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ABSTRACT

The success of large language models (LLMs) for the time series domain has
been demonstrated through various benchmarks. Utilizing symbolic time series
representation, one can efficiently bridge the gap between LLMs and time series.
However, the remaining challenge is to exploit the semantic information hidden
in time series by using symbols or existing tokens of LLMs, while aligning the
embedding space of LLMs according to the domain hidden information of time
series. The symbolic time series approximation method called ABBA shows out-
standing efficacy in preserving salient time series features by modeling time series
patterns in terms of amplitude and period while using existing tokens of LLMs.

In this paper, we introduce a method, called LLM-ABBA, that integrates ABBA
into large language models for various time series downstream tasks. By symbol-
izing time series, LLM-ABBA compares favorably to the recent state-of-the-art
(SOTA) in UCR and three medical time series classification tasks. Meanwhile, a
fixed-polygonal chain trick in ABBA is introduced to avoid large vibrations during
prediction tasks by significantly mitigating the effects of cumulative error arisen
from misused symbols during the transition from symbols to numerical values. In
time series regression tasks, LLM-ABBA achieves the new SOTA on Time Series
Extrinsic Regression (TSER) benchmarks. LLM-ABBA also shows competitive
prediction capability compared to recent time series prediction SOTA results. We
believe this framework can also seamlessly extend to other time series domains.

1 INTRODUCTION

Figure 1: The integration of time series and LLM
demonstrates potential in solving complex real-world
problems.

Time series are fundamental mathemat-
ical objects with applications across di-
verse disciplines such as classification (Is-
mail Fawaz et al., 2019), regression (Tan
et al., 2021), and prediction (Ismail et al.,
2020). Recently, the power of large lan-
guage models (LLMs) in time series ap-
plications has been recognized. One re-
view work concludes that there are three
main LLM-based approaches to learn in-
tricate semantic and knowledge represen-
tations from time series to perform vari-
ous tasks (Jin et al., 2024). The first ap-
proach is to patch and tokenize numerical
signals and related text data, followed by
fine-tuning on time series tasks (Nie et al.,
2022; Jin et al., 2023; Wang et al., 2024);
the second one is preprocessing time se-
ries data to fit LLM input spaces by adding a customized Tokenizer (Gruver et al., 2024); the last
one is to build foundation models from scratch, and this approach aims to create large, scalable
models, both generic and domain-specific (Rasul et al., 2023; Ekambaram et al., 2024). However,
these three techniques each come with their own limitations. Patching and tokenizing time series
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segments can build the mapping between time series and the latent embedding of LLMs, instead
of discrete language tokens. When outputting the numerical value, this method should generate the
digit one by one, which eventually reduces the generation speed (Jin et al., 2023). Furthermore, by
adding a customized Tokenizer, LLMs can handle positions of time series patterns and reproduce
the internal logic of given time series signals (Mirchandani et al., 2023). Because LLM tokenizers,
not designed for numerical values, separate continuous values and ignore the temporal relationship
of time series, this method should convert tokens into flexible continuous values (Spathis & Kawsar,
2024). It inevitably requires token transitions from time series feature space to the latent embedding
space of LLMs and cannot avoid the risk of semantic loss. Building foundational time series models
from scratch can essentially solve these problems. But considering that one should balance the high
development costs and their applicability, the challenge of expensive training persists and should be
tackled (Jin et al., 2024).

By aligning time series and native language, large language and specialized time series models
constitute a new paradigm, where the LLMs are prompted with both time series and text-based
instructions (Jin et al., 2024). In this paradigm, time series and textual information provide essential
contexts, LLMs contribute to internal knowledge and reasoning capabilities, and time series models
offer fundamental pattern recognition assurances. This novel integration is depicted in Figure 1,
where a successful combination of these components showcases the potential for a general-purpose,
unified system in next-generation time series analysis. Therefore, the challenge is to develop one
tool that can transform the internal patterns of time series to the contents that LLMs can recognize
(Step 1 of Figure 1). Moreover, this tool should also transform the generated contents back to the
time series domain so as to aid the time series analysis (Step 2 of Figure 1).

Symbolic time series approximation is a method that converts time series into symbols. It estab-
lishes a bridge between strings and numerical time series, which enables the chain-of-pattern (COP)
of strings to be as informative as possible compared to raw data. Utilizing the symbolic represen-
tation of time series, one can model time series as native languages by encoding time series as a
sequence of strings and performing efficient text analysis techniques upon it rather than manipulat-
ing raw numerical values, e.g., converting time series forecasting to next-token prediction in text.
Symbolic time series approximation could both implicitly and explicitly align the time series fea-
tures with symbols, which empowers the manipulation of natural language processing learning on
time series. If possible, there is no necessity to (1) patch and tokenize time series segments, (2) add
an extra customized Tokenizer, or (3) build foundational time series models from scratch. Symbolic
representations obtained from transformed numerical time series can potentially reveal the linguistic
logic hidden inside time series signals, and this technology roadmap is able to provide LLMs with
the ability to understand temporal patterns. Therefore, the time series semantic information can be
well exploited in LLMs. Inspired by this idea, it is desirable to obtain a method that can efficiently
transform numerical time series into symbols, and fine-tune LLMs on time series analysis tasks (e.g.,
classification, regression, and prediction).

In this paper, we propose LLM-ABBA, which can help LLMs understand time series by using an
adaptive Brownian bridge-based symbolic aggregation (ABBA) method and transforming numerical
time series signals into symbolic series. Concretely, LLM-ABBA first transforms time series sig-
nals to compressed representations by adaptively compressing numerical inputs. Next, it digitizes
the compressed representation with given symbols or pretrained tokens. Then, LLM-ABBA gives
LLMs a series of symbols (or pretrained tokens) that LLMs can recognize from the beginning, and
these symbols (or pretrained tokens) essentially contain the COP of time series signals. By using the
QLoRA fine-tuning method (Dettmers et al., 2024), LLM-ABBA exhibits a trade-off between task
performance and efficiency. Finally, to predict the future time series values, LLM-ABBA inversely
symbolizes the LLM-generated symbolic representation back to numerical values as predicted val-
ues. Therefore, the LLM is capable of incorporating the COP of time series and diving into the
analysis of time series on a macroscopic view along with the knowledge from prompting instructive
commands.

Our contributions are summarized as follows:

1. We propose a unified and enhanced ABBA approach towards efficiently symbolizing multi-
ple time series and mitigating the accumulated shift in time series reconstruction, enabling
an effective inference task over out-of-sample data.
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2. LLM-ABBA framework for time series regression tasks achieves a new SOTA, and it also
gets a comparable performance on medical time series classification tasks. To the best of
our knowledge, this is the first work to combine LLM with the symbolic approximation
method for time series.

3. LLM-ABBA can keep the language semantics and learn the COPs of time series by adapter
fine-tuning methods in time series forecasting tasks.

4. The universality and convenience of LLMs’ multi-modality on time series tasks obtains a
valuable improvement.

2 RELATED WORK

LLMs for time series methods have made significant achievements in recent years. Gruver et al.
(2024) argues that this success stems from the ability of LLMs to naturally represent multimodal
distributions of time series, and demonstrates zero-shot generalization abilities of LLMs. By fram-
ing a time series forecasting task as a sentence-to-sentence task, AutoTimes (Liu et al., 2024b)
minimizes the tunable parameters to generate time series embeddings while freezing the parameters
of the LLM, and FPT (Zhou et al., 2023) fine-tunes LLM parameters to serve as a general repre-
sentation extractor for various time series analysis tasks. These approaches maximize the use of
inherent token transitions, leading to improved model efficiency. In terms of multivariate time series
forecasting, UniTime (Liu et al., 2024a) trains and fine-tunes a language model to provide a unified
forecasting framework across multiple time series domains. Leveraging advanced prompting de-
signs and techniques, PromptCast (Xue & Salim, 2023) transforms time series data into text pairs,
and TEMPO (Cao et al., 2023) models specific time series patterns, such as trends and seasonality,
by using weighted scatterplot smoothing (Cleveland et al., 1990).

Tuning-based predictors use accessible LLM parameters, typically involving pre-processing and
tokenizing numerical signals and related prompt text, followed by fine-tuning on time series tasks
(Jin et al., 2024). In summary, there are four steps formulated to adapt LLM to time series:

(i) Tinp = Pre-processing(T ): With a Patching operation (Nie et al., 2022; Liu et al., 2024b) or a
weighted scatterplot smoothing processing (Cao et al., 2023), time series set T is pre-processed
to specific knowledge-contained inputs Tinp;

(ii) Minp = Tokenizer(Prompt, Tinp): An additional option is to perform a Tokenizer operation
on time series Tinp and related prompt text to form text sequence tokens Minp;

(iii) Moutp = f∆
LLM (Minp): With the instruction prompt Prompt, time series processed tokens

and optional text tokens are fed into f∆
LLM(·) with partial unfreezing or additional adapter

layers. Moutp can be either a fine-tuned result or a intermediate result;

(iv) Ŷ = Task (Moutp): To generate or output required label Ŷ , an extra task operation, denoted
as Task(·), is finally introduced to perform different analysis tasks.

