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ABSTRACT

Adversarial learning and the robustness of Graph Neural Networks (GNNs) are
topics of widespread interest in the machine learning community, as documented
by the number of adversarial attacks and defenses designed for these purposes.
While a rigorous evaluation of these adversarial methods is necessary to understand
the robustness of GNNs in real-world applications, we posit that many works in
the literature do not share the same experimental settings, leading to ambiguous
and potentially contradictory scientific conclusions.
In this benchmark, we advocate for standardized, rigorous evaluation practices in
adversarial GNN research. We perform a comprehensive re-evaluation of seven
widely used attacks and eight recent defenses under both poisoning and evasion
scenarios, across six popular graph datasets. Our study spans over 437,000 experi-
ments conducted within a unified framework.
We observe substantial differences in adversarial attack performance when evalu-
ated under a fair and robust procedure. Our findings reveal that previously over-
looked factors, such as target node selection and the training process of the attacked
model, have a profound impact on attack effectiveness, to the extent of completely
distorting performance insights. These results underscore the urgent need for a
standardized evaluation framework in adversarial graph machine learning.

1 INTRODUCTION

Applying machine learning to graph-structured data, such as financial transaction networks, so-
cial graphs, and molecular structures, requires models that can effectively embed non-Euclidean
relationships. Graph Neural Networks (GNNs), introduced by Scarselli et al. (2009) and Micheli
(2009), have become foundational tools for this purpose. Over the past decade, GNNs have achieved
strong performance across domains, but their vulnerability to adversarial attacks has raised growing
concerns. A series of recent works (Zügner et al., 2018; Li et al., 2023; Xu et al., 2019a; Geisler et al.,
2021) demonstrate that even minor perturbations to the input graph can significantly degrade GNN
performance.

As attack strategies have proliferated, inconsistencies in evaluation protocols have emerged as
a serious obstacle to scientific progress. Many studies report substantial gains using differing
experimental setups, making results difficult to compare and conclusions potentially misleading.
The reproducibility crisis in machine learning has highlighted the importance of standardized, rigorous
empirical evaluations (Lipton & Steinhardt, 2019). In adversarial graph learning, Mujkanovic et al.
(2022) warn that the graph community has yet to absorb the “bitter lesson” from the vision community,
where overlooking adaptive attacks and evaluation rigor once led to a flood of unreliable results.

In this work, we identify several recurring issues in current evaluations. First, GNNs are often
trained using attack-specific hyperparameters or fixed data splits, biasing results. Second, new attack
models are frequently tested under more favorable conditions than their baselines. Third, evaluations
commonly select target nodes in a way that underrepresents high-degree nodes, which are typically
more resistant to attacks (see Figure 2). As a result, reported improvements may reflect favorable
setups rather than true advances in method design.
To mitigate these issues, we propose a standardized, robust evaluation framework for adversarial
attacks and defenses on GNNs. We re-evaluate several widely used gray and white-box attacks to
expose how different experimental setups can lead to inconsistent or overstated findings. While a
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comprehensive re-evaluation of all attacks is infeasible, our focused effort aims to establish stronger
evaluation practices for the community.

To better contextualize performance claims, we also introduce a naive yet surprisingly good baseline,
L1D-RND, which achieves competitive results at minimal computational cost. Its success reinforces
the need for basic sanity checks when proposing complex new methods.
By demonstrating the limited scalability of many existing attacks and their declining effectiveness
on high-degree nodes, our work highlights overlooked challenges in adversarial graph learning. We
hope to encourage the development of more robust and scalable attack and defense strategies.

Disclaimer. This work advocates for rigorous evaluation practices. It is not intended to rank attacks
or discredit prior contributions but to enable more reliable and reproducible comparisons across
future studies.

2 RELATED WORK

Adversarial Attacks. Recent studies on adversarial attacks on graph data have developed optimal
strategies to minimally perturb the graph (controlled by a budget parameter) while achieving the
highest impact on a GNN’s classification performance. Among the first methods is Nettack (Zügner
et al., 2018), a gradient-based adversarial attack strategy that generates slight perturbations on graph
structure and node features. Upon the success of Nettack, a variety of novel adversarial attack
strategies have been proposed (Chen et al., 2018; Geisler et al., 2021). The majority of adversarial
attacks proposed in the early stage only focus on small-scale datasets, typically consisting of less than
5000 nodes, which are typically impractical in real-world applications of GNNs. Only extracting a
much smaller subgraph centered at the target nodes, Li et al. (2020a) proposed SGA as a scalable
adversarial strategy. PR-BCD, another approach to adversarial attacks at scale by Geisler et al.
(2021), adopts the Randomized Block Coordinate Descent (Nesterov, 2012) for solving large-scale
optimization problems to find optimal perturbations. Meanwhile, in a recent study, GOttack (Alom
et al., 2025) uses graph structures by targeting topological equivalence groups and exploiting their
influence in gradient-based adversarial models.

Evaluation procedures. We follow the good practice of Errica et al. (2020) and Shchur et al.
(2018). Particularly, both works standardize the evaluation procedures and promote a reproducible
experimental environment with a rigorous model selection and assessment framework, but in two
different contexts. Errica et al. (2020) focuses on graph classification tasks while Shchur et al.
(2018)’s work is primarily on node classification. In addition, Shchur et al. (2018) have shown
that the train/validation/test split of choice used in evaluation significantly impacts the performance
ranking, thus drawing community attention to the necessity of using different splits in the evaluation
procedure. Differentiating from them, which focus on designing rigorous evaluation frameworks
for GNN models, we propose a robust evaluation procedure to prevent over-optimistic and biased
estimates of the true performance of adversarial attack strategies.

The Graph Robustness Benchmark (GRB) (Zheng et al., 2021)) was introduced a few years ago, and
it mainly focuses on global evasion attacks. However, the GRB does not consider three valuable
scenarios: (i) targeted attacks, (ii) poisoning scenarios, and (iii) the distinction between homophilic
and heterophilic graphs. Our benchmark addresses these limitations by incorporating both targeted
evasion and poisoning attacks, while explicitly evaluating performance on homophilic and heterophilic
graphs, with victim models trained in each scenario.

3 PRELIMINARIES

Let G = (V, E ,X) denote a graph, where V is the set of N nodes, E ⊆ {(v, w) | v, w ∈ V} is the set
of directed edges, and X = {x0,x1, . . . ,xN−1} is the set of node feature vectors. Each xi ∈ RM

encodes the M -dimensional attributes of node vi. The graph structure is represented by an adjacency
matrix A ∈ {0, 1}N×N , where Aij = 1 if (vi, vj) ∈ E , and 0 otherwise. Each node vi has an
associated label vector yi ∈ {0, 1}|C| indicating its membership in one of |C| classes, forming the
label matrix Y ∈ {0, 1}N×|C|.
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Semi-supervised Node Classification. We focus on node classification in a semi-supervised setting,
where labels are available only for a subset of nodes. Let VL ⊂ V denote the set of labeled nodes
with known labels YL, and VU = V \ VL the set of unlabeled nodes. The goal is to learn a function
g : G,YL → YU that predicts a class probability distribution for each node in VU . The predicted
label ŷv for a node v ∈ VU corresponds to the class with the highest predicted probability in g(v).

Node Classification Margin. For a node v with ground truth label y, the classification margin Mv

measures the confidence of the model in the correct class. It is defined as the difference between the
model’s output score for the true class and the highest score assigned to any incorrect class (Zügner
et al., 2018):

Mv = g(v)y − max
c∈C, c ̸=y

g(v)c (1)

A small or negative margin indicates that the prediction is uncertain or incorrect, making such nodes
more susceptible to adversarial perturbation.

Risk Assessment. Risk assessment refers to the empirical evaluation of model performance across
multiple random splits (Errica et al., 2020). Given K random splits of V into disjoint subsets Vtrain,
Vvalid, and Vtest, the model is trained on Vtrain and tuned on Vvalid. For each split k, the best hyper-
parameter configuration is selected based solely on validation performance. The empirical risk is
then estimated by averaging the test performance across the K splits.

