
Published as a conference paper at ICLR 2023

SYMBOLIC PHYSICS LEARNER: DISCOVERING GOV-
ERNING EQUATIONS VIA MONTE CARLO TREE SEARCH

Fangzheng Sun1, Yang Liu2, Jian-Xun Wang3, Hao Sun4,∗

1Northeastern University, Boston, MA, USA; 2University of Chinese Academy of Sciences, Beijing, China;
3University of Notre Dame, Notre Dame, IN, USA; 4Renmin University of China, Beijing, China.
Emails: sun.fa@northeastern.edu; liuyang22@ucas.ac.cn; jwang33@nd.edu; haosun@ruc.edu.cn

ABSTRACT

Nonlinear dynamics is ubiquitous in nature and commonly seen in various science
and engineering disciplines. Distilling analytical expressions that govern nonlinear
dynamics from limited data remains vital but challenging. To tackle this funda-
mental issue, we propose a novel Symbolic Physics Learner (SPL) machine to
discover the mathematical structure of nonlinear dynamics. The key concept is
to interpret mathematical operations and system state variables by computational
rules and symbols, establish symbolic reasoning of mathematical formulas via
expression trees, and employ a Monte Carlo tree search (MCTS) agent to explore
optimal expression trees based on measurement data. The MCTS agent obtains an
optimistic selection policy through the traversal of expression trees, featuring the
one that maps to the arithmetic expression of underlying physics. Salient features
of the proposed framework include search flexibility and enforcement of parsimony
for discovered equations. The efficacy and superiority of the SPL machine are
demonstrated by numerical examples, compared with state-of-the-art baselines.

1 INTRODUCTION

We usually learn the behavior of a nonlinear dynamical system through its nonlinear governing
differential equations. These equations can be formulated as ẏ(t) = dy/dt = F(y(t)), where
y(t) = {y1(t), y2(t), ..., yn(t)} ∈ R1×ns denotes the system state at time t, F(·) a nonlinear
function set defining the state motions and ns the system dimension. The explicit form of F(·) for
some nonlinear dynamics remains underexplored. For example, in a mounted double pendulum
system, the mathematical description of the underlying physics might be unclear due to unknown
viscous and frictional damping forms. These uncertainties yield critical demands for the discovery of
nonlinear dynamics given observational data. Nevertheless, distilling the analytical form of governing
equations from limited noisy data, commonly seen in practice, is an intractable challenge.

Ever since the early work on the data-driven discovery of nonlinear dynamics (Džeroski & Todorovski,
1993; Dzeroski & Todorovski, 1995), many scientists have stepped into this field of study. During
the recent decade, the escalating advances in machine learning, data science, and computing power
have enabled several milestone efforts of unearthing the governing equations for nonlinear dynamical
systems. Notably, a breakthrough model named SINDy (Sparse Identification of Nonlinear Dynamics)
(Brunton et al., 2016) has shed light on tackling this achallenge. SINDy was invented to determine the
sparse solution among a pre-defined basis function library recursively through a sequential threshold
ridge regression (STRidge) algorithm. SINDy quickly became one of the state-of-art methods and
kindled significant enthusiasm in this field of study (Rudy et al., 2017; Long et al., 2018; Champion
et al., 2019; Chen et al., 2021; Sun et al., 2021; Rao et al., 2022). However, the success of this
sparsity-promoting approach relies on a properly defined candidate function library that requires good
prior knowledge of the system. It is also restricted by the fact that a linear combination of candidate
functions might be insufficient to recover complicated mathematical expressions. Moreover, when
the library size is massive, it empirically fails to hold the sparsity constraint.

At the same time, attempts have been made to tackle the nonlinear dynamics discovery problems
by introducing neural networks with activation functions replaced by commonly seen mathematical

∗Corresponding author

1

Published as a conference paper at ICLR 2023

operators (Martius & Lampert, 2017; Sahoo et al., 2018; Kim et al., 2019; Long et al., 2019). The
intricate formulas are obtained via symbolic expansion of the well-trained network. This interpretation
of physical laws results in larger candidate pools compared with the library-based representation of
physics employed by SINDy. Nevertheless, since the sparsity of discovered expressions is primarily
achieved by empirical pruning of the network weights, this framework exhibits sensitivity to user-
defined thresholds and may fall short to produce parsimonious equations for noisy and scarce data.

Alternatively, another inspiring work (Bongard & Lipson, 2007; Schmidt & Lipson, 2009) re-
envisioned the data-driven nonlinear dynamics discovery tasks by casting them into symbolic regres-
sion problems which have been profoundly resolved by the genetic programming (GP) approach
(Koza & Koza, 1992; Billard & Diday, 2003). Under this framework, a symbolic regressor is es-
tablished to identify the governing equations that best describe the underlying physics through free
combination of mathematical operators and symbols, leading to great flexibility in model selection.
One essential weakness of this early methodology is that, driven exclusively by the goal of empirically
seeking the best-fitting expression (e.g. minimizing the mean-square error) in a genetic expansion
process, the GP-based model usually over-fits the target system with numerous false-positive terms
under data noise, even sometimes at a subtle level, causing huge instability and uncertainty. However,
this ingenious idea has inspired a series of subsequent endeavors (Cornforth & Lipson, 2012; Gaucel
et al., 2014; Ly & Lipson, 2012; Quade et al., 2016; Vaddireddy et al., 2020). In a more recent work,
Deep Symbolic Regression (DSR) (Petersen et al., 2021; Mundhenk et al., 2021), a reinforcement
learning-based model was established and generally outperformed the GP based models including the
commercial Eureqa software (Langdon & Gustafson, 2010). Additionally, the AI-Feynman methods
(Udrescu & Tegmark, 2020; Udrescu et al., 2020; Udrescu & Tegmark, 2021) ameliorated symbolic
regression for distilling physics laws from data by combining neural network fitting with a suite of
physics-inspired techniques. This approach is also highlighted by a recursive decomposition of a
complicated mathematical expression into different parts on a tree-based graph, which disentangles
the original problem and speeds up the discovery. It outperformed Eureqa in the uncovering Feynman
physics equations (Feynman et al., 1965). However, this approach is built upon ad-hoc steps and, to
some extent, lacks flexible automation in equation discovery.

The popularity of adopting the tree-based symbolic reasoning of mathematical formulas (Lample
& Charton, 2019) has been rising recently to discover unknown mathematical expressions with a
reinforcement learning agent (Kubalík et al., 2019; Petersen et al., 2021; Mundhenk et al., 2021).
However, some former work attempting to apply the Monte Carlo tree search (MCTS) algorithm as an
alternative to GP for symbolic regression (Cazenave, 2013; White et al., 2015; Islam et al., 2018; Lu
et al., 2021) failed to leverage the full flexibility of this algorithm, resulting in the similar shortage that
GP-based symbolic regressors possess as discussed earlier. Despite these outcomes, we are conscious
of the strengths of the MCTS algorithm in equation discovery: it enables the flexible representation of
search space with customized computational grammars to guide the search tree expansion. A sound
mathematical underpinning for the trade-off between exploration and exploitation is remarkably
advantageous as well. These features make it possible to inform the MCTS agent by our prior physics
knowledge in nonlinear dynamics discovery rather than randomly searching in large spaces.

