
Under review as submission to TMLR

Large Language Model-based Data Science Agent: A Survey

Anonymous authors
Paper under double-blind review

Abstract

The rapid advancement of Large Language Models (LLMs) has driven novel applications1

across diverse domains, with LLM-based agents emerging as a crucial area of exploration.2

This survey presents a comprehensive analysis of LLM-based agents designed for data science3

tasks, summarizing insights from recent studies. From the agent perspective, we discuss the4

key design principles, covering agent roles, execution, knowledge, and reflection methods.5

From the data science perspective, we identify key processes for LLM-based agents, including6

data preprocessing, model development, evaluation, visualization, etc. Our work offers two7

key contributions: (1) a comprehensive review of recent developments in applying LLM-8

based agents to data science tasks; (2) a dual-perspective framework that connects general9

agent design principles with the practical workflows in data science.10

1 Introduction11

In recent years, the rapid development of Large Language Models (LLMs) has driven significant innovations12

across various domains. Leveraging their remarkable capabilities in understanding and generating human-13

like text, LLMs have become foundational in creating intelligent agents capable of performing complex tasks14

autonomously. These agents have demonstrated substantial potential in diverse fields, including healthcare15

Qiu et al. (2024), finance Yu et al. (2024), education Zhang et al. (2025b), and software engineering Hong16

et al. (2023).17

Among these fields, data science has emerged as a particularly critical area for applying LLM-based agents18

Sun et al. (2024b). Data science involves extracting meaningful insights from vast and diverse datasets,19

a process that traditionally requires extensive manual effort and expertise. Consequently, LLM-based data20

science agents (DS Agents) have attracted attention for their ability to automate and optimize data analysis,21

model development, and decision-making processes.22

In this survey, we examine LLM-based data science agents from two complementary perspectives: agent23

design and data science application. From the agent design perspective, we summarize key architectural24

paradigms—including single-agent systems, collaborative multi-agent structures, and dynamic agent gener-25

ation—and analyze core components such as agent roles, execution strategies, knowledge integration, and26

reflection mechanisms. From the data science perspective, we explore how LLM agents are applied across27

major workflow stages such as data preprocessing, modeling, evaluation, and visualization. We also outline28

common task types, including model-building and insight-generation tasks, and characterize the iterative29

nature of the data science loop. Additionally, our survey goes beyond mere documentation by synthesizing30

insights from recent studies to identify research opportunities and future directions in this evolving field31

Sahu et al. (2024); Fan et al. (2023).32

From the agent perspective (§3), we summarize how the agent structure is designed (§3.1), how the reasoning33

of LLM within agents is performed (§3.2), where the knowledge comes from (§3.3), and the reflection of the34

agent (§3.4). From this perspective, we provided a comprehensive analysis of the agent design of LLM-based35

data scientist agents.36

From the data science perspective (§4), we summarize how LLM-based agents are applied across key stages37

of the data workflow, including data preprocessing, modeling, evaluation, and visualization. We categorize38

common task types such as model development and insight generation, and highlight the recurring data39

1



Under review as submission to TMLR

LLM-based Agents for DS

Related Works § 2

Modular Architectures § 2.1

Collaboration and Communication § 2.2

Capability Evolution and Reflection § 2.3

Agent Perspectives § 3

Agent Role § 3.1

Single Agent § 3.1.1

Two Agents § 3.1.2

Multiple Agents § 3.1.3

Dynamic Agents § 3.1.4

Summary of Agent Role§ 3.1.5

Execution Structure § 3.2

Dynamic Execution Planning §3.2.2

Fixed Workflow §3.2.1

Summary of Execution Structure§ 3.2.3

External Knowledge § 3.3
External Knowledge Methods §3.3.1

Summary of External Knowledge§3.3.2

Reflection § 3.4
Reflection Techniques §3.4.1

Summary of Reflection§3.4.2

DS (Data Science)
Perspectives § 4

DS Tasks § 4.1

DS Loop § 4.2

Data Preprocess § 4.2.1

Statistical Computation § 4.2.2

Feature Engineering § 4.2.3

Model Training § 4.2.4

Evaluation § 4.2.5

Visualization § 4.2.6

Summary of DS perspective§ 4.3

Benchmarks § 5

Research Opportunities § 6

Figure 1: Structure of This Survey

science loop that these agents help automate. This perspective clarifies the practical roles LLM agents play40

in enabling end-to-end data analysis.41

In summary, this survey makes two primary contributions.42

• It provides a comprehensive review of recent efforts to apply LLM-based agents to data science tasks,43

synthesizing work across areas such as data preprocessing, modeling, evaluation, and visualization.44

• It proposes a dual-perspective framework that bridges the gap between general agent design princi-45

ples—such as role allocation, execution, and reflection—and the specific operational needs of data science46

workflows, offering a structured lens to understand and develop LLM-based data science systems.47

2 Related Works48

Recent surveys on LLM-based multi-agent systems have introduced various taxonomies from architectural,49

task-specific, and coordination perspectives. We briefly review them and highlight how our approach differs.50

2



Under review as submission to TMLR

2.1 Modular Architectures51

Existing surveys often decompose LLM-based agents into functional modules such as planning, memory,52

perception, and action. For example, Guo et al. (2024b) identifies components like agent-environment53

interface and capability acquisition; similar structures appear in Liu et al. (2024a), Sun et al. (2024b), and54

others.55

Our work adopts this modular view but anchors it in the context of data science workflows. Instead of56

listing capabilities, we emphasize how modules interact during task execution—e.g., how reasoning, planning,57

and knowledge access are coordinated in dynamic or static execution (§3.2), and how external knowledge58

sources are integrated into decision-making (§3.3). We also highlight how modularity supports runtime59

adaptation through reflection mechanisms(§3.4), where agents adjust behaviors based on feedback, errors,60

or performance signals—enabling dynamic coordination across modules.61

2.2 Collaboration and Communication62

Agent collaboration is commonly categorized by structure (centralized, decentralized) or mode (cooperation,63

competition, etc.), as seen in Tran et al. (2025). Related works Guo et al. (2024b), Li et al. (2024g) discuss64

role-based or layered designs.65

However, these are mostly static views. In our work, we also examine dynamic orchestration, where agents66

adaptively coordinate by adjusting roles or workflows during execution. This includes settings where task67

allocation evolves based on feedback, or agents are restructured at runtime to respond to changing demands68

(§3.1.4, §3.2).69

2.3 Capability Evolution and Reflection70

Several surveys recognize that agent systems can adapt via feedback, memory updates, or reflection—for71

example, Li et al. (2024g) includes an evolution phase with memory consolidation, and Wang et al. (2024a)72

discusses reflective planning. Similar notions appear in Guo et al. (2024b) and others.73

In contrast to treating reflection as an auxiliary feature, we emphasize it as a cross-stage mechanism that74

drives dynamic execution adjustments (§3.4). We outline three key dimensions: the driver, level(scope of75

impact), and adaptability of reflection, framing reflection as a central control process for progress monitoring76

and adaptive behavior.77

3 Analysis from Agent Perspective78

Role: Coder
You are a coder
agent, you are 
prompting to write 
code …

Role: Reviewer
You are a reviewer 
agent, you are 
prompting to review 
and revise code …

Role: Analyzer
You are a Analyzer 
agent, you are 
prompting to run 
code to analyze…

… Coder Reviewer

Analyzer

Code

Comments

Code…

4.1 Agent Role 4.2 Execution Structure

4.3 External Knowledge 4.4 Reflection

Search Engine Database
…

Error Log

Execute

Reflect

Integrate

Figure 2: We illustrate the basic components for current data science agents: 1) agent role; 2) execution
structure; 3) knowledge and 4) reflection.

3



Under review as submission to TMLR

Large Language Model (LLM)-based agents have emerged as powerful tools in various domains, particularly79

in data science. The design and functionality of LLM-based agents can be understood through their basic80

components, which include agent role, execution structure, knowledge, and reflection.81

Agent role (see §3.1). LLM agents are allocated different roles, which allows the agents to split the main82

tasks and focus on specific tasks. Diverse agent roles are presented in previous works, ranging from single-83

agent systems handling all tasks independently to multi-agent systems with specialized roles like developers,84

testers, planners, etc.85

Execution structure (see §3.2). The execution structure designs how agents manage task allocation, task86

execution, user interaction, error handling, etc. The execution structure covers dynamic planning where87

agents adjust plans based on real-time feedback, fixed workflows with predefined task sequences, and plan-88

then-execute frameworks that separate strategy formulation from task execution.89

External Knowledge (see §3.3). The knowledge sources allow agents to access and integrate external90

information, enhancing their ability in specific domains. LLM-based agents augment their knowledge through91

external databases, retrieval-based approaches, and API calls.92

Reflection (see §3.4). Reflection methods provide feedback information for LLM-based agents to improve93

performance and adapt to complex environments. Techniques include agent feedback for self-correction,94

model metrics feedback for optimization, code error handling for reliability, and history window mechanisms95

for long-term learning.96

3.1 Agent Role Design97

In this section, we discuss the role design of LLM-based agents, focusing on their agent role specification.98

Starting from single-agent designs, which manage all tasks independently, we summarize the transition to99

two-agent systems that introduce role separation, such as planner-executor and coder-reviewer frameworks.100

Furthermore, we conclude different multi-agent systems, covering software engineering style systems, mini-101

mum function agents, etc. Lastly, we introduce some dynamic agent role design frameworks where agents102

are generated adaptively rather than predefined.103

3.1.1 Single Agent104

Figure 3: The basic structure for a single agent structure, with only the agent and execution environment.
The single-agent design is the simplest design structure as shown in Figure 3. Most existing single-agent105

works directly follow the ReAct design (a prompting technique , where LLMs are used to generate both106

reasoning traces and task-specific actions) Freimanis & Andersson Rhodin (2024); Chen et al. (2024a); Sun107

et al. (2024a); Jing et al. (2024); Hu et al. (2024a); Deng et al. (2024); Le et al. (2023); Zhang et al. (2024a);108

Gupta et al. (2024)Bendinelli et al. (2025); Xu et al. (2025), where the single agent will perform thought,109

action, and observation processes iteratively on its own.110

3.1.2 Two Agents111

Evolving from the single agent, the two-agent design is introduced to decompose the single agent’s functions,112

dividing the functions into two specialized roles, particularly either a planner&executor or code&reviewer113

structure.114

4



Under review as submission to TMLR

Figure 4: An example of planner and executor agent structure, where the planner generates a plan for the
executor to execute in detail.

Planner and executor. Different from the single agent discussed previously, some works split the single115

agent into two agents Huang et al. (2024b); Liu et al. (2024b); Zhang et al. (2023b); Chi et al. (2024); Li116

et al. (2024e)Wang et al. (2025a), planner and executor. As an example shown in Figure 4, the planner117

will get observations from previous execution results or users’ requests, and generate a next-step plan, or a118

whole plan in advance. Then, the executor is prompted to interact with the environments and will follow119

the generated plans to execute.120

Figure 5: In the coder&reviewer structure, the coder generates the code, while the reviewer will make
comments to revise the code for the coder.

