at https://github.com/greentfrapp/lucent.

3.5 Quantitative Distance Measure in FV space

One of the main contributions of this work is to analyze the diversity of the “concepts”, expressed in FV
vectors, of BNN instances quantitatively. To this end, we need to define a distance measure in the space of
FVs. Apparently, the standard norm distances, e.g. L2-distance and cosine-similarity, directly applied to the
FV vectors are not appropriate since “concepts” in FV should be invariant to translations and rotations. We,
therefore, use a non-linear function g : RV 7→ RZ that maps FV vectors into a low-dimensional latent concept
space such that FVs with similar concepts are mapped to close points. Afterward, the distance between two
FVs is measured by the cosine-similarity in this space:

d(v, v′) = g(v)⊤g(v′)
∥g(v)∥∥g(v′)∥ . (7)
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BNN

BNN

(a) (b)

(c)

(d)

(e)

Compute the predictions
of BNN instances for test
point       of class Farm.

Correctly classifying networks search
for Red barn to predict the class
Farm. 

1. Find another test image 
that contains the Farm animal concept
and is predicted by all networks  
in                    as Farm. 

2. Extract Farm animal concept from 
and insert it into                    . 

Wrongly classifying networks  
search for farm animals to predict the class
Farm, which they did not find in the image.

Compute the predictions of BNN
instances on    .

(f)

Manipulating       :

Figure 1: Explaining decision-making strategies of 10 individual BNN instances using FVs. (a) A test sample
x(1) of class Farm. (b) 10 BNN instances classify x(1). (c) Classification results by 10 instances (only 40%
classify x(1) correctly as Farm). FVs of the “correct” instances Ncorrect are shown in the upper green box,
while those of the “wrong” instances Nwrong are in the lower blue and red boxes. We observe that FVs of
Netswrong contain Farm animal-like concepts, which they did not find in the input x(1). (d) Another test
sample x(2) that contains a tiny sheep. (e) We cut out the tiny sheep (Farm animal concept) patch from
x(2) and paste it into x(1), yielding x(1,edited). (f) All instances correctly classify x(1,edited) as Farm, which
implies that the FVs indeed encode human-understandable concepts that reflect the network’s decision-making
strategy.

.

We learn the function g via a contrastive learning scheme (Chen et al., 2020; Li et al., 2020; 2021), and more
specifically, we use the SimCLR framework (Chen et al., 2020).

Assume that we are given a training set {vn}N
n=1 of FVs. We first conduct stochastic data augmentation,

which applies M random image transformations to each FV, resulting in M different versions to be used as
an augmented training set {{ṽn,m}M

m=1}N
n=1. Here {ṽn,m}M

m=1 denotes the generated samples by stochastic
augmentation applied to the n-th original sample, i.e., vn. Then, the non-linear map gϕ(·) parameterized by
ϕ is trained by minimizing the contrastive loss:

N∑
n=1

M∑
m,m′=1

log
exp( dϕ(ṽn,m ,̃vn,m′ )

τ )∑
n′ ̸=n

∑M
m′′,m′′′=1 exp( dϕ(ṽn,m′′ ,̃vn′,m′′′ )

τ )
, (8)
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(a) 128 epochs (b) 512 epochs

Figure 2: Dependence of the FV on the number of epochs, the learning rate α, and the parameter initialization
(v(1)

0 or v
(2)
0 ). We observe that the number of epochs affects the color scheme slightly, that the learningn rate

α affects the crispness and contrast drastically, and that the parameter initialization affects the positions and
shapes of objects slightly, while the high-level concepts stay the same for different initializations.

where dϕ is the distance measure (7) which depends on ϕ through the mapping gϕ(·), and τ is a temperature
hyperparameter. This contrastive loss aims to minimize the distances between the samples transformed
from the same original test sample while maximizing the distances between those transformed from different
original test samples. For the architecture of gϕ, we use a ResNet18 (He et al., 2016) base encoder, that is,
all ResNet18 layers up to the average pooling layer, followed by a fully-connected layer, a ReLU non-linearity
and another fully-connected layer. We train one contrastive learning model per Bayesian inference method.
In particular, we generate 1000 FVs per BNN, except for MultiSWAG. In MultiSWAG, we generate 100 FVs
per ensemble member and train our distance on the concatenation of their FVs, thus resulting in 1000 total
FVs. The number of augmented samples is M = 2 (per original sample and epoch), and the augmentation
is randomly chosen from “Random Cropping”, “Colorjitter”, and “Horizontal Flipping”. We use stochastic
gradient descent (SGD), where the contrastive loss (8) with the batch size N and the temperature τ = 0.5 is
minimized in each epoch. We run SGD for 150 epochs on the CIFAR-100, STL-10, and SVHN models, and
for 250 epochs on the Places365 models. For the contrastive learning, we used the implementation of the
following public repository available at https://github.com/Yunfan-Li/Contrastive-Clustering.