Model Selection. Model selection aims to identify the hyper-parameter configuration that yields the
highest validation accuracy. However, validation accuracy is often a biased estimator of generalization
performance (Errica et al., 2020; Cawley & Talbot, 2010). Overreliance on validation performance
can lead to overfitting and inflated expectations. In adversarial GNN literature, model selection and
final evaluation are often conflated, undermining fair comparisons across attack strategies. Proper
separation between model selection and risk assessment is essential to avoid misleading conclusions.

4 GRAPH ADVERSARIAL ATTACKS

Adversarial attacks on graphs aim to perturb either the structure or features of a graph G = (A,X) in
order to degrade the performance of a GNN. We refer to the targeted model as the victim model. The
attack modifies G into a perturbed version G′ = (A′,X′), leading the victim to misclassify selected
nodes.

Attacker’s Capacity. The adversarial attack can introduce perturbations to data either in the inference
or training phases. In the evasion setting, the victim model trains on clean graph data G to perform
inference on the perturbed data G′. In the poisoning setting, adversarial attacks create a modified
graph G′, which is then used to train a model.

Perturbation Type. We perturb G within a given budget ∆ by adding or removing edges from E .
Formally, we can write ∑

u

∑
v

|Auv −A′
uv| ≤ ∆ (2)

Attacker’s Knowledge. Attacks differ in the information available to the adversary. In black-box
settings, the attacker lacks access to model parameters and labels. White-box attacks assume full
access to both, a strong but often unrealistic assumption. In gray-box settings, the attacker can access
the training data and labels, allowing them to train a surrogate model that approximates the victim.
We adopt the gray-box setting, as it balances realism with the ability to diagnose vulnerabilities.
Unlike prior work that uses fixed surrogates, we also evaluate adaptive attacks where perturbations
are directly optimized against defended victim models, simulating stronger adversaries. Note that our
evaluation pipeline is modular and extensible to all attack types.

Attacker’s Target. We focus on targeted attacks, where a chosen subset of nodes VT ⊆ Vtest are
perturbed to induce misclassification, as they are often harder to detect in real systems.

Victim Models. We define two classes of victim models: vanilla GNNs (Bacciu et al., 2020), which
are not trained with adversarial robustness in mind, and defended GNNs, which incorporate explicit
defense mechanisms. Attacks against vanilla models define the baseline vulnerability, while defended
scenarios test the effectiveness of robustness interventions. We emphasize that defense approaches
generally operate without any prior knowledge of specific attacks.

3
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Figure 1: Overview of our risk assessment framework for adversarial GNN evaluation.

4.1 ATTACK MODELS AND PITFALLS OF EVALUATION

Many attack evaluations in the literature suffer from inconsistent experimental setups, limiting fair
comparison. Details of evaluation pitfalls for specific attacks are discussed in Appendix E; here we
formalize criteria for rigorous assessment.

Target Node Selection. Most prior works follow the Nettack (Zügner et al., 2018) strategy, selecting
(i) the 10 nodes with the highest margin of classification, indicating evident correctness; (ii) the 10
nodes with the lowest margin (still correctly classified); (iii) 20 additional nodes randomly chosen.
This strategy may underrepresent high-degree nodes, which are harder to attack due to their richer
neighborhood context (Figure 2). This bias inflates attack performance and skews conclusions.

Evaluation Criteria. A high-quality evaluation should satisfy the following: (i) the victim model
has undergone a model selection process, as it usually happens in real-world scenarios; (ii) results
are averaged over K random splits with standard deviations and public splits; (iii) target nodes
include diverse structural types; and (iv) evaluations include both vanilla and defended victims. Our
benchmark adheres to all of these conditions.

Attack Models. We benchmark seven widely cited attack methods, selected based on peer-review
status, architectural diversity, and citation count. These are Nettack (Zügner et al., 2018), FGA (Chen
et al., 2018), SGA (Li et al., 2020a), GOttack (Alom et al., 2025), PR-BCD (Geisler et al., 2021), and
PGD (Xu et al., 2019a). Full summaries and surrogate configurations appear in Appendix Section J.

Victim Models. Vanilla victim models are three standard GNNs: GCN (Kipf & Welling, 2017),
GSAGE (Hamilton et al., 2017), and GIN (Xu et al., 2019b), each using a single aggregation function,
and a fourth vanilla model, PNA (Corso et al., 2020), which combines multiple aggregation operations.
We also evaluate eight defended victim models, selected according to the taxonomy in Appendix
Table 9, with selection criteria detailed in Appendix G.

Adaptive Attacks. Adaptive attacks are designed with full awareness of the defense, producing
stronger and more targeted perturbations. We evaluate PR-BCD in both its fixed-surrogate (PR-BCD
(NA)) and adaptive variants. Though non-adaptive PR-BCD may underestimate its true capability,
we include it due to its scalability, popularity, and baseline strength (later results in Tables 21 and 22
will show marginal differences between the variants).

Naïve Baseline. We introduce L1D-RND, a simple yet effective baseline attack. Instead of using
gradients or learned surrogates, L1D-RND perturbs the graph by modifying edges connected to nodes
selected using their degree and features. Despite its simplicity and low computational cost, it achieves
surprisingly strong results, underscoring the importance of including naïve baselines to contextualize
claimed improvements. Algorithm 3 and implementation details are provided in Appendix I.

4.2 RISK ASSESSMENT IN ADVERSARIAL EVALUATION

Unifying the good practices of Errica et al. (2020) and Shchur et al. (2018), the pseudo-algorithm of
our proposed adversarial attacks evaluation is provided in Algorithm 1.

4
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We first obtain K different random splits from datasets, (Line 3). The victim model’s hyperparameters
are first tuned on the i-th split’s training set, and the best victim model for that split is chosen based
on the performance on the validation set (Line 6).

The model selection process relies solely on the training and validation sets to ensure an unbiased
risk estimation. It is noteworthy that model selection of all models is performed on clean data (data
without perturbation). Given the predictions of the best victim model, we sample a subset of target
test nodes VT that have been correctly classified (Line 9). An adversarial example on a given target
node is considered a successful attack if it causes the victim model to flip its prediction about the
target node.

The adversarial attack performance is evaluated based on the misclassification rate on a specific
budget ∆, averaged over K different splits and R risk assessment runs for each split. Figure 1
visualizes the overall proposed evaluation pipeline. As the hyper-parameter configurations of victim
models are carefully selected through the model selection process, we also perform model selection
on surrogate models used in adversarial attacks to ensure that the process is realistic. The model
selection process on victim models and surrogate models is kept on the same hyper-parameter grids.

5 EXPERIMENTS

Algorithm 1 Adversarial attack/defense evaluation
1: Input: Dataset D, Configs Θ, Attack method Attack, Budget ∆,

Splits K, Runs R
2: Output: Avg. misclassification rates in both evasion and poison

settings
3: Create K train/val/test splits F1, .., FK from D
4: for i = 1, ..., K do
5: Vi

train, Vi
valid, Vi

test = Fi

6: θi
best = select(Θ, Vi

train, Vi
valid, D) // Alg. 2

7: for r = 1, ..., R do
8: f = train(θi

best, Vi
train, Vi

valid, D)
9: VT = node_select(f , Vi

test, D)
10: for v in VT do
11: D′ = Attack(v, D, ∆)
12: siv,r = 1 if f(v) = yv , else 0 otherwise // evasion
13: f ′ = train(θi

best, Vi
train, Vi

valid, D′) // retrain

14: s
′,i
v,r = 1 if f ′(v) = yv , else 0 // poison

15: reset Attack
16: end for
17: end for
18: end for

19: success rate =
∑K

i=1
∑R

r
∑T

t sit,r
K×R×|T | // evasion

20: success rate′ =
∑K

i=1
∑R

r
∑T

t s
′,i
t,r

K×R×|T | // poison

21: Return: success rate, success rate′

We conduct extensive experiments to re-evaluate
adversarial attacks under the standardized frame-
work described in Section 4.2.

Experimental Setup. We adopt a transductive,
semi-supervised node classification setting. For
the evaluation procedure defined in Section 4.2,
we set K = 5 and R = 3. Following common
practice (Zügner et al., 2018; Alom et al., 2025),
the Vtrain/Vvalid/Vtest ratio is set to 10/10/80.