3 METHODOLOGIES

3.1 ABBA SYMBOLIC APPROXIMATION

Our research is inspired by the observation that speech signals often contain a plethora of semantic
information (van den Oord et al., 2016), which enables the language model to perform extremely
well across a multitude of tasks; see Jin et al. (2024) and references therein. However, directly
applying language models to time series is not permitted due to the fact that time series are made
up of numerical values and lack useful embedding patterns; further, the high dimensionality of time
series makes it difficult for the sequential and recurrent model to capture the dependency of the
time series features. Thus learning an informative symbolic time series representation while having
dimensionality reduced is a practical yet challenging problem. ABBA—a symbolic approximation
method—is designed to address this as it compresses the time series to a symbolic presentation in
terms of amplitude and period, and each symbol describes the ups and downs behavior of time series
during a specific period. In the following, we will formulate the ABBA method that can be adapted
to LLMs.
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ABBA (Elsworth & Güttel, 2020) utilizes adaptive polygonal chain approximation followed by
mean-based clustering to achieve symbolization of time series. The reconstruction error of the
representation can be modeled as a Brownian bridge with pinned start and end points. ABBA sym-
bolization contains two dominant procedures, namely compression and digitization, to aggregate
time series T = [t1, t2, . . . , tn] ∈ Rn into its symbolic representation:

A = [a1, a2, . . . , aN ], (1)

where N ≪ n and ai is an element in a specific letter set L, which is referred to as a dictionary in
the ABBA procedure.

3.1.1 COMPRESSION

Figure 2: The framework of LLM-ABBA.

The ABBA compression is performed to
compute an adaptive piecewise linear con-
tinuous approximation (APCA) of T . The
ABBA compression plays an critical role
in dimensionality reduction in ABBA sym-
bolic approximation—a user-specific toler-
ance, denoted by tol, is given to deter-
mine the degree of the reduction. The
ABBA compression proceeds by adaptively
selecting N + 1 indices i0 = 0 < i1 <
· · · < iN = n given a tolerance tol
such that the time series T is well approx-
imated by a polygonal chain going through
the points (ij , tij ) for j = 0, 1, . . . , N .
This leads to a partition of T into N
pieces pj = (lenj ,incj) that represents
cardinality and increment of Tij−1:ij =
[tij−1

, tij−1+1, . . . , tij ], which is calculated
by lenj ∈ N := ij − ij−1 ≥ 1 and
incj ∈ R := tj − tj−1. As such, each
piece pj is represented by a straight line connecting the endpoint values tij−1

and tij . Given an in-
dex ij−1 and starting with i0 = 0, the procedure seeks the largest possible ij such that ij−1 < ij ≤ n
and

ij∑
i=ij−1

(
tij−1

+ (tij − tij−1
) · i− ij−1

ij − ij−1
− ti

)2

≤ (ij − ij−1 − 1) · tol2. (2)

This means that this partitioning criterion indicates that the squared Euclidean distance of the values
in pj from the straight polygonal line is upper bounded by (lenj − 1) · tol2.

Following the above, the whole polygonal chain can be recovered exactly from the first value t0 and
the tuple sequence [p1, p2, . . . , pN ] in the sense that the reconstruction error of this representation
is with pinned start and end points and can be naturally modeled as a Brownian bridge. In terms
of equation 2, a lower tol value is required to ensure an acceptable compression of time series
with a great variety of features such as trends, seasonal and nonseasonal cycles, pulses and steps.
As indicated in (Elsworth & Güttel, 2020), the error bound between the reconstruction and original
time series is upper bounded by (n−N) · tol2.

3.1.2 DIGITIZATION

The ABBA compression is followed by a reasonable digitization that leads to a symbolic represen-
tation in the form of equation 1. Prior to digitizing, the tuple lengths and increments are separately
normalized by their standard deviations σlen and σinc, respectively. After that, further scaling is
employed by using a parameter scl to assign different weights to the length of each piece pi, which
denotes the importance assigned to its length value in relation to its increment value. Hence, the
clustering is effectively performed on the scaled tuples

p′1 =

(
scl

len1

σlen
,
inc1

σinc

)
, p′2 =

(
scl

len2

σlen
,
inc2

σinc

)
, p′N =

(
scl

lenN

σlen
,
incN

σinc

)
. (3)

In particular, if scl = 0, then clustering will be only performed on the increment values of p′i,
while if scl = 1, the lengths and increments are treated with equal importance.
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The step after normalization works with a mean-based clustering technique in Euclidean space.
In the ABBA setting, letting the input of N vectors be P ′ = [p′1, . . . , p

′
N ] ∈ Rℓ×N , one seeks

a codebook of k vectors, i.e., C = [c1, . . . , ck] ∈ Rℓ×k (k ≪ N ) where each ci is associated
with a unique cluster Si such that k clusters from P ′ minimize the sum of Euclidean distances
SSE constructed by C. The obtained codebook vectors are known as cluster centers. A quality
codebook produces k clusters S1, S2, . . . , Sk ⊆ P ′ such that the sum of squared errors SSE =∑k

i=1

∑
p′∈Si

∥p′ − ci∥22 is small enough to an optimal level. To ensure SSE decreases as the
iterations proceed, the mean value µi :=

1
|Si|

∑
p′∈Si

p′ is always chosen for centers update in ci for
Lloyd’s algorithm (Lloyd, 1982) (also known as the classic k-means algorithm). However, this is a
suboptimal solution to minimizing SSE. The k-means problem aims to find k clusters within data in
d-dimensional space, so as to minimize the SSE. However, solving this problem is NP-hard even if
k is restricted to 2 (Drineas et al., 2004; Dasgupta & Freund, 2008) or in the plane (Mahajan et al.,
2012). Typically, the sub-optimal k-means problem in the digitization can also be solved by a greedy
sorting-based aggregation (Chen & Güttel, 2022). In the following, we assume the digitization is
performed by the aggregation (See Algorithm 1 of Appendix) since this results in a faster variant,
the number of symbols thus is determined by the parameter α (detail can be referred to Chen &
Güttel (2022)).

In the context of symbolic approximation, we refer to the cluster centers as symbolic centers here,
and each symbolic center is associated with an identical symbol. Then, each p′i is assigned to the
closest symbolic center ci associated with its symbol ci = argminc∈C(∥p′ − c∥). After that, each
p′i is associated with a unique center, which is assigned as a label. We use a symbol to correspond
to the label. The symbols can be represented by text characters, which are not limited to English
alphabet letters—e.g., ASCII codes or any of its combinations.

3.1.3 INVERSE SYMBOLIZATION

The inverse symbolization step converts the symbolic representation A back to the reconstructed
series T̂ , which is key for some value prediction tasks in time series. The inverse symbolization
is followed by a inverse-digitization that uses the k representative elements ci ∈ C to replace the
symbols in A and denormalize them separately, thus resulting in a 2-by-N array P̃—an approxi-
mation of P . Each p̃i ∈ P̃ is the closest symbolic center ci ∈ C to p′i ∈ P ′ (in contrast to P )
after denormalization. However, the inverse digitization often leads to non-integer values for the
reconstructed length len, so a rounding method is used to align the accumulated lengths with the
closest integers. The first length is rounded to an integer value, i.e., l̂en1 := round(l̃en1) and the
rounding error e := l̃en1 − l̂en1 is computed. The error is then added to the rounding of l̃en2,
i.e., l̂en2 := round(l̃en2 + e), and the new error e′ is calculated as l̂en2 + e− l̃en2. Then e′ is
similarly involved in the next rounding. After all rounding is computed, we obtain

P̂ = [(l̂en1, înc1), (l̂en2, înc2), . . . , (l̂enN , încN )] ∈ R2×N , (4)

where the increments inc are unchanged, i.e., înc = ĩnc. The last step is to recover P̂ exactly
from the initial time value t0 and the tuple sequence equation 4, resulting in the reconstructed time
series T̂ .

3.2 ABBA TO LLM
In the following, we write a single time series containing n data points as T , and use T = {Ti}qi=1 to
denote a set of time series of cardinality q, associated with its corresponding symbolic representation
set A = {Ai}qi=1.

3.2.1 SYMBOLIZING MULTIPLE TIME SERIES

Existing work on symbolic approximation focuses converting a single time series; it can not convert
another time series with consistent symbolic information (the same symbol correspond to the same
symbolic center). To allow the manipulation of co-evolving time series or multiple time series, it is
necessary to keep consistent symbolic information for multiple symbolic time series representations.

We illustrate a unified approach towards a consistent symbolic approximation to multiple time series.