4 Experimental Results

In this section, we visualize and analyze the diversity of the decision-making strategies of BNN instances in
terms of high-level concepts by using feature visualizations. The first three experiments are dedicated to
validating our approach. We first demonstrate that the extracted FVs properly reflect the characteristics
of each individual BNN model instance by relating FV to the classification prediction, and observing the
model’s uncertainty behavior when manipulating test samples. Then, we analyze the dependence between
FVs and the initial parameter setting of the AM algorithm. Finally, we analyze the correlation between the
diversity of FVs and the uncertainty estimates of BNN model instances. While the first two experiments
validate our methodology qualitatively, the third experiment confirms quantitatively that FVs reasonably
reflect the property of a Bayesian ensemble.

In the fourth and the fifth experiments, we use our distance measure to analyze the diversity of BNN instances
from different posterior approximation methods, and for different scales of the model, which provide us
with new insights into the latest findings of deep learning theory (Roberts et al., 2022). To the best of
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our knowledge, no previous work has used global XAI methods to explain the behavior of Bayesian Neural
Network instances.

4.1 Visualizing characteristics of individual BNN instances

The prediction by a BNN is made from an ensemble of model instances drawn from the (approximate)
posterior distribution, and such model instances can acquire different decision-making strategies. In this
first experiment, we qualitatively show that by using FVs we are able to explain the diverse characteristics
of each individual model instance in the Bayesian posterior ensemble. We draw model instances from the
MCDO-5% posterior with the ResNet50 architecture trained on Places365. To receive a global explanation
for each of the 10 BNN instances for the class Farm, we apply the AM algorithm to the network output,
maximizing the logit for the label Farm. From the 10 different FV images, shown in the green, blue and red
boxes in Figure 1, we can observe that all FV images contain reasonable high-level concepts, e.g., Red barn,
Farm animal, Tractor, Crop field, and Pasture fence, implying that all BNN instances learned reasonable
decision-making strategies for the class Farm. However, we identify some test samples which are misclassified
by some of the BNN instances.

One of the wrongly classified test samples, x(1), is shown in Figure 1(a). Indeed, 4 of the instances classify
x(1) correctly as Farm, while the other 6 instances classify it wrongly as either Barn or Vegetable_garden
as shown in the pie chart in Figure 1(c). The corresponding FVs of the BNN instance are plotted next
to the pie chart, arranged based on their prediction: the 4 FVs in the upper green box correspond to the
instances classifying the input correctly (which we refer to as Netscorrect), while the 6 FVs in the lower blue
and red boxes correspond to those classifying the input wrongly (which we refer to as Netswrong). The
networks that correspond to the FVs in the blue box wrongly predict the input as Vegetable garden, while
the ones that correspond to the FVs in the red box wrongly predict the input as Barn. Comparing the FVs
of Netscorrect and Netswrong, we notice that most of the FVs of Netswrong contain fur or farm animal-like
objects such as sheep, horses and cows, while FVs of Netscorrect do not. This implies that the 6 instances
in Netswrong use animals within their decision strategy to classify an image as Farm, and since x(1) does
not contain any Farm animal concept, they can not classify it correctly. To further demonstrate that FVs
can reveal the characteristics of each BNN instance, we manipulate the test sample x(1) by using another
test sample x(2) which contains a very small sheep (Farm animal concept) and which is classified correctly
by all BNN instances in Netswrong. From x(2), we cut out the small sheep and paste it into x(1) manually
(see x(1,edited) in the figure). Now, all instances classify x(1,edited) correctly as Farm as shown by the green
pie chart. This implies that the high-level animal concepts inherent in the FVs of Netswrong are indeed
the concepts that the networks are searching for in the input image in order to classify an input as Farm.