We implement early stopping with the patience
parameter n, where training stops if n epochs
have passed without improvement on the vali-
dation set. Importantly, the same data split Fi

(Line 3) is shared across different models to en-
sure a fair comparison.

We perform model selection for all victim and
surrogate models, in both vanilla and defended
scenarios, based on their performance on the val-
idation sets. For each split, we evaluate adver-
sarial attacks equipped with surrogate models.
We report the average misclassification rate of
adversarial attacks on vanilla and defended models across initialization seeds and splits, and report
the percentage of nodes misclassified by the model. We fixed the same model as a surrogate model
for each adversarial method (Table 12) for all evaluation settings, regardless of the choice of victim
models, as attackers may not always know the classifier’s architecture prior to performing the attack
in practice.

Table 1: Descriptive statistics of datasets.
Type Dataset Nodes Edges Features Labels

Homophilic
CORA 2, 708 5, 069 1, 432 7
CITESEER 3, 327 3, 668 3, 703 6
PUBMED 19, 717 44, 325 500 3

Heterophilic CHAMELEON 2, 277 36, 101 3, 132 5
SQUIRREL 5, 201 217, 073 3, 148 5

Large scale OGB-ARXIV 169, 343 1, 166, 243 128 40

Hyper-parameters. Model selection
varies hyperparameters, including the num-
ber of layers, embedding dimensions, learn-
ing rate, dropout, and weight decay, based
on ranges provided in original publications.
Additional model-specific parameters (e.g.,
batch size, aggregation type) are included
as needed. Full details are in Appendix C.

Target Node Selection. For each experi-
ment, we evaluate on 50 target nodes selected to ensure diversity in classification margin and structural
role: ii) 10 correctly classified nodes with the lowest degree, iii) 10 correctly classified nodes with the

5
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Table 2: Homophily Results. Evaluating adversarial attacks with budget ∆ = 1 in both evasion
and poison settings on GCN (vanilla attack) and GNNGuard (defended attack). NA indicates a
non-adaptive variant.

Attack Model for Evasion Attack Model for Poisoning

Victim L1D-RND FGA NETTACK PGD PR-BCD (NA) SGA GOttack L1D-RND FGA NETTACK PGD PR-BCD (NA) SGA GOttack

C
O

R
A GCN 13.20 ± 0.04 27.87 ± 0.04 29.60 ± 0.05 29.33 ± 0.04 32.13 ± 0.04 26.27 ± 0.04 28.53 ± 0.04 15.47 ± 0.04 30.00 ± 0.06 33.47 ± 0.04 31.73 ± 0.04 32.80 ± 0.06 29.33 ± 0.04 33.33 ± 0.07

GNNGuard 6.27 ± 4.13 6.67 ± 3.44 6.80 ± 4.77 6.80 ± 2.60 8.13 ± 3.34 8.40 ± 4.29 8.40 ± 4.97 6.93 ± 4.40 7.47 ± 3.96 7.47 ± 5.37 6.93 ± 3.01 8.93 ± 3.99 9.60 ± 3.64 10.27 ± 6.54

C
IT

E
SE

E
R

GCN 15.20 ± 0.04 25.47 ± 0.04 28.13 ± 0.07 25.47 ± 0.05 34.53 ± 0.07 23.47 ± 0.03 25.60 ± 0.04 16.27 ± 0.04 31.87 ± 0.07 36.40 ± 0.07 30.80 ± 0.07 34.27 ± 0.06 25.20 ± 0.04 34.27 ± 0.08

GNNGuard 4.67 ± 3.68 3.33 ± 3.18 4.67 ± 2.35 3.07 ± 2.49 3.07 ± 2.12 4.00 ± 2.73 4.67 ± 2.89 4.80 ± 3.84 4.40 ± 3.31 6.00 ± 2.93 3.20 ± 2.11 3.20 ± 1.97 4.80 ± 3.00 4.80 ± 2.70

PU
B

M
E

D

GCN 10.93 ± 0.03 35.60 ± 0.03 33.73 ± 0.03 34.13 ± 0.04 29.60 ± 0.03 34.27 ± 0.04 35.87 ± 0.03 9.73 ± 0.03 35.33 ± 0.03 34.13 ± 0.05 33.60 ± 0.03 29.60 ± 0.03 34.13 ± 0.04 35.60 ± 0.03

GNNGuard 6.53 ± 4.63 3.60 ± 1.88 2.93 ± 1.67 2.53 ± 1.60 4.27 ± 2.25 3.47 ± 1.92 3.07 ± 2.25 6.53 ± 4.93 4.80 ± 3.19 4.40 ± 2.53 4.27 ± 2.12 5.60 ± 4.08 4.93 ± 3.20 4.93 ± 3.10 7.87

Table 3: Heterophily Results. Evaluating adversarial attacks with budget ∆ = 1 in both evasion and
poison settings on GCN (vanilla attack) and RUNG (defended attack). NA indicates a non-adaptive
variant.

Attack Model for Evasion Attack Model for Poisoning

Victim L1D-RND FGA NETTACK PGD PR-BCD (NA) SGA GOttack L1D-RND FGA NETTACK PGD PR-BCD (NA) SGA GOttack

SQ
U

IR
R

E
L

GCN 24.93 ± 33.09 62.40 ± 14.64 1.87 ± 3.34 47.73 ± 10.25 69.87 ± 10.76 52.00 ± 6.19 13.33 ± 4.64 34.67 ± 27.36 63.87 ± 12.25 2.80 ± 2.24 52.27 ± 8.21 70.27 ± 11.16 53.47 ± 5.97 13.60 ± 3.79

RUNG 2.13 ± 1.77 1.87 ± 2.88 0.27 ± 1.03 2.00 ± 1.85 1.73 ± 2.49 2.67 ± 3.68 0.93 ± 2.25 11.33 ± 8.64 20.53 ± 9.69 6.53 ± 4.44 17.33 ± 7.81 15.07 ± 6.18 18.40 ± 9.33 6.27 ± 5.18

C
H

A
M

E
L

E
O

N

GCN 21.87 ± 28.89 62.40 ± 7.72 3.07 ± 2.60 44.00 ± 20.95 58.00 ± 18.53 45.47 ± 10.38 23.47 ± 8.16 35.60 ± 22.31 66.40 ± 8.25 7.87 ± 4.98 53.47 ± 17.98 64.80 ± 14.69 51.47 ± 9.12 27.07 ± 8.48

RUNG 2.27 ± 3.28 0.93 ± 1.83 0.27 ± 0.70 1.87 ± 4.69 0.80 ± 2.24 2.13 ± 4.31 0.67 ± 1.23 12.00 ± 8.88 16.40 ± 7.53 7.33 ± 2.89 13.73 ± 6.41 11.73 ± 5.90 14.27 ± 6.76 10.80 ± 4.89

highest margin, iv) 10 nodes with the lowest margin (but still correctly classified) and v) 10 randomly
chosen nodes.

Datasets. We evaluate on six datasets: three homophilous graphs (CORA, CITESEER,
PUBMED (Yang et al., 2016)), two heterophilous graphs (SQUIRREL, CHAMELEON (Rozember-
czki et al., 2021)), and one large-scale benchmark from OGB (Hu et al., 2020b). Many adversarial
and defense methods do not scale well to large graphs, and we highlight such limitations where
relevant (see Appendix D).

Computational Environment. Experiments were run using Python 3.8.19 and PyTorch 2.3.0 on a
Linux cluster with Intel Xeon Gold 6338 CPUs (128 cores), 251 GB RAM, and NVIDIA RTX A40
GPUs with 44 GB memory. GNNs were implemented using PyTorch Geometric 2.5.3, and we reused
code from DeepRobust (Li et al., 2020b), GreatX (Wu et al., 2022), and author-provided repositories
for defense methods not in those libraries.

Reproducibility. We release all code, dataset splits, and model selection hyperparameters to support
reproducible benchmarking with minimal overhead. Code is available at: https://anonymous.
4open.science/r/Adversarial-Benchmark.