Coder and reviewer. Another type of two-agent structure is the “coder and reviewer” style Trirat et al.121

(2024); Huang et al. (2023) as shown in Figure 5. In such a design, the coder is responsible for completing122

tasks following the typical ReAct structure. Another agent, the reviewer is introduced to check the validity123

of the code generated by the coder. Trirat et al. (2024) allows the reviewer to check the generated response124

at each step of generation, while Huang et al. (2023) only allows the reviewer to function at the end of the125

entire generation process.126

3.1.3 Multiple Agents127

Multi-agent systems enhance problem-solving capabilities by enabling collaboration among multiple agents,128

each with distinct roles and expertise. In such systems, agents are assigned specialized responsibilities,129

allowing them to focus on different tasks while exchanging progress and information.130

Software engineering-style team. The Software Engineering (SE) team-style agent design draws inspi-131

ration from traditional human software development teams Qian et al. (2024); Zhao et al. (2024b); Trirat132

et al. (2024); Hong et al. (2023); Tao et al. (2024); Lin et al. (2024); Nguyen et al. (2024).In an SE team-style133

framework, agents are typically assigned roles that correspond to key human roles in software development,134

here we state some example roles: The product manager defines the product vision and organizes require-135

ments. The requirements analyst translates user needs into detailed software specifications. The scrum136

master facilitates task planning and sprint coordination. Hierarchical roles like team leader, module Leader,137

and function coordinator handle task decomposition at varying levels of granularity. The executor for the138

task is the developer, who is responsible for implementing the code, while the senior developer refines it.139

5



Under review as submission to TMLR

Finally, the QA engineer ensures quality through rigorous testing, and the tester validates specific func-140

tionalities. Some SE team-style agents also perform hierarchical roles which allow some agents with high141

permissions to manage others.142

Figure 6: For agents with minimum functions, each agent is only responsible for a minimum function, such
as search code, run code, etc.

Minimum function agents. Minimum function agents are designed to handle narrowly scoped and atomic143

tasks separately, as shown in Figure 6. Across existing frameworks, minimum function agents are given very144

small and specific functions to handle. For instance, code search agents locate relevant files, classes, or145

methods within a repository, while fault localization agents identify buggy code sections using debugging146

techniques like spectrum-based fault localization Zhang et al. (2024e). Other agents specialize in generat-147

ing patches to fix identified issues, executing tests to validate code correctness, or systematically building148

repository structures from high-level descriptions Zan et al. (2024); Arora et al. (2024). In the context of149

exception handling, some agents detect fragile code, identify exception types, and implement robust han-150

dling mechanisms to enhance code reliability Zhang et al. (2024b). All works emphasize task decomposition151

and modularity, with outputs from one agent often serving as inputs for another, forming structured and152

collaborative workflows Zan et al. (2024); Phan et al. (2024); Arora et al. (2024)Seo et al. (2025); You et al.153

(2025); Ou et al. (2025).154

•
•
•

Figure 7: In the client-server agent structure, normally there will be a central server controls all the other
clients.

Client-server design. Client-server agents, adopt a hierarchical architecture where a central controller155

agent manages and coordinates the operations of multiple specialized client agents Zhang et al. (2023a);156

Yang et al. (2024a); Gandhi et al. (2024); Zhao et al. (2024a). The controller or server agent functions as a157

project manager, planning entire workflows of the given tasks, and allocates the tasks to the client agents.158

Client agents perform as roles like software engineers or testers, focusing on executing specific subtasks such159

as data analysis, modeling, or feedback generation. These roles allow for clear separation of tasks, while also160

enabling dynamic adjustments based on task requirements or external feedback Zhang et al. (2023a); Bai161

et al. (2024); Zhao et al. (2024a); Shen et al. (2024).162

3.1.4 Dynamic Agents163

Dynamic agents represent a class of multi-agent systems that emphasize adaptability by dynamically creating,164

modifying, or expanding agents during runtime. Unlike static agents, which follow predefined workflows and165

configurations, dynamic agents are designed to respond to the complexity or variability of tasks by adjusting166

6



Under review as submission to TMLR

the agents’ internal structure (prompt, etc.) or introducing new agents Hu et al. (2024b); Ishibashi &167

Nishimura (2024). Current frameworks for dynamic agent creation adopt two primary paradigms:168

Controller Layer 1

Layer 2

Figure 8: Hierarchical agent generation.

Hierarchical agent generation. This paradigm involves a parent agent or a high-level controller (e.g.,169

Mother Agent in SoA Ishibashi & Nishimura (2024)) that decomposes complex tasks into subtasks and170

creates child agents to handle the subtasks. Each child agent operates independently on its specific subtask.171

It is particularly effective in managing tasks with clear functional divisions, such as modular code generation172

or system-level software design Ishibashi & Nishimura (2024).173

Figure 9: Iterative agent generation through feedback.

Iterative agent generation through feedback. Dynamic agents adjust their structures and behaviors174

iteratively based on real-time feedback from their environment or other agents (Figure 9). EvoMAC Hu175

et al. (2024b) exemplifies this paradigm, employing a collaborative rather than hierarchical approach, where176

agents refine their outputs and workflows through mechanisms analogous to backpropagation—such as a loss177

agent computing errors and an update agent adjusting agent workflows accordingly. This textual feedback178

enables the dynamic creation or reconfiguration of agents, supporting adaptability for tasks with evolving179

requirements, such as changing software specifications (Figure 9) Hu et al. (2024b).180

3.1.5 Summary of Agent Role181

Beyond specific agent role design, we summarize the key features of agent roles, including agent structure,182

agent relationship, role task allocation, and task granularity. These key features reveal the core thoughts183

through the design of agent roles.184

Agent structure. The structure of LLM-based agents can be categorized into several types, each with its185

advantages and challenges:186

1. With a manager: In this structure, a central agent manages and controls all agents. Software engineering-187

style agents and Client-server agents mainly have this structure. For example, in the AutoML-GPTTrirat188

et al. (2024) framework, a central LLM serves as the controller, managing the entire pipeline by integrating189

specialized agents for subtasks such as model design and hyperparameter tuning.190

2. Without a manager: Each agent operates independently and solves tasks autonomously. Minimum func-191

tion agents mainly pose this structure, since all the agents with minimum function share the same position.192

An example of this is the MASAI Arora et al. (2024) framework, which utilizes decentralized agents that193

7



Under review as submission to TMLR

Framework CS FL PG VA RI ED EH
AutoCodeRover ✓ ✓ ✓ ✓

CODES ✓
HYPERAGENT ✓ ✓

MASAI ✓ ✓ ✓ ✓
Seeker ✓ ✓

Table 1: This table summarizes the roles of Minimum Function Agents in different frameworks. The columns
represent specific functions: Code Search (CS), Fault Localization (FL), Patch Generation (PG), Validation
(VA), Repository Initialization (RI), Exception Detection (ED), and Exception Handling (EH). A checkmark
(✓) indicates that the framework supports the corresponding function.

Role PM RA AR SM TL ML FC DE SD QA TE
AgileCoder ✓ ✓ ✓ ✓ ✓

AutoML-Agent ✓ ✓
ChatDev ✓ ✓ ✓
FlowGen ✓ ✓ ✓ ✓ ✓
MetaGPT ✓ ✓ ✓ ✓ ✓
MAGIS ✓ ✓ ✓

VisionCoder ✓ ✓ ✓ ✓ ✓

Table 2: Summary of SE Team Roles in Agent Designs: Product Manager (PM), Requirements Analyst
(RA), Architect (AR), Scrum Master (SM), Team Leader (TL), Module Leader (ML), Function Coordinator
(FC), Developer (DE), Senior Developer (SD), QA Engineer (QA), Tester (TE).

collaborate on machine learning and data science tasks by sharing results but not a central management194

system.195

3. Hierarchical managers: A higher-level agent controls lower-level agents in a layered structure. Hierar-196

chically generated agents and part of software engineering style agents mainly pose such structure. An197

example of this can be found in Hierarchical agent generation, such as in EvoMAC Hu et al. (2024b),198

where a parent agent dynamically creates child agents to handle specific subtasks during runtime.199

Agent relationship. The relationship between agents within the system can vary significantly depending200

on the design philosophy:201

1. Compete: Agents work against each other to complete a task, often in the coder-reviewer paradigm202

(similar to the adversarial concept in GAN). In frameworks like MASAI Arora et al. (2024), agents203

engage in competitive strategies to address machine learning and data science challenges. The competition204

between reviewers and coders allows the iterative refinement of the code. Some works also allow multiple205

agents to propose multiple plans to compete.206

2. Collaborate: Agents work together toward a shared objective. For example, in the MAGIS Tao et al.207

(2024) framework, agents assume different roles like Manager, Developer, and QA Engineer to collaborate208

on resolving GitHub issues. Their tasks are divided to ensure modular development, with continuous209

collaboration between agents.210

3. Hybrid: Agents alternate between competing and collaborating based on the task requirements. For211

instance, in AutoCodeRover Zhang et al. (2024e), agents work together to localize faults and generate212

patches, but may compete in terms of optimizing solutions or strategies based on the specific issue at213

hand.214

Agent role task allocation. LLM-based agents can allocate tasks in either a static or dynamic manner:215

8



Under review as submission to TMLR

1. Static Task Allocation: In some systems, agents are assigned a fixed set of tasks that they perform. For216

example, in the Data Director Hong et al. (2024) framework, agents follow a static task allocation, where217

the tasks are predefined and agents work through structured stepwise execution.218

2. Dynamic Task Allocation: Tasks are allocated based on the real-time needs and feedback from the system219

or environment. An example of dynamic task allocation can be seen in the EvoMAC Hu et al. (2024b)220

framework, where agents adjust dynamically based on environmental feedback, creating or dismissing221

agents as needed to refine or expand their tasks.222

Agent Role Task Granularity. The granularity of tasks assigned to agents influences both the precision223

and complexity of their execution:224

1. Coarse Granularity: Some agents are given broader, less detailed tasks. For example, in AutoML-GPT225

Trirat et al. (2024), the central controller agent coordinates the entire machine learning pipeline, handling226

coarse-grained tasks such as managing the overall workflow rather than focusing on the details of each227

individual task.228

2. Fine Granularity: In other cases, tasks are broken down into smaller units for more specific execution.229

For example, in MapCoder Islam et al. (2024a), multiple agents collaborate, each handling a fine-grained230

task such as code generation, debugging, or retrieval. This detailed task assignment ensures high accuracy231

but requires more computation overhead.232

3.2 Execution Structure233

In this section, we summarize the execution strategies of LLM-based agents, emphasizing their approaches234

how to complete the tasks.235

3.2.1 Static Execution236

Static execution refers to a workflow-style structure where agents follow a predefined sequence of actions to237

accomplish tasks. In this paradigm, the workflow is rigidly designed, ensuring that each step is executed238

deterministically without deviations. This type of workflow is particularly useful in scenarios where tasks239

require consistent, repeatable processes or involve complex subtasks that must be systematically handled.240

By defining clear workflows, these systems ensure reliability, transparency, and ease of evaluation, as agents241

operate within well-defined boundaries. A common feature of static execution structures is the division of242

tasks into sequential, predefined stagesSeo et al. (2025); Li et al. (2025); Xu et al. (2025); Ou et al. (2025).243

These workflows often start with data or task interpretation, followed by intermediate processing steps such244

as feature selection, data transformationQi & Wang (2024), or subtask decomposition Luo et al. (2024), and245

conclude with result generation Gu et al. (2024) or validation Shen et al. (2024).246

3.2.2 Dynamic Execution247

Next Step

Planning Command

Execution Result

Perception/
Observation

LLM Brain Environment

Figure 10: In just-in-time planning, one agent is responsible for planning and execution simultaneously.