Contribution. We propose a promising model named Symbolic Physics Learner (SPL) machine,
empowered by MCTS, for discovery of nonlinear dynamics. This architecture relies on a grammar
composed of (i) computational rules and symbols to guide the search tree spanning and (ii) a composite
objective rewarding function to simultaneously evaluate the generated equations with observational
data and enforce the sparsity of the expression. Moreover, we design multiple adjustments to the
conventional MCTS by: (1) replacing the expected reward in UCT score with maximum reward to
better fit the equation discovery objective, (2) employing an adaptive scaling in policy evaluation
which would eliminate the uncertainty of the reward value range owing to the unknown error of the
system state derivatives, and (3) transplanting modules with high returns to the subsequent search as
a single leaf node. With these adjustments, the SPL machine is capable of efficiently uncovering the
best path to formulate the complex governing equations of the target dynamical system.

2 BACKGROUND

In this section, we expand and explain the background concepts brought up in the introduction to the
SPL architecture, including the expression tree (parse tree) and the MCTS algorithm.

2

Published as a conference paper at ICLR 2023

Expression tree. Any mathematical expression can be represented by a combinatorial set of symbols
and mathematical operations, and further expressed by a parse tree structure (Hopcroft et al., 2006;
Kusner et al., 2017) empowered by a context-free grammar (CFG). A CFG is a formal grammar
characterized by a tuple comprised of 4 elements, namely, G = (V,Σ, R, S), where V denotes
a finite set of non-terminal nodes, Σ a finite set of terminal nodes, R a finite set of production
rules, each interpreted as a mapping from a single non-terminal symbol in V to one or multiple
terminal/non-terminal node(s) in (V ∪ Σ)∗ where ∗ represents the Kleene star operation, and S a
single non-terminal node standing for a start symbol. In our work, equations are symbolized into parse
trees: we define the start node as equation symbol f , terminal symbols (leaf nodes) corresponding
to the independent variables formulating the equation (e.g, x, y), and a placeholder symbol C for
identifiable constant coefficients that stick to specific production rules. The non-terminal nodes
between root and leaf nodes are represented by some symbols distinct from the start and terminal
nodes (i.e., M). The production rules denote the commonly seen mathematical operators: unary rules
(one non-terminal node mapping to one node) for operators like cos(·), exp(·), log(| · |), and binary
rules (one non-terminal node mapping to two nodes) for operators such as +, −, ×, ÷. A parse tree
is then generated via a pre-order traversal of production rules rooted at f and terminates when all leaf
nodes are entirely filled with terminal symbols. Each mathematical expression can be represented by
such a traversal set of production rules.

Monte Carlo tree search. Monte Carlo tree search (MCTS) (Coulom, 2006) is an algorithm for
searching optimal decisions in large combinatorial spaces represented by search trees. This technique
complies with the best-first search principle based on the evaluations of stochastic simulations. It
has already been widely employed in and proved the spectacular success by various gaming artificial
intelligence systems, including the famous AlphaGo and AlphaZero (Silver et al., 2017) for computer
Go game. A basic MCTS algorithm is composed of an iterative process with four steps:

1. Selection. The MCTS agent, starting from the root node, moves through the visited nodes
of the search tree and selects the next node according to a given selection policy until it
reaches an expandable node or a leaf node.

2. Expansion. At an expandable node, the MCTS agent expands the search tree by selecting
one of its unvisited children.

3. Simulation. After expansion, if the current node is non-terminal, the agent performs one or
multiple independent simulations starting from the current node until reaching the terminal
state. In this process, actions are randomly selected.

4. Backpropagation. Statistics of nodes along the path from the current node to the root are
updated with respect to search results (scores evaluated from the terminate states reached).

To maintain a proper balance between the less-tested paths and the best policy identified so far, the
MCTS agent sticks to a trade-off between exploration and exploitation by taking action that maximizes
the Upper Confidence Bounds applied for Trees (UCT), formulated as (Kocsis & Szepesvári, 2006):

UCT (s, a) = Q(s, a) + c
√
ln[N(s)]/N(s, a) (1)

where Q(s, a) is the average result/reward of playing action a in state s in the simulations performed
in the history, encouraging the exploitation of current best child node; N(s) is number of times state
s visited, N(s, a) the number of times action a has been selected at state s, and

√
ln[N(s)]/N(s, a)

consequently encourages exploration of less-visited child nodes. Constant c controls the balance
between exploration and exploitation, empirically defined upon the specific problem. Theoretical
analysis of UCT-based MCTS (e.g., convergence, guarantees) is referred to Shah et al. (2019).

3 METHODS

Existing studies show that the MCTS agent continuously gains knowledge of specified tasks via the
expansion of the search tree and, based on the backpropagation of evaluation results (i.e., rewards and
number of visits), render a proper selection policy on visited states to guide the upcoming searching
(Silver et al., 2017). In the proposed SPL machine, such a process is integrated with the symbolic
reasoning of mathematical expressions to reproduce and evaluate valid mathematical expressions of
the physical laws in nonlinear dynamics step-by-step, and then obtain a favorable selection policy

3

Published as a conference paper at ICLR 2023

time

Differentiate
Denoise

𝐘 Yሶ
Data Preprocess

f

A A+

C M

y

×

f

A A+

C M×

f

A A+

C M

x

×

Max
UCT f

A A+

C M×

f

A A+

C M×

f

A A+

C M×

y x

randomly pick

unvisited
parse tree

f

A A+

C M×

x

A A+

f

A A+

C M×

f

A A+

C M×

f

A +

C M×

y x

f

A +

C M×

x

+

A

A

A

10 simulations
reward = 0.1

f

A A+

C M×

f

A A+

C M×

f

A +

C M×

y x

f

A +

C M×

x

+

A

A

A

10 simulations
reward = 0.1

𝑄 ൌ 0.5
𝑁 ൌ 30

𝑄 ൌ 0.1
𝑁 ൌ 10

𝑄 ൌ 0.4
𝑁 ൌ 50

A A

𝑄 ൌ 0.25
𝑁 ൌ 20

𝑄 ൌ 0.4
𝑁 ൌ 40

𝑄 ൌ 0.35
𝑁 ൌ 60

Selection Expansion Simulation Propagation

𝑄 ൌ 0.25
𝑁 ൌ 20

Repeat

𝑟 ൌ
𝜂௡

1൅ 𝑅𝑀𝑆𝐸

Figure 1: Schematic architecture of the SPL machine for nonlinear dynamics discovery. The graph
explains the 4 MCTS phases of one learning episode with an illustrative example.

pointing to the best solution. This algorithm is depicted in Figure 1 with an illustrative example and
its overall training scheme is shown in Algorithm 1. Discussion of the hyperparameter setting for this
algorithm is given in Appendix Section A.

Rewarding. To evaluate the mathematical expression f̃ projected from a parse tree, we define a
numerical reward r ∈ R ⊂ R based on this expression and input data D = {Y; Ẏi}, serving as the
search result of the current expansion or simulation. It is formulated as

r =
ηn

1 +
√

1
N

∥∥Ẏi − f̃(Y)
∥∥2
2

(2)

where Y = {y1,y2, ...,ym} ∈ Rm×N is the m dimensional state variables of a dynamical system,
Ẏi ∈ R1×N the numerically estimated state derivative for ith dimension, and N the number of
measurement data points. η denotes a discount factor, assigned slightly smaller than 1; n is empirically
defined as the total number of production rules in the parse tree. This numerator arrangement is
designated to penalize non-parsimonious solutions. This rewarding formulation outputs a reasonable
assessment to the distilled equations and encourages parsimonious solution by discounting the reward
of a non-parsimonious one. The rooted mean square error (RMSE) in denominator evaluates the
goodness-of-fit of the discovered equation w.r.t. the measurement data.