• Step 1: Use APCA to compress each time series Ti into Pi for i = 1, . . . q

• Step 2: Concateneate P := [Pi]i = 1q

5
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Figure 3: The model framework of LLM-ABBA.

• Step 3: Perform digization on P

• Step 4: Allocate symbols to each time series (the number of symbols for Ti is equal to |Pi|)

3.2.2 SYMBOLIZING OUT-OF-SAMPLE DATA

Symbolizing the out-of-sample time series with consistent symbols is essential for various time
series downstream tasks, which is used for inference tasks, etc. Given a set of time series T =
{Ti}qi=1, to compute a symbolic representation for Ti(i = 1, . . .m), we perform the following
steps:

• Step 1: Compress each time series Ti into Pi for i = 1, . . . q

• Step 2: Assign a symbol to p ∈ Pi for i = 1, . . . q following the rule of digitization

3.2.3 FEEDING THE LLM
ABBA can transform numerical time series to symbolic series and keep the internal logic chain from
which LLMs can learn the temporal knowledge. In other words, by ensuring the precondition that
the input symbolic series inherits the polygonal chain of numerical time series and then represents
this chain via symbolic series (or LLMs’ tokens) that can be recognized by LLMs, LLMs can re-
construct the embedding space without the use of any new tokens via adapting fine-tuning methods.
As seen in Figure 3, the left panel is the traditional setting in terms of corresponding tasks, such as
classification, regression, and prediction. The right panel is the instruction setting that contains these
three tasks. Given an input time series, we first transform and compress the time series to a sym-
bolic series via 1⃝ and 1⃝. These symbolic series will be tokenized by the LLM’s tokenizer 2⃝. The
designed instruction that contains the symbolic series also will be tokenized by the LLM’s tokenizer
2⃝. Additionally, by only fine-tuning the pretrained LLM, the QLoRA with inhibition mechanism is

utilized both in 3⃝ and 3⃝. To implement the corresponding tasks, 4⃝ and 5⃝ loads the LLM accord-
ing to the type of task. However, 4⃝ loads the LLM on the generation task. Moreover, to inverse
symbolic series back to numerical time series, 6⃝ and 5⃝ utilizes ABBA to decompress the gener-
ated symbolic series. Lastly, in 7⃝ and 6⃝ the output time series from LLM-ABBA are projected to
generate the forecasts.

For the consistency of the related tuning-based methods, T is referred to as the input in the time
series dataset, A is the symbolic representation generated by ABBA; ϕ : T → A denotes the
symbolization of ABBA, and ϕ−1 : A → T is referred to as the inverse symbolization of ABBA.
We formulate the framework of LLM-ABBA:

(i) A = ϕ(T ): The input the T is converted to its symbolic representation A.

(ii) Minp = Tokenizer(Prompt,A): Tokenizing the symbolic representation A; here, the
Tokenizer is the default Tokenizer for LLMs.

(iii) Moutp = f∆
LLM (Minp): Feed the tokenized input to LLM model.
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(iv) Ŷ = Task (Moutp): If this is a classification task, Ŷ is a generated label. If the task is a re-
gression or prediction task, Ŷ is an ABBA transformed numerical value or sequence produced
by the inverse symbolization process of ABBA:{

Ŷ = Moutp, Classification task,
Ŷ = ϕ−1 (Moutp) , Regression / prediction task

3.3 FIXED-POINT ADAPTIVE POLYGONAL CHAIN

In time series prediction settings, the value-based prediction is converted into a token-based predic-
tion using symbolic time series approximation. However, it is very desirable to mitigate the negative
effect of the preceding mistakenly predicted symbol on the subsequent time series recovery since the
recovery proceeds from front to back. However, APCA and the symbolic recovery often lead to a
cumulative error for symbolic prediction, that is, a replacement of a previous symbol will influence
the subsequent reconstruction. A fixed-point polygonal chain trick is introduced to mitigate this
issue. We still partition the time series into pieces following equation 2 while pj = (lenj ,incj)
is replaced with pj = (lenj , tij ). We call the new approximation method FAPCA. The resulting
tuples pi after normalization are equivalent to equation 3 and one can be recovered from the other
since incj = tij − tij−1 . Figure 4 in the Appendix shows that FAPCA eliminates the cumulative
errors arising from the preceding mistaken symbol and improves the recovery.

4 EXPERIMENTS

Table 1: Performance comparison of test accuracy (%) on 24
UCR time series classification datasets (Dau et al., 2019). Full
results are shown in Table 9 of Appendix.

Data Name Classes
Number

Symbols
Number

M1
(%)

M2
(%)

M3
(%) SOTA

BME 3 836 60.2 84.7 77.3 -
BeetleFly 2 731 95.0 65.0 75.0 -
ChinaTown 2 585 72.6 84.3 89.2 -
Coffee 2 701 89.3 96.5 89.3 100
ECG200 2 1,781 70.0 64.0 68.0 87.4
ECG5000 5 10,334 81.2 76.0 75.4 94.0
Earthquakes 2 940 74.8 77.7 79.1 78.4
GunPoint 2 791 73.3 82.7 80.0 96.7
GunPointAgeSpan 2 2,057 94.3 84.5 85.5 -
GunPointOldVersusYoung 2 2,057 97.5 85.1 80.0 -
HandOutlines 2 7,572 77.0 68.6 71.6 93.2
Herring 2 982 65.6 62.5 60.9 68.8
HouseTwenty 2 1,385 86.2 89.1 93.3 -
ItalyPowerDemand 2 1,759 70.4 73.4 73.2 97.1
Plane 7 1,424 81.0 78.1 83.8 -
PowerCons 2 2,007 79.0 81.1 80.6 -
SmallKitchenAppliances 2 2,207 69.3 63.2 61.6 83.5
Strawberry 2 3,593 85.1 84.9 88.4 97.6
Trace 4 870 88.0 90.0 77.0 100
TwoLeadECG 2 2,487 69.1 64.6 63.9 97.8
Wafer 2 4,805 96.8 93.5 95.2 100
Wine 2 171 57.4 63.2 63.0 90.7
Worms 5 5,377 67.5 64.9 63.6 83.1
WormsTwoClass 2 5,377 81.8 70.1 79.2 98.7

In this section, there are three time
series tasks that will validate the ef-
ficiency of ABBA in LLM. We also
fine-tune three language models on
the training data using QLoRA
(Dettmers et al., 2024) with inhi-
bition (Kang et al., 2024). All
experiments are simulated in Py-
Torch (Paszke et al., 2019) with a
single NVIDIA A100 40GB GPU.
The benefits of LLM-ABBA with
LLMs include (1) avoiding the
need for LLMs to learn time se-
ries from scratch, (2) only utiliz-
ing compression and decompres-
sion without the need for the train-
ing of extra embedding layers (Jin
et al., 2023).

4.1 COMPRESSION
AND RECOVERY

To transform the numerical time se-
ries to symbolic time series, we
merely use tokens of LLMs as the
initial dictionary of ABBA for the
symbolic representation, and there
are no extra tokens that will be
used to represent the numerical in-
put. ABBA shows a strong sym-
bolic transition on time series sig-
nals (See Figure 6 and Table 8 of
the Appendix). Due to the page limitation, we report the performance of ABBA on time series
transition in the Appendix.

4.2 PRETRAINED LARGE LANGUAGE MODELS

For a comprehensive analysis, we test ABBA with LLMs on three main time series analysis
tasks. In this section, three LLMs are used to process the COP in symbolic series. M1 is the

7
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RoBERTaLarge (Liu et al., 2019), M2 means the Llama2-7B (Touvron et al., 2023), and M3 is the
Mistral-7B (Jiang et al., 2023).

4.3 TIME SERIES CLASSIFICATION TASKS

For the classification task, we evaluate these three pretrained LLMs on UCR Time Series Archive
datasets (Dau et al., 2019), EEG eye state (Seyfi et al., 2022), and MIT-BIH (Mousavi & Afghah,
2019; Liu & Zhang, 2021) which have been extensively adopted for benchmarking time series clas-
sification models. We utilise cross-entropy loss for the classification training. Details of the imple-
mentation and datasets can be found in Table 5 of the Appendix. The evaluation metric is accuracy
rate (%).

Table 2: Performance of test accuracy (%) on 3 medical time
series classification datasets. Full results are shown in Table
10 of Appendix.

Data Classes
Number

Symbols
Number

M1
(%)

M2
(%)

M3
(%)

CNN
(%)

BiRNN
(%)

LSTM
(%)

EEG 2 938 66.0 57.5 60.1 ∗ ∗
PTB-DB 2 2179 90.6 99.0 98.9 99.4 - -
MIT-BIH 5 2926 86.4 89.6 89.7 93.4 96.5 88.1

In Table 1, we report the classifica-
tion performance on a partial dataset
of UCR2018. In most cases, al-
though LLM-ABBA cannot outper-
form the SOTA in terms of time
series classification tasks, ABBA
with LLMs can reach an accept-
able application requirement in some
practical cases (such as ’Coffee’,
’Earthquakes’, ’Herring’, ’Straw-
berry’, ’Trace’, ’Wafer’, ’WormsT-
woClass’). Because every UCR2018 data set is small and QLoRA has a relatively greater weight,
we conclude that LLMs tend to suffer the over-fitting performance. Compared to V2S (Yang et al.,
2021) which is the up-to-date SOTA, although these three LLMs with the use of QLoRA occupies
more memory, the multi-modality of LLM especially on time series analysis requirement gets a
noticeable improvement.