6 RESULTS AND DISCUSSION

This section provides an in-depth discussion of our results. We discuss vanilla models’ attacks in
Section 6.1 and defense models’ attacks in Section 6.2. Notably, higher misclassification rates reflect
more effective attack models. Time and GPU cost results are detailed in the Appendix F.3 due to
limited space.

Computational considerations. Our experiments include up to 437,075 training runs (see Ap-
pendix F for a breakdown). In some cases, model selection or attacks on a single split exceeded 120
hours, making full experiments infeasible. We capped training time at 120 hours; results exceeding
this are marked as OOR (Out of Resource).

6.1 VANILLA EVASION AND POISONING ATTACKS

We evaluate seven adversarial attack models under evasion and poisoning settings on vanilla GNNs
across homophily and heterophily datasets. Appendix Tables 14, 15, and 16 report complete results.
For conciseness, we also provide reduced summaries in Tables 2 and 3.
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Homophily datasets. PR-BCD (NA) has the highest misclassification rates (i.e., best attack model)
in Table 14 for a budget of ∆ = 1 in 4 out of 12 evasion scenarios (spanning three datasets and
four victim models). The remaining cases are distributed among other methods, with L1D-RND
surprisingly yielding the highest misclassification rates in PUBMED and CITESEER when PNA
is the victim model. When the budget is increased (∆ = 2, . . . , 5), Nettack demonstrates superior
performance in 36 out of 48 cases in Table 14. Unlike the low-budget case, PR-BCD (NA) achieves
the best results only in CITESEER and CORA for GCN. In scenarios where GCN is the victim
model, PR-BCD (NA), which uses GCN as the surrogate model, delivers competitive performance,
surpassing Nettack in 10 out of 15 settings; these are the ∆ = 1, . . . , 5 budgets in CORA and
CITESEER in Table 14. However, PR-BCD (NA) shows limited adversarial effectiveness on victim
models that differ significantly from the surrogate ones. For example, PR-BCD (NA) no longer
outperforms FGA on GIN, GSAGE and PNA in evasion attacks. In Table 14, the baseline L1D-RND
exhibits the lowest performance based on average rank on homophily datasets (i.e., 7 out of 7 attack
models). Notably, unlike the attack models, the baseline does not achieve high misclassification rates
with increasing budgets.

As shown in the lower rows of Table 14, poisoning attacks are significantly more effective than
evasion attacks. For ∆ = 1, the best-attack model, Nettack, achieves a 4.72% relative increase,
rising from an average of 27.76% in evasion to 32.48% in poisoning across three datasets and four
victim models. Even the baseline, L1D-RND, experiences a 8.9% improvement in poisoning attacks.
Nettack remains the best-performing model when ranks are averaged over all five budgets, with an
overall rank of 1.65 across three datasets and four models. FGA follows as the second-best model,
with an average rank of 3.23.

Among three homophily datasets, PUBMED has the lowest misclassification rates for ∆ = 5, whereas
attack models reach 70% in CORA and CITESEER in Table 14. With CORA and CITESEER, even
the L1D-RND baseline makes considerable gains in misclassification with increasing budgets.

In addition, attacks provide a critical lens to evaluate the robustness of victim models under adversarial
conditions. As Table 14 shows, GraphSAGE is the most resilient victim model in both evasion
and poisoning attacks. In evasion, Nettack yields the lowest average misclassification rate of 44.8%
against GraphSAGE across 15 budgets (three datasets and five budgets). GIN follows with an average
misclassification rate of 48.5%. In poisoning, Nettack has an average of 47.97% misclassification rate
on GraphSAGE models in three datasets across all budgets; other victim models have misclassification
rates in [53.4%, 57.4%].

Heterophily datasets. As shown in Table 15 and 16, under budget 1, the average misclassification
rate across seven attacks on four non-defense models is 33.96% for heterophily datasets and 27.78%
for homophily datasets, while the average misclassification rate is 52.21% for homophily datasets
and 46.86% for heterophily datasets under budget 5. This suggests that the first perturbation has
a greater adversarial impact in heterophily settings. However, with increasing perturbation
budgets, attacks tend to yield larger gains on homophily datasets. Nettack demonstrates the
highest effectiveness on homophily datasets with an average rank of 1.64, but its performance
significantly drops on heterophily datasets, where it ranks 5.48, the second worst. Interestingly,
another evaluation shows that FGA achieves an average rank of 3.10 on homophily datasets (second-
best), but rises to 1.92 on heterophily datasets, making it the top-performing attack in that setting.
Similarly, the naïve random attack L1D-RND shows the opposite trend; it performs surprisingly well
on heterophily datasets with an average rank of 2.33, but performs the worst, with an average rank of
6.27, on homophily datasets among the seven adversarial attack methods.

Large-scale dataset. On the moderately sized OGB-ARXIV dataset, which contains fewer than
200K nodes and is still considered small by industry standards, only three attack methods (L1D-RND,
PR-BCD (NA), and SGA) and two victim models (GCN and GSAGE) could be fully evaluated
within the 120-hour compute limit. As shown in Table 4, SGA consistently achieves the highest
misclassification rates across budgets 1 to 5 in both evasion and poisoning settings. This result
underscores a critical limitation: most existing adversarial attacks are not scalable enough to be
applied even to modestly large graphs, raising concerns about their practicality in real-world
deployments.
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Table 4: Misclassification rate (↑) on OGB-ARXIV with budget ∆ = 1 to 5 in both evasion and
poison setting on GCN and GSAGE.

GCN GSAGE

Attack 1 2 3 4 5 1 2 3 4 5

E
va

si
on L1D-RND 16.00 ± 2.00 30.67 ± 7.02 36.00 ± 2.00 38.00 ± 2.00 36.67 ± 3.06 16.67 ± 8.08 27.33 ± 7.02 33.33 ± 7.57 29.33 ± 9.45 34.67 ± 7.02

PR-BCD (NA) 23.33 ± 3.06 34.00 ± 3.46 38.00 ± 2.00 40.67 ± 3.06 39.33 ± 1.15 20.67 ± 1.15 24.67 ± 1.15 22.00 ± 3.46 24.67 ± 3.06 28.00 ± 2.00

SGA 36.67 ± 5.03 48.67 ± 7.02 56.00 ± 2.00 57.33 ± 1.15 58.67 ± 1.15 40.67 ± 2.31 56.00 ± 10.00 63.33 ± 4.16 72.00 ± 7.21 71.33 ± 5.77

Po
is

on

L1D-RND 17.33 ± 4.16 32.00 ± 6.00 38.00 ± 2.00 39.33 ± 1.15 38.67 ± 2.31 17.33 ± 5.03 26.00 ± 3.46 30.00 ± 14.00 31.33 ± 6.43 34.67 ± 7.02

PR-BCD (NA) 22.00 ± 5.29 34.67 ± 3.06 36.67 ± 1.15 40.67 ± 5.03 39.33 ± 1.15 17.33 ± 3.06 24.00 ± 2.00 19.33 ± 3.06 26.00 ± 2.00 26.00 ± 2.00

SGA 36.67 ± 2.31 48.67 ± 8.08 56.00 ± 2.00 57.33 ± 1.15 58.67 ± 1.15 40.00 ± 3.46 60.00 ± 8.00 61.33 ± 5.77 70.67 ± 5.03 74.67 ± 8.08
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Figure 2: Average misclassification rate for different node categories of four non-defense models
caused by seven adversarial attacks on three homophily datasets in the poison setting.

6.2 DEFENDED EVASION AND POISONING ATTACKS

The results for evasion and poisoning attacks are shown in Appendix Tables 17, 18 for homophily
datasets and Tables 19, 20 for heterophily datasets. We also show reduced results in Table 2 and
Table 3, lower rows.

Homophily datasets. Appendix Tables 17 and 18 demonstrate that defense models substantially
reduce misclassification rates, with poisoning attacks being generally easier to defend against than
evasion. For example, Nettack’s average misclassification rate drops from 49.1% to 32.2% under
evasion, and from 53.6% to 23.56% under poisoning when defenses are applied. Nettack still ranks
highest in 8 out of 15 defended poisoning scenarios.