Just-in-time plan. The “just-in-time” planning approach represents a dynamic and iterative execution248

strategy widely adopted by modern LLM-based agents (see Figure 10). Unlike pre-defined static workflows,249

this structure enables agents to generate and refine plans based on real-time feedback from previous execution250

steps Rasheed et al. (2024); Yang et al. (2024a)Bendinelli et al. (2025). Specifically, agents observe the251

outcomes of each executed step, use these observations to reevaluate the task’s context, and then dynamically252

devise the next step Cao et al. (2024); Zhao et al. (2024a). Just-in-time planning is particularly effective253

9



Under review as submission to TMLR

in domains where the environment or task requirements are dynamic Zhao et al. (2024a), as it reduces254

redundancy and enhances precision by continuously aligning actions with the latest data or results Zhang255

et al. (2024d); Liu et al. (2024b).256

Plan then execute. The “plan-then-execute” framework is a widely adopted structure in LLM agent257

systems, particularly for tasks requiring complex reasoning and multi-stage problem-solving (see Figure 4258

for an example). This framework divides the agent’s workflow into two distinct phases. In the planning phase,259

the agent formulates a high-level strategy by breaking down the overarching task into smaller, manageable260

sub-tasks. In the execution phase, the agent performs these sub-tasks sequentially or iteratively, strictly261

adhering to the initial plan while refining the process based on intermediate results or environmental feedback.262

Such a design mirrors human problem-solving strategies, offering modularity, scalability, and adaptability263

for diverse tasks, from software development Qian et al. (2024) to program repair Zhang et al. (2024e) and264

exception handling Zhang et al. (2024b).265

Hierarchy execution. Hierarchy execution is a structured approach where agents decompose complex266

tasks into smaller, manageable subtasks organized hierarchically. While the core principle of decomposing267

tasks into subtasks and refining them when needed remains consistent across implementations, structural268

details and execution strategies vary significantly among frameworks. For example, SELA uses tree-based269

hierarchies and Monte Carlo Tree Search (MCTS) to optimize AutoML workflows Chi et al. (2024), CodeTree270

employs explicit task decomposition to identify and evaluate coding strategies with execution feedback for271

dynamic optimization Li et al. (2024d), and LATS integrates MCTS into a language-agent-driven framework272

using model-driven value functions and self-reflection Zhou et al. (2023). Meanwhile, MapCoder and AGILE-273

CODER introduce collaborative multi-agent systems for task decomposition Islam et al. (2024a); Nguyen274

et al. (2024), Data Interpreter uses dynamic graph-based hierarchies for flexible task management Hong275

et al. (2024), VisionCoder adopts role-based decomposition mirroring traditional software engineering work-276

flows Zhao et al. (2024b), and ScienceAgentBench and Self-Organized Agents incorporate feedback-driven277

planning to refine subsequent cycles Chen et al. (2024c); Ishibashi & Nishimura (2024).278

3.2.3 Summary of Execution Structure279

Framework Tree Graph Role Dynamic Adjust Feedback Multi-Agent MCTS
SELA ✓ ✓
VisionCoder ✓
AGILECODER ✓ ✓
MASAI ✓ ✓ ✓
Data Interpreter ✓ ✓
MapCoder ✓ ✓ ✓
CodeTree ✓ ✓
ScienceAgentBench ✓
LATS ✓ ✓ ✓

Table 3: Summary of Hierarchy Planning in Different Frameworks. The columns represent the type of plan-
ning structure employed, including Tree-Based, Graph-Based, Role-Based, Dynamic Adjustment, Feedback-
Driven, Multi-Agent Collaboration, and Monte Carlo Tree Search (MCTS). A checkmark (✓) indicates the
framework supports the corresponding structure.

This section provides a summary of the execution structures employed by LLM-based agents, highlighting280

detailed execution dimensions including task execution, task routing, user interaction, and error handling.281

These execution dimensions significantly affect how agents adapt to dynamic environments and handle282

complex tasks. Below are the key execution dimensions with specific examples from §3 of the survey.283

Execution flexibility. Execution flexibility describes how agents handle task allocation during execution,284

ranging from static to dynamic allocation:285

10



Under review as submission to TMLR

1. Static Execution: In this case, task allocation is predefined before execution and remains unchanged286

throughout the process. An example is the Data Director Hong et al. (2024) framework, where agents287

follow a fixed workflow with predefined tasks and are not dynamically adjusted during the execution.288

2. Dynamic Execution: The task allocation changes during execution as the agent receives feedback or289

as the environment evolves. EvoMAC Hu et al. (2024b) employs a dynamic execution strategy where290

agents adjust their internal structure, adding or removing agents based on real-time feedback and task291

complexity.292

3. Hybrid Execution: This approach combines both static and dynamic task allocation. For example, in293

AutoML-GPT Zhang et al. (2023a), task allocation is primarily managed by the central controller but294

can dynamically adjust based on the results from specialized agents performing tasks like hyperparameter295

tuning or model design.296

Task routing. Task routing governs how tasks are passed between agents in a multi-agent system:297

1. Rule-based Routing: Tasks follow a specific rule or sequence to move from one agent to another. For298

instance, in MASAI Arora et al. (2024), tasks follow predefined rules based on the nature of the task,299

with each agent handling tasks according to a strict order.300

2. Agent-based Routing: In this type, one central agent controls the flow of tasks, deciding which agent301

will handle each task. An example is found in AutoML-GPT Zhang et al. (2023a), where the central302

LLM oversees task assignment and ensures tasks are routed to the appropriate agents based on the task303

requirements.304

3. Role-based Routing: Agents handle tasks according to their predefined roles. In MAGIS Tao et al. (2024),305

for instance, different agents like Manager, Developer, and QA Engineer assume roles in the task flow,306

with each agent taking task when its role is responsible for the incoming part.307

User interaction. User interaction defines the extent to which users are involved in task execution:308

1. Fully-auto: In this case, no user intervention is required. For example, AutoCodeRover Zhang et al.309

(2024e) operates entirely automatically, with no need for human input during task execution.310

2. Human intervene: User interaction is frequent, and users must intervene with the system regularly. MAP-311

Coder Islam et al. (2024a) requires user feedback to ensure that agents are following the correct task path,312

especially in error-prone stages of task execution.313

3. Hybrid: Some systems balance user input with autonomous execution. In MetaGPT Hong et al. (2023),314

for instance, the system functions autonomously but allows users to step in for oversight or specific315

corrections when needed, such as when a complex decision-making process requires a human touch.316

Plan execution. This dimension describes whether planning and execution are integrated or separated:317

1. Plan-Execution in One: One agent handles both planning and execution. In EvoMAC Hu et al. (2024b),318

for example, the same agent can dynamically plan the next steps and execute them without relying on319

separate agents for each task.320

2. Plan-Execution Separate: The planning and execution roles are handled by separate agents. Parsel321

Zelikman et al. (2023), for example, separates the planning phase (where tasks are decomposed and322

strategized) from the execution phase (where the steps are carried out by different agents based on the323

plan generated).324

Task decomposition. Task decomposition determines how tasks are broken down and managed:325

1. Not Decomposed: In some systems, tasks are handled in their entirety without decomposition. Au-326

toCodeRover Zhang et al. (2024e) may process some high-level tasks as a whole without further division,327

especially in simple workflows328

2. Vertical Decomposition: Tasks are broken down hierarchically, with agents responsible for different levels329

of the task. This is seen in EvoMAC Hu et al. (2024b), where tasks are decomposed into sub-tasks at330

various levels, with parent agents overseeing child agents performing specific subtasks331

11



Under review as submission to TMLR

3. Horizontal Decomposition: Tasks are divided into equal parts that are handled concurrently by multiple332

agents. MASAI Arora et al. (2024) employs horizontal decomposition, dividing a task into multiple333

smaller subtasks which is handled one following another.334

4. Hybrid Decomposition: Some systems use a combination of vertical and horizontal decomposition.335

AutoML-GPT Trirat et al. (2024), for example, combines both hierarchical task breakdowns (for oversee-336

ing large workflows) and parallel execution (for handling repetitive tasks such as data preprocessing)337

Error handling. Error handling determines how a system deals with problems encountered during execu-338

tion:339

1. Solve in Next Steps: Errors are handled in subsequent steps, either by a different agent or in the following340

phase of execution. For instance, AutoML-GPT Trirat et al. (2024) might handle errors in model design341

or tuning by adjusting parameters in later steps of the pipeline.342

2. Traceback: The error is traced back to the previous steps to regenerate or correct the output. In MASAI343

Arora et al. (2024), if an error occurs during task execution, the system might trace back to earlier stages344

of the task to identify and resolve the root cause before continuing with execution.345

3.3 External Knowledge346

Figure 11: Overview of common external knowledge sources for DS agents.

In this section, we summarize current methods for external knowledge acquisition in LLM-based agents.347

While pretrained LLMs have extensive internal knowledge, external sources are often needed to address out-348

dated or domain-specific information. We specifically discuss external databases, retrieval-based approaches,349

API calls, and search engine integration, as well as hybrid methods that combine these techniques.350

3.3.1 External Knowledge Methods351

External Database External databases are collections of organized information stored independently of352

LLMs, designed to serve as reliable sources of well-defined external knowledge for LLM-based agents Gu et al.353

(2024); Zhang et al. (2023a); Li et al. (2024e;f); Jing et al. (2024); Liu et al. (2024b); Pietruszka et al. (2024);354

Hassan et al. (2023); Chen et al. (2024a). For example, some utilize historical logs and past experimental355

results as a structured knowledge base Liu et al. (2024b); Xu et al. (2025), while Hassan et al. (2023)356

incorporates user-provided datasets with structured databases to enhance contextual understanding. This357

method provides structured and consistent data, particularly useful for domain-specific tasks that require358

precision and stability.359

Retrieval-based Approach Beyond external databases, LLM-based agents employ different retrieval-based360

approaches to dynamically obtain external knowledge from unstructured sources. For example, Tang et al.361

(2023) leverages the BM25 retriever, which uses ranking search to identify the most relevant code and docu-362

mentation based on word frequency and importance, to extract relevant segments based on given instructions.363

Meanwhile, Li et al. (2024c) uses RAG(Retreival-Augmented Generation) to improve response accuracy and364

reduce hallucination by retrieving relevant external data and integrating it into the generation process. Fur-365

thermore, Guo et al. (2024a) extends Case-Based Reasoning, which retrieves and adapts past cases rather366

than just ranking or generating text, and Cao et al. (2024) employs LlamaIndex, a data framework for RAG,367

to efficiently structure, retrieve, and inject knowledge into LLMs. Retrieval-based approaches, especially368

RAG, are widely used in applications, such as bias detection Li et al. (2025), geospatial analysis Chen et al.369

12



Under review as submission to TMLR

(2024b), and financial forecasting Yang et al. (2024a), supporting broader contextual understanding and370

enhancing adaptability in handling structured and unstructured information.371

API Calls and Search Engine Integration Another widely adopted approach involves direct interaction372

with external repositories and search engines, allowing LLM-based agents to directly interact with external373

repositories or retrieve real-time data from the internet. For instance, Liao et al. (2024) integrates API calls to374

handle time series analysis by retrieving Prophet models, a statistical forecasting tool that models trends and375

seasonal variations in time-series data, while Bogin et al. (2024) accesses GitHub repositories and datasets376

from platforms like Hugging Face. By enabling agents to retrieve external knowledge on demand, API calls377

and search engine integration provide critical flexibility and responsiveness in dynamic environments.378

Hybrid Approach To enhance knowledge acquisition, many systems adopt hybrid approaches by combining379

multiple methods. A common strategy is integrating both API calls and external databases to agents’380

accessible knowledge sources Merrill et al. (2024); Huang et al. (2024c); Li et al. (2024b); Zhang et al. (2023b);381

Luo et al. (2024). For example, Merrill et al. (2024) employs Google Search API alongside anonymized382

wearable health data for retrieving relevant health information. Moreover, some works combine retrieval383

approaches with an external databases to equip the system with expert-level knowledgeOu et al. (2025).384

Additionally, several works combine API calls and search engines with retrieval-based approaches for dynamic385

retrieval Grosnit et al. (2024); Chen et al. (2024b); Tang et al. (2023), while others adopt a fully hybridized386

approach incorporating all three strategies Guo et al. (2024a); Cao et al. (2024). For instance, Yang et al.387

(2024a) utilizes third-party APIs for financial data retrieval, applies RAG for financial sentiment analysis,388

and manages an external database for knowledge storage and retrieval.389

3.3.2 Summary of External Knowledge390

External database, retrieval-based approach, and external API and search engine integration represent three391

primary methodologies adopted by LLM-based agents for external knowledge acquisition. External databases392

provide structured and reliable domain-specific information, ensuring precision and stability for targeted393

tasks. Retrieval-based approaches dynamically extract relevant segments from sources, enhancing contextual394

comprehension and adaptability. API calls and search engines deliver real-time and frequently updated data,395

supporting immediate responsiveness in dynamic scenarios. Collectively, these methods enable LLM-based396

agents to cover a wide range of external knowledge and, moreover, empower LLMs to gauge, verify, enrich,397

or even refine their internal knowledge, thereby significantly improving their overall accuracy and reliability398

of their responses.399

3.4 Reflection400

Figure 12: Overview of common reflection techniques in LLM multi-agent systems.