Table 3: Performance comparison of the regression task (RMSE) on
19 Monashe Time Series Regression datasets. Our proposed LLM-
ABBA outperforms or ties with the current prediction results on 19
out of 30 datasets. Full results are shown in Table 11 of Appendix.

Data Symbols
Number

M1
(RMSE)

M2
(RMSE)

M3
(RMSE) SOTA

AppliancesEnergy 778 1.73 2.43 2.02 2.29
HouseholdPowerConsumption1 1,717 377.02 398.01 228.67 132.80
HouseholdPowerConsumption2 1,717 27.64 36.63 24.51 32.61
BenzeneConcentration 3,037 4.00 5.56 4.03 0.64
BeijingPM10Quality 970 66.07 93.25 65.24 93.14
BeijingPM25Quality 970 54.16 76.73 53.49 59.50
LiveFuelMoistureContent 5,689 20.56 29.32 20.85 29.41
FloodModeling1 969 0.00 0.05 0.36 0.00
FloodModeling2 979 0.00 0.04 0.39 0.01
FloodModeling3 948 0.00 0.05 0.37 0.00
AustraliaRainfall 4,740 4.36 6.01 4.28 8.12
PPGDalia 12,298 9.32 12.50 9.02 9.92
IEEEPPG 8,971 17.00 22.53 17.12 23.90
BIDMC32HR 9,423 6.98 11.98 8.21 9.42
BIDMC32RR 9,412 1.74 2.61 2.06 3.02
BIDMC32SpO2 5,537 2.85 3.79 2.91 4.45
NewsHeadlineSentiment 5,537 0.07 0.13 0.11 0.14
NewsTitleSentiment 5,537 0.07 0.13 0.11 0.14
Covid3Month 227 0.02 0.11 0.44 0.04

In the medical domain
(for example, identifying
the eye state using EEG
signals, distinguishing the
abnormal ECG signal, clas-
sifying the ”normal beats”,
”supraventricular ectopy
beats”, ”ventricular ectopy
beats”, ”fusion beats” and
”unclassifiable beats” of
ECG signals), we report
the performance of LLM-
ABBAs on three medical
time series datasets. We set
tol = 0.01 and α = 0.01.
In Table 2, Compared to
CNN (Kachuee et al., 2018)
in terms of PTB-DB data
set, the LLM-ABBAs almost
equalise the SOTA. In the
aspect of distinguishing MIT-
BIH, CNN (Kachuee et al.,
2018) and BiRNN (Mousavi
& Afghah, 2019) presents
the dominant advantage,
but LLM-ABBAs slightly
outperforms LSTM (Singh
et al., 2018).

4.4 TIME SERIES REGRESSION TASKS

For the regression task, we evaluate these three pretrained LLMs on the Time Series Extrinsic Re-
gression (TSER) benchmarking archive (Tan et al., 2021), which contains 19 time series datasets

8
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Table 4: Performance comparison of the prediction task (MSE and MAE) on 4 time series prediction
datasets. Full results are shown in Table 12 of the Appendix.

Data Predictor Symbols M2 M3 Informer UniTime Time-LLM AutoTimes
Length Number MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 168/24 2789 0.653 0.647 0.622 0.631 0.577 0.549 - - - - - -
ETTh2 168/24 5383 0.784 0.761 0.759 0.761 0.720 0.665 - - - - - -
ETTm1 168/24 3170 0.386 0.364 0.401 0.387 0.323 0.369 - - - - - -
ETTm2 168/24 6878 0.201 0.198 0.214 0.203 - - - - - - - -
ETTh1 168/96 2789 0.745 0.752 0.773 0.782 - - 0.397 0.418 0.362 0.392 0.360 0.400
ETTh2 168/96 5383 0.892 0.881 0.871 0.866 - - 0.296 0.345 0.268 0.328 - -
ETTm1 168/96 3170 0.531 0.528 0.524 0.517 - - 0.322 0.363 0.272 0.334 - -
ETTm2 168/96 6878 0.288 0.267 0.276 0.281 - - 0.183 0.266 0.161 0.253 - -
ETTh1 168/168 2789 1.087 0.964 1.174 1.968 0.931 0.752 - - - - - -
ETTh2 168/168 5383 3.975 2.101 3.898 2.134 3.489 1.515 - - - - - -
ETTm1 168/168 3170 0.974 0.952 0.966 0.958 0.678 0.614 - - - - - -
ETTm2 168/168 6878 0.576 0.544 0.521 0.503 - - - - - - - -

from 5 application areas, including Health Monitoring, Energy Monitoring, Environment Monitor-
ing, Sentiment Analysis and Forecasting1. To use as few symbols as possible, we initialize the
setting of tol = 0.01 and = 0.01. We also utilize the L2 loss for the regression training. Details of
the implementation and datasets can be found in Table 6 of the Appendix. The evaluation metric is
root-mean-square-error (RMSE).

Experimenting on the TSER benchmark archive (Tan et al., 2021), the empirical results are shown in
Table 3, in which 15 out of 19 use-cases outperform the machine learning SOTA results. We believe
that LLM-ABBA can exploit the semantic information hiding beneath the time series in the task
of time series regression. ABBA is able to provide COPs to LLMs by compressing and digitizing
time series to symbols, which finally results in the change of embedding space by using adaption
fine-tuning methods.

4.5 TIME SERIES FORECASTING TASKS

For time series forecasting, we experimented on 4 well-established benchmarks: ETT datasets (in-
cluding 4 subsets: ETTh1, ETTh2, ETTm1, ETTm2) (Zhou et al., 2021; Wu et al., 2021). Details
of the implementation and datasets can be found in Table 7 of Appendix. The input length of the
time series is 168, and we use three different prediction horizons H ∈ {24, 96, 168}. The evaluation
metrics include mean square error (MSE) and mean absolute error (MAE).

Although LLM-ABBA cannot obtain a new SOTA on time series forecasting tasks, it compares
favorably to the Informer architecture which is trained from scratch. The congenital defect of ABBA
is that the symbolization tends to be affected by the fluctuation and oscillation of time series signals,
which eventually leads to higher MSE and MAE scores. Because LLM-ABBA utilizes a totally
different technical roadmap to existing methods, it only remolds the construction of the LLM’s
tokens. However, remodeling pretrained tokens inevitably brings the previous pretrained semantics
to the LLM-ABBA design. Thus, we discussed the semantic consistency of LLM-ABBA using extra
symbols or tokens to overcome this problem (See in Appendix).

5 CONCLUSION

In this paper, we propose LLM-ABBA for time series classification, regression, and forecasting
tasks. We discuss how to seamlessly integrate time series symbolization with LLMs and enhance its
performance. To mitigate the drift phenomenon of time series, we introduce the FAPCA method to
improve ABBA symbolization. The empirical results demonstrate our method achieves the compa-
rable SOTA performance on classification and regression tasks. We refer readers of interest to the
Appendix for further discussion on the reconstruction error of ABBA symbolization, how it relates
to the dominant parameters, and the congenital defect of LLM-ABBA. In terms of convenience and
universality, LLM-ABBA improves the multi-modality of LLMs on time series analysis. We believe
the potential of ABBA extends to other time series applications, which will be left as future work.

1Monash regression data is available at http://tseregression.org/.
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A SORTING-BASED AGGREGATION

Algorithm 1: Fast sorting-based aggregation
1. Scale and sort data points, and assume they are denoted p1, . . . , pn.

Label all of them as “unassigned”.
2. For i ∈ {1, . . . , n} let pi be the first unassigned point and set j := i.

(The point pi is the starting point of a new group.)
If there are no unassigned points left, go to Step 6.

3. Compute dij := d(pi, pj)
4. If dij ≤ α,

• assign pj to the same group as pi
• increase j := j + 1

5. If j > n or termination condition is satisfied, go to Step 2. Otherwise go to Step 3.
6. For each computed group, compute the group center as the mean of all its points.

B ERROR ANALYSIS OF TIME SERIES RECONSTRUCTION

In this section, we are concerned with the reconstruction error of ABBA. It’s note that the recon-
struction of time series from compression procedure proceeds by establishing a polygonal chain T̃
going through the chosen tuples {(ij , tij )}Nj=0 from the original time series T and lenj = ij+1− ij .
As indicated in (Elsworth & Güttel, 2020), a polygonal chain T̂ stitching together {(̂ij , t̂ij )}Nj=0 via
a tuple sequence P̂ is reconstructed by the inverse symbolization.