Training scheme. A grammar G = (V,Σ, R, S) is defined with appropriate nodes and production
rules to cover all possible forms of equations. To keep track of non-terminal nodes of the parsing
tree, we apply a last-in-first-out (LIFO) strategy and denote the non-terminal node placed last on
the stack NT as the current node. We define the action space A = R and the state space S as all
possible traversals of complete/incomplete parse trees (i.e., production rules selected) in ordered
sequences. At the current state st = [a1, a2, ...at] where t ∈ N is the discrete traversal step-index of
the upcoming production rule, the MCTS agent masks out the invalid production rules for current
non-terminal node and on that basis selects a valid rule as action at+1 (i.e, the left-hand side of a
valid production rule is the current non-terminal symbol). Consequently, the parse tree gains a new
terminal/non-terminal branch in accordance with at+1, meanwhile the agent finds itself in a new
state st+1 = [a1, a2, ...at, at+1]. The agent subsequently pops off the current non-terminal symbol
from NT and pushes the non-terminal nodes, if there are any, on the right-hand side of the selected
rule onto the stack. Once the agent attains an unvisited node, a certain amount of simulations are
performed, where the agent starts to randomly select the next node until the parse tree is completed.

4

Published as a conference paper at ICLR 2023

Algorithm 1: Training SPL for discovering the ith governing equation (i = 1, 2, ...,m)

1 Input: Grammar G = (V,Σ, R, S), measurement data D = {Y; Ẏi};
2 Parameters: discount/regularization factor η, exploration rate c, tmax; # η controls equation parsimony;
3 Output: Optimal governing equation f̃⋆;
4 for each episode do
5 Selection: Initialize s0 = ∅, t = 0, NT = [S];
6 while st expandable and t < tmax do
7 Choose at+1 = argmaxA UCT (st, a);
8 Take action at+1, observe s′, NT ;
9 st+1 ← s′ note as visited, t← t+ 1;

10 end
11 Expansion: Randomly take an unvisited path with action a, observe s′, NT ;
12 st+1 ← s′ note as visited, t← t+ 1;
13 if NT = ∅ then
14 Project f̃ , Backpropagate rt+1 and visited count and finish the episode;
15 end
16 Simulation: Fix the starting point st, NT ;
17 for each simulation do
18 while st non-terminal and t < tmax do
19 Randomly take an action a, observe s′, NT ;
20 st+1 ← s′, t← t+ 1;
21 end
22 if NT = ∅ then
23 Project f̃ and calculate rt+1;
24 end
25 end
26 Backpropagate simulation results;
27 end

The reward is calculated or the maximal size is exceeded, resulting in a zero reward. The best result
from the attempts counts as the reward of the current simulation phase and backpropagates from the
current unvisited node all the way to the root node.

Greedy search. Different from the MCTS-based gaming AIs where the agents are inclined to pick
the action with a high expected reward (average returns), the SPL machine seeks the unique optimal
solution. In the proposed training framework, we apply a greedy search heuristic to encourage the
agent to explore the branch which yields the best solution in the past: Q(s, a) is defined as the
maximum reward of the state-action pair, and its value is backpropagated from the highest reward in
the simulations upon the selection of the pair. Meanwhile, to overcome the local minima problems
due to this greedy approach in policy search, we enforce a certain level of randomness by empirically
adopting the ϵ-greedy algorithm, a commonly seen approach in reinforcement learning models.

Adaptive-scaled rewarding. Owing to the unknown level of error from the numerically estimated
state derivatives, the range of the RMSE in the SPL reward function is unpredictable. This uncertainty
affects the scale of rewarding values thus the balance between exploration and exploitation is presented
in Eq. (1). Besides adding “1” to the denominator of Eq. (2) to avoid dramatically large numerical
rewards, we also apply an adaptive scale of the reward, given by

Q(s, a) =
r∗(s, a)

maxs′∈S,a′∈A Q(s′, a′)
(3)

where r∗ denotes the maximum reward of the state-action pair. It is scaled by the current maximum
reward among all states S and actions A to reach an equilibrium that the Q-values are stretched to
the scale [0, 1] at any time. This self-adaptive fashion yields a well-scaled calculation of UCT under
different value ranges of rewards throughout the training.

Module transplantation. A function can be decomposed into smaller modules where each is simpler
than the original one (Udrescu et al., 2020). This modularity feature, as shown in Figure 2, helps us
develop a divide-and-conquer heuristic for distilling some complicated functions: after every certain
amount of MCTS iterations, the discovered parse trees with high rewards are picked out and thereupon

5

Published as a conference paper at ICLR 2023

A

A A×
A A×

xx

A A×
xx

f

A

A ×
A A×

xx

f

A

x

𝑚ଵ
∗: 𝑓 ൌ 𝑥ସ

𝑔ଵ∗ ← 𝑚ଵ
∗

A
A
A

+ A
A
A

‐

A
A
A

× A
A
A

÷

A A
cos

A A
sin

A A
exp

A x

A 1

𝑚ଶ
∗ : 𝑓 ൌ 𝑥ଷ

A 𝑥ଷ

Grammars

A 𝑥ସ

𝑔ଶ∗ ← 𝑚ଶ
∗

Figure 2: A module transplantation process: A complete parse serves
as a single production rule and is appended to the grammar pool.

reckoned as individual pro-
duction rules and appended
to the set of production
rules R; accordingly, these
trees are “transplanted” to
the future ones as their mod-
ules (i.e, the leaves). To
avoid early overfitting prob-
lem, we incrementally en-
large the sizes of such mod-
ules from a baseline length
to the maximum allowed size of the parse tree throughout the iterations. The augmentation part of
R is refreshed whenever new production rules are created, keeping only the ones engendering high
rewards. This approach accelerates the policy search by capturing and locking some modules that
likely contribute to, or appear as part of the optimal solution, especially in the cases of the mathe-
matical expression containing “deep” operations (e.g., high-order polynomials) whose structures are
difficult for the MCTS agent to repeatedly obtain during the selection and expansion.

4 SYMBOLIC REGRESSION: FINDING MATHEMATICAL FORMULAS

4.1 DATA NOISE & SCARCITY
GP SPL

Figure 3: The effect of data noise/scarcity on recov-
ery rate. The heatmaps demonstrate the recovery
rate of GP and the SPL machine under different data
conditions, summarized over 100 independent trials.

Data scarcity and noise are commonly seen
in measurement data and become one of the
bottleneck issues for discovering the govern-
ing equations of nonlinear dynamics. Tackling
the challenges in high-level data scarcity and
noise situations is traditionally regarded as an
essential robustness indicator for a nonlinear
dynamics discovery model. To this end, we
present an examination of the proposed SPL
machine by an equation discovery task in the
presence of multiple levels of data noise and
volume, comparing with a GP-based symbolic regressor (implemented with gplearn python package)1.
The target equation is f(x) = 0.3x3 + 0.5x2 + 2x, and the independent variable X is uniformly
sampled in the given range [−10, 10]. Gaussian white noise is added to the dependent variable Y
with the noise level defined as the root-mean-square ratio between the noise and the exact values. For
discovery, the two models are fed with equivalent search space: {+,−,×,÷, cost, x} as candidate
mathematical operations and symbols. The hyperparameters of the SPL machine are set as η = 0.99,
tmax = 50, and 10,000 episodes of training is regarded as one trail. For the GP-based symbolic
regressor, the population of programs is set as 2,000, the number of generations as 20. The range of
constant coefficient values is [−10, 10]. For 16 different data noise and scarcity levels, each model
was performed 100 independent trails. The recovery rates are displayed as a 4× 4 mesh grid w.r.t.
different noise/scarcity levels in Figure 3. It is observed that the SPL machine outperforms the
GP-based symbolic regressor in all the cases. A T-test also proves that the recovery rate of the SPL
machine is significantly higher than that of GP (e.g., p-value = 1.06× 10−7).