Among defense methods, GNNGuard is the most effective: at ∆ = 1, it achieves an average
misclassification rate (i.e., best defense) of just 5.01% for evasion and 5.92% for poisoning across
three datasets and seven attacks. GRAND consistently ranks as the second-best defense. In contrast,
the FGA attack model, despite its strong performance in the vanilla setting, performs poorly against
all defended models.

The performance of the L1D-RND baseline is noteworthy: this simple, naive attack achieves the
highest misclassification rate in 19 out of 45 defended evasion settings and 18 out of 45 defended
poisoning settings (across three datasets, three victim models, and five budgets). Its surprisingly
strong performance, despite lacking any optimization or model-specific tuning, calls into
question the actual gains offered by several state-of-the-art adversarial attack methods.

To highlight key trends, we focus on the best-performing defense, GNNGuard, and its performance
against vanilla attacks on the widely used GCN model, as summarized in Table 2.

At lower budgets (e.g., ∆ = 1), which represent realistic perturbation scenarios such as the addition
or removal of a single edge, Nettack does not outperform any other model in evasion attacks. When
defenses are applied, Nettack’s evasion effectiveness often falls below that of PR-BCD (NA). However,
in poisoning attacks, Nettack remains strong, with GOttack emerging as the second-best method.

Overall, Table 2 highlights the robustness of GNNGuard, which substantially reduces the
effectiveness of advanced attacks in both evasion and poisoning settings, often lowering their
impact to the level of the naive L1D-RND baseline.

Heterophily datasets. As shown in Tables 19 and 20, defenses are more effective on heterophily
datasets than on homophily datasets. Across budgets ∆ = 1 to 5, average misclassification rates on
homophily datasets are [20.11%, 40.82%], while the corresponding rates on heterophily datasets are
substantially lower: [16.08%, 23.33%].
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This discrepancy suggests that heterophily graphs are more resistant to adversarial perturbations,
likely due to weaker local homogeneity, which reduces the impact of structural changes. Under
defense, attack methods achieve abysmally low rates on heterophily datasets compared to homophily
datasets. Notably, FGA becomes the top-performing attack on heterophily datasets (rank 1.92),
while Nettack’s performance degrades sharply, dropping from rank 2.08 to 6.10, the worst among all
methods. The best defense model, RUNG (Hou et al., 2024), reduces most attack rates to 2%. This
underscores that novel approaches are needed in heterophily settings, marking this as an open and
underexplored research area.

The Impact of Target Node Selection. Target node selection plays a critical role in evaluating adver-
sarial attacks. In the literature, Nettack’s strategy, selecting 10 high-margin nodes, 10 low-margin
nodes, and 20 randomly chosen ones (totaling 40), has become a de facto standard. However, this
approach ignores structural properties such as node degree, which substantially influence attack suc-
cess. Appendix Table 23 shows that using node degree as a selection criterion results in substantially
lower attack success compared to margin-based or random selection, even in vanilla (undefended)
settings. Figure 2 shows that all attack methods perform poorly on these nodes, while low-degree and
low-margin nodes remain vulnerable. High-degree nodes exhibit alarmingly low misclassification
rates, ranging from only 0.05 to 0.28, despite the absence of any defense. Crucially, because most
attacks were developed and benchmarked on small graphs with low average degree (e.g., CORA),
this vulnerability remained undetected, largely due to scalability limitations that prevent testing on
larger, high-degree networks. This suggests that evaluations ignoring node degree systematically
overstate both the effectiveness of attack models and the fragility of GNNs and raises serious
concerns about the applicability of current attack models to real-world networks, where average
node degrees are much higher (Rossi & Ahmed, 2025).

The Impact of Victim Model Selection. In practical deployments, victim models are selected
based on performance over training and validation sets. However, many adversarial GNN studies
evaluate attacks on fixed, non-optimized model configurations, ignoring this critical step. Our results
in Table 24 show that incorporating model selection into evaluations can significantly alter attack
outcomes. On CORA and CITESEER, victim models chosen via model selection are generally more
vulnerable: for example, SGA’s misclassification rate on GIN in the poisoning setting differs by an
average of 15.27% across budgets. In contrast, on PUBMED, model selection sometimes leads to
more robust victim models. This is particularly evident for GSAGE, where attacks are less effective
on tuned models than on fixed ones.

These findings highlight a critical inconsistency: the perceived effectiveness of adversarial attacks
depends not only on the attack method but also on whether the victim model is realistically
selected. Evaluations that omit this step may either overstate or understate the vulnerability of GNNs,
leading to misleading conclusions about attack strength.

Limitations. Our benchmark focuses on static graphs, which is the predominant setting in the
adversarial GNN literature. While attacks on dynamic graphs and continuous-time embeddings are
also important, they remain largely unexplored across existing benchmarks. We view these as natural
and valuable extensions of our work rather than omissions, and anticipate that our framework can
provide the foundation for evaluating such scenarios in the future.

7 CONCLUSION

We have conducted a large-scale evaluation of adversarial attacks and defenses on GNNs, revealing
that conclusions from prior work often do not hold under fair and rigorous settings. While Nettack has
remained a strong performer, the unexpectedly competitive results of our naive baseline, L1D-RND,
challenge assumptions about the progress made in adversarial graph learning. PR-BCD and FGA
are scalable options. Our analysis has shown that dataset properties, target node selection, and
victim model configuration significantly affect attack success, yet have been inconsistently addressed
in past evaluations. Our findings highlight the need for standardized, practical benchmarks that
reflect real-world constraints and model selection practices. By exposing gaps in current evaluation
protocols, we have laid the groundwork for more reliable assessments of adversarial robustness
in graph learning. We hope this work prevents the repetition of past methodological pitfalls and
encourages more transparent and scalable evaluations moving forward.
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REPRODUCIBILITY STATEMENT

We release a complete anonymized codebase to ensure full reproducibility at https://
anonymous.4open.science/r/Adversarial-Benchmark. All experiments are run
with fixed random seeds, and model hyperparameters are obtained from performing model se-
lection on set of all possible hyperparameters provided in Table 13. Additional details on compute
resources and experimental setup are described in Section 5.

REFERENCES

Yassine Abbahaddou, Sofiane Ennadir, Johannes F. Lutzeyer, Michalis Vazirgiannis, and Henrik
Boström. Bounding the expected robustness of graph neural networks subject to node feature
attacks. In The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?
id=DfPtC8uSot.

Zulfikar Alom, Tran Gia Bao Ngo, Murat Kantarcioglu, and Cuneyt Gurcan Akcora. GOttack:
Universal adversarial attacks on graph neural networks via graph orbits learning. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=YbURbViE7l.

Davide Bacciu, Federico Errica, Alessio Micheli, and Marco Podda. A gentle introduction to deep
learning for graphs. Neural Networks, 129:203–221, 9 2020.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with global
structural information. In James Bailey, Alistair Moffat, Charu C. Aggarwal, Maarten de Rijke, Ravi
Kumar, Vanessa Murdock, Timos K. Sellis, and Jeffrey Xu Yu (eds.), Proceedings of the 24th ACM
International Conference on Information and Knowledge Management, CIKM 2015, Melbourne,
VIC, Australia, October 19 - 23, 2015, pp. 891–900. ACM, 2015. doi: 10.1145/2806416.2806512.
URL https://doi.org/10.1145/2806416.2806512.

Gavin C. Cawley and Nicola L. C. Talbot. On over-fitting in model selection and subsequent selection
bias in performance evaluation. J. Mach. Learn. Res., 11:2079–2107, 2010. doi: 10.5555/1756006.
1859921. URL https://dl.acm.org/doi/10.5555/1756006.1859921.

Jinyin Chen, Yangyang Wu, Xuanheng Xu, Yixian Chen, Haibin Zheng, and Qi Xuan. Fast gradient
attack on network embedding. CoRR, abs/1809.02797, 2018. URL http://arxiv.org/abs/
1809.02797.