Theorem B.1 ((Elsworth & Güttel, 2020)). Let (µleni , µinci ) = 1
|Si|

∑
(len,inc)∈Si

(len,inc), we
denote the mean set for len and inc by Ulen = {µleni }ki=1 and Uinc = {µinci }ki=1, respectively.
Due to i0 = 0, the reconstruction indices and size of time series values are given by

(̂ij , t̂ij ) =

( j∑
ℓ=1

l̂enℓ, t0 +

j∑
ℓ=1

încℓ

)
, for j = 0, . . . , N, (5)

where (l̂enℓ, încℓ) computed cluster centers, i.e., l̂enℓ ∈ Ulen and încℓ ∈ Uinc.

Theorem B.1 shows the accumulated deviations from the true lengths and increments are canceled
out (as analyzed in (Elsworth & Güttel, 2020)) at the right endpoint of the last piece pN , thus
(̂iN , t̂iN ) = (iN , tiN ) = (n, tn), which indicates the start and ending point between T̂ , T̃ and T are
identical. We thus have the following result.

Now we denote the local deviation of the increment and length:

dincℓ := încℓ − ĩncℓ, dlenℓ := l̂enℓ − l̃enℓ. (6)

Theorem B.2 ((Elsworth & Güttel, 2020)).∑
i

∑
(len,inc)∈Si

(dlen, dinc) = (0, 0).

Theorem B.3. Consider ABBA is performed with hyperparameter α and result in k clusters
S1, . . . , Sk, then we have

max
ℓ

{(dincℓ )2 + (dlenℓ )2} ≤ α2, (7)

and further

σ = max
i=1,...,k

1

|Si|
∑

(len,inc)∈Si

(
|len− µleni |2 + |inc− µinci |2

)
≤ α2, (8)

Following Theorem B.3, the σ is explicitly controlled by α, thus we remove the need to estimate an
additional parameter of tols stated in (Elsworth & Güttel, 2020) by directly relating it to hyperpa-
rameter α.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Given the N data points selected by adaptive polygonal approximation chain, let elenj :=
∑j

ℓ=1 d
len
ℓ

and eincj :=
∑j

ℓ=1 d
inc
ℓ , it is obvious that eincj = t̂ij − tij if elenj = 0 for j = 1, . . . , N , then we

have the Theorem B.4 and Theorem B.5.

Theorem B.4.
|eincj | ≤ j

√
α2 − (dlenℓ )2 ≤ j|α|, (9)

where j = 0, . . . , N .

Similarly, the shift of the time series has |elenj | ≤ j
√
α2 − (dincℓ )2 ≤ j|α| for j = 0, . . . , N .

Theorem B.5.

P(|eincj | ≥ h) ≤ exp (− h2

2jα2
) and P(|elenj | ≥ h) ≤ exp (− h2

2jα2
).

for all h > 0.

Proof to Theorem B.5. In terms of Theorem B.2, we can easily obtain

(elen0 , einc0 ) = (0, 0), (elenN , eincN ) = (0, 0)

associated with expectation E(elenj ) = E(elenj ) = 0.

For j = 1, . . . , N , since dlenj , dincj ∈ [−α, α], in terms of equation 7 and Hoeffding’s inequality,
then

P(

∣∣∣∣∣
j∑

ℓ=1

(dincℓ − E[dincℓ ])

∣∣∣∣∣ ≥ h) = P(
∣∣eincj − E[eincj ]

∣∣ ≥ h) ≤ exp (− h2

2jα2
) (10)

Therefore,

P(|elenj | ≥ h) ≤ exp (− h2

2jα2
) and P(|eincj | ≥ h) ≤ exp (− h2

2jα2
).

for all t > 0.

Therefore, a decrease of α is prone to result in a smaller reconstruction error ej , this phenomenon
was mentioned in (Elsworth & Güttel, 2020). The growth of j increases the possibility of larger er-
rors since the errors coming from the previous reconstruction will be accumulated to the subsequent
reconstruction in terms of the principle of inverse symbolization.

C LINGUISTICS INVESTIGATION: ZIPF’S LAW

The most common word is often found to appear approximately twice as frequently as the next
common word, this phenomenon is explained by Zipf’s law (Powers, 1998). Zipf’s law asserts that
the frequencies of certain events are inversely proportional to their rank, further, the rank-frequency
distribution is an inverse power law relation.

Also, as depicted in Figure 5, we can see unigrams generated by ABBA symbolization from 7
different time series datasets of UCR Archive coarsely meet Zipf’s law. This showcases an appealing
alignment between ABBA symbols and the native language words.

D HYPERPARAMETERS

D.1 HYPERPARAMETERS OF ABBA
There are four interactive parameters that establish the transition of time series when integrating
ABBA to LLMs. tol ∈ {1e− 2, 1e− 4, 1e− 6} is the tolerance that is set to control the degree of
the reduction, α ∈ {1e− 2, 1e− 4, 1e− 6} sets the upper bound, L is a finite letter set that can be
the LLMs’ tokens, init ∈ {’agg’, ’k-means’} is the initial clustering method, and scl ∈ {1, 2, 3} is
used to weight the length of each piece.
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Figure 4: We generate synthetic trigonometric sine series of 1,000 points, and separately per-
form symbolic approximation with 4 symbols using APCA (top) and FAPCA (bottom) on
the time series, respectively. APCA and FAPCA generate symbols ’aBbBbBbBbBbBbBbBA’
and ’abBbBbBbBbBbBbBbA’, respetively, associated with their perturbed symbols,
’abbBbBbBbBbBbBbBA’ and ’aBBbBbBbBbBbBbBbA’, correspondingly. The symbols re-
covery is performed on correct symbols and perturbed symbols, respectively.
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Figure 5: Frequency and rank of symbols in various UCR datasets.

D.2 HYPERPARAMETERS OF LLMS

There are three time series analysis tasks: classification, regression and prediction. We quan-
tize LLMs by 4-bits using the bitsandbytes package2. In order to fine-tune LLMs as accordingly
as possible, the shunting inhibition mechanism (Kang et al., 2024) is utilized during the QLoRA

2https://github.com/bitsandbytes-foundation/bitsandbytes
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Table 5: Hyperparameters of Classification tasks. Quant. is the model quantization process. Inhib.
is the inhibition threshold in QLoRA. Embed. means to save tuned embeddings. Optims. is the
optimization method. LR is the learning rate. Acc. is the accyracy rate (%).

LLM-ABBA on Classification Tasks

Models Quant.TokensMetric LoRA Optim. Epochs LR Batch
Size4-bits Length alpha low rank r dropoutinhib.Embed.

RoBERTaLarge True 512 Acc. 16 16, 64, 256 0.05 0.3 Save adamw 8bit 10 5e-7 4
Llama2-7B True 4096 Acc. 16 16, 64, 256 0.05 0.3 Save adamw 8bit 10 5e-7 4
Mistral-7B True 4096 Acc. 16 16, 64, 256 0.05 0.3 Save adamw 8bit 10 5e-7 4

Table 6: Hyperparameters of Regression tasks. Quant. is the model quantization process. Inhib.
is the inhibition threshold in QLoRA. Embed. means to save tuned embeddings. Optims. is the
optimization method. RMSE is the root-mean-square-error.

LLM-ABBA on Regression Tasks

Models Quant.TokensMetric LoRA Optim. Epochs LR Batch
Size4-bit Length alpha low rank r dropoutinhib.Embed.

RoBERTaLarge True 512 RMSE 16 16, 64, 256 0.05 0.3 Save adamw 8bit 10 2e-6 4
Llama2-7B True 4096 RMSE 16 16, 64, 256 0.05 0.3 Save adamw 8bit 10 2e-6 4
Mistral-7B True 4096 RMSE 16 16, 64, 256 0.05 0.3 Save adamw 8bit 10 2e-4 4

Table 7: Hyperparameters of Prediction tasks. Quant. is the model quantization process. Inhib.
is the inhibition threshold in QLoRA. Embed. means to save tuned embeddings. Optims. is the
optimization method. MAE is the mean-absolute-error, and MSE is the mean-square-error.

LLM-ABBA on Prediction Tasks

Models Quant.Tokens Metric LoRA Optim. Epochs LR Batch
Size4-bit Length alpha low rank r dropoutinhib.Embed.