4.2 NGUYEN’S SYMBOLIC REGRESSION BENCHMARK

Nguyen’s symbolic regression benchmark task (Uy et al., 2011) is widely used to test the model’s
robustness in symbolic regression problems. Given a set of allowed operators, a target equation, and
data generated by the specified equation (see Table 1 for example), the tested model is supposed to
distill the mathematical expression that is identical to the target equation, or equivalent to it (e.g.,
Nguyen-7 equation can be recovered as log(x3+x2+x+1), Nguyen-10 equation can be recovered as
sin(x+ y), and Nguyen-11 equation can be recovered as exp(y log(x))). Some variants of Nguyen’s
benchmark equations are also considered in this experiment. Their discoveries require numerical

1All simulations are performed on a standard workstation with a NVIDIA GeForce RTX 2080Ti GPU.

6

Published as a conference paper at ICLR 2023

Table 1: Recovery rate of three algorithms in Nguyen’s benchmark symbolic regression problems.
The SPL machine outperforms the other two models in average recovery rate.

Benchmark Expression SPL NGGP GP

Nguyen-1 x3 + x2 + x 100% 100% 99%
Nguyen-2 x4 + x3 + x2 + x 100% 100% 90%
Nguyen-3 x5 + x4 + x3 + x2 + x 100% 100% 34%
Nguyen-4 x6 + x5 + x4 + x3 + x2 + x 99% 100% 54%
Nguyen-5 sin(x2) cos(x)− 1 95% 80% 12%
Nguyen-6 sin(x2) + sin(x+ x2) 100% 100% 11%
Nguyen-7 ln(x+ 1) + ln(x2 + 1) 100% 100% 17%
Nguyen-8

√
x 100% 100% 100%

Nguyen-9 sin(x) + sin(y2) 100% 100% 76%
Nguyen-10 2 sin(x) cos(y) 100% 100% 86%
Nguyen-11 xy 100% 100% 13%
Nguyen-12 x4 − x3 + 1

2
y2 − y 28% 4% 0%

Nguyen-1c 3.39x3 + 2.12x2 + 1.78x 100% 100% 0%
Nguyen-2c 0.48x4 + 3.39x3 + 2.12x2 + 1.78x 94% 100% 0%
Nguyen-5c sin(x2) cos(x)− 0.75 95% 98% 1%
Nguyen-8c

√
1.23x 100% 100% 56%

Nguyen-9c sin(1.5x) + sin(0.5y2) 96% 90% 0%

Average 94.5% 92.4% 38.2%

estimation of the constant coefficient values. Each equation generates two datasets: one for training
and another for testing. The discovered equation that perfectly fits the testing data is regarded as a
successful discovery (i.e., the discovered equation should be identical or equivalent to the target one).
The recovery rate is calculated based on 100 independent tests for each task. In these benchmark tasks,
three algorithms are tested: GP-based symbolic regressor, the neural-guided GP (NGGP) (Mundhenk
et al., 2021), and the SPL machine. Note that NGGP is an improved approach over DSR (Petersen
et al., 2021). They are given the same set of candidate operations: {+,−,×,÷, exp(·), cos(·), sin(·)}
for all benchmarks and {

√
·, ln(·)} are added to the 7, 8, 11 benchmarks. The hyperparameters of the

GP-based symbolic regressor are the same as those mentioned in Section 4.1; configurations of the
NGGP models are obtained from its source code2; detailed setting of the benchmark tasks and the
SPL model is described in Appendix Section B. The success rates are shown in Table 1. It is observed
that the SPL machine and the NGGP model both produce reliable results in Nguyen’s benchmark
problems and the SPL machine slightly outperforms NGGP. This experiment betokens the capacity
of the SPL machine in discovery of equations with divergent forms.

Ablation Study: We consider four ablation studies by removing: (a) the adaptive scaling in reward
calculation, (b) the discount factor ηn that drives equation parsimony in Eq. (2), (c) module transplan-
tation in tree generation, and (d) all of the above. The four models were tested on the first 12 Nguyen
equations (see Appendix Section C). Results show the average recovery rates for these models are
all smaller than that produced by SPL (see Appendix Table C.1), where the module transplantation
brings the largest effect. Hence, these modules are critical to guarantee the proposed model efficacy.

5 PHYSICAL LAW DISCOVERY: FREE FALLING BALLS WITH AIR RESISTANCE

Table 2: Baseline models (ci: unknown constants).

Physics Model Derived model expression

Model-1 H(t) = c0 + c1t+ c2t
2 + c3t

3

Model-2 H(t) = c0 + c1t+ c2e
c3t

Model-3 H(t) = c0 + c1 log(cosh(c2t))

It is well known that, in 1589–1592, Galileo
dropped two objects of unequal mass from
the Leaning Tower of Pisa and drew a con-
clusion that their velocities were not affected
by the mass. This has been well recognized
globally as the “textbook” physical law for
the vertical motion of a free-falling object:

2NGGP source code: https://github.com/brendenpetersen/deep-symbolic-optimization/tree/master/dso/dso

7

Published as a conference paper at ICLR 2023

the height of the object is formulated as H(t) = h0 + v0t− 1
2gt

2, where h0 denotes initial height, v0
the initial velocity, and g the gravitational acceleration. However, this ideal situation is rarely reached
in our daily life because air resistance serves as a significant damping factor that prevents the above
physical law from occurring in real-life cases.

Table 3: Mean square error (MSE) between ball motion predic-
tion with the measurements in the test set. The SPL machine
reaches the best prediction results in most (9 out of 11) cases.

Type SPL Model-1 Model-2 Model-3

baseball 0.3 2.798 94.589 3.507
blue basketball 0.457 0.513 69.209 2.227
green basketball 0.088 0.1 85.435 1.604

volleyball 0.111 0.574 80.965 0.76
bowling ball 0.003 0.33 87.02 3.167

golf ball 0.009 0.214 86.093 1.684
tennis ball 0.091 0.246 72.278 0.161

whiffle ball 1 1.58 1.619 65.426 0.21
whiffle ball 2 0.099 0.628 58.533 0.966

yellow whiffle ball 0.428 17.341 44.984 2.57
orange whiffle ball 0.745 0.379 36.765 3.257

Many efforts have been made to
uncover the effect of the air re-
sistance and derive mathematical
models to describe the free-falling
objects with air resistance (Clancy,
1975; Lindemuth, 1971; Green-
wood et al., 1986). This sec-
tion provides data-driven discov-
ery of the physical laws of rela-
tionships between height and time
in the cases of free-falling objects
with air resistance based on multi-
ple experimental ball-drop datasets
(de Silva et al., 2020), which con-
tain the records of 11 different
types of balls dropped from a
bridge (see Appendix Figure D.1). For discovery, each dataset is split into a training set (records
from the first 2 seconds) and a testing set (records after 2 seconds). Three mathematically derived
physics models are selected from the literature as baseline models3,4,5 for this experiment (see Table
2), and the unknown constant coefficient values are estimated by Powell’s conjugate direction method
(Powell, 1964). Based on our prior knowledge of the physical law that may appear in this case, we use
{+,−,×,÷, exp(·), cosh(·), log(·)} as the candidate grammars for the SPL discovery, with terminal
nodes {t, const}. The hyperparameters are set as η = 0.9999, tmax = 20, and one single discovery
is built upon 6,000 episodes of training. The physical laws distilled by SPL from training data are
applied to the test data and compared with the ground truth. Their prediction errors, in terms of MSE,
are presented in Table 3 (the SPL-discovered equations are shown in Appendix Table D.1). The full
results can be found in Appendix Section D. It can be concluded that the data-driven discovery of
physical laws leads to a better approximation of the free-falling objects with air resistance.