Jinyin Chen, Xiang Lin, Hui Xiong, Yangyang Wu, Haibin Zheng, and Qi Xuan. Smoothing
adversarial training for GNN. IEEE Trans. Comput. Soc. Syst., 8(3):618–629, 2021a. doi: 10.1109/
TCSS.2020.3042628. URL https://doi.org/10.1109/TCSS.2020.3042628.

Liang Chen, Jintang Li, Qibiao Peng, Yang Liu, Zibin Zheng, and Carl Yang. Understanding structural
vulnerability in graph convolutional networks. In Zhi-Hua Zhou (ed.), Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal,
Canada, 19-27 August 2021, pp. 2249–2255. ijcai.org, 2021b. doi: 10.24963/IJCAI.2021/310.
URL https://doi.org/10.24963/ijcai.2021/310.

Lingwei Chen, Xiaoting Li, and Dinghao Wu. Enhancing robustness of graph convolutional networks
via dropping graph connections. In Frank Hutter, Kristian Kersting, Jefrey Lijffijt, and Isabel
Valera (eds.), Machine Learning and Knowledge Discovery in Databases - European Conference,
ECML PKDD 2020, Ghent, Belgium, September 14-18, 2020, Proceedings, Part III, volume
12459 of Lecture Notes in Computer Science, pp. 412–428. Springer, 2020. doi: 10.1007/
978-3-030-67664-3\_25. URL https://doi.org/10.1007/978-3-030-67664-3_
25.

Yongqiang Chen, Han Yang, Yonggang Zhang, Kaili Ma, Tongliang Liu, Bo Han, and James Cheng.
Understanding and improving graph injection attack by promoting unnoticeability. arXiv preprint
arXiv:2202.08057, 2022.

10

https://anonymous.4open.science/r/Adversarial-Benchmark
https://anonymous.4open.science/r/Adversarial-Benchmark
https://openreview.net/forum?id=DfPtC8uSot
https://openreview.net/forum?id=DfPtC8uSot
https://openreview.net/forum?id=YbURbViE7l
https://openreview.net/forum?id=YbURbViE7l
https://doi.org/10.1145/2806416.2806512
https://dl.acm.org/doi/10.5555/1756006.1859921
http://arxiv.org/abs/1809.02797
http://arxiv.org/abs/1809.02797
https://doi.org/10.1109/TCSS.2020.3042628
https://doi.org/10.24963/ijcai.2021/310
https://doi.org/10.1007/978-3-030-67664-3_25
https://doi.org/10.1007/978-3-030-67664-3_25


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Velickovic. Principal
neighbourhood aggregation for graph nets. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Chenhui Deng, Xiuyu Li, Zhuo Feng, and Zhiru Zhang. GARNET: reduced-rank topology learning for
robust and scalable graph neural networks. In Bastian Rieck and Razvan Pascanu (eds.), Learning
on Graphs Conference, LoG 2022, 9-12 December 2022, Virtual Event, volume 198 of Proceedings
of Machine Learning Research, pp. 3. PMLR, 2022. URL https://proceedings.mlr.
press/v198/deng22a.html.

Zhijie Deng, Yinpeng Dong, and Jun Zhu. Batch virtual adversarial training for graph convolutional
networks. AI Open, 4:73–79, 2023. doi: 10.1016/J.AIOPEN.2023.08.007. URL https://doi.
org/10.1016/j.aiopen.2023.08.007.

Dongsheng Duan, Lingling Tong, Yangxi Li, Jie Lu, Lei Shi, and Cheng Zhang. AANE: anomaly
aware network embedding for anomalous link detection. In Claudia Plant, Haixun Wang, Alfredo
Cuzzocrea, Carlo Zaniolo, and Xindong Wu (eds.), 20th IEEE International Conference on
Data Mining, ICDM 2020, Sorrento, Italy, November 17-20, 2020, pp. 1002–1007. IEEE, 2020.
doi: 10.1109/ICDM50108.2020.00116. URL https://doi.org/10.1109/ICDM50108.
2020.00116.

Pantelis Elinas, Edwin V. Bonilla, and Louis C. Tiao. Variational inference for graph convolutional
networks in the absence of graph data and adversarial settings. In Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Negin Entezari, Saba A. Al-Sayouri, Amirali Darvishzadeh, and Evangelos E. Papalexakis. All you
need is low (rank): Defending against adversarial attacks on graphs. In James Caverlee, Xia (Ben)
Hu, Mounia Lalmas, and Wei Wang (eds.), WSDM ’20: The Thirteenth ACM International
Conference on Web Search and Data Mining, Houston, TX, USA, February 3-7, 2020, pp. 169–
177. ACM, 2020. doi: 10.1145/3336191.3371789. URL https://doi.org/10.1145/
3336191.3371789.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph neural
networks for graph classification. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=HygDF6NFPB.

Boyuan Feng, Yuke Wang, and Yufei Ding. UAG: uncertainty-aware attention graph neural network
for defending adversarial attacks. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021,
The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021, pp. 7404–7412. AAAI Press, 2021a. doi: 10.1609/AAAI.V35I8.16908.
URL https://doi.org/10.1609/aaai.v35i8.16908.

Fuli Feng, Xiangnan He, Jie Tang, and Tat-Seng Chua. Graph adversarial training: Dynamically regu-
larizing based on graph structure. IEEE Trans. Knowl. Data Eng., 33(6):2493–2504, 2021b. doi: 10.
1109/TKDE.2019.2957786. URL https://doi.org/10.1109/TKDE.2019.2957786.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning on graphs.
In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Simon Geisler, Tobias Schmidt, Hakan Sirin, Daniel Zügner, Aleksandar Bojchevski, and Stephan
Günnemann. Robustness of graph neural networks at scale. In Marc’Aurelio Ranzato, Alina
Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems 34: Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 7637–7649, 2021.

11

https://proceedings.mlr.press/v198/deng22a.html
https://proceedings.mlr.press/v198/deng22a.html
https://doi.org/10.1016/j.aiopen.2023.08.007
https://doi.org/10.1016/j.aiopen.2023.08.007
https://doi.org/10.1109/ICDM50108.2020.00116
https://doi.org/10.1109/ICDM50108.2020.00116
https://doi.org/10.1145/3336191.3371789
https://doi.org/10.1145/3336191.3371789
https://openreview.net/forum?id=HygDF6NFPB
https://openreview.net/forum?id=HygDF6NFPB
https://doi.org/10.1609/aaai.v35i8.16908
https://doi.org/10.1109/TKDE.2019.2957786


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Stephan Günnemann. Graph neural networks: Adversarial robustness. Graph neural networks:
foundations, frontiers, and applications, pp. 149–176, 2022.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus,
S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pp. 1024–1034, 2017.

Yunqi Hong and Cho-Jui Hsieh. Egala: Efficient gradient approximation for large-scale graph
adversarial attack.

Zhichao Hou, Ruiqi Feng, Tyler Derr, and Xiaorui Liu. Robust graph neural networks via unbiased
aggregation. In Advances in Neural Information Processing Systems 38: Annual Conference on
Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December
10 - 15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/
hash/c6e31f86c1eb8dfc05190cf15ed52064-Abstract-Conference.html.

Weibo Hu, Chuan Chen, Yaomin Chang, Zibin Zheng, and Yunfei Du. Robust graph con-
volutional networks with directional graph adversarial training. Appl. Intell., 51(11):7812–
7826, 2021. doi: 10.1007/S10489-021-02272-Y. URL https://doi.org/10.1007/
s10489-021-02272-y.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on
graphs. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020a. URL https://proceedings.neurips.cc/paper/2020/hash/
fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.),
Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020b.

Yeonjun In, Kanghoon Yoon, Kibum Kim, Kijung Shin, and Chanyoung Park. Self-guided robust
graph structure refinement. In Proceedings of the ACM Web Conference 2024, pp. 697–708, 2024.

Vassilis N. Ioannidis and Georgios B. Giannakis. Edge dithering for robust adaptive graph con-
volutional networks. CoRR, abs/1910.09590, 2019. URL http://arxiv.org/abs/1910.
09590.