0 50 100 150 200 250
d(v(i)

t , )[10 2]
0.00

0.05

0.10

0.15

p(
)

[d(v(i)
t , t ′ = t)]

[d(v(i)
t , t ′ t)]

p(d(v(i)
t , t ′ = t))

p(d(v(i)
t , t ′ t))

Figure 3: Distribution of distances between
FVs and their corresponding instance cen-
ters (blue) and distribution of the distances
between different instance centers (orange).
The distances within the instances are much
smaller than between different instances,
and both distributions are clearly separated.
The impact of parameter initialization for
the AM optimization is ignorable.

Two other similar examples are given in Appendix A. With
this experiment we demonstrated, that the diverse decision-
making strategies of different BNN model instances can indeed
be explained by global XAI methods, providing evidence for
our question 1) from the introduction.

4.2 Dependence on hyperparameters and initialization

The AM optimization (6) is highly non-convex, and therefore
the obtained FVs can depend on the hyperparameter setting
and parameter initialization. Hence, we would need to appropri-
ately choose the setting such that the FVs properly extract the
concepts that the networks are using for the decision-making
process. Accordingly, we investigate the dependence of FVs
on the hyperparameters, e.g., the number of epochs for SGD
and the step size α, and the initialization — we start from two
random initial points, v

(1)
0 and v

(2)
0 , to solve the optimization

problem (6). From the results, shown in Figure 2, we can ob-
serve that the AM optimization for α = 0.005 does not converge
even after 512 epochs, and α = 0.5 results in over-contrasted
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FVs. We furthermore observe that different initializations can change the location and shape of the concept
objects slightly, while the content of the represented concepts is unchanged for different settings and ini-
tializations. This result implies that our approach can be used for analyzing the decision-making process
without carefully tuning the parameters. Note that the location shift of concept objects by initializations
might strongly affect the quantitative analysis of the diversity of BNN instances if we would adopt a naive
distance measure, e.g., the L2 or cosine distance in the pixel space. We will make sure in the next experiment
that this is not the case when we use the distance measure introduced in Section 3.5.

4.3 Quantitative diversity of FVs

Here, we validate our quantitative distance measure in the FV space by showing that it suffices two
requirements: 1) the diversity caused by parameter initializations for the AM optimization is ignorable
compared to the diversity of BNN instances, and 2) the measured diversity is highly correlated to the
uncertainty of the prediction. In order to evaluate 1), we first generate 5 FVs for each of 100 BNN instances
and compute the average latent concept vector for each of the instances. We will refer to these 100 mean
vectors as instance centers. In Figure 3 we plot the histogram of the Euclidean distance from each FV to
its corresponding instance center (blue), as well as to another instance center (orange). We can observe a
significant separation between the two histograms, implying that the FV diversity caused by initialization is
indeed ignorable.

Next, we investigate the correlation between the diversity of FVs and the predictive entropy,

H(x∗) := −
C∑

c=1
P (y∗ = c|x∗,D) log P (y∗ = c|x∗,D),

which is a measure for uncertainty. We prepare 100 sets, each comprised of 100 model instances with different
FVVar (see Appendix B for how to generate those sets), and plot the FV variance

FVVar := 1
T

∑T
t=1

∥∥∥gϕ(vt)− 1
T

∑T
t′=1 gϕ(vt′)

∥∥∥2

2
(9)

in the horizontal axis and the empirical mean predictive entropy over the whole data set D

Ep(x)[H(x)] := 1
N

N∑
n=1

H(x(n))

in the vertical axis in Figure 4. Here, T is the number of BNN instances in a set, {vt}T
t=1 are the FVs of them,
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Figure 4: Linear regression and Pearson correlation
between feature visualization diversity (FVVar) and
mean predictive entropy. High correlation between
FVVar and the mean predictive entropy is observed.

and the predictions (for computing the entropy) are
made by those T instances. We can observe a high
correlation (0.83) between the FVs diversity and the
uncertainty estimates, showing that our distance
measure in the FV space properly reflects the dis-
tance between BNN instances. Overall, we can con-
clude that our distance measure satisfies the two
requirements above, and we now apply our tools for
analyzing BNN instances.