6 CHAOTIC DYNAMICS DISCOVERY: THE LORENZ SYSTEM

Table 4: Summary of the discovered gov-
erning equations for Lonrez system. Each
cell concludes if target physics terms are
distilled (if yes, number of false positive
terms in uncovered expression).

Model ẋ ẏ ż

Eureqa Yes (1) Yes (3) Yes (1)

pySINDy Yes (1) No (N/A) Yes (2)

NGGP Yes (10) Yes (8) Yes (16)

SPL Yes (0) Yes (0) Yes (0)

The first nonlinear dynamics discovery example is a
3-dimensional Lorenz system (Lorenz, 1963) whose
dynamical behavior (x, y, z) is governed by ẋ = σ(y−
x), ẏ = x(ρ − z) − y, ż = xy − βz with parameters
σ = 10, β = 8/3, and ρ = 28. The Lorenz attractor
has two lobes and the system, starting from anywhere,
makes cycles around one lobe before switching to the
other and iterates repeatedly, exhibiting strong chaos.
The synthetic system states (x, y, z) are generated by
solving the nonlinear differential equations using the
Matlab ode113 (Shampine, 1975; Shampine & Re-
ichelt, 1997) function. 5% Gaussian white noise is
added to the clean data to generate noisy measurement.
The derivatives of the system states (ẋ, ẏ, ż) are unmeasured but estimated by central difference and
smoothed by the Savitzky–Golay filter (Savitzky & Golay, 1964) in order to reduce the noise effect.

In this experiment, the proposed SPL machine is compared with three benchmark methods: Eureqa,
pySINDy and NGGP. For Eureqa, NGGP, and the SPL machine, {+,−,×,÷} are used as candidate
operations; the upper bound of complexity is set to be 50; for pySINDy, the candidate function
library includes all polynomial basis of (x, y, z) from degree 1 to degree 4. Appendix Table E.1

3Model 1: https://faraday.physics.utoronto.ca/IYearLab/Intros/FreeFall/FreeFall.html
4Model 2: https://physics.csuchico.edu/kagan/204A/lecturenotes/Section15.pdf
5Model 3: https://en.wikipedia.org/wiki/Free_fall

8

Published as a conference paper at ICLR 2023

presents the distilled governing equations by each approach and Table 4 summarizes these results:
the SPL machine uncovers the explicit form of equations accurately in the context of active terms,
whereas Eureqa, pySINDy and NGGP yield several false-positive terms in the governing equations. In
particular, although Eureqa and NGGP are capable of uncovering the correct terms, their performance
is very sensitive to the measurement noise as indicated by the redundant terms (despite with small
coefficients) shown in Appendix Table E.1. Overall, the baseline methods fail to handle the large
noise effect, essentially limiting their applicability in nonlinear dynamics discovery. It is evident
that the SPL machine is capable of distilling the concise symbolic combination of operators and
variables to correctly formulate parsimonious mathematical expressions that govern the Lorenz
system, outperforming the baseline methods of Eureqa, pySINDy and NGGP.

7 EXPERIMENTAL DYNAMICS DISCOVERY: DOUBLE PENDULUM

This section shows SPL-based discovery of a chaotic double pendulum system with experimental
data (Asseman et al., 2018) as shown in Appendix Figure E.3. The governing equations are given by:

ω̇1 = c1ω̇2 cos(∆θ) + c2ω
2
2 sin(∆θ) + c3 sin(θ1) +R1(θ1, θ2, θ̇1, θ̇2),

ω̇2 = c1ω̇1 cos(∆θ) + c2ω
2
1 sin(∆θ) + c3 sin(θ2) +R2(θ1, θ2, θ̇1, θ̇2)

(4)

where θ1, θ2 denote the angular displacements; ω1 = θ̇1, ω2 = θ̇2 the velocities; ω̇1, ω̇2 the
accelerations; R1 and R2 denote the unknown damping forces. Note that ∆θ = θ1 − θ2.

The data source contains multiple camera-sensed datasets. Here, 5,000 denoised random sub-samples
from 5 datasets are used for training, 2,000 random sub-samples from another 2 datasets for validation,
and 1 dataset for testing. The derivatives of the system states are numerically estimated by the same
approach discussed in the Lorenz case. Some prior physics knowledge is employed to guide the
discovery: (1) the terms ω̇2 cos(∆θ) for ω̇1 and ω̇1 cos(∆θ) for ω̇2 are assumed to be part of the
governing equations based on the Lagrange derivation; (2) the angles (θ1, θ2, ∆θ) are under the
trigonometric functions cos(·) and sin(·); (3) directions of velocities/relative velocities may appear
in damping. Production rules fulfilling the above prior knowledge are exhibited in Appendix Section
E.2. The hyperparameters are set as η = 1, tmax = 20, and 40,000 episodes of training are regarded
as one trail. 5 independent trials are performed and the equations with the highest validation scores
are selected as the final results. The uncovered equations are given as follows:

ω̇1 = −0.0991ω̇2 cos(∆θ)− 0.103ω2
2 sin(∆θ)− 69.274 sin(θ1) + 0.515 cos(θ1),

ω̇2 = −1.368ω̇1 cos(∆θ) + 1.363ω2
1 sin(∆θ)− 92.913 sin(θ2) + 0.032ω1,

(5)

where the explicit expression of physics in an ideal double pendulum system, as displayed in Eq. (5),
are successfully distilled and damping terms are estimated. This set of equation is validated through
interpolation on the testing set and compared with the smoothed derivatives, as shown in Appendix
Figure E.4. The solution appears felicitous as the governing equations of the testing responses.

8 CONCLUSION AND DISCUSSION

This paper introduces a Symbolic Physics Learner (SPL) machine to tackle the challenge of distill-
ing the mathematical structure of equations for physical systems (e.g., nonlinear dynamics) with
scarce/noisy data. This framework is built upon the expression tree interpretation of mathematical
operations and variables and an MCTS agent that searches for the optimistic policy to reconstruct
the target mathematical formula. With some remarkable adjustments to the MCTS algorithms, the
SPL model straightforwardly accepts our prior or domain knowledge, or any sort of constraints of
the tasks in the grammar design while leveraging great flexibility in expression formulation. The
robustness of the proposed SPL machine for complex target expression discovery within a large
search space is indicated in the Nguyen’s symbolic regression benchmark problems, where the SPL
machine outperforms state-of-the-art symbolic regression methods. Moreover, encouraging results
are obtained in the tasks of discovering physical laws and nonlinear dynamics, based on synthetic
or experimental datasets. While the proposed SPL machine shows huge potential in both symbolic
regression and physical law discovery tasks, there are still some imperfections that can be improved:
(i) the computational cost is high for constant coefficient value estimation due to repeated calls for an
optimization process, (ii) graph modularity is underexamined, and (iii) robustness against extreme
data noise and scarcity is not optimal. These limitations are further explained in Appendix Section F.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

The work is supported by the National Natural Science Foundation of China (No. 92270118) and the
Beijing Outstanding Young Scientist Program (No. BJJWZYJH012019100020098).