Vassilis N. Ioannidis, Antonio G. Marques, and Georgios B. Giannakis. Tensor graph convolutional
networks for multi-relational and robust learning. IEEE Trans. Signal Process., 68:6535–6546,
2020. doi: 10.1109/TSP.2020.3028495. URL https://doi.org/10.1109/TSP.2020.
3028495.

Ming Jin, Heng Chang, Wenwu Zhu, and Somayeh Sojoudi. Power up! robust graph convolutional
network against evasion attacks based on graph powering. CoRR, abs/1905.10029, 2019. URL
http://arxiv.org/abs/1905.10029.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In Rajesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya
Prakash (eds.), KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, Virtual Event, CA, USA, August 23-27, 2020, pp. 66–74. ACM, 2020. doi: 10.1145/
3394486.3403049. URL https://doi.org/10.1145/3394486.3403049.

Wei Jin, Tyler Derr, Yiqi Wang, Yao Ma, Zitao Liu, and Jiliang Tang. Node similarity preserving graph
convolutional networks. In Liane Lewin-Eytan, David Carmel, Elad Yom-Tov, Eugene Agichtein,
and Evgeniy Gabrilovich (eds.), WSDM ’21, The Fourteenth ACM International Conference on
Web Search and Data Mining, Virtual Event, Israel, March 8-12, 2021, pp. 148–156. ACM, 2021.
doi: 10.1145/3437963.3441735. URL https://doi.org/10.1145/3437963.3441735.

12

http://papers.nips.cc/paper_files/paper/2024/hash/c6e31f86c1eb8dfc05190cf15ed52064-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/c6e31f86c1eb8dfc05190cf15ed52064-Abstract-Conference.html
https://doi.org/10.1007/s10489-021-02272-y
https://doi.org/10.1007/s10489-021-02272-y
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
http://arxiv.org/abs/1910.09590
http://arxiv.org/abs/1910.09590
https://doi.org/10.1109/TSP.2020.3028495
https://doi.org/10.1109/TSP.2020.3028495
http://arxiv.org/abs/1905.10029
https://doi.org/10.1145/3394486.3403049
https://doi.org/10.1145/3437963.3441735


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Wei Jin, Tong Zhao, Jiayuan Ding, Yozen Liu, Jiliang Tang, and Neil Shah. Empowering graph repre-
sentation learning with test-time graph transformation. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.
URL https://openreview.net/forum?id=Lnxl5pr018.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=SJU4ayYgl.

Runlin Lei, Haipeng Ding, and Zhewei Wei. Sheattack: A silhouette score motivated restricted
black-box attack on graphs.

Jintang Li, Tao Xie, Liang Chen, Fenfang Xie, Xiangnan He, and Zibin Zheng. Adversarial attack on
large scale graph. CoRR, abs/2009.03488, 2020a. URL https://arxiv.org/abs/2009.
03488.

Jintang Li, Tao Xie, Liang Chen, Fenfang Xie, Xiangnan He, and Zibin Zheng. Adversarial attack on
large scale graph. IEEE Trans. Knowl. Data Eng., 35(1):82–95, 2023. doi: 10.1109/TKDE.2021.
3078755. URL https://doi.org/10.1109/TKDE.2021.3078755.

Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. Deeprobust: A pytorch library for adversarial attacks
and defenses. arXiv preprint arXiv:2005.06149, 2020b.

Zachary C. Lipton and Jacob Steinhardt. Troubling trends in machine learning scholarship. ACM
Queue, 17(1):80, 2019.

Xiaorui Liu, Jiayuan Ding, Wei Jin, Han Xu, Yao Ma, Zitao Liu, and Jiliang Tang. Graph neural
networks with adaptive residual. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin,
Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pp. 9720–9733, 2021a.

Xiaorui Liu, Wei Jin, Yao Ma, Yaxin Li, Hua Liu, Yiqi Wang, Ming Yan, and Jiliang Tang. Elas-
tic graph neural networks. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pp. 6837–6849. PMLR, 2021b. URL
http://proceedings.mlr.press/v139/liu21k.html.

Dongsheng Luo, Wei Cheng, Wenchao Yu, Bo Zong, Jingchao Ni, Haifeng Chen, and Xiang Zhang.
Learning to drop: Robust graph neural network via topological denoising. In Liane Lewin-Eytan,
David Carmel, Elad Yom-Tov, Eugene Agichtein, and Evgeniy Gabrilovich (eds.), WSDM ’21,
The Fourteenth ACM International Conference on Web Search and Data Mining, Virtual Event,
Israel, March 8-12, 2021, pp. 779–787. ACM, 2021. doi: 10.1145/3437963.3441734. URL
https://doi.org/10.1145/3437963.3441734.

Alessio Micheli. Neural network for graphs: A contextual constructive approach. IEEE Trans. Neural
Networks, 20(3):498–511, 2009. doi: 10.1109/TNN.2008.2010350. URL https://doi.org/
10.1109/TNN.2008.2010350.

Felix Mujkanovic, Simon Geisler, Stephan Günnemann, and Aleksandar Bojchevski. Are defenses
for graph neural networks robust? In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave,
K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022, 2022.

Yurii E. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM J. Optim., 22(2):341–362, 2012. doi: 10.1137/100802001. URL https://doi.org/
10.1137/100802001.

Ryan Rossi and Nesreen Ahmed. Network repository: A scientific network data repository with
interactive visualization and mining tools, 2025. URL https://networkrepository.
com/network-analytics-graphlets-log.php.

13

https://openreview.net/forum?id=Lnxl5pr018
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://arxiv.org/abs/2009.03488
https://arxiv.org/abs/2009.03488
https://doi.org/10.1109/TKDE.2021.3078755
http://proceedings.mlr.press/v139/liu21k.html
https://doi.org/10.1145/3437963.3441734
https://doi.org/10.1109/TNN.2008.2010350
https://doi.org/10.1109/TNN.2008.2010350
https://doi.org/10.1137/100802001
https://doi.org/10.1137/100802001
https://networkrepository.com/network-analytics-graphlets-log.php
https://networkrepository.com/network-analytics-graphlets-log.php


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. In
IMA Journal of Complex Networks, volume abs/1909.13021, 2019. URL http://arxiv.org/
abs/1909.13021.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. J.
Complex Networks, 9(2), 2021. doi: 10.1093/COMNET/CNAB014. URL https://doi.org/
10.1093/comnet/cnab014.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Trans. Neural Networks, 20(1):61–80, 2009. doi: 10.1109/
TNN.2008.2005605. URL https://doi.org/10.1109/TNN.2008.2005605.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. CoRR, abs/1811.05868, 2018. URL http://arxiv.org/
abs/1811.05868.

Shuchang Tao, Huawei Shen, Qi Cao, Liang Hou, and Xueqi Cheng. Adversarial immunization
for certifiable robustness on graphs. In Liane Lewin-Eytan, David Carmel, Elad Yom-Tov, Eu-
gene Agichtein, and Evgeniy Gabrilovich (eds.), WSDM ’21, The Fourteenth ACM International
Conference on Web Search and Data Mining, Virtual Event, Israel, March 8-12, 2021, pp. 698–
706. ACM, 2021. doi: 10.1145/3437963.3441782. URL https://doi.org/10.1145/
3437963.3441782.

Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang, Xing Xie, and
Minyi Guo. Graphgan: Graph representation learning with generative adversarial nets. In Sheila A.
McIlraith and Kilian Q. Weinberger (eds.), Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-
18), New Orleans, Louisiana, USA, February 2-7, 2018, pp. 2508–2515. AAAI Press, 2018. doi:
10.1609/AAAI.V32I1.11872. URL https://doi.org/10.1609/aaai.v32i1.11872.

Bingzhe Wu, Yatao Bian, Hengtong Zhang, Jintang Li, Junchi Yu, Liang Chen, Chaochao Chen, and
Junzhou Huang. Trustworthy graph learning: Reliability, explainability, and privacy protection. In
Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining, pp.
4838–4839, 2022.

Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Weinberger.
Simplifying graph convolutional networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-
15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning
Research, pp. 6861–6871. PMLR, 2019a. URL http://proceedings.mlr.press/v97/
wu19e.html.

Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Adversarial
examples for graph data: Deep insights into attack and defense. In Sarit Kraus (ed.), Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao,
China, August 10-16, 2019, pp. 4816–4823. ijcai.org, 2019b. doi: 10.24963/IJCAI.2019/669. URL
https://doi.org/10.24963/ijcai.2019/669.

Yang Xiao, Jie Li, and Wengui Su. A lightweight metric defence strategy for graph neural net-
works against poisoning attacks. In Debin Gao, Qi Li, Xiaohong Guan, and Xiaofeng Liao
(eds.), Information and Communications Security - 23rd International Conference, ICICS 2021,
Chongqing, China, November 19-21, 2021, Proceedings, Part II, volume 12919 of Lecture Notes
in Computer Science, pp. 55–72. Springer, 2021. doi: 10.1007/978-3-030-88052-1\_4. URL
https://doi.org/10.1007/978-3-030-88052-1_4.

Hui Xu, Liyao Xiang, Jiahao Yu, Anqi Cao, and Xinbing Wang. Speedup robust graph structure
learning with low-rank information. In Gianluca Demartini, Guido Zuccon, J. Shane Culpepper,
Zi Huang, and Hanghang Tong (eds.), CIKM ’21: The 30th ACM International Conference on
Information and Knowledge Management, Virtual Event, Queensland, Australia, November 1 - 5,
2021, pp. 2241–2250. ACM, 2021. doi: 10.1145/3459637.3482299. URL https://doi.org/
10.1145/3459637.3482299.

14

http://arxiv.org/abs/1909.13021
http://arxiv.org/abs/1909.13021
https://doi.org/10.1093/comnet/cnab014
https://doi.org/10.1093/comnet/cnab014
https://doi.org/10.1109/TNN.2008.2005605
http://arxiv.org/abs/1811.05868
http://arxiv.org/abs/1811.05868
https://doi.org/10.1145/3437963.3441782
https://doi.org/10.1145/3437963.3441782
https://doi.org/10.1609/aaai.v32i1.11872
http://proceedings.mlr.press/v97/wu19e.html
http://proceedings.mlr.press/v97/wu19e.html
https://doi.org/10.24963/ijcai.2019/669
https://doi.org/10.1007/978-3-030-88052-1_4
https://doi.org/10.1145/3459637.3482299
https://doi.org/10.1145/3459637.3482299


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Jiarong Xu, Yang Yang, Junru Chen, Xin Jiang, Chunping Wang, Jiangang Lu, and Yizhou
Sun. Unsupervised adversarially robust representation learning on graphs. In Thirty-Sixth
AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innova-
tive Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1,
2022, pp. 4290–4298. AAAI Press, 2022. doi: 10.1609/AAAI.V36I4.20349. URL https:
//doi.org/10.1609/aaai.v36i4.20349.

Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue Lin.
Topology attack and defense for graph neural networks: An optimization perspective. In Sarit Kraus
(ed.), Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI 2019, Macao, China, August 10-16, 2019, pp. 3961–3967. ijcai.org, 2019a. doi: 10.24963/
IJCAI.2019/550. URL https://doi.org/10.24963/ijcai.2019/550.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019b. URL https://openreview.
net/forum?id=ryGs6iA5Km.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020.

Baoliang Zhang, Xiaoxin Guo, Zhenchuan Tu, and Jia Zhang. Graph alternate learning for
robust graph neural networks in node classification. Neural Comput. Appl., 34(11):8723–
8735, 2022. doi: 10.1007/S00521-021-06863-1. URL https://doi.org/10.1007/
s00521-021-06863-1.

Li Zhang and Haiping Lu. A feature-importance-aware and robust aggregator for GCN. In Mathieu
d’Aquin, Stefan Dietze, Claudia Hauff, Edward Curry, and Philippe Cudré-Mauroux (eds.), CIKM

’20: The 29th ACM International Conference on Information and Knowledge Management, Virtual
Event, Ireland, October 19-23, 2020, pp. 1813–1822. ACM, 2020. doi: 10.1145/3340531.3411983.
URL https://doi.org/10.1145/3340531.3411983.

Xiang Zhang and Marinka Zitnik. Gnnguard: Defending graph neural networks against adversarial
attacks. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020.

Yingxue Zhang, S Khan, and Mark Coates. Comparing and detecting adversarial attacks for graph
deep learning. In Proc. representation learning on graphs and manifolds workshop, Int. Conf.
learning representations, New Orleans, LA, USA, 2019.

Yingxue Zhang, Florence Regol, Soumyasundar Pal, Sakif Khan, Liheng Ma, and Mark Coates.
Detection and defense of topological adversarial attacks on graphs. In Arindam Banerjee and
Kenji Fukumizu (eds.), The 24th International Conference on Artificial Intelligence and Statistics,
AISTATS 2021, April 13-15, 2021, Virtual Event, volume 130 of Proceedings of Machine Learning
Research, pp. 2989–2997. PMLR, 2021. URL http://proceedings.mlr.press/v130/
zhang21i.html.

Yuxiang Zhang, Xin Liu, Meng Wu, Wei Yan, Mingyu Yan, Xiaochun Ye, and Dongrui Fan. Disttack:
Graph adversarial attacks toward distributed gnn training. In European Conference on Parallel
Processing, pp. 302–316. Springer, 2024.

Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen, and
Wei Wang. Robust graph representation learning via neural sparsification. In Proceedings of the

15

https://doi.org/10.1609/aaai.v36i4.20349
https://doi.org/10.1609/aaai.v36i4.20349
https://doi.org/10.24963/ijcai.2019/550
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1007/s00521-021-06863-1
https://doi.org/10.1007/s00521-021-06863-1
https://doi.org/10.1145/3340531.3411983
http://proceedings.mlr.press/v130/zhang21i.html
http://proceedings.mlr.press/v130/zhang21i.html


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research, pp. 11458–11468. PMLR, 2020. URL
http://proceedings.mlr.press/v119/zheng20d.html.

Qinkai Zheng, Xu Zou, Yuxiao Dong, Yukuo Cen, Da Yin, Jiarong Xu, Yang Yang, and Jie Tang.
Graph robustness benchmark: Benchmarking the adversarial robustness of graph machine learning.
arXiv preprint arXiv:2111.04314, 2021.

Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. Robust graph convolutional networks
against adversarial attacks. In Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria
Terzi, and George Karypis (eds.), Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019,
pp. 1399–1407. ACM, 2019. doi: 10.1145/3292500.3330851. URL https://doi.org/10.
1145/3292500.3330851.

Jiong Zhu, Junchen Jin, Donald Loveland, Michael T Schaub, and Danai Koutra. How does
heterophily impact the robustness of graph neural networks? theoretical connections and practical
implications. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 2637–2647, 2022.

Jun Zhuang and Mohammad Al Hasan. Defending graph convolutional networks against dynamic
graph perturbations via bayesian self-supervision. In Thirty-Sixth AAAI Conference on Artificial
Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelli-
gence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence,
EAAI 2022 Virtual Event, February 22 - March 1, 2022, pp. 4405–4413. AAAI Press, 2022. doi:
10.1609/AAAI.V36I4.20362. URL https://doi.org/10.1609/aaai.v36i4.20362.

Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. In Yike Guo and Faisal Farooq (eds.), Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD 2018, London, UK,
August 19-23, 2018, pp. 2847–2856. ACM, 2018. doi: 10.1145/3219819.3220078. URL https:
//doi.org/10.1145/3219819.3220078.

16

http://proceedings.mlr.press/v119/zheng20d.html
https://doi.org/10.1145/3292500.3330851
https://doi.org/10.1145/3292500.3330851
https://doi.org/10.1609/aaai.v36i4.20362
https://doi.org/10.1145/3219819.3220078
https://doi.org/10.1145/3219819.3220078

	Introduction
	Related Work
	Preliminaries
	Graph Adversarial Attacks
	Attack Models and Pitfalls of Evaluation
	Risk Assessment in Adversarial Evaluation

	Experiments
	Results and Discussion
	Vanilla Evasion and Poisoning Attacks
	Defended Evasion and Poisoning Attacks

	Conclusion