4.4 Comparing representations
of different BNN inference methods

Here, we will visually and quantitatively compare the
learned representations of models that were trained
using different Bayesian inference methods. We train
ResNet50 on Places365 with the Bayesian approxi-
mation methods listed in Table 3. First, we find the
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Figure 5: FVs and cluster structure of the learned concepts for class logit Farm. Four black boxes represent
KFAC, MultiSWAG, MCDO-5%, and MCDO-25%, respectively. The FVs are clustered using KMeans (where
the number of clusters is manually chosen) and plotted in two-dimensional tSNE space in different colors.
We choose certain clusters and plot 3 example FVs of each cluster. The FVs in a colored rectangle are from
the cluster depicted as an ellipse in the same color in the tSNE plot. For each Bayesian inference method,
we mostly found the following concepts in the displayed clusters. KFAC cluster 1: Tractor, Crop field, and
little details of animals, e.g. Eyes. KFAC cluster 2: Red barn, Crop field, Pasture fence, and little details
of animals, e.g. Eyes. MultiSWAG Cluster 1: Tractor, Crop field. MultiSWAG cluster 2: Farm animal,
Crop field, and Pasture fence. MultiSWAG cluster 3: Red barn and Crop field. MCDO-5% cluster 1: Red
barn, Crop field. MCDO-5% cluster 2: Tractor and Crop field. MCDO-5% cluster 3: Farm animal, Pasture
fence. MCDO-25% cluster 1: Red barn, Crop field, Pasture fence. MCDO-25% cluster 2: Farm animal,
Pasture fence, and Crop field. MCDO-25% cluster 3 mostly contains a mixture of all found Farm concepts in
a specific grayscale.

cluster structure of BNN instances of each inference method and compare their learned concepts. To this
end, we compute the FV for the class Farm of each of the 100 BNN instances, individually. Figure 5 shows
tSNE plots of the BNN instances in the FV space with typical FV images from each cluster for KFAC,
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MultiSWAG, MCDO-5%, and MCDO-25%. Note that tSNE is applied in the latent concept space, i.e., to
the vectors {gϕ(vt)}, and therefore reflect our quantitative distance measure. Clustering is performed by
applying KMeans (Lloyd, 1982) (again to the latent concept vectors {gϕ(vt)}), and the instances that belong
to different clusters are depicted in different colors. We can observe that the concepts of the class Farm,
which are visually perceptible, generally consist of Red barn, Tractor, Farm animal, Crop field, and Pasture
fence. However, different inference methods yield different cluster structures: KFAC yields 2 clusters and
MultiSWAG yields ∼ 10 clusters indicated by the different colors in Figure 5 respectively. Furthermore, we
can observe that MCDO yields 5 ∼ 7 clusters, while the distribution looks highly dependent on the dropout
rate. KFAC yields the least diverse FVs, in terms of visual comparison, with 2 clusters, and all instances
tend to include almost all of the Farm concepts. Nevertheless, we observe a difference between the 2 equally
sized clusters which relates to the Tractor concept being more present in cluster 1 and the Red barn concept
being more present in cluster 2.

The MultiSWAG instances also include different Farm concepts in each of the instances. However, visualizing
their clusters individually, we can observe that some clusters include certain concepts more frequently than
others. In particular, cluster 1 includes the Tractor and Crop field, cluster 2 the Farm animal and Pasture
fence, and cluster 3 the Red barn, Crop field and Pasture fence concepts more frequently than the other
clusters. The other 7 clusters contain all Farm concepts and are similar in terms of the content of concepts
(see Appendix C). For MultiSWAG, the clusters found by KMeans match the MoG structure, i.e., most of the
BNN instances generated from the same posterior Gaussian component are clustered together. This connects
to the fact that each SWAG ensemble member converges to a different local minimum (Wilson & Izmailov,
2020), or posterior mode. MCDO-γ shows the most diverse FVs. We observe in Figure 5 that the BNN
instances of each cluster seem to specialize with respect to certain Farm concepts and can be thus separated
very well by these concepts. For MCDO-5%, cluster 1 primarily includes the Red barn and Crop field, cluster
2 the Tractor and Crop field, and cluster 3 the Farm animal and Pasture fence concepts. Naturally, the
diversity of MCDO-γ instances increases with increasing Dropout rate, and thus MCDO-25% results in an
increased number of clusters. Also, we observe that the quality of FVs decreases with increasing Dropout
rate and that more diverse color schemes appear, e.g. two yellow scales, two gray scales, and one blue scale
for MCDO-25%. In Appendix C, we additionally show the results for MCDO-10% and include examples of
the remaining clusters of the MultiSWAG model instances. The right plot in Figure 6 shows the quantitative
diversity of FVs, i.e., FVVar defined in Eq. (9), which behaves consistently with our qualitative observations:
KFAC yields the lowest variance, followed by MultiSWAG, and the MCDO 5%, 10%, 25% yields the largest
diversity in this order. Hence, we can answer question 2) from the introduction “Does the choice of the
Bayesian inference method affect the diversity of their feature visualization?” with yes.
The right subplot in Figure 6 compares the FV diversity and the mean predictive entropy, which exhibits a
clear correlation. We observe, for the first time, that the FV diversity correlates with the predicted uncertainty
estimates. This answers question 3) from the introduction “Can the uncertainty estimates provided by a BNN
be explained by the diversity of their feature visualizations?”.