LLM multi-agent systems rely on reflection mechanisms to iteratively refine their performance, enhance401

robustness, and adapt to complex environments. Reflection, in this context, refers to a system’s ability to402

evaluate its past outputs, identify errors or inefficiencies, and adjust its strategies accordingly—enabling403

continuous self-improvement. In this section, we discuss how LLM multi-agent systems employ various404

reflection mechanisms to improve output quality and system reliability. These mechanisms enable automated405

agents to iteratively refine their responses based on execution outcomes, predefined evaluation metrics, or406

external feedback.407

13



Under review as submission to TMLR

3.4.1 Reflection Methods408

Agent Feedback: Many LLM multi-agent systems rely on agent feedback mechanisms, where one or more409

agents review the outputs of other agents and provide corrective guidance. In code generation tasks, for410

instance, DA-Code Huang et al. (2024c) , BIASINSPECTOR Li et al. (2025), and AUTOMIND Ou et al.411

(2025) applies a reviewer agent to evaluate generated scripts, detect syntax or logical errors, and suggest412

improvements. Similarly, in multimodal tasks, visual language models (VLMs) serve as reviewers to assess413

image-based outputs for correctness and coherence. MatPlotAgent Yang et al. (2024b) exemplifies this by414

evaluating visualizations generated from inputs.415

Code Error Handling: Automated error-handling mechanisms are essential for ensuring reliability of416

systems that generate and execute code, such as BudgetMLAgent Gandhi et al. (2024), WaitGPT Xie et al.417

(2024), and DatawiseAgent You et al. (2025). These mechanisms monitor execution failures, capture error418

messages, and diagnose potential causes. Upon detecting an error, systems analyze faulty outputs and refine419

code iteratively without external intervention. This allows systems to mimic human programmers—reflecting420

on errors, identifying root causes, and progressively improving the solution.421

Unit Testing: Unit testing is a structured validation mechanism where an agent generates test cases and422

evaluates whether the system’s output meets predefined functional requirements. If a test fails, the agent423

refines the output and reruns the tests iteratively until all test cases pass. This method is widely used in LLM-424

driven programming tasks, where models generate executable code Guo et al. (2024a). By automatically425

verifying whether the generated code meets expected functionality, unit testing helps to detect syntax errors,426

logical flaws, and compatibility issues before execution.427

Model Metrics Feedback: In tasks with clear quantitative performance indicators, model metrics feed-428

back enables systematic, data-driven optimization. Rather than relying on external evaluations, systems429

refine their outputs using predefined performance thresholds, such as accuracy, F1 score, or loss reduction.430

Some implementations use threshold-based optimization, iteratively revising until desired metrics are met.431

For example, FinRobot Yang et al. (2024a) uses a composite scoring system that integrates normalized432

performance metrics with weighted evaluation criteria to select or fine-tune models until the target score is433

achieved. Others adopt exploratory search strategies, such as Monte Carlo Tree Search (MCTS) Chen et al.434

(2024b), to explore different refinement paths and select the most effective one. This structured approach435

allows LLM multi-agent systems to self-improve efficiently without requiring human or agent-based feedback436

at each step.437

History Window: Unlike mechanisms that focus on immediate corrections, history window mechanisms438

enable long-term learning by maintaining a log of past outputs and errors Hong et al. (2024)Wang et al.439

(2025a); Seo et al. (2025); Xu et al. (2025). These logs help systems track recurring mistakes and recognize440

patterns across multiple iterations. Some implementations enhance this capability with checkpointing, pe-441

riodically saving stable system states Zhao et al. (2024a). If a later refinement degrades performance, the442

system can revert to a previous checkpoint. By leveraging historical insights, history window mechanisms443

prevent repeated failures, allowing systems to refine their decision-making over time and avoid ineffective444

adjustments.445

Human Feedback: Despite advancements in automated reflection, human feedback remains indispensable446

in high-stakes applications. For example, TableAnalyst Freimanis & Andersson Rhodin (2024), a Human-447

in-the-loop system, allows experts to review and refine outputs, particularly when LLM-generated responses448

require contextual understanding or ethical considerations. Reinforcement learning from human feedback449

(RLHF) is a prominent example, where human reviewers assess model-generated responses and provide450

corrective guidance. Although more interactions required, human feedback mechanisms ensure that outputs451

align with domain-specific expectations and maintain interpretability in critical applications.452

3.4.2 Summary of Reflection453

Beyond specific implementations, reflection mechanisms can be understood in terms of three fundamental454

dimensions: the driver, the level, and the adaptability of reflection. These dimensions help contextualize455

14



Under review as submission to TMLR

the broader implications of reflection in multi-agent systems, providing insights into how different strategies456

contribute to long-term performance improvements.457

Drivers of Reflection. Reflection in LLM multi-agent systems is driven by different mechanisms that458

shape how the system refines its performance. Some systems improve through internal Hong et al. (2024)459

or external feedback Merrill et al. (2024), either from agents or human reviewers. Others adopt goal-driven460

approaches, continuously optimizing their outputs based on predefined performance criteria without relying461

on explicit external feedback Chen et al. (2024b).462

1. Feedback-driven reflection operates based on internal or external evaluation and corrective feedback,463

where agents or human evaluators assess outputs and provide improving guidance. For example, in464

agent feedback mechanisms, LLM agents critique one another’s outputs, engaging in cycles of feedback465

and revision Trirat et al. (2024). This process is particularly common in multi-agent collaborations where466

specialized agents, such as debugging agents in code generation tasks Huang et al. (2024c), verify and467

refine responses. Human feedback mechanisms introduce expert oversight, ensuring model outputs align468

with qualitative expectations Luo et al. (2024). While feedback-driven reflection allows flexibility and469

adaptation to dynamic environments, it also introduces challenges such as response latency and inconsis-470

tency in external evaluations.471

2. Goal-driven reflection, in contrast, follows a more quantitative optimization approach, where systems472

refine their outputs based on predefined performance criteria rather than external evaluation. Many473

multi-agent systems employ metric-based optimization, where refinements are guided by quantitative474

performance indicators such as BLEU scores in machine translation or loss minimization in model training.475

Some implementations, such as reinforcement learning and self-play strategies, enable systems to optimize476

through iterative self-improvement. For instance, AlphaGo Granter et al. (2017) refines its strategies477

without relying on external critique by playing against itself. The key advantage of goal-driven reflection478

lies in its predictability and efficiency, allowing systems to make systematic progress without requiring479

continuous human or agent-based feedback loops. However, it also risks overfitting to specific metrics,480

which can reduce generalization and overlook qualitative aspects of task performance.481

Levels of Reflection. Reflection does not operate uniformly across all components of a system; rather, it482

varies in scope, with some mechanisms focusing on fine-grained, localized improvements, while others engage483

in system-wide analysis and optimization.484

1. Local reflection focuses on refining individual task iterations, ensuring immediate performance improve-485

ments. Common techniques include unit testing Guo et al. (2024a), execution error diagnosis Zhang et al.486

(2023b), and targeted debugging routines Huang et al. (2024c). The primary advantage of local reflection487

lies in efficiency, as it enables rapid refinement without requiring the system to analyze historical data488

or restructure workflows. Additionally, it enhances precision by addressing specific issues within isolated489

tasks, preventing minor errors from propagating. However, because these mechanisms operate in isola-490

tion, they may fail to detect systematic inefficiencies. For example, in code generation Liao et al. (2024),491

a debugging agent may repeatedly fix syntax errors in isolated function calls without recognizing an un-492

derlying flaw in the model’s broader logic generation capabilities. As a result, errors may be corrected in493

the short term but persist across different tasks.494

2. Global reflection analyzes patterns across multiple iterations, extracting insights that guide long-term495

optimization. History window mechanisms exemplify this approach by enabling systems to track recurring496

mistakes and refine their responses accordingly Bogin et al. (2024). Some implementations further enhance497

global reflection through checkpointing Hong et al. (2024), where stable system states are periodically498

saved. If a newer version fails to improve performance, the system can revert to a prior state instead of499

reinforcing ineffective updates. This method is particularly valuable in preventing cyclical failures, such500

as a conversational agent repeatedly generating redundant responses due to misaligned reinforcement501

signals. However, implementing global reflection requires sophisticated memory management and comes502

with higher computational costs, making it more suitable for large-scale, complex multi-agent systems.503

15



Under review as submission to TMLR

Adaptability of Reflection. Another essential consideration is the degree of flexibility and adaptability504

within the reflection process. While some methods follow fixed, predefined correction strategies, others adjust505

dynamically based on performance patterns observed during execution.506

1. Structured reflection mechanisms operate according to fixed evaluation criteria, ensuring a stable and re-507

peatable refinement process. This category includes unit testing, where outputs must pass predefined test508

cases Guo et al. (2024a), and threshold-based metric optimization Yang et al. (2024a), where refinements509

continue until performance metrics such as accuracy or loss reach a set threshold. The primary benefit of510

structured reflection is its predictability, making it particularly useful in well-defined problem spaces re-511

quiring strict correctness—such as automated hyperparameter tuning in machine learning, where models512

are optimized based on predefined performance metrics. However, its rigidity limits adaptability, making513

it unsuitable for handling unexpected edge cases or unstructured, open-ended tasks, where predefined514

evaluation criteria may not capture qualitative aspects of performance.515

2. Adaptive reflection mechanisms dynamically adjust their evaluation strategies based on previous attempts516

or insights gathered from different parts of the system. Systems employing adaptive agent feedback Hong517

et al. (2024), self-modifying history windows Qi & Wang (2024), or reinforcement learning refine their518

reflection processes as they accumulate more information. This flexibility allows LLM multi-agent systems519

to not only correct mistakes but also optimize their refinement strategies over time. For example, in520

dialogue systems, such as SageCopilot Liao et al. (2024), an adaptive reflection mechanism may modify521

its response-generation strategy if users repeatedly indicate dissatisfaction, shifting towards more context-522

aware replies rather than just fixing specific errors. Despite its advantages, adaptive reflection introduces523

challenges in complexity and computational overhead. Dynamically evolving strategies require greater524

processing power and careful tuning to prevent unintended biases or instability in the reflection process.525

4 Analysis from Data Science Perspective526

4.1 Data Science Tasks527

Data science agents are increasingly being integrated into diverse workflows to automate and optimize data-528

centric tasks. These tasks can be broadly categorized based on their objectives, this section outlines two529

representative types of tasks where AI agents are commonly deployed: (i) tasks that focus on building and530

refining machine learning models, and (ii) tasks centered on the generation of insights and outputs from531

data.532

Building Machine Learning Models Building machine learning models is a core objective within data533

science, focusing on creating predictive, explanatory, or generative models to solve domain-specific problems534

These tasks typically aim to maximize the accuracy, efficiency and generalizability of the model across535

datasets by automating key processes such as feature engineering, hyperparameter optimization, and model536

selection Tang et al. (2023). The automation of ML model building uses iterative workflows, where each537

stage—data preprocessing, model evaluation, and refinement—is informed by prior outputs, often through538

multi-agent collaborations or tree-based optimization strategies Chi et al. (2024). Additionally, they are539

characterized by robust integration of tools , alongside domain-specific libraries tailored for computer vision,540

NLP, and tabular data analysis Grosnit et al. (2024); Xue et al. (2025). These features enable efficient scaling541

and adaptation to diverse data environments, providing robust solutions to challenges in domains ranging542

from financial analysis to biomedical research Yang et al. (2024a); Gandhi et al. (2024); Chen et al. (2024a).543

Output Analysis Tasks Output analysis tasks focus on extracting, interpreting, and communicating in-544

sights derived from data. These tasks aim to generate clear and actionable narratives through visualization,545

summarization, or benchmarking while prioritizing interpretability and relevance Zhao et al. (2024a). LLM-546

based agents are often used to annotate visualizations and generate and refine textual explanations. For547

example, output analysis tasks leverage sophisticated tools like Vega-Lite for visualization and natural lan-548

guage models for insight generation, to enhance communication of data-driven findings Xie et al. (2024). In549

16



Under review as submission to TMLR

Data 
Retrieval

Data 
Cleaning

Descriptive
Statistic

Inferential 
Tests

Categorical
Encoding

Dimension
Reduction

Classification
metrics 

Data CleaningTransfer Learn.
& Meta-Learn.