RoBERTaLarge True 512 MAE, MSE 16 16, 64, 256 0.05 0.3 Save adamw 8bit 10 2e-6 4
Llama2-7B True 4096 MAE, MSE 16 16, 64, 256 0.05 0.3 Save adamw 8bit 10 2e-6 4
Mistral-7B True 4096 MAE, MSE 16 16, 64, 256 0.05 0.3 Save adamw 8bit 10 2e-6 4

(Dettmers et al., 2024) adapter fine-tuning progress. The modified embedding layer is also saved
after fine-tuning on the corresponding task. For the classification task, the metric is accuracy rate
(%). Root-mean-square-error is used to be the metric of regressing tasks. Mean-square-error and
mean-absolute-error are the metrics of prediction tasks, and we also visualize the correlation coeffi-
cient of prediction tasks on ETTh1 data in terms of their seven features. We control the fine-tuning
epoch and apply a small batch size on on every task. The alpha of QLoRA is set to 16. Every task is
run and tested on a single 40G GPU.

E THE PERFORMANCE OF ABBA ON TIME SERIES TRANSITION

To visualize the performance of ABBA on time series transition process, we employ ETTh1 time
series data to compute the correlation n coefficient and reconstruction error of ABBA. This multi-
variate data has seven features, and in terms of these seven features, the average of MSE, MAE and
correlation coefficient between original time series input and reconstructed outputs is computed.

Table 8: Symbolic approximation performance on
ETTh1 data by using ABBA.

ABBA Settings Number of
Symbols Reconstructed Time Series

tol and
alpha

scl
Used LLM’s

tokens MSE MAE Correlation
Coefficient

1e-2, 1e-2 3 846 2.5e-7 1.0e-2 1.0
1e-4, 1e-4 3 2713 4.2e-8 1.4e-4 1.0
1e-6, 1e-6 3 2789 3.2e-8 1.3e-4 1.0

In this session, the default scl is set to 3,
and init is ’agg’ which is used in other
LLM tasks. Meanwhile, tol and α are set
to be the same. Table 8 reports the input-
168-predict-96 results when using ABBA
to reconstruct ETTh1 data in terms of seven
features. Setting smaller tol and α of
ABBA can reduce MSE and MAE scores,
but more symbols or LLM’s tokens will be
used. Under all above conditions, the cor-
relation coefficient is 1.0.
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(a) Feaure 1. (b) Feaure 2. (c) Feaure 3.

(d) Feaure 4. (e) Feaure 5. (f) Feaure 6.

(g) Feaure 7.

Figure 6: Visualization of reconstructed input-168-predict-24 results on ETTh1 data by using ABBA
symbolic approximation.

F FULL RESULTS

To verify that if LLM-ABBA has the over-fitting problem, we use different low rank of QLoRA on
the corresponding tasks during the fine-tuning progress. Due to the small size of each data on UCR
time series classification datasets, we set the r of QLoRA to 16. But for time series regression and
prediction tasks, we select r ∈ {16, 46, 256} for the corresponding data input. We find that there
is no obvious over-fitting problem, and more tunable parameters are not able to make LLM-ABBA
performs better.

The UCR Archive contains 128 datasets has already been partitioned into train and test set while
the ratio of the train set and test set is not always consistent in various datasets. These datasets have
varying numbers of labels and feature dimensions, Also, might exist uneven numbers of labels which
is very likely to result in the overfitting arise from imbalanced data problems. Therefore, classifying
time series in UCR Archive is a challenging task. Table 9 reports the full time series classification
results on UCR2018. J1 is the ”k-means” symbolization method, and J2 is the ”aggregation” sym-
bolization. We find that ”aggregation” outperforms ”k-means” symbolization time series transition
progress in most cases. A larger data needs more symbols or LLM’s tokens, as a larger time series
data would contain more information and symbolic semantics. RoBERTalarge is based on BERT
(Devlin, 2018) which considers two directions of the input language sentence, meanwhile, Llama2-
7B and Mistral-7B originates from the GPT architecture (Radford et al., 2019) that only takes one
direction (from left to right) into account. Causality analysis which should compute the contextual
of each signal has been widely used to analyze multichannel EEG signals. However, ECG signals
mostly rely on the sequential features. Thus, we infer that when using LLM-ABBA to analyze
medical time series, the properties and characteristics should be analyzed first.
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Table 9: Full comparison results of time series classification tasks(%) on UCR datasets.

Data Classes Symbols RoBERTaLarge Llama2-7B Mistreal-7B SOTA
Number Number Para. J1 J2 Para. J1 J2 Para. J1 J2 Para. V2Sa

BME 3 836 2.65M 34.0 60.2 12.7M 41.3 84.7 9.56M 43.3 77.3 0.3M -
BeetleFly 2 731 2.65M 65.0 95.0 12.7M 50.0 65.0 9.56M 55.0 75.0 0.3M -
BirdChicken 2 424 2.65M 55.0 70.0 12.7M 60.0 65.0 9.56M 55.0 75.0 0.3M -
ChinaTown 2 585 2.65M 72.0 72.6 12.7M 58.3 84.3 9.56M 61.5 89.2 0.3M -
Coffee 2 701 2.65M 50.0 89.3 12.7M 60.7 96.5 9.56M 78.6 89.3 100
Computers 2 2,587 2.65M 37.4 70.8 12.7M 65.8 60.4 9.56M 63.2 64.4 0.3M -
DiatomSizeReduction 4 940 2.65M 38.6 52.3 12.7M 33.7 54.3 9.56M 36.3 52.0 0.3M -
DistalPhalanxOutlineCorrect 2 2,125 2.65M 58.3 63.8 12.7M 62.0 68.8 9.56M 58.3 66.7 0.3M -
DistalPhalanxTW 6 1,444 2.65M 58.3 61.2 12.7M 64.0 59.7 9.56M 56.8 62.6 79.1
DodgerLoopWeekend 2 143 2.65M 72.6 73.9 12.7M 70.3 64.5 9.56M 69.6 71.7 0.3M -
ECG200 2 1,781 2.65M 70.0 68.0 12.7M 63.0 64.0 9.56M 66.8 68.0 87.4
ECG5000 5 10,334 2.65M 81.2 76.0 12.7M 75.7 74.7 9.56M 75.4 73.4 0.3M 94.0
ECGFiveDays 2 2,463 2.65M 52.6 56.9 12.7M 53.3 63.9 9.56M 49.5 68.8 0.3M -
Earthquakes 2 940 2.65M 52.7 74.8 12.7M 77.7 76.3 9.56M 79.1 76.3 0.3M 78.4
ElectricDevices 7 4,607 2.65M 34.2 56.6 12.7M 54.9 51.0 9.56M 52.7 51.6 0.3M -
FordA 2 9,759 2.65M 68.9 68.9 12.7M 58.7 61.1 9.56M 62.7 60.9 0.3M 100
FordB 2 9,352 2.65M 68.9 58.1 12.7M 56.1 58.9 9.56M 55.1 57.0 0.3M 100
FreezerRegularTrain 2 2,663 2.65M 61.9 74.5 12.7M 64.1 76.1 9.56M 63.2 75.4 0.3M -
FreezerSmallTrain 2 2,593 2.65M 62.3 74.1 12.7M 63.8 67.8 9.56M 63.3 67.5 0.3M -
GunPoint 2 791 2.65M 51.4 73.3 12.7M 54.0 82.7 9.56M 48.0 80.0 0.3M 96.7
GunPointAgeSpan 2 2,057 2.65M 83.5 94.3 12.7M 69.9 84.5 9.56M 67.1 85.5 0.3M -
GunPointMaleVersusFemale 2 2,057 2.65M 57.9 76.3 12.7M 59.8 71.2 9.56M 55.7 74.1 0.3M -
GunPointOldVersusYoung 2 2,057 2.65M 66.7 97.5 12.7M 62.9 85.1 9.56M 67.9 80.0 0.3M -
HandOutlines 2 7,572 2.65M 66.5 77.0 12.7M 63.5 68.6 9.56M 65.1 71.6 0.3M 93.2
Herring 2 982 2.65M 59.4 65.6 12.7M 62.5 62.5 9.56M 54.7 60.9 0.3M 68.8
HouseTwenty 2 1,385 2.65M 50.8 67.1 12.7M 69.7 89.1 9.56M 75.6 93.3 0.3M -
ItalyPowerDemand 2 1,759 2.65M 59.7 70.4 12.7M 55.7 73.4 9.56M 53.4 73.2 0.3M 97.1
LargeKitchenAppliances 2 3,067 2.65M 39.6 63.5 12.7M 46.4 64.1 9.56M 42.1 54.7 0.3M -
Lightning2 2 2,175 2.65M 67.2 65.6 12.7M 68.9 65.6 9.56M 67.2 62.3 0.3M 100
Meat 3 161 2.65M 55.0 70.0 12.7M 68.3 70.0 9.56M 66.7 70.0 0.3M -
MedicalImages 10 4,173 2.65M 52.5 51.8 12.7M 49.2 49.9 9.56M 48.2 49.5 0.3M -
MelbournePedestrian 10 1,081 2.65M 34.6 68.5 12.7M 27.1 76.8 9.56M 29.2 74.4 0.3M -
MiddlePhalanxOutlineCorrect 2 1,700 2.65M 59.8 67.4 12.7M 58.1 69.8 9.56M 61.2 67.7 0.3M 91.1
MiddlePhalanxTW 6 1345 2.65M 53.9 54.5 12.7M 53.9 48.7 9.56M 51.9 46.8 0.3M 84.9
OliveOil 4 150 2.65M 66.7 46.7 12.7M 76.7 70.0 9.56M 73.3 73.3 0.3M -
PhalangesOutlinesCorrect 2 2,785 2.65M 62.2 65.4 12.7M 63.9 67.5 9.56M 62.7 67.5 0.3M -
Plane 7 1,424 2.65M 33.3 81.0 12.7M 39.0 78.1 9.56M 38.1 83.8 0.3M
PowerCons 2 2,007 2.65M 77.8 79.0 12.7M 72.8 81.1 9.56M 77.8 80.6 0.3M -
ProximalPhalanxOutlineCorrect 2 1,298 2.65M 71.5 82.8 12.7M 73.9 85.6 9.56M 72.9 83.9 0.3M -
ProximalPhalanxTW 6 1,101 2.65M 67.8 80.0 12.7M 69.8 80.0 9.56M 68.8 74.1 0.3M -
SemgHandGenderCh2 4 2,840 2.65M 49.1 54.7 12.7M 59.5 67.2 9.56M 58.3 73.3 0.3M -
ShapeletSim 2 1,353 2.65M 71.3 69.5 12.7M 76.1 59.4 9.56M 82.2 54.4 0.3M -
SmallKitchenAppliances 2 2,207 2.65M 66.2 69.3 12.7M 60.8 63.2 9.56M 57.6 61.6 0.3M 83.5
SonyAIBORobotSurface1 2 2,558 2.65M 54.2 60.4 12.7M 64.1 71.7 9.56M 68.2 78.5 0.3M -
SonyAIBORobotSurface2 2 2,596 2.65M 54.8 69.9 12.7M 55.9 70.6 9.56M 55.1 63.8 0.3M -
StarLightCurves 3 27,131 2.65M 67.8 72.9 12.7M 68.6 72.6 9.56M 67.6 70.1 0.3M -
Strawberry 2 3,593 2.65M 71.2 85.1 12.7M 69.5 84.9 9.56M 69.5 88.4 0.3M 97.6
ToeSegmentation1 2 3,889 2.65M 66.9 66.2 12.7M 53.5 52.2 9.56M 53.5 60.1 0.3M -
ToeSegmentation2 2 2,714 2.65M 79.7 73.1 12.7M 69.2 59.2 9.56M 77.7 80.0 0.3M -
Trace 4 870 2.65M 49.5 88.0 12.7M 54.0 90.0 9.56M 47.0 77.0 0.3M 100
TwoLeadECG 2 2,487 2.65M 59.6 69.1 12.7M 53.2 64.6 9.56M 53.2 63.9 0.3M 97.8
UMD 3 816 2.65M 47.7 69.5 12.7M 38.9 59.7 9.56M 42.4 60.4 0.3M -
Wafer 2 4,805 2.65M 94.6 96.8 12.7M 91.3 93.5 9.56M 90.9 95.2 0.3M 100
Wine 2 171 2.65M 53.6 57.4 12.7M 59.3 63.0 9.56M 63.0 55.6 0.3M 90.7
Worms 5 5,377 2.65M 62.6 67.5 12.7M 57.1 64.9 9.56M 54.5 63.6 0.3M 83.1
WormsTwoClass 2 5377 2.65M 74.3 81.8 12.7M 62.3 70.1 9.56M 61.0 79.2 0.3M 98.7