4.5 Visualizing the multimodal structure of the posterior distribution of BNNs.

Here we explain the multimodal structure of the BNN posterior distribution. Specifically, we use BNN
instances drawn from the MoG posterior (5) obtained by MultiSWAG, and qualitatively (visually) and
quantitatively analyze their behaviors. Furthermore, we investigate the dependence of the multimodality
on the network width in terms of humanly understandable concepts using FVs. To this end, we train a
WideResNet28 and its modified versions listed in Table 2, where WResβ refers to a WideResNet28 network
with the width scaled by β. The models are trained on CIFAR-100 by MultiSWAG with a mixture of K = 10
Gaussians posteriors. After training, we draw 100 BNN instances from each Gaussian posterior, resulting
in 1000 BNN instances in total, and compute their individual FVs for the class Castle. Figure 7 shows
distributions of the 1000 BNN instances in the FV space, where the rows correspond to the networks with
different widths, i.e., WRes0.2, WRes1, and WRes10, respectively (Results with other network widths are
shown in Appendix D). For each row, a tSNE plot of FVs is shown in the bottom, and FVs of three BNNs
from three hand-picked modes are visualized in the top. Note that the color in the tSNE plot indicates the
Gaussian component of MultiSWAG (KMeans is not applied here). From the tSNE plots, we observe that
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Figure 6: Representation diversity of Bayesian inference methods. The left subplot displays the FVVar of
BNN instances of each inference method. The diversity of KFAC, MultiSWAG, MCDO 5%, 10%, and 25%
is increasing from left to right. The right subplot displays the correlation between FVVar and the mean
predictive entropy. They highly correlate with each other, as expected.

the network width strongly affects the multimodal structure: For small network width (WRes0.2), instances
from different modes are separable, while, for wide network (WRes10), the instances are overlapped.

For quantifying this observation, we compute the inter-mode variance

InterModeVar : = 1
K

∑K
k=1

∥∥∥µk − 1
K

∑K
k′=1 µk′

∥∥∥2

2
(10)

and the intra-mode variance

IntraModeVar := 1
K

∑K
k=1

1
100

∑100
t=1 ∥zk,t − µk∥2

2 , (11)

and plot them in the left panel of Figure 8. Here, zk,t is the latent concept vector of the FV of the t-th instance
from the k-th mode (k-th Gaussian component), and µk is the latent concept vector of the FV of the k-th
Gaussian center. We can observe that, with a growing network width, the inter-mode variance decreases, while
the intra-mode variance increases. The former (decreasing variance) aligns with the implications of recent
theory on Neural Tangent Kernels (NTK) (Jacot et al., 2018; Arora et al., 2019), while the latter (increasing
intra-mode variance with growing β) has not been explained by theory, to the best of our knowledge. In order
to show that the observed tendency is not because of the limited expressivity of the ResNet18 that we used
to define our distance measure, nor the dataset-specific properties, we conducted the same experiments with
ResNet34 and ResNet50 as the backbone networks and on other datasets including STL-10 (Coates et al.,
2011a) and SVHN (Netzer et al., 2011), and observed a similar tendency in Appendix E. We also confirm in
Appendix F that whether starting from pre-trained models or training from scratch does not significantly
affect the properties of posterior distribution.