REFERENCES

Alexis Asseman, Tomasz Kornuta, and Ahmet Ozcan. Learning beyond simulated physics. In
Modeling and Decision-making in the Spatiotemporal Domain Workshop–NIPS, 2018.

L Billard and E Diday. From the statistics of data to the statistics of knowledge: symbolic data
analysis. Journal of the American Statistical Association, 98(462):470–487, 2003.

Josh Bongard and Hod Lipson. Automated reverse engineering of nonlinear dynamical systems.
Proceedings of the National Academy of Sciences, 104(24):9943–9948, 2007.

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of
sciences, 113(15):3932–3937, 2016.

Tristan Cazenave. Monte-carlo expression discovery. International Journal on Artificial Intelligence
Tools, 22(01):1250035, 2013.

Kathleen Champion, Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Data-driven discovery of
coordinates and governing equations. Proceedings of the National Academy of Sciences, 116(45):
22445–22451, 2019.

Zhao Chen, Yang Liu, and Hao Sun. Physics-informed learning of governing equations from scarce
data. Nature Communications, 12:6136, 2021.

Laurence Joseph Clancy. Aerodynamics. John Wiley & Sons, 1975.

Theodore Cornforth and Hod Lipson. Symbolic regression of multiple-time-scale dynamical systems.
In Proceedings of the 14th annual conference on Genetic and evolutionary computation, pp.
735–742, 2012.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
conference on computers and games, pp. 72–83. Springer, 2006.

Brian M de Silva, David M Higdon, Steven L Brunton, and J Nathan Kutz. Discovery of physics
from data: universal laws and discrepancies. Frontiers in artificial intelligence, 3:25, 2020.

Saso Dzeroski and Ljupco Todorovski. Discovering dynamics: from inductive logic programming to
machine discovery. Journal of Intelligent Information Systems, 4(1):89–108, 1995.

Sašo Džeroski and Ljupéo Todorovski. Discovering dynamics. In Proc. tenth international conference
on machine learning, pp. 97–103, 1993.

Richard P Feynman, Robert B Leighton, and Matthew Sands. The feynman lectures on physics; vol.
i. American Journal of Physics, 33(9):750–752, 1965.

Sébastien Gaucel, Maarten Keijzer, Evelyne Lutton, and Alberto Tonda. Learning dynamical systems
using standard symbolic regression. In European Conference on Genetic Programming, pp. 25–36.
Springer, 2014.

Margaret Stautberg Greenwood, Charles Hanna, and Rev John W Milton. Air resistance acting on
a sphere: Numerical analysis, strobe photographs, and videotapes. The Physics Teacher, 24(3):
153–159, 1986.

John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Automata theory, languages, and computa-
tion. International Edition, 24(2), 2006.

Mohiul Islam, Nawwaf N Kharma, and Peter Grogono. Expansion: A novel mutation operator for
genetic programming. In IJCCI, pp. 55–66, 2018.

10

Published as a conference paper at ICLR 2023

Samuel Kim, Peter Lu, Srijon Mukherjee, Michael Gilbert, Li Jing, Vladimir Ceperic, and Marin
Soljacic. Integration of neural network-based symbolic regression in deep learning for scientific
discovery. arXiv preprint arXiv:1912.04825, 2019.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

John R Koza and John R Koza. Genetic programming: on the programming of computers by means
of natural selection, volume 1. MIT press, 1992.

Jiří Kubalík, Jan Žegklitz, Erik Derner, and Robert Babuška. Symbolic regression methods for
reinforcement learning. arXiv preprint arXiv:1903.09688, 2019.

Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoencoder.
In Proceedings of the 34th International Conference on Machine Learning, pp. 1945–1954. JMLR.
org, 2017.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. arXiv preprint
arXiv:1912.01412, 2019.

William B Langdon and Steven M Gustafson. Genetic programming and evolvable machines: ten
years of reviews. Genetic Programming and Evolvable Machines, 11(3):321–338, 2010.

Jeffrey Lindemuth. The effect of air resistance on falling balls. American Journal of Physics, 39(7):
757–759, 1971.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. In
International Conference on Machine Learning, pp. 3208–3216. PMLR, 2018.

Zichao Long, Yiping Lu, and Bin Dong. Pde-net 2.0: Learning pdes from data with a numeric-
symbolic hybrid deep network. Journal of Computational Physics, 399:108925, 2019.

Edward N Lorenz. Deterministic nonperiodic flow. Journal of the atmospheric sciences, 20(2):
130–141, 1963.

Qiang Lu, Fan Tao, Shuo Zhou, and Zhiguang Wang. Incorporating actor-critic in monte carlo tree
search for symbolic regression. Neural Computing and Applications, pp. 1–17, 2021.

Daniel L Ly and Hod Lipson. Learning symbolic representations of hybrid dynamical systems. The
Journal of Machine Learning Research, 13(1):3585–3618, 2012.

Georg S Martius and Christoph Lampert. Extrapolation and learning equations. In 5th International
Conference on Learning Representations, ICLR 2017-Workshop Track Proceedings, 2017.

T Nathan Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P Santiago, Daniel M Faissol, and
Brenden K Petersen. Symbolic regression via neural-guided genetic programming population
seeding. arXiv preprint arXiv:2111.00053, 2021.

Brenden K Petersen, Mikel Landajuela Larma, Terrell N Mundhenk, Claudio Prata Santiago,
Soo Kyung Kim, and Joanne Taery Kim. Deep symbolic regression: Recovering mathemat-
ical expressions from data via risk-seeking policy gradients. In International Conference on
Learning Representations, 2021.

Michael JD Powell. An efficient method for finding the minimum of a function of several variables
without calculating derivatives. The computer journal, 7(2):155–162, 1964.

Markus Quade, Markus Abel, Kamran Shafi, Robert K Niven, and Bernd R Noack. Prediction of
dynamical systems by symbolic regression. Physical Review E, 94(1):012214, 2016.

Chengping Rao, Pu Ren, Yang Liu, and Hao Sun. Discovering nonlinear PDEs from scarce data with
physics-encoded learning. In International Conference on Learning Representations, pp. 1–19,
2022.

Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Data-driven discovery of
partial differential equations. Science Advances, 3(4):e1602614, 2017.

11

Published as a conference paper at ICLR 2023

Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for extrapolation and
control. In International Conference on Machine Learning, pp. 4442–4450, 2018.

Abraham Savitzky and Marcel JE Golay. Smoothing and differentiation of data by simplified least
squares procedures. Analytical chemistry, 36(8):1627–1639, 1964.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. science,
324(5923):81–85, 2009.

Devavrat Shah, Qiaomin Xie, and Zhi Xu. Non-asymptotic analysis of monte carlo tree search. arXiv
preprint arXiv:1902.05213, 2019.

Lawrence F Shampine. Computer solution of ordinary differential equations. The initial value
problem, 1975.

Lawrence F Shampine and Mark W Reichelt. The matlab ode suite. SIAM journal on scientific
computing, 18(1):1–22, 1997.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354–359, 2017.

Fangzheng Sun, Yang Liu, and Hao Sun. Physics-informed spline learning for nonlinear dynamics
discovery. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
pp. 2054–2061, 2021.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, 2020.

Silviu-Marian Udrescu and Max Tegmark. Symbolic pregression: discovering physical laws from
distorted video. Physical Review E, 103(4):043307, 2021.

Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and Max Tegmark.
Ai feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. arXiv preprint
arXiv:2006.10782, 2020.

Nguyen Quang Uy, Nguyen Xuan Hoai, Michael O’Neill, Robert I McKay, and Edgar Galván-
López. Semantically-based crossover in genetic programming: application to real-valued symbolic
regression. Genetic Programming and Evolvable Machines, 12(2):91–119, 2011.

Harsha Vaddireddy, Adil Rasheed, Anne E Staples, and Omer San. Feature engineering and symbolic
regression methods for detecting hidden physics from sparse sensor observation data. Physics of
Fluids, 32(1):015113, 2020.

David R White, Shin Yoo, and Jeremy Singer. The programming game: evaluating mcts as an
alternative to gp for symbolic regression. In Proceedings of the Companion Publication of the
2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1521–1522, 2015.

12

Published as a conference paper at ICLR 2023

APPENDIX

A HYPERPARAMETER SETTING

We perform a parametric study on the value of discount factor η based on Nguyen’s benchmark
problems without measurement noise. Empirically, setting η = 0.9999 ensures the scores of ground
truth equations stand out and successfully enforces the sparsity in all experiments. For the discovery
of very chaotic dynamical systems based on measurement data, we expect some physics terms from
the governing equations to have a weak impact on the state variables (e.g., in the chaotic double
pendulum system experiments, the effects from physics terms sin(θ1) and sin(θ2) are hard to be
captured), and the effect of data noise is unknown. Hence, we set η = 1 to leverage the full strength
of data fitting to enable the detection of physics terms that are offset or overwhelmed by data noise
but are pivotal to the systems. Nevertheless, we must acknowledge that this selection process is
empirical, which depends on our desire for the degree of parsimony of the target equation(s).

As for the hyperparameters in the training schema (i.e., maximum module transplantation, episodes,
maximum tree size, maximum augmented grammars), we have conducted parametric convergence
tests for each experiment to ensure the learning curves (i.e., maximum scores in the history) converge.
For example, as discussed in Section B, Table B.2 shows the setting of these hyperparameters.

B NGUYEN’S BENCHMARK PROBLEMS

This section provides more detailed experiment settings for the Nguyen’s benchmark tasks that are
described in Section 4.2 of the main text, where the training hyperparameters for the SPL machine in
these equation discovery experiments are also listed. Table B.1 presents the candidate mathematical
operations allowed for three tested models and Table B.2 displays training hyperparameters for the
SPL machine in the Nguyen’s benchmark tasks.

Moreover, the utilization of CFG in the SPL machine facilitates the flexibility of applying some prior
knowledge including the universal mathematical rules and constraints. This feature empirically turns
out to be an accessible and scalable approach for avoiding meaningless mathematical expressions.
In the Nguyen’s benchmark tasks, one or multiple mathematical constraints are given to the SPL
machine. These constraints include

1. Only variables and constant values are allowed in trigonometric functions.

Table B.1: Candidate operators for each Nguyen’s benchmark task. const denotes constant values.

Benchmark Candidate Operations
Nguyen-1 +,−,×,÷, cos(·), sin(·), exp(·)
Nguyen-2 +,−,×,÷, cos(·), sin(·), exp(·)
Nguyen-3 +,−,×,÷, cos(·), sin(·), exp(·)
Nguyen-4 +,−,×,÷, cos(·), sin(·), exp(·)
Nguyen-5 +,−,×,÷, cos(·), sin(·), exp(·)
Nguyen-6 +,−,×,÷, cos(·), sin(·), exp(·)
Nguyen-7 +,−,×,÷, cos(·), sin(·), exp(·), log(·),

√
·

Nguyen-8 +,−,×,÷, cos(·), sin(·), exp(·), log(·),
√
·

Nguyen-9 +,−,×,÷, cos(·), sin(·), exp(·)
Nguyen-10 +,−,×,÷, cos(·), sin(·), exp(·)
Nguyen-11 +,−,×,÷, cos(·), sin(·), exp(·), log(·),

√
·

Nguyen-12 +,−,×,÷, cos(·), sin(·), exp(·)
Nguyen-1c +,−,×,÷, cos(·), sin(·), exp(·), const
Nguyen-2c +,−,×,÷, cos(·), sin(·), exp(·), const
Nguyen-5c +,−,×,÷, cos(·), sin(·), exp(·), const
Nguyen-8c +,−,×,÷, cos(·), sin(·), exp(·), log(·),

√
·, const

Nguyen-9c +,−,×,÷, cos(·), sin(·), exp(·), const

13

Published as a conference paper at ICLR 2023

Table B.2: Training Hyperparameter settings for the SPL model in Nguyen’s benchmark tasks.

Benchmark Maximum Module Episodes Between Maximum Maximum Augmented
Transplantation Module Transplantation Tree Size Grammars

Nguyen-1 20 10,000 50 5
Nguyen-2 20 10,000 50 5
Nguyen-3 20 100,000 50 5
Nguyen-4 20 100,000 50 5
Nguyen-5 20 100,000 50 5
Nguyen-6 20 10,000 50 5
Nguyen-7 20 5,000 50 5
Nguyen-8 20 5,000 50 5
Nguyen-9 20 10,000 50 5
Nguyen-10 20 10,000 50 5
Nguyen-11 20 10,000 50 5
Nguyen-12 20 100,000 50 5
Nguyen-1c 20 2,000 50 5
Nguyen-2c 20 10,000 50 5
Nguyen-5c 20 10,000 50 5
Nguyen-8c 20 2,000 50 5
Nguyen-9c 20 1,000 50 5

Table B.3: Mathematical constraints for the SPL machine in each Nguyen’s benchmark problem.

Benchmark Constraints Utilization
Nguyen-1 {1, 3}
Nguyen-2 {1, 3}
Nguyen-3 {1, 3}
Nguyen-4 {1, 3}
Nguyen-5 {2, 3}
Nguyen-6 {2, 3}
Nguyen-7 {2, 3}
Nguyen-8 {}
Nguyen-9 {2, 3, 4}
Nguyen-10 {2, 3, 4}
Nguyen-11 {2, 3}
Nguyen-12 {1, 3, 4}
Nguyen-1c {1, 3}
Nguyen-2c {1, 3}
Nguyen-5c {2, 3}
Nguyen-8c {}
Nguyen-9c {2, 3, 4}

2. Variables in trigonometric functions, logarithms and roots are up to the polynomial of 3.
3. Trigonometric functions, logarithms and roots are not allowed to form unreasonable com-

posite functions with each other, such as sin(cos(...)).
4. Some small integers (e.g. 1, 2) are used directly as leaves.

They can be easily implemented into the SPL machine by defining or adjusting non-terminal nodes or
production rules in the customized CFG. Constraints adopted by each task are shown in Table B.3.

C RESULTS OF ABLATION STUDY

14

Published as a conference paper at ICLR 2023

We consider four ablation studies by removing the following:

(a) the adaptive scaling in reward calculation,
(b) the discount factor ηn that drives equation parsimony in Eq. (2),
(c) module transplantation in tree generation,
(d) all of the above three.

The resulting models are denoted with Model A, Model B, Model C, and Model D (note that Model
D is equivalent to the vanilla MCTS). The ablation study is performed on the 12 classic Nguyen’s
benchmark problems, where the recovery rate of each model is calculated. The results of the ablation
study are summarized in Table C.1. It is clear that module transplantation brings the largest gain
in recovery rate. All the ablated models fail to uncover the Nguyen-12 equation (the most difficult
case), where the coefficient 1/2 needs to be represented by mathematical operators and symbols, e.g.,
x/(x+ x), y/(y + y), etc.