Adaptive Learn.
Strategies

Hyperparameter
Tuning

Algorithm
Selection

Data 
Retrieval

Data 
Cleaning

Data Preprocess Statistical Computation Feature Engineering Evaluation

Model TrainingVisualization

Figure 13: Typical data science loop

addition, agents are used for data storytelling through automated animated videos that transform raw data550

into engaging narratives by coordinating visual, textual, and auditory elements Shen et al. (2024).551

Analysis tasks such as data cleaning output evaluation focus on quality dimensions like completeness, accu-552

racy, and consistency Li et al. (2024f). Agents typically employ rule-based metrics or statistical heuristics553

to assess whether cleaned datasets meet project-specific requirements Li et al. (2024f). These evaluations554

often integrate automated validation pipelines, where agents verify the success of cleaning operations (e.g.,555

deduplication, missing value imputation) and provide reports summarizing detected issues and corrective556

actions taken Huang et al. (2024c).557

4.2 Data Science Loop558

The data science loop serves as a structured blueprint for how LLM-based agents can systematically enhance559

and automate key phases of data workflows. Each step from initial data retrieval and cleaning to advanced560

statistical analysis, model development, and visualization can be augmented by LLM-based agents to improve561

the efficiency and quality of decision-making. As shown in Figure 13, this loop captures the full lifecycle of562

a data-driven project and provides a framework for understanding where agent-based systems integrate into563

and optimize the process.564

4.2.1 Data Preprocess565

The data preprocessing phase includes steps for getting, cleaning, and preparing data. It starts with collecting566

data from different sources like databases, APIs, web scraping, sensor logs, and research repositories Guo567

et al. (2024a). Structured data comes from relational databases using SQL, while unstructured text is568

gathered through APIs or web crawlers Huang et al. (2024c). Some systems combine different types of569

data, such as tables, images, audio, or text Luo et al. (2024); Cao et al. (2024). Automated pipelines use570

retrieval-augmented generation (RAG) to find and pull useful data, making sure that it is high quality and571

relevant for later steps. Li et al. (2024h); Sun et al. (2024a); Rasheed et al. (2024); Yang et al. (2024a).572

After collection, the data is cleaned to improve accuracy and consistency. This step fixes missing values,573

duplicates, outliers, and inconsistencies that could cause problems in later analysis. If important values are574

missing, agents will fill gaps or remove incomplete rows based on their domain knowledge and pre-defined575

rules. Duplicates are found and removed using hashing or fuzzy matching methods like Levenshtein distance576

for text. Outliers are detected using basic statistical methods like Z-score and IQR filtering, while more577

advanced techniques like isolation forests and autoencoders handle complex cases. Hong et al. (2024); Li578

et al. (2024h).579

4.2.2 Statistical Computation580

The statistical computation phase uses statistical methods to analyze data, find patterns, and show re-581

lationships. These methods help understand distributions and correlations in the data. Basic techniques582

include descriptive statistics (mean, median, variance), inferential tests (e.g., t-tests, chi-square tests), and583

correlation analysis are widely employed to establish baselines and validate data integrity Gu et al. (2024).584

Methods like hypothesis testing and parametric or non-parametric methods are also utilized to derive insights585

17



Under review as submission to TMLR

under uncertainty Zhang et al. (2023b). Parallelized frameworks like Dask or Spark are used to improve586

computational efficiency for large-scale or distributed datasets Jing et al. (2024).587

4.2.3 Feature Engineering588

In the feature engineering phase, raw data is transformed into meaningful representations that improve589

model performance. This phase involves creating, selecting, and refining features to ensure they are both590

relevant and discriminative for the underlying predictive task Pietruszka et al. (2024). A well-designed fea-591

ture engineering process enables machine learning models to capture patterns effectively while mitigating592

overfitting and reducing noise. The core techniques in feature engineering include handling missing values,593

categorical encoding, numerical transformations, and dimensionality reduction. Standard approaches such as594

one-hot encoding and label encoding allow categorical variables to be numerically represented, while scaling595

techniques like min-max normalization and standardization ensure consistent feature magnitudes Tang et al.596

(2023). Advanced feature engineering techniques involve feature construction and selection strategies. Poly-597

nomial feature expansion, interaction terms, and domain-specific transformations (e.g., log transformations598

for skewed distributions) enhance a model’s ability to capture complex relationships. Additionally, meth-599

ods like Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE)600

facilitate dimensionality reduction, improving computational efficiency and reducing redundant information.601

Feature importance techniques, such as SHAP (SHapley Additive exPlanations) and permutation impor-602

tance, guide the selection of the most predictive variables Chi et al. (2024).603

4.2.4 Model Training604

In the model training phase, refined data and features are input into machine learning algorithms to cre-605

ate predictive models. This phase encompasses algorithm selection, hyperparameter tuning, and iterative606

validation to optimize performance. Commonly used algorithms range from traditional methods like linear607

regression and decision trees to modern neural architectures designed for high-dimensional and multi-modal608

data Huang et al. (2024a). Agents in training pipelines integrate and use ML libraries and tools to facilitate609

model creation, while hyperparameter optimization frameworks such as Optuna and Ray Tune enhance the610

search for optimal configurations Liu et al. (2024b). Real-time monitoring and adaptive learning strategies611

are often employed to refine models, particularly in dynamic environments where data evolves over time612

Chen et al. (2024b). Advanced techniques, such as transfer learning and meta-learning, enable models to613

leverage knowledge from pre-trained networks, reducing training time and improving performance Luo et al.614

(2024). The model training phase is iterative by nature, with feedback loops that refine both the model615

and its underlying assumptions, ensuring robustness and generalizability across unseen data Zhang et al.616

(2024d).617

4.2.5 Evaluation618

The evaluation phase is to assese the performance and reliability of machine learning models. This step619

involves the use of metrics tailored to the task at hand, such as accuracy, precision, recall, and F1 score for620

classification tasks, or RMSE (Root Mean Squared Error) and MAE (Mean Absolute Error) for regression621

analyses Li et al. (2024e). For unsupervised tasks, metrics like silhouette score and Davies-Bouldin index622

are employed to evaluate clustering quality Jing et al. (2024). Cross-validation techniques, such as k-fold or623

leave-one-out, are widely used to estimate model performance on unseen data, ensuring that results generalize624

beyond the training set Chen et al. (2024c). The integration of automated evaluation frameworks allows for625

streamlined reporting and comparison, enabling iterative improvement and enhancing the credibility of the626

final model Xie et al. (2024).627

4.2.6 Visualization628

The visualization phase turns data into easy-to-understand images that help with decision-making. Clear629

visuals change complex data into simple forms like charts, plots, and dashboards. These help people see630

patterns, trends, and unusual points. This step uses both fixed and interactive visuals, letting users explore631

the data in different ways.632

18



Under review as submission to TMLR

Modern data science agents leverage a variety of visualization libraries and tools to create visualizations633

tailored to different analytical needs Hong et al. (2024); Li et al. (2024h); Liao et al. (2024). In addition634

to traditional visualizations like line plots and histograms, more advanced visualizations, such as model635

interpretability plots (e.g., SHAP values), are used to explain model outputs in a transparent manner.636

4.3 Summary of Data Science Perspective637

Fixed Data Science Pipeline Data science agents typically follow structured workflows in different stages638

such as data preprocessing, feature selection, and model trainingYou et al. (2025). LLM-based agent sys-639

tems like Qi & Wang (2024) and Li et al. (2024f) automate data preprocessing strategies and address data640

quality issues like missing values, inconsistencies, and duplications. Feature selection mechanismsLi et al.641

(2024b)further enhance model performance by identifying the most data features, thus optimizing capabil-642

ities. Additionally, advanced agent systems, such as Chi et al. (2024); Trirat et al. (2024), dynamically643

generate optimized data science pipelines.644

Self-planning Training Data science agents exhibit self-planning training capabilities, autonomously se-645

lecting optimal algorithms, configuring hyperparameters, and iteratively validating model performance dur-646

ing the training phaseSeo et al. (2025). This methodology parallels traditional Neural Architecture Search647

(NAS), an automated process that optimizes neural network designs, but significantly leverages agent-driven648

decision-making frameworksLiu et al. (2024b). By systematically exploring and refining model configura-649

tions based on ongoing feedback, these agents ensure robust and adaptive performance tailored to specific650

contexts.651

Metrics-based Feedback In contrast to traditional coding-oriented agents, data science agents utilize rig-652

orous model-based metrics feedback for iterative improvement. FairOPTJung et al. (2025) leverages quanti-653

tative metrics such as accuracy, precision, recall, and F1 scores to assess model outputs and systematically654

enhance their performance through structured refinement cycles. This metrics-driven feedback mechanism655

ensures continuous performance enhancement and enables agents to maintain consistent accuracy across656

diverse analytical scenarios.657

Visualization Analysis Data science agents distinctly emphasize the visualization of analytical outcomes,658

recognizing its critical role in data interpretation and communication. Visualization-focused systems Zhao659

et al. (2024a) generate clear, insightful visual representations that facilitate a comprehensive understanding660

of complex analytical results. Furthermore, specialized agents like MatplotAgent Yang et al. (2024b) employ661

visualization explicitly as an informative feedback mechanism for detecting and correcting analytical errors.662

By integrating visual feedback into their error-handling processes, these agents significantly enhance the663

interpretability, accuracy, and overall effectiveness of data-driven decision-making.664

5 Benchmark665

Table 4 presents a summary of curated benchmarks designed for evaluating LLM-based agents from a data sci-666

ence perspective. Notable examples include ML-Bench Tang et al. (2023) for multimodal and time-series tasks667

and DSBench Jing et al. (2024) for data analysis and modeling. Specialized benchmarks such as GeoAgent-668

Bench Liao et al. (2024) provide evaluation frameworks for geospatial analysis, while MatPlotAgent-Bench669

Yang et al. (2024b) focuses on visualization.670

Beyond general data science, several benchmarks target specialized domains. FoodPuzzle Huang et al.671

(2024b) explores computational approaches to understanding flavor profiles at the molecular level. Merrill672

et al. (2024) evaluates LLM capabilities in personal health reasoning with wearable data. AgentClinic673

Schmidgall et al. (2024) assesses patient interactions and multimodal clinical data processing. GenoTEX674

Liu & Wang (2024) benchmarks LLMs in genomics, covering dataset selection, preprocessing, and statistical675

analysis.676

Additionally, TheAgentCompany Xu et al. (2024) serves as a practical evaluation framework for AI-driven677

automation in corporate environments, covering tasks in data science, software engineering, and business678

19



Under review as submission to TMLR

Benchmark Source # of
Tasks

Task Types

BLADE Gu et al. (2024) Literature 714 multiple-choice and ground truth-analysis studies
InfiAgent-DABench Hu et al.