In the following, we will answer question 4) from the introduction regarding the impact of the network width
on the diversity of FV of samples from a multimodal posterior distribution. To this end, we first qualitatively
investigate the FVs given in Figure 7. We can observe that a too narrow network (WRes0.2) gives notably
low-quality FVs, which implies that the network does not have sufficient capacity to learn good feature
representations. The large inter-mode variance reflects the fact that each mode learns different color schemes
and different patterns, while the small intra-mode variance results in identical concepts within each mode.
For larger network widths, we observe a clear difference in their FVs. While the modes of WRes1 still learn
different color schemes, and at the same time also learn high-level Castle concepts, e.g. castle towers, the
modes of WRes10 learn very similar features, and it is harder to distinguish between the FVs of different
modes. The difference between WRes1 and WRes10 implies that, for a moderate network width, each mode
plays different roles while for a large network width, modes get mixed and each mode abstracts the concepts
well, such that a single model alone can perform classification well.
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Figure 7: Multimodal structure of BNNs trained by MultiSWAG in the FV space. The rows correspond to the
networks with different widths, i.e., WRes0.2, WRes1, and WRes10, respectively. For each network, a tSNE
plot of 1000 BNN instances is shown in the bottom, and FVs of three BNNs from three hand-picked SWAG
modes are visualized in the top. We observe that the modes tend to overlap as the network width increases.
Moreover, the quality of FVs drastically improves from WRes0.2 to WRes1, and WRes10 successfully abstracts
the castle class by replacing discrete shape information (small discrete shapes, e.g., in the bottom of WRes1
Cluster 1) with smoother ones in each mode (compare the bottom of WRes10 Cluster 2).

We confirm this implication by quantitatively evaluate how strongly ensembling, e.g., with deep ensemble and
MultiSWAG, improves the performance. In the right panel of Figure 8, we plot the performance gain by
MultiSWAG compared to its single-mode counterpart, i.e., SWAG, as a function of the network width. More
specifically, the red curve shows the test accuracy of MultiSWAG (i.e., the test accuracy of the averaged
model) subtracted by the average accuracy over the separate SWAG models (i.e., the average of the test
accuracies of the models). We observe that the performance gain by ensembling is largest for WRes1, and
decreases when the network width further increases.

The cyan curve similarly shows the performance gain in terms of the test expected calibration error (ECE)
(Guo et al., 2017). Namely, the curve shows ECE of MultiSWAG subtracted by the average of the ECEs over
the separate SWAG models. Noting that the lower ECE is the better, we see that ensembling degrades the
uncertainty estimation performance when the network width is small, e.g., WRes0.2 and WRes0.7, while it
significantly improves the test ECE when the network width is large, e.g., WRes2 and WRes10. We will
investigate this phenomenon further in our future work.

Our extensive experiments revealed how the width of the underlying network architecture affects the FVs,
answering question 4) in the introduction “How does the network width affect the diversity of explanations of
samples from a multimodal posterior distribution?".
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Figure 8: The left subplot shows how the inter- and intra-mode variances change with increasing network
width. As the network width increases (from left to right), the inter-mode variance decreases, while the
intra-mode variance increases. The right subplot shows the performance gain by ensembling in terms of
the test accuracy, as well as the test expected calibration error (ECE), i.e., the test accuracy (ECE) of
MultiSWAG subtracted by the average accuracies (ECEs) over the separate SWAG models. Noting that the
higher accuracy (lower ECE) is the better, we observe that for larger network widths (WRes2 and WRes10),
the performance gain decreases for the test accuracy, while it increases for the uncertainty estimation.

5 Conclusion

Since BNNs provide additional information about the uncertainty of a prediction, they are of enormous
value, especially in safety-critical applications. Their ability to estimate uncertainties of a prediction is
inherent in the learned multimodal posterior distribution. Sampling from this posterior distribution results
in BNN instances, exhibiting diverse representations, which in turn lead to different prediction strategies.
It has been shown in a large number of works that the diversity of these strategies depends on various
factors, such as the choice of the Bayesian approximation method, the parameter initialization, or the model
size. However, so far, this diversity has been analyzed either in the output, or parameter space of the
BNN instances, which unfortunately still lacks human understandable intuition. With this work, we now
deliver this missing but important building block to support human understanding by making the learned
strategies visually accessible. To this end, we use feature visualizations as a global explanation method to
explain — in a human-understandable way — the different representations and prediction strategies learned
by BNN instances. Furthermore, this enables us to examine the diversity of the BNN instances on the
feature visualizations both qualitatively and quantitatively, thus adding the visual component to the previous
analysis.