D FREE FALLING BALLS WITH AIR RESISTANCE

This appendix section reveals more details on discovering the physical laws, in the context of
relationships between height and time, for the cases of free-falling objects with air resistance based on
multiple experimental ball-drop datasets (de Silva et al., 2020). The datasets contain the records of 11
different types of balls, as shown in Figure D.1, dropped from a bridge, collected at a 30 Hz sampling
rate. The time between dropping and landing varies in each case due to the fact that air resistance
has different effects on these free-dropping balls and induces divergent physical laws. Consequently,
we consider each ball as an individual experiment and discover the physical law for each of them.
The measurement dataset of a free-dropping ball is split into a training set (records from the first 2
seconds, 60 measurements) and a testing set (records after 2 seconds).

The physical laws of the three baseline models and distilled by the SPL machine from training data
are exhibited in Table D.1. These discovered physical laws are then applied to forecast the height of
the balls at the time slots in the testing dataset. These predictions, in comparison with the ground
truth trajectory recorded, are shown in Figure D.2. The prediction error is shown in the Table 3 of the
main text.

E NONLINEAR DYNAMICS DISCOVERY

This appendix section elaborates more details on the two governing equation discovery experiments
presented in the main text, including the datasets and full results.

Table C.1: Summary of the ablation study results.

Benchmark Expression SPL Model A Model B Model C Model D

Nguyen-1 x3 + x2 + x 100% 100% 100% 14% 12%
Nguyen-2 x4 + x3 + x2 + x 100% 100% 100% 0% 0%
Nguyen-3 x5 + x4 + x3 + x2 + x 100% 100% 100% 0% 0%
Nguyen-4 x6 + x5 + x4 + x3 + x2 + x 99% 96% 92% 0% 0%
Nguyen-5 sin(x2) cos(x)− 1 95% 95% 92% 92% 88%
Nguyen-6 sin(x2) + sin(x+ x2) 100% 100% 96% 100% 100%
Nguyen-7 ln(x+ 1) + ln(x2 + 1) 100% 100% 100% 100% 100%
Nguyen-8

√
x 100% 100% 100% 100% 100%

Nguyen-9 sin(x) + sin(y2) 100% 100% 100% 100% 100%
Nguyen-10 2 sin(x) cos(y) 100% 100% 100% 0% 0%
Nguyen-11 xy 100% 96% 96% 92% 87%
Nguyen-12 x4 − x3 + 1

2
y2 − y 28% 0% 0% 0% 0%

Average 93.5% 90.58% 89.67% 49.83% 48.92%

15

Published as a conference paper at ICLR 2023

Table D.1: Uncovered physics from the motions of free-falling balls by the SPL machine and
three baseline models. Note that these formulas are the raw equations produced by SRL. Further
simplification helps better parsimony of the formulas.

Type Model Expression

baseball SPL H(t) = 47.8042 + 0.6253t − 4.5383t2

Model-1 H(t) = 47.682 + 1.456t − 5.629t2 + 0.376t3

Model-2 H(t) = 45.089 − 8.156t + 5.448 exp(0t)

Model-3 H(t) = 48.051 − 183.467 log(cosh(0.217t))

blue SPL H(t) = 46.4726 − 5.105t2 + t3 − 0.251t4

basketball Model-1 H(t) = 46.513 − 0.493t − 3.912t2 + 0.03t3

Model-2 H(t) = 43.522 − 7.963t + 5.306 exp(0t)

Model-3 H(t) = 46.402 − 84.791 log(cosh(0.319t))

green SPL H(t) = 45.9087 − 4.1465t2 + log(cosh(1))

basketball Model-1 H(t) = 46.438 − 0.34t − 3.882t2 − 0.055t3

Model-2 H(t) = 43.512 − 8.043t + 5.346 exp(0t)

Model-3 H(t) = 46.391 − 124.424 log(cosh(0.263t))

volleyball SPL H(t) = 48.0744 − 3.7772t2

Model-1 H(t) = 48.046 + 0.362t − 4.352t2 + 0.218t3

Model-2 H(t) = 45.32 − 7.317t + 5.037 exp(0t)

Model-3 H(t) = 48.124 − 107.816 log(cosh(0.27t))

bowling SPL H(t) = 46.1329 − 3.8173t2 − 0.2846t3 + 4.14 × 10−5 exp(20.7385t2) exp(−12.4538t3)

ball Model-1 H(t) = 46.139 − 0.091t − 3.504t2 − 0.431t3

Model-2 H(t) = 43.336 − 8.525t + 5.676 exp(0t)

Model-3 H(t) = 46.342 − 247.571 log(cosh(0.189t))

golf ball SPL H(t) = 49.5087 − 4.9633t2 + log(cosh(t))

Model-1 H(t) = 49.413 + 0.532t − 5.061t2 + 0.102t3

Model-2 H(t) = 46.356 − 8.918t + 5.964 exp(0t)

Model-3 H(t) = 49.585 − 178.47 log(cosh(0.23t))

tennis SPL H(t) = 47.8577 − 4.0574t2 + log(cosh(0.121t3))

ball Model-1 H(t) = 47.738 + 0.658t − 4.901t2 + 0.325t3

Model-2 H(t) = 45.016 − 7.717t + 5.212 exp(0t)

Model-3 H(t) = 47.874 − 114.19 log(cosh(0.269t))

whiffle SPL H(t) = 4.1563t2 − t3 + 47.0133 exp(−0.1511t2)

ball Model-1 H(t) = 46.969 + 0.574t − 4.505t2 + 0.522t3

1 Model-2 H(t) = 44.259 − 6.373t + 4.689 exp(0t)

Model-3 H(t) = 47.062 − 34.083 log(cosh(0.462t))

whiffle SPL H(t) = −18.6063 + 65.8583 exp(−0.0577t2)

ball Model-1 H(t) = 47.215 + 0.296t − 4.379t2 + 0.421t3

2 Model-2 H(t) = 44.443 − 6.744t + 4.813 exp(0t)

Model-3 H(t) = 47.255 − 38.29 log(cosh(0.447t))

yellow SPL H(t) = 148.9911/(log(cosh(t)) + 3.065) − 14.5828t2/(log(cosh(t)) + 3.065)

whiffle +48.6092 log(cosh(t))/(log(cosh(t)) + 3.065)

ball Model-1 H(t) = 48.613 − 0.047t − 4.936t2 + 0.826t3

Model-2 H(t) = 45.443 − 6.789t + 4.973 exp(0t)

Model-3 H(t) = 48.594 − 12.49 log(cosh(0.86t))

orange SPL H(t) = −1.6626t + 47.8622 exp(−0.06815t2)

whiffle Model-1 H(t) = 47.836 − 1.397t − 3.822t2 + 0.422t3

ball Model-2 H(t) = 44.389 − 7.358t + 5.152 exp(0t)

Model-3 H(t) = 47.577 − 12.711 log(cosh(0.895t))

16

Published as a conference paper at ICLR 2023

Figure D.1: The experimental balls that were dropped from the bridge (de Silva et al., 2020). From
left to right: golf ball, tennis ball, whiffle ball 1, whiffle ball 2, baseball, yellow whiffle ball, orange
whiffle ball, green basketball, and blue basketball. Volleyball is not shown here.

baseball