(2024a)
GitHub 257 Data Analysis and ML

ML-Bench Tang et al. (2023) GitHub 9641(168) Multimodal, time series, audio, LLM, vision,
biomedical, graphs

DevBench Li et al. (2024a) Github 22 DL, CV, and NLP
SUPER Bogin et al. (2024) GitHub 799 Research data science challenges

DA-Code Huang et al. (2024c) Kaggle, GitHub 500 Data wrangling, EDA, ML
FeatEng Pietruszka et al. (2024) Kaggle 103 Classification, regression, feature engineering

Tapilot Li et al. (2024e) Kaggle 1024 Data analysis, request clarification
MLE-Bench Chan et al. (2024) Kaggle 75 Modelling Tasks(image, video, LLMs, tabular)

DSBench Jing et al. (2024) ModelOff, Kaggle 540 Data analysis, modeling
PyBench Zhang et al. (2024c) Kaggle, Arxiv, multimedia files 143 Data Analysis, ML, image, text, and audio analysis
DSEval Zhang et al. (2024d) Tutorials, StackOverflow, Kaggle 825 Data analysis
Spider2-V Cao et al. (2024) Tutorials, enterprise applications 494 Warehousing, transformation, visualization

MatPlotAgent-Bench Yang et al.
(2024b)

Matplotlib, OriginLab 100 Standard and advanced visualization

ScienceAgentBench Chen et al.
(2024c)

Peer-reviewed publications 102 Data processing, modeling, visualization

SagePilot Liao et al. (2024) External datasets 276 SQL-related tasks
Text2Analysis He et al. (2024) LLM and human-generated 2249 Data analysis, modeling

DataNarrative Islam et al.
(2024b)

Pew Research, Tableau Public,
GapMinder

1449 Data-driven visualization, storytelling

Insigt-Bench Sahu et al. (2024) ServiceNow platform 100 Data Analysis tasks
MMAU Yin et al. (2024) In-house, Kaggle,

DeepMind-Math
20 DS/ML, contest-level coding, math

GeoAgent-Bench Liao et al.
(2024)

GitHub, tutorials, LLM
generation

19,504 Single-turn, multi-turn in Geo-spatial analysis

MLAgentBench Huang et al.
(2023)

Kaggle, canonical datasets 13 Research Image, text, graph, tabular, time series ML
tasks

Merrill et al. (2024) Human experts, wearable data 4172 Numerical, open-ended reasoning in personal health
AgentClinic Schmidgall et al.

(2024)
USMLE, MIMICIV, NEJM,

MedAQ
535 Patient interaction, multimodal data collection in

clinics
GenoTEX Liu & Wang (2024) GEO, TCGA, NCBI Gene

Database
1146 Dataset selection, processioning, statistical analysis

in Genomics
TheAgentCompany Xu et al.

(2024)
Company websites, human

examples
175 DS tasks in company settings

FoodPuzzle Huang et al. (2024b) FlavorDB 2744 Molecular prediction and profile completion in flavor
science

MLGym Nathani et al. (2025) Publications and datasets 13 DS, CV, NLP, RL, and game theory
DataSciBench Zhang et al.

(2025a)
CodeGeeX, BCB, and human 519 Data Analysis, modeling, data Visualization

Chen et al. (2024a) CREEDS and GEO GEO Database and Drug Repurposing Database in
medical fields

BIODSA-1K Wang et al. (2025b) Publications 1029 Biomedical hypothesis and analysis
DS-1000Lai et al. (2023) Stackoverflow 1000 Code generation in DS

BioDSBench Wang et al. (2024b) Published studies, TCGA-type
genomics, and clinical data

293 Biomedical coding tasks

ML-Dev-Bench Padigela et al.
(2025)

Unknown 30 Data processing, modeling, API integration

TimeSeriesGym Cai et al. (2025) Kaggle, Github, publications,
hand-crafted

34 Time-series problem

Table 4: Summary of Benchmarks in Data Science Perspective

operations. These benchmarks provide a foundational dataset and evaluation standard for LLM-based agent679

systems.680

20



Under review as submission to TMLR

6 Future Research Opportunity681

In this section, we outline future directions inspired by recent advancements and existing challenges identified682

to stimulate subsequent research in LLM-based data science agents.683

6.1 Trainable architecture684

Inspired by pioneering works such as EvoMACHu et al. (2024b), there is substantial potential in exploring685

dynamically refine agent architecture. This approach facilitates continuous optimization of system effi-686

cacy across varying data science domains. Emerging methodologiesYuksekgonul et al. (2024); Hu et al.687

(2025) propose leveraging backpropagation-inspired textual gradients to systematically adjust and improve688

agent architectures. Future research might investigate automated structural generation methods capable689

of autonomously deriving optimal agent architectures tailored explicitly to domain-specific requirements,690

significantly enhancing both scalability and adaptability of LLM-based agents.691

6.2 Advanced Reflection Mechanisms692

Current reflection strategies predominantly address short-term corrections through immediate feedback693

mechanisms. Expanding these mechanisms to include comprehensive long-term reflective processes, such as694

history-window-based learning and unsupervised self-correction, presents significant opportunities. Imple-695

menting iterative refinement methodologies and advanced error-tracing capabilities can substantially enhance696

the robustness and reliability of agents over extended operational periods. Furthermore, an in-depth exam-697

ination of the underlying reasons behind reflective failuresCemri et al. (2025) could provide crucial insights.698

Such research may lead to the development of sophisticated reflective frameworks capable of proactively699

identifying and mitigating systematic inefficiencies.700

6.3 Multimodal Processing701

Integrating vision-language models (VLMs) with LLM-based agents offers a substantial opportunity to en-702

hance their interpretative capabilities, particularly in analyzing visual data prevalent in statistical and an-703

alytical reports. The incorporation of specialized multimodal agents demonstrates a clear potential for704

effectively interpreting visual information, generating relevant feedback, and correcting inaccuraciesYang705

et al. (2024b). Future research may explore hybrid models that fuse textual and visual modalities more706

seamlessly, leveraging cross-modal embeddings to improve the precision of visual data interpretation. Ad-707

ditionally, developing specialized visual-feedback agents capable of autonomously interpreting and refining708

graphical data could significantly improve the accuracy, reliability, and utility of insights derived from visual709

analytics within complex data-driven environments.710

7 Conclusion711

This survey provides a comprehensive analysis of Large Language Model (LLM)-based agents in data science,712

addressing key aspects from both agent design and data science perspectives. It systematically explores713

different agent roles, execution structures, external knowledge acquisition methods, and reflection techniques.714

The study introduces a dual-perspective framework bridging general agent design principles with specific data715

science requirements, covering structures from single-agent to dynamic multi-agent systems and execution716

methods from dynamic planning to static workflows. Overall, this paper offers a comprehensive summary of717

existing work on LLM-based data science agents.718

21



Under review as submission to TMLR

References719

Daman Arora, Atharv Sonwane, Nalin Wadhwa, Abhav Mehrotra, Saiteja Utpala, Ramakrishna Bairi, Aditya720

Kanade, and Nagarajan Natarajan. Masai: Modular architecture for software-engineering ai agents. arXiv721

preprint arXiv:2406.11638, 2024.722

Tianyi Bai, Ling Yang, Zhen Hao Wong, Jiahui Peng, Xinlin Zhuang, Chi Zhang, Lijun Wu, Jiantao Qiu,723

Wentao Zhang, Binhang Yuan, et al. Multi-agent collaborative data selection for efficient llm pretraining.724

arXiv preprint arXiv:2410.08102, 2024.725

Tommaso Bendinelli, Artur Dox, and Christian Holz. Exploring llm agents for cleaning tabular machine726

learning datasets. arXiv preprint arXiv:2503.06664, 2025.727

Ben Bogin, Kejuan Yang, Shashank Gupta, Kyle Richardson, Erin Bransom, Peter Clark, Ashish Sabharwal,728

and Tushar Khot. Super: Evaluating agents on setting up and executing tasks from research repositories.729

arXiv preprint arXiv:2409.07440, 2024.730

Yifu Cai, Xinyu Li, Mononito Goswami, Michał Wiliński, Gus Welter, and Artur Dubrawski. Time-731

seriesgym: A scalable benchmark for (time series) machine learning engineering agents. arXiv preprint732

arXiv:2505.13291, 2025.733

Ruisheng Cao, Fangyu Lei, Haoyuan Wu, Jixuan Chen, Yeqiao Fu, Hongcheng Gao, Xinzhuang Xiong,734

Hanchong Zhang, Yuchen Mao, Wenjing Hu, et al. Spider2-v: How far are multimodal agents from735

automating data science and engineering workflows? arXiv preprint arXiv:2407.10956, 2024.736

Mert Cemri, Melissa Z. Pan, Shuyi Yang, Lakshya A. Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt737

Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, Matei Zaharia, Joseph E. Gonzalez,738

and Ion Stoica. Why do multi-agent llm systems fail?, 2025. URL https://arxiv.org/abs/2503.13657.739

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio Starace,740

Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learning agents on741

machine learning engineering. arXiv preprint arXiv:2410.07095, 2024.742

Haoran Chen, Shengxiao Zhang, Lizhong Zhang, Jie Geng, Jinqi Lu, Chuandong Hou, Peifeng He, and743

Xuechun Lu. Multi role chatgpt framework for transforming medical data analysis. Scientific Reports, 14744

(1):13930, 2024a.745

Yuxing Chen, Weijie Wang, Sylvain Lobry, and Camille Kurtz. An llm agent for automatic geospatial data746

analysis. arXiv preprint arXiv:2410.18792, 2024b.747

Ziru Chen, Shijie Chen, Yuting Ning, Qianheng Zhang, Boshi Wang, Botao Yu, Yifei Li, Zeyi Liao, Chen748

Wei, Zitong Lu, et al. Scienceagentbench: Toward rigorous assessment of language agents for data-driven749

scientific discovery. arXiv preprint arXiv:2410.05080, 2024c.750

Yizhou Chi, Yizhang Lin, Sirui Hong, Duyi Pan, Yaying Fei, Guanghao Mei, Bangbang Liu, Tianqi Pang,751

Jacky Kwok, Ceyao Zhang, et al. Sela: Tree-search enhanced llm agents for automated machine learning.752

arXiv preprint arXiv:2410.17238, 2024.753

Gelei Deng, Yi Liu, Víctor Mayoral-Vilches, Peng Liu, Yuekang Li, Yuan Xu, Tianwei Zhang, Yang Liu,754

Martin Pinzger, and Stefan Rass. {PentestGPT}: Evaluating and harnessing large language models for755

automated penetration testing. In 33rd USENIX Security Symposium (USENIX Security 24), pp. 847–864,756

2024.757

Gang Fan, Xiaoheng Xie, Xunjin Zheng, Yinan Liang, and Peng Di. Static code analysis in the ai era:758

An in-depth exploration of the concept, function, and potential of intelligent code analysis agents. arXiv759

preprint arXiv:2310.08837, 2023.760

Andris Freimanis and Patrick Andersson Rhodin. Tableanalyst: an llm-agent for tabular data analysis-761

implementation and evaluation on tasks of varying complexity. 2024.762

22

https://arxiv.org/abs/2503.13657


Under review as submission to TMLR

Shubham Gandhi, Manasi Patwardhan, Lovekesh Vig, and Gautam Shroff. Budgetmlagent: A cost-effective763

llm multi-agent system for automating machine learning tasks. arXiv preprint arXiv:2411.07464, 2024.764