In order to quantitatively analyze the FVs with their pronounced heterogeneity, we first learn a suitable
representation of the FV with the help of contrastive learning, which we can then use to measure the distance.
The ability to measure the distances between FVs allows us to investigate and at the same time to visually
understand how the use of different Bayesian inference methods affects the diversity of BNN instances. Indeed,
we could demonstrate, that the learned representations vary stronger for multimodal Bayesian inference
methods, such as MultiSWAG than for unimodal ones, such as KFAC. The greatest variety of learned
representations is achieved by Dropout-based models. Here the dropout rate correlated positively with the
variety of representations, i.e. the higher the dropout rate is, the more different the representations visible
through their FVs are. Furthermore, we showed that the diversity of FVs of BNN samples is positively
correlated with the uncertainty estimates that we obtain from this BNN.

We were also able to measure — and visually demonstrate — the dependence of the multimodal structure
of the posterior distribution on the width of the underlying network. Specifically, we have shown that the
modes in a multimodal posterior distribution of MultiSWAG become more similar with increasing width
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of the underlying network. This result is consistent with recent theoretical insights into Neural Tangent
Kernels, where it was shown that the local solutions of infinitely wide networks behave similarly. By adding
the additional visual component - through the lens of global explanations - we can easily understand the
similar behavior of the modes given their similar FVs. In future work, we will investigate how the observed
behavior of posterior modes can help to improve model performance in detecting OOD samples.
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A Decision-making strategy manipulation

In the introductory experiment in Section 4.1, we demonstrate that we can visualize and extract high-level
information about the decision-making strategies of BNN instances from FV and, for the first time, visualize
their differences. Here we show a few other examples in Figure 9.

Test image 1

Edited Image

Test image 2

FV of correct predicting networks  on
image 1 

All networks predict edited image
correctly 

FV of wrong predicting networks  on
image 1 

Figure 9: Two additional image manipulation examples. Left: In this example we can see that the selected
images that predicted "Test image 1" correctly include the high-level concepts Red barn and Crop fields, which
are also present in the image. On the other hand, the chosen networks that predicted the image incorrectly,
include the high-level concept Farm animal in them. After manipulating Test image 1 by pasting a horse
(Farm animal) from "Test image 2" of the test set, all networks do predict the "Edited image" correctly.
Right: In this example we can see that the selected images that predicted "Test image 1" correctly include
the high-level concept Crop field, which is also present in the image. On the other hand, the chosen networks
that predicted the image incorrectly, include the high-level concept Red barn in them. After manipulating
Test image 1 by pasting a red barn from "Test image 2" of the test set, all networks do predict the "Edited
image" correctly.

B Constructing FV diversity sets

Here, we explain how we formed the sets of BNN instances used in Section 4.3, where the correlation
between the FV diversity, FVVar, and the mean predictive entropy is evaluated. We first prepared a pool
Θ := {θt|t = 1, ..., Ttotal} of BNN instances, by drawing samples from the posterior distribution. From Θ,
we generated 100 different sets {Si|i = 1, . . . , 100}, each of which consists of 100 BNN instances. Each set
Si collects samples from Θ in the following way: after randomly choosing the first instance θ1

Si
∈ Θ, we

iteratively add the nearest neighbor (in the FV metric space) of the last added instance θt−1
Si

for t = 1, . . . , 100.
Note that, every time we add an instance to a set, the corresponding instance is removed from the pool, i.e.,
Θ← Θ \ θt

Si
. Although we did not control the diversity of each set, the resulting sets had different diversity

as shown in Figure 4.

C Clustering representations of different BNN inference methods

For the experiments in Section 4.4 we cluster the FVs by applying KMeans. We choose the number of clusters
by qualitatively analyzing the goodness of clusters, that is, whether the points cluster well in the tSNE plots
and whether human-understandable concepts, e.g. Farm animal, are clustered together. We show the tSNE
plots for the MCDO-10% model in Figure 10, the FVs of MCDO-10% in Figure 11, and the FVs of the
MultiSWAG clusters in Figure 12.
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Figure 10: MCDO-10% clusters. The instances cluster into 5 clusters, of which two, Clusters 1 and 4, are
well separated, while the other three, Clusters 2, 3, and 5, are connected.

Cluster: 1,
 #Elements: 21

Cluster: 2,
 #Elements: 22

Cluster: 3,
 #Elements: 27

Cluster: 4,
 #Elements: 17

Cluster: 5,
 #Elements: 13

Figure 11: Five clusters formed by MCDO-10%. Clusters 1-3 are connected, and similar in terms of their
color scheme. However, Cluster 1 contains the Farm animal, Cluster 2 the Tractor, and Cluster 3 the Red
barn concepts more frequently than the others. The other two clusters, Clusters 4 and 5, contain a mix of all
Farm concepts, however in a different color scheme.
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Figure 12: MultiSWAG clusters. The MultiSWAG clusters mostly cluster with regard to the underlying
SWAG ensemble members. We can see, that most clusters contain a variety of Farm concepts in them.