In medical time series domains, ptb-db and MIT-BIH arrhythmia data sets are mostly used. EEG
eye state data set has two categories,and because of its high complexity, the accuracy always stays
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Table 10: Full comparison results of medical time series classification tasks(%) on EEG eye states,
ptb-db and MIT-BIH.

Data Classes Symbols RoBERTaLarge Llama2-7B Mistreal-7B CNN BiRNN LSTMNumber Number r=16 r=64 r=256 r=16 r=64 r=256 r=16 r=64 r=256
EEG 2 938 60.1 66.0 64.4 55.9 57.4 57.5 58.5 58.0 60.1 ∗ ∗ ∗
ptb-db 2 2179 89.5 90.6 89.3 99.0 98.6 98.3 98.9 98.7 98.6 99.4 ∗ ∗
mit-bih 5 2926 86.4 86.4 86.3 89.6 89.4 89.1 89.3 89.7 89.3 93.4 96.5 88.1

Table 11: Full comparison results of the regression task on 19 Monashe Time Series Regression
datasets.

Data Symbols RoBERTaLarge Llama2-7B Mistreal-7B SOTA
(cite)r=16 r=64 r=256 r=16 r=64 r=256 r=16 r=64 r=256

Number RMSERMSERMSERMSERMSERMSERMSERMSERMSERMSE
AppliancesEnergy 778 1.73 2.09 1.74 2.43 2.43 2.43 2.34 2.02 2.11 2.29
HouseholdPowerConsumption1 1717 377.02377.20377.20398.01398.05398.05228.83228.78228.67132.80
HouseholdPowerConsumption2 1717 27.64 27.71 27.73 36.63 36.71 36.69 24.54 24.56 24.51 32.61
BenzeneConcentration 3037 4.01 4.00 4.00 5.57 5.56 5.56 4.03 4.03 4.03 0.64
BeijingPM10Quality 970 66.16 66.07 66.07 93.25 93.26 93.26 65.25 65.25 65.24 93.14
BeijingPM25Quality 970 54.16 54.16 54.16 76.75 76.73 76.73 53.50 53.49 53.49 59.50
LiveFuelMoistureContent 5689 20.56 20.56 20.56 29.32 29.33 29.32 20.94 20.88 20.85 29.41
FloodModeling1 969 0.00 0.00 0.00 0.05 0.05 0.05 0.37 0.36 0.36 0.00
FloodModeling2 979 0.00 0.00 0.00 0.05 0.04 0.04 0.40 0.39 0.39 0.01
FloodModeling3 948 0.00 0.00 0.00 0.06 0.05 0.05 0.41 0.37 0.39 0.00
AustraliaRainfall 4740 4.36 4.36 4.36 6.05 6.01 6.02 4.31 4.28 4.30 8.12
PPGDalia 12298 9.32 9.32 9.32 12.54 12.50 12.52 9.04 9.02 9.03 9.92
IEEEPPG 8971 17.06 17.00 17.04 22.59 22.53 22.55 17.15 17.12 17.16 23.90
BIDMC32HR 9423 6.73 6.98 6.71 12.02 11.98 12.04 8.24 8.21 8.23 9.42
BIDMC32RR 9412 1.77 1.74 1.76 2.64 2.61 2.62 2.09 2.06 2.08 3.02
BIDMC32SpO2 5537 2.90 2.85 2.89 3.82 3.79 3.81 2.95 2.91 2.93 4.45
NewsHeadlineSentiment 5537 0.07 0.07 0.07 0.13 0.13 0.13 0.11 0.11 0.11 0.14
NewsTitleSentiment 5537 0.07 0.07 0.07 0.13 0.13 0.13 0.11 0.11 0.11 0.14
Covid3Month 227 0.02 0.02 0.02 0.11 0.11 0.11 0.45 0.44 0.44 0.04

at around 60%. EEG eye state data and MIT-BIH has more than one channel, which indicates
that LLM-ABBA might have the ability to process complicate features across channels. Table 10
presents the full medical time series classification results using LLM-ABBA.

LLM-ABBA achieves comparable time series prediction results to SOTAs, and there is no over-
fitting in these tasks when using different low rank r. Because that ABBA tends to symbolize trends
and altitudes of the time series signals, LLM-ABBA always strengthen the vibration of predicted
time series segments which can be seen in Figure 7.

Table 12: Full comparison results of the prediction task on 4 time series prediction datasets.

Data Predictor Symbols
Llama2-7B Mistreal-7B

r=16 r=64 r=256 r=16 r=64 r=256
Length Number MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 168/24 2789 0.689 0.653 0.647 0.696 0.658 0.677 0.631 0.681 0.622 0.631 0.626 0.677
ETTh2 168/24 5383 0.798 0.788 0.784 0.761 0.789 0.772 0.776 0.787 0.759 0.761 0.762 0.771
ETTm1 168/24 3170 0.403 0.397 0.386 0.364 0.392 0.385 0.457 0.422 0.401 0.387 0.407 0.397
ETTm2 168/24 6878 0.224 0.209 0.201 0.198 0.215 0.207 0.251 0.237 0.214 0.203 0.218 0.209
ETTh1 168/96 2789 0.762 0.786 0.754 0.752 0.759 0. 60 0.792 0.804 0.773 0.782 0.7811 0.788
ETTh2 168/96 5383 0.912 0.885 0.892 0.881 0.907 0.876 0.899 0.887 0.871 0.866 0.878 0.872
ETTm1 168/96 3170 0.542 0.537 0.531 0.528 0.538 0.520 0.541 0.533 0.524 0.517 0.529 0.520
ETTm2 168/96 6878 0.302 0.286 0.288 0.267 0.293 0.278 0.289 0.302 0.276 0.281 0.280 0.285
ETTh1 168/168 2789 1.161 1.010 1.087 0.964 1.096 0.989 1.182 1.217 1.174 1.968 1.179 1.992
ETTh2 168/168 5383 4.103 2.675 3.975 2.101 4.086 2.537 4.092 2.626 3.898 2.134 3.910 2.245
ETTm1 168/168 3170 0.989 0.962 0.974 0.952 0.979 0.959 1.001 0.986 0.966 0.958 0.972 0.966
ETTm2 168/168 6878 0.616 0.583 0.576 0.544 0.580 0.561 0.592 0.541 0.521 0.503 0.532 0.509
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(a) Feature 1. (b) Feature 2. (c) Feature 3.