Scott R Granter, Andrew H Beck, and David J Papke Jr. Alphago, deep learning, and the future of the765

human microscopist. Archives of Pathology & Laboratory Medicine, 141(5):619–621, 2017.766

Antoine Grosnit, Alexandre Maraval, James Doran, Giuseppe Paolo, Albert Thomas, Refinath Shahul767

Hameed Nabeezath Beevi, Jonas Gonzalez, Khyati Khandelwal, Ignacio Iacobacci, Abdelhakim768

Benechehab, et al. Large language models orchestrating structured reasoning achieve kaggle grandmaster769

level. arXiv preprint arXiv:2411.03562, 2024.770

Ken Gu, Ruoxi Shang, Ruien Jiang, Keying Kuang, Richard-John Lin, Donghe Lyu, Yue Mao, Youran Pan,771

Teng Wu, Jiaqian Yu, et al. Blade: Benchmarking language model agents for data-driven science. arXiv772

preprint arXiv:2408.09667, 2024.773

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. Ds-agent: Automated data774

science by empowering large language models with case-based reasoning. arXiv preprint arXiv:2402.17453,775

2024a.776

Tianyu Guo, Xiaozhi Chen, Yujia Wang, et al. Large language model based multi-agents: A survey of777

progress and challenges, 2024b. URL https://arxiv.org/abs/2402.01680.778

Tanmay Gupta, Luca Weihs, and Aniruddha Kembhavi. Codenav: Beyond tool-use to using real-world779

codebases with llm agents. arXiv preprint arXiv:2406.12276, 2024.780

Md Mahadi Hassan, Alex Knipper, and Shubhra Kanti Karmaker Santu. Chatgpt as your personal data781

scientist. arXiv preprint arXiv:2305.13657, 2023.782

Xinyi He, Mengyu Zhou, Xinrun Xu, Xiaojun Ma, Rui Ding, Lun Du, Yan Gao, Ran Jia, Xu Chen, Shi Han,783

et al. Text2analysis: A benchmark of table question answering with advanced data analysis and unclear784

queries. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 18206–18215,785

2024.786

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven787

Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent collaborative788

framework. arXiv preprint arXiv:2308.00352, 2023.789

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Ceyao Zhang, Chenxing Wei, Danyang790

Li, Jiaqi Chen, Jiayi Zhang, et al. Data interpreter: An llm agent for data science. arXiv preprint791

arXiv:2402.18679, 2024.792

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems, 2025. URL https://arxiv.793

org/abs/2408.08435.794

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli Ma, Guoyin Wang, Xuwu Wang, Jing Su, Jingjing795

Xu, Ming Zhu, et al. Infiagent-dabench: Evaluating agents on data analysis tasks. arXiv preprint796

arXiv:2401.05507, 2024a.797

Yue Hu, Yuzhu Cai, Yaxin Du, Xinyu Zhu, Xiangrui Liu, Zijie Yu, Yuchen Hou, Shuo Tang, and Si-798

heng Chen. Self-evolving multi-agent collaboration networks for software development. arXiv preprint799

arXiv:2410.16946, 2024b.800

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Benchmarking large language models as ai research801

agents. In NeurIPS 2023 Foundation Models for Decision Making Workshop, 2023.802

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language agents on803

machine learning experimentation. In Forty-first International Conference on Machine Learning, 2024a.804

23

https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2408.08435
https://arxiv.org/abs/2408.08435
https://arxiv.org/abs/2408.08435


Under review as submission to TMLR

Tenghao Huang, Donghee Lee, John Sweeney, Jiatong Shi, Emily Steliotes, Matthew Lange, Jonathan May,805

and Muhao Chen. Foodpuzzle: Developing large language model agents as flavor scientists. arXiv preprint806

arXiv:2409.12832, 2024b.807

Yiming Huang, Jianwen Luo, Yan Yu, Yitong Zhang, Fangyu Lei, Yifan Wei, Shizhu He, Lifu Huang, Xiao808

Liu, Jun Zhao, et al. Da-code: Agent data science code generation benchmark for large language models.809

arXiv preprint arXiv:2410.07331, 2024c.810

Yoichi Ishibashi and Yoshimasa Nishimura. Self-organized agents: A llm multi-agent framework toward ultra811

large-scale code generation and optimization. arXiv preprint arXiv:2404.02183, 2024.812

Md Ashraful Islam, Mohammed Eunus Ali, and Md Rizwan Parvez. Mapcoder: Multi-agent code generation813

for competitive problem solving. arXiv preprint arXiv:2405.11403, 2024a.814

Mohammed Saidul Islam, Md Tahmid Rahman Laskar, Md Rizwan Parvez, Enamul Hoque, and Shafiq815

Joty. Datanarrative: Automated data-driven storytelling with visualizations and texts. arXiv preprint816

arXiv:2408.05346, 2024b.817

Liqiang Jing, Zhehui Huang, Xiaoyang Wang, Wenlin Yao, Wenhao Yu, Kaixin Ma, Hongming Zhang, Xinya818

Du, and Dong Yu. Dsbench: How far are data science agents to becoming data science experts? arXiv819

preprint arXiv:2409.07703, 2024.820

Minseok Jung, Cynthia Fuertes Panizo, Liam Dugan, Yi R., Fung, Pin-Yu Chen, and Paul Pu Liang. Group-821

adaptive threshold optimization for robust ai-generated text detection, 2025. URL https://arxiv.org/822

abs/2502.04528.823

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel824

Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data science code generation.825

In International Conference on Machine Learning, pp. 18319–18345. PMLR, 2023.826

Hung Le, Hailin Chen, Amrita Saha, Akash Gokul, Doyen Sahoo, and Shafiq Joty. Codechain: Towards827

modular code generation through chain of self-revisions with representative sub-modules. arXiv preprint828

arXiv:2310.08992, 2023.829

Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John Yang, Jinyang Li, Shunyu Yao, Chen Qian, Binyuan Hui,830

Qicheng Zhang, et al. Devbench: A comprehensive benchmark for software development. arXiv preprint831

arXiv:2403.08604, 3, 2024a.832

Dawei Li, Zhen Tan, and Huan Liu. Exploring large language models for feature selection: A data-centric833

perspective. arXiv preprint arXiv:2408.12025, 2024b.834

Guoliang Li, Xuanhe Zhou, and Xinyang Zhao. Llm for data management. Proceedings of the VLDB835

Endowment, 17(12):4213–4216, 2024c.836

Haoxuan Li, Mingyu Derek Ma, Jen-tse Huang, Zhaotian Weng, Wei Wang, and Jieyu Zhao. Biasinspector:837

Detecting bias in structured data through llm agents. arXiv preprint arXiv:2504.04855, 2025.838

Jierui Li, Hung Le, Yinbo Zhou, Caiming Xiong, Silvio Savarese, and Doyen Sahoo. Codetree: Agent-guided839

tree search for code generation with large language models. arXiv preprint arXiv:2411.04329, 2024d.840

Jinyang Li, Nan Huo, Yan Gao, Jiayi Shi, Yingxiu Zhao, Ge Qu, Yurong Wu, Chenhao Ma, Jian-Guang Lou,841

and Reynold Cheng. Tapilot-crossing: Benchmarking and evolving llms towards interactive data analysis842

agents. arXiv preprint arXiv:2403.05307, 2024e.843

Lan Li, Liri Fang, and Vetle I Torvik. Autodcworkflow: Llm-based data cleaning workflow auto-generation844

and benchmark. arXiv preprint arXiv:2412.06724, 2024f.845

Xinyu Li, Shihan Wang, Siyang Zeng, et al. A survey on llm-based multi-agent systems: Workflow, infras-846

tructure, and challenges. Vicinagearth, 1(1):9, 2024g.847

24

https://arxiv.org/abs/2502.04528
https://arxiv.org/abs/2502.04528
https://arxiv.org/abs/2502.04528


Under review as submission to TMLR

Ziming Li, Qianbo Zang, David Ma, Jiawei Guo, Tuney Zheng, Minghao Liu, Xinyao Niu, Yue Wang, Jian848

Yang, Jiaheng Liu, et al. Autokaggle: A multi-agent framework for autonomous data science competitions.849

arXiv preprint arXiv:2410.20424, 2024h.850

Yuan Liao, Jiang Bian, Yuhui Yun, Shuo Wang, Yubo Zhang, Jiaming Chu, Tao Wang, Kewei Li, Yuchen851

Li, Xuhong Li, et al. Towards automated data sciences with natural language and sagecopilot: Practices852

and lessons learned. arXiv preprint arXiv:2407.21040, 2024.853

Feng Lin, Dong Jae Kim, Tse-Husn, and Chen. Soen-101: Code generation by emulating software process854

models using large language model agents, 2024. URL https://arxiv.org/abs/2403.15852.855

Haoyang Liu and Haohan Wang. Genotex: A benchmark for evaluating llm-based exploration of gene856

expression data in alignment with bioinformaticians. arXiv preprint arXiv:2406.15341, 2024.857

Jiaqi Liu, Kening Wang, Yuxuan Chen, et al. Large language model-based agents for software engineering:858

A survey, 2024a. URL https://arxiv.org/abs/2409.02977.859

Siyi Liu, Chen Gao, and Yong Li. Large language model agent for hyper-parameter optimization. arXiv860

preprint arXiv:2402.01881, 2024b.861

Daqin Luo, Chengjian Feng, Yuxuan Nong, and Yiqing Shen. Autom3l: An automated multimodal machine862

learning framework with large language models. In Proceedings of the 32nd ACM International Conference863

on Multimedia, pp. 8586–8594, 2024.864

Mike A Merrill, Akshay Paruchuri, Naghmeh Rezaei, Geza Kovacs, Javier Perez, Yun Liu, Erik Schenck,865

Nova Hammerquist, Jake Sunshine, Shyam Tailor, et al. Transforming wearable data into health insights866

using large language model agents. arXiv preprint arXiv:2406.06464, 2024.867

Deepak Nathani, Lovish Madaan, Nicholas Roberts, Nikolay Bashlykov, Ajay Menon, Vincent Moens, Amar868

Budhiraja, Despoina Magka, Vladislav Vorotilov, Gaurav Chaurasia, et al. Mlgym: A new framework and869

benchmark for advancing ai research agents. arXiv preprint arXiv:2502.14499, 2025.870

Minh Huynh Nguyen, Thang Phan Chau, Phong X Nguyen, and Nghi DQ Bui. Agilecoder: Dynamic col-871

laborative agents for software development based on agile methodology. arXiv preprint arXiv:2406.11912,872

2024.873

Yixin Ou, Yujie Luo, Jingsheng Zheng, Lanning Wei, Shuofei Qiao, Jintian Zhang, Da Zheng, Huajun Chen,874

and Ningyu Zhang. Automind: Adaptive knowledgeable agent for automated data science. arXiv preprint875

arXiv:2506.10974, 2025.876

Harshith Padigela, Chintan Shah, and Dinkar Juyal. Ml-dev-bench: Comparative analysis of ai agents on877

ml development workflows. arXiv preprint arXiv:2502.00964, 2025.878

Huy Nhat Phan, Tien N Nguyen, Phong X Nguyen, and Nghi DQ Bui. Hyperagent: Generalist software879

engineering agents to solve coding tasks at scale. arXiv preprint arXiv:2409.16299, 2024.880

Michał Pietruszka, Łukasz Borchmann, Aleksander Jedrosz, and Paweł Morawiecki. Can models help us881

create better models? evaluating llms as data scientists. arXiv preprint arXiv:2410.23331, 2024.882

Danrui Qi and Jiannan Wang. Cleanagent: Automating data standardization with llm-based agents. arXiv883

preprint arXiv:2403.08291, 2024.884

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng885

Su, Xin Cong, et al. Chatdev: Communicative agents for software development. In Proceedings of the886

62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.887

15174–15186, 2024.888

Jianing Qiu, Kyle Lam, Guohao Li, Amish Acharya, Tien Yin Wong, Ara Darzi, Wu Yuan, and Eric J889

Topol. Llm-based agentic systems in medicine and healthcare. Nature Machine Intelligence, 6(12):1418–890

1420, 2024.891

25

https://arxiv.org/abs/2403.15852
https://arxiv.org/abs/2409.02977


Under review as submission to TMLR

Zeeshan Rasheed, Muhammad Waseem, Aakash Ahmad, Kai-Kristian Kemell, Wang Xiaofeng, Anh Nguyen892

Duc, and Pekka Abrahamsson. Can large language models serve as data analysts? a multi-agent assisted893

approach for qualitative data analysis. arXiv preprint arXiv:2402.01386, 2024.894

Gaurav Sahu, Abhay Puri, Juan Rodriguez, Amirhossein Abaskohi, Mohammad Chegini, Alexandre Drouin,895

Perouz Taslakian, Valentina Zantedeschi, Alexandre Lacoste, David Vazquez, et al. Insightbench: Eval-896

uating business analytics agents through multi-step insight generation. arXiv preprint arXiv:2407.06423,897

2024.898

Samuel Schmidgall, Rojin Ziaei, Carl Harris, Eduardo Reis, Jeffrey Jopling, and Michael Moor. Agent-899

clinic: a multimodal agent benchmark to evaluate ai in simulated clinical environments. arXiv preprint900

arXiv:2405.07960, 2024.901

Wonduk Seo, Juhyeon Lee, and Yi Bu. Spio: Ensemble and selective strategies via llm-based multi-agent902

planning in automated data science. arXiv preprint arXiv:2503.23314, 2025.903

Leixian Shen, Haotian Li, Yun Wang, and Huamin Qu. From data to story: Towards automatic animated904

data video creation with llm-based multi-agent systems. In 2024 IEEE VIS Workshop on Data Storytelling905

in an Era of Generative AI (GEN4DS), pp. 20–27. IEEE, 2024.906

Maojun Sun, Ruijian Han, Binyan Jiang, Houduo Qi, Defeng Sun, Yancheng Yuan, and Jian Huang. Lambda:907

A large model based data agent. arXiv preprint arXiv:2407.17535, 2024a.908

Maojun Sun, Ruijian Han, Binyan Jiang, Houduo Qi, Defeng Sun, Yancheng Yuan, and Jian Huang. A909

survey on large language model-based agents for statistics and data science, 2024b. URL https://arxiv.910

org/abs/2412.14222.911

Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao, Junjie Lu, Yichi Zhang, Zexuan Deng, Helan Hu,912

Kaikai An, Ruijun Huang, et al. Ml-bench: Evaluating large language models and agents for machine913

learning tasks on repository-level code. arXiv e-prints, pp. arXiv–2311, 2023.914

Wei Tao, Yucheng Zhou, Yanlin Wang, Wenqiang Zhang, Hongyu Zhang, and Yu Cheng. Magis: Llm-based915

multi-agent framework for github issue resolution. arXiv preprint arXiv:2403.17927, 2024.916

Khai T. Tran, Duy Dao, Minh D. Nguyen, et al. Multi-agent collaboration mechanisms: A survey of llms,917

2025. URL https://arxiv.org/abs/2501.06322.918

Patara Trirat, Wonyong Jeong, and Sung Ju Hwang. Automl-agent: A multi-agent llm framework for919

full-pipeline automl. arXiv preprint arXiv:2410.02958, 2024.920

He Wang, Alexander Hanbo Li, Yiqun Hu, Sheng Zhang, Hideo Kobayashi, Jiani Zhang, Henry Zhu, Chung-921

Wei Hang, and Patrick Ng. Dsmentor: Enhancing data science agents with curriculum learning and online922

knowledge accumulation. arXiv preprint arXiv:2505.14163, 2025a.923

Lingchen Wang, Chao Ma, Xiaohan Feng, et al. A survey on large language model based autonomous agents.924

Frontiers of Computer Science, 18(6):186345, 2024a.925

Zifeng Wang, Benjamin Danek, Ziwei Yang, Zheng Chen, and Jimeng Sun. Can large language models926

replace data scientists in clinical research? arXiv preprint arXiv:2410.21591, 2024b.927

Zifeng Wang, Benjamin Danek, and Jimeng Sun. Biodsa-1k: Benchmarking data science agents for biomed-928

ical research. arXiv preprint arXiv:2505.16100, 2025b.929

Liwenhan Xie, Chengbo Zheng, Haijun Xia, Huamin Qu, and Chen Zhu-Tian. Waitgpt: Monitoring and930

steering conversational llm agent in data analysis with on-the-fly code visualization. In Proceedings of the931

37th Annual ACM Symposium on User Interface Software and Technology, pp. 1–14, 2024.932

Frank F Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z Wang, Xuhui933

Zhou, Zhitong Guo, Murong Cao, et al. Theagentcompany: benchmarking llm agents on consequential934

real world tasks. arXiv preprint arXiv:2412.14161, 2024.935

26

https://arxiv.org/abs/2412.14222
https://arxiv.org/abs/2412.14222
https://arxiv.org/abs/2412.14222
https://arxiv.org/abs/2501.06322


Under review as submission to TMLR

Wenyi Xu, Yuren Mao, Xiaolu Zhang, Chao Zhang, Xuemei Dong, Mengfei Zhang, and Yunjun Gao. Dagent:936

A relational database-driven data analysis report generation agent. arXiv preprint arXiv:2503.13269, 2025.937

Eric Xue, Zeyi Huang, Yuyang Ji, and Haohan Wang. Improve: Iterative model pipeline refinement and938

optimization leveraging llm agents, 2025. URL https://arxiv.org/abs/2502.18530.939

Hongyang Yang, Boyu Zhang, Neng Wang, Cheng Guo, Xiaoli Zhang, Likun Lin, Junlin Wang, Tianyu Zhou,940

Mao Guan, Runjia Zhang, et al. Finrobot: An open-source ai agent platform for financial applications941

using large language models. arXiv preprint arXiv:2405.14767, 2024a.942

Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong, Xu Han, Yukun Yan, Zhenghao Liu, Zhixing Tan, Pengyuan943

Liu, Dong Yu, et al. Matplotagent: Method and evaluation for llm-based agentic scientific data visualiza-944

tion. arXiv preprint arXiv:2402.11453, 2024b.945

Guoli Yin, Haoping Bai, Shuang Ma, Feng Nan, Yanchao Sun, Zhaoyang Xu, Shen Ma, Jiarui Lu, Xiang946

Kong, Aonan Zhang, et al. Mmau: A holistic benchmark of agent capabilities across diverse domains.947

arXiv preprint arXiv:2407.18961, 2024.948

Ziming You, Yumiao Zhang, Dexuan Xu, Yiwei Lou, Yandong Yan, Wei Wang, Huaming Zhang, and949

Yu Huang. Datawiseagent: A notebook-centric llm agent framework for automated data science. arXiv950

preprint arXiv:2503.07044, 2025.951

Yangyang Yu, Zhiyuan Yao, Haohang Li, Zhiyang Deng, Yuechen Jiang, Yupeng Cao, Zhi Chen, Jordan952

Suchow, Zhenyu Cui, Rong Liu, et al. Fincon: A synthesized llm multi-agent system with conceptual953

verbal reinforcement for enhanced financial decision making. Advances in Neural Information Processing954

Systems, 37:137010–137045, 2024.955

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and James Zou.956

Textgrad: Automatic "differentiation" via text, 2024. URL https://arxiv.org/abs/2406.07496.957

Daoguang Zan, Ailun Yu, Wei Liu, Dong Chen, Bo Shen, Wei Li, Yafen Yao, Yongshun Gong, Xiaolin958

Chen, Bei Guan, et al. Codes: Natural language to code repository via multi-layer sketch. arXiv preprint959

arXiv:2403.16443, 2024.960

Eric Zelikman, Qian Huang, Gabriel Poesia, Noah Goodman, and Nick Haber. Parsel: Algorithmic reasoning961

with language models by composing decompositions. Advances in Neural Information Processing Systems,962

36:31466–31523, 2023.963

Dan Zhang, Sining Zhoubian, Min Cai, Fengzu Li, Lekang Yang, Wei Wang, Tianjiao Dong, Ziniu Hu,964

Jie Tang, and Yisong Yue. Datascibench: An llm agent benchmark for data science. arXiv preprint965

arXiv:2502.13897, 2025a.966

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation with tool-967

integrated agent systems for real-world repo-level coding challenges. arXiv preprint arXiv:2401.07339,968

2024a.969

Shujian Zhang, Chengyue Gong, Lemeng Wu, Xingchao Liu, and Mingyuan Zhou. Automl-gpt: Automatic970

machine learning with gpt. arXiv preprint arXiv:2305.02499, 2023a.971

Wenqi Zhang, Yongliang Shen, Weiming Lu, and Yueting Zhuang. Data-copilot: Bridging billions of data972

and humans with autonomous workflow. arXiv preprint arXiv:2306.07209, 2023b.973

Xuanming Zhang, Yuxuan Chen, Yuan Yuan, and Minlie Huang. Seeker: Enhancing exception handling in974

code with llm-based multi-agent approach. arXiv preprint arXiv:2410.06949, 2024b.975

Xueqiao Zhang, Chao Zhang, Jianwen Sun, Jun Xiao, Yi Yang, and Yawei Luo. Eduplanner: Llm-based976

multi-agent systems for customized and intelligent instructional design. IEEE Transactions on Learning977

Technologies, 2025b.978

27

https://arxiv.org/abs/2502.18530
https://arxiv.org/abs/2406.07496


Under review as submission to TMLR

Yaolun Zhang, Yinxu Pan, Yudong Wang, and Jie Cai. Pybench: Evaluating llm agent on various real-world979

coding tasks. arXiv preprint arXiv:2407.16732, 2024c.980

Yuge Zhang, Qiyang Jiang, Xingyu Han, Nan Chen, Yuqing Yang, and Kan Ren. Benchmarking data science981

agents. arXiv preprint arXiv:2402.17168, 2024d.982

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous program983

improvement. In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing984

and Analysis, pp. 1592–1604, 2024e.985

Yuheng Zhao, Junjie Wang, Linbin Xiang, Xiaowen Zhang, Zifei Guo, Cagatay Turkay, Yu Zhang, and986

Siming Chen. Lightva: Lightweight visual analytics with llm agent-based task planning and execution.987

IEEE Transactions on Visualization and Computer Graphics, 2024a.988

Zixiao Zhao, Jing Sun, Zhiyuan Wei, Cheng-Hao Cai, Zhe Hou, and Jin Song Dong. Visioncoder: Empowering989

multi-agent auto-programming for image processing with hybrid llms. arXiv preprint arXiv:2410.19245,990

2024b.991

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language agent992

tree search unifies reasoning acting and planning in language models. arXiv preprint arXiv:2310.04406,993

2023.994

28


	Introduction
	Related Works
	Modular Architectures
	Collaboration and Communication
	Capability Evolution and Reflection

	Analysis from Agent Perspective
	Agent Role Design
	Single Agent
	Two Agents
	Multiple Agents
	Dynamic Agents
	Summary of Agent Role

	Execution Structure
	Static Execution
	Dynamic Execution
	Summary of Execution Structure

	External Knowledge
	External Knowledge Methods
	Summary of External Knowledge

	Reflection
	Reflection Methods
	Summary of Reflection


	Analysis from Data Science Perspective
	Data Science Tasks
	Data Science Loop
	Data Preprocess
	Statistical Computation
	Feature Engineering
	Model Training
	Evaluation
	Visualization

	Summary of Data Science Perspective

	Benchmark
	Future Research Opportunity
	Trainable architecture
	Advanced Reflection Mechanisms
	Multimodal Processing

	Conclusion