D Multimodal structure of the posterior distribution of BNNs - WRes0.7 and WRes2.

In Figure 13 we show the tSNE plots and respective FVs of some example clusters of the WRes0.7 and
WRes2 models. As can be seen, the FVs are naturally clustered together and well separated for the narrower
WRes0.7 model, and overlap more for the WRes2 model.

E Additional experiment on the width dependence

Here we conducted the same experiment as in Section 4.5 with different backbone networks for defining the
distance measure in the FV space, and on different datasets. The left panel of Figure 14 shows the dependence
of the inter- (solid lines) and intra-mode (dashed lines) variances on the network width on CIFAR100, STL-10,
and SVHN, when ResNet18, ResNet34 and ResNet50 are used as the backbone network. For the CIFAR-100
data set, we base our FV analysis on the class label Castle, for STL-10 on the class label Bird, and for the
SVHN data set on the class label 8. However, as the consistency across data sets for our results shows, any
class label could potentially be used for this analysis. We can observe that, with all three backbone networks
and on all three datasets, the inter-mode variance decreases with growing width (x-axis), while the intra-mode
variance increases. These results are also reflected in the Feature Visualizations of these different-width
models as shown in Figure 15, where we show the FVs for the Bird class of three different modes trained on
the STL-10 dataset, and in Figure 16 where we show the FVs for the 8 class of three different modes trained
on the SVHN dataset.

F Comparing pre-trained models to models that were trained from scratch.

In this section, we compare the FVs of models trained in two different scenarios. In the pre-trained scenario,
pre-trained models are finetuned on the target dataset, while in the from-scratch scenario, training is
performed from scratch. In the pre-trained scenario, we collected five ResNet50 models from Ashukha et al.
(2020), which were pre-trained on ImageNet from different initializations, and finetuned them on CIFAR10
using the KFAC method. In the from-scratch scenario, we train five ResNet50 models from scratch on
CIFAR10 using KFAC. As seen in Figure 17, FVs of class Truck for both scenarios look qualitatively similar.
The left subplot of Figure 18 shows the posterior mode structure as a 2D projection onto the first two t-SNE
components of the latent concept vectors obtained from each mode. Again, the cluster structure for both the
pre-trained and from-scratch scenario looks similar. Moreover, the right subplot of Figure 18 shows FVVar of
single mode, as well as all modes, for both training scenarios, which quantitatively confirms that the FV
distribution is not significantly affected by the training scenario.
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Figure 13: Multimodal structure of WReNet28 with different network widths in the FV space. The black
bounding box corresponds to WRes0.7 and WRes2. The colored dashed bounding boxes mark FVs of 3 BNN
instances from 3 modes. As the network width increases, the modes overlap more.
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Figure 14: Inter- and intra mode variances on CIFAR100 (left), STL-10 (middle), and SVHN (right) using
different ResNet backbones.

WRes0.2 WRes1 WRes10
Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 2 Mode 1 Mode 2 Mode 3

Figure 15: Feature Visualizations of class Bird that we sample from 3 different modes, e.g. MultiSWAG
members, that were trained on the STL-10 dataset. We can see that the inter-mode variance decreases, and
the intra-mode variance increases, when increasing the network width from left to right.

WRes0.2 WRes1 WRes10
Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 2 Mode 1 Mode 2 Mode 3

Figure 16: Feature Visualizations of class 8 that we sample from 3 different modes, e.g. MultiSWAG
members, that were trained on the SVHN dataset. We can see that the inter-mode variance decreases, and
the intra-mode variance increases, when increasing the network width from left to right.
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Figure 17: Comparison of Feature Visualizations from three different modes, e.g. KFAC models, that were
first pre-trained on ImageNet and then fine-tuned on CIFAR10 (left), and three different modes that were
trained from scratch on CIFAR10 (right). The concepts that are present in the FVs look similar for both
pre-trained and from-scratch scenarios.
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Figure 18: Multimodal structure (left) and FVVar (right) of KFAC models trained in the pre-trained (blue)
and the from-scratch scenarios (red). The FVs of the models trained in both scenarios have qualitatively
similar cluster structures, and quantitatively similar single-mode and all modes FVVar values.
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