(d) Feature 4. (e) Feature 5. (f) Feature 6.

(g) Feature 7.

Figure 7: Visualization of input-168-predict-24 results on ETTh1 by using LLM-ABBA .

Table 13: The performance of LLM-ABBA with extra new tokens on ETTh1 data in terms of time
series forecasting tasks.

Data Predictor Symbols
Mistreal-7B

r=16 r=64 r=256
Length Number MSE MAE MSE MAE MSE MAE

ETTh1 168/24 2789 0.636 0.692 0.626 0.632 0.629 0.681
ETTh2 168/24 5383 0.779 0.788 0.761 0.763 0.763 0.777
ETTm1 168/24 3170 0.457 0.402 0.402 0.387 0.407 0.399
ETTm2 168/24 6878 0.253 0.238 0.215 0.203 0.219 0.209

G SEMANTIC CONSISTENCY

More or less, when using pretrained tokens as the input symbols, fine-tuning on no language content
(such as time series signals) will bring semantic loss to LLMs. Therefore, we use ASCII codes to
generate new symbols by adding more digits and expand the used alphabet table. Following the same
fine-tuning process to the above experiment settings, we compute the forecasting performance by
fine-tuing on Mistral-7B. Compared to Table 12, Table 13 shows that the difference is not noticeable.
We also evaluate the fine-tuned Mistral-7B on five mostly asked questions of ChatGPT in terms of
five different domains. Eventually, we find that LLM-ABBA has no semantic loss, which can be
seen in Table 14, 15, 16, 17, 18.

H LIMITATIONS

Our proposed FAPCA strategy to ABBA still cannot fully guarantee a completely cumulative error
arisen from the previous mistaken symbols from the recovery because the mistaken leni often leads
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Table 14: In weather prediction domain, users often ask for general information about the weather.
We evaluate Questions: “How do hurricanes form?” on Mistral-7B. Semantic outputs between
Mistral-7B and fine-tuned Mistral-7B are almost the same.

Models Answes
Mistral-7B Hurricanes, also known as typhoons or cyclones in different parts of the world,

are powerful storm systems that form over tropical oceans. They typically de-
velop from tropical disturbances, which are clusters of thunderstorms that form
over warm water.
There are several conditions that must be met for a hurricane to form:
1. Warm water: Hurricanes usually form over waters that are at least 80 degrees
Fahrenheit (26.5 degrees Celsius). This is considered to be the “fuel” that pow-
ers the storm.
2. Low atmospheric pressure: Hurricanes require areas of low pressure in the
atmosphere, where air rises and forms clouds and thunderstorms.
3. Moisture: Humid air is also necessary for the formation of a hurricane. As
the warm air rises, it cools and condenses, forming clouds and releasing heat
that powers the storm.
4. Wind patterns: The wind patterns in the atmosphere must also be conducive
to the formation of a hurricane. The winds must converge near the surface of the
ocean, helping to form the area of low pressure, while upper-level winds must
be favorable and not too strong to allow the storm to develop and grow.
When all these conditions are met, a cluster of thunderstorms can form over the
ocean, and as the warm air rises and more air is drawn into the system, the storm
can strengthen and grow, eventually leading to the formation of a hurricane. The
hurricane will continue to intensify

Mistral-7B
fine-tuned
on ETTh1

Hurricanes, also known as typhoons or cyclones in different parts of the world,
are powerful storm systems that form over tropical oceans. They typically de-
velop from tropical disturbances, which are clusters of thunderstorms that form
over warm water.
There are several conditions that must be met for a hurricane to form:
1. Warm water: Hurricanes usually form over waters that are at least 80 degrees
Fahrenheit (26.5 degrees Celsius). This is considered to be the “fuel” that pow-
ers the storm.
2. Low atmospheric pressure: Hurricanes require areas of low pressure in the
atmosphere, where air rises and forms clouds and thunderstorms.
3. Moisture: Humid air is also necessary for the formation of a hurricane. As
the warm air rises, it cools and condenses, forming clouds and releasing heat
that powers the storm.
4. Wind patterns: The wind patterns in the atmosphere must also be conducive
to the formation of a hurricane. The winds must converge near the surface of the
ocean, helping to form the area of low pressure, while upper-level winds must
be favorable and not too strong to allow the storm to develop and grow.
When all these conditions are met, a cluster of thunderstorms can form over the
ocean, and as the warm air rises and more air is drawn into the system, the storm
can strengthen and grow, eventually leading to the formation of a hurricane. The
hurricane will continue to intensify

to a minor shift if certain symbols are replaced improperly. Additionally, as a congenital defect of
LLMs, hallucination cannot be addressed in this work, and the vibration or adverse response of
predicted sequence cannot be completely solved. Moreover, after using ABBA to transform time
series, most LLMs only can support up to 4,096 tokens, which fundamentally abandons the long-
term time series analysis tasks.
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Table 15: For the fact checking questions, we ask Mistral-7B Question: “How long does it take to
travel to Mars?” Mistral-7B can provide accurate and brief information from a variety of sources.

Models Answers
Mistral-7B It takes about 6-9 months for a spacecraft traveling at the speed of light (186,250

miles per second) from Earth to reach its closest point in our solar system.
Mistral-7B
fine-tuned
on ETTh1

It takes about 6-9 months for a spacecraft traveling at the speed of light (186,250
miles per second) from Earth to reach its closest point in our solar system.

Table 16: In the technology explanation domain, Question: “What is quantum computing?” is
asked.

Models Answers
Mistral-7B Quantum computing is a type of computing that uses quantum-mechanical phe-

nomena, such as superposition and entanglement, to perform operations on data.
Unlike classical computers, which store and process information using bits (0s
and 1s), quantum computers use quantum bits, or qubits, which can exist in mul-
tiple states simultaneously. This allows quantum computers to perform certain
types of calculations much faster than classical computers.

Mistral-7B
fine-tuned
on ETTh1

Quantum computing is a type of computing that uses quantum-mechanical phe-
nomena, such as superposition and entanglement, to perform operations on data.
Unlike classical computers, which store and process information using bits (0s
and 1s), quantum computers use quantum bits, or qubits, which can exist in mul-
tiple states simultaneously. This allows quantum computers to perform certain
types of calculations much faster than classical computers.

Table 17: In philosophical domains, Question: ”What is consciousness?” is evaluated. Although
these questions often do not have clear answers, Mistral-7B can output the same philosophical ap-
proaches and ideas.

Models Answers
Mistral-7B Consciousness is the state of being aware of one’s surroundings and experiences,

including thoughts, emotions, and perceptions. It is a subjective experience that
cannot be directly observed or measured, but can be inferred from behavior and
brain activity. The nature of consciousness remains a topic of debate and re-
search in philosophy, psychology, and neuroscience.

Mistral-7B
fine-tuned
on ETTh1

Consciousness is the state of being aware of one’s surroundings and experiences,
including thoughts, emotions, and perceptions. It is a subjective experience that
cannot be directly observed or measured, but can be inferred from behavior and
brain activity. The nature of consciousness remains a topic of debate and re-
search in philosophy, psychology, and neuroscience.

Table 18: In digital health domains, Question: “What are the symptoms of the flu?” is asked.

Models Answers
Mistral-7B The flu is a viral infection that can cause a wide range of symptoms. Some com-

mon symptoms include fever, chills, cough, sore throat, runny or stuffy nose,
body or muscle aches, headaches, and fatigue. Symptoms typically appear one
to three days after exposure to the virus and can last for seven to ten days. How-
ever, some people may have a milder illness or no symptoms at all.

Mistral-7B
fine-tuned
on ETTh1

The flu is a viral infection that can cause a wide range of symptoms. Some com-
mon symptoms include fever, chills, cough, sore throat, runny or stuffy nose,
body or muscle aches, headaches, and fatigue. Symptoms typically appear one
to three days after exposure to the virus and can last for seven to ten days. How-
ever, some people may have a milder illness or no symptoms at all.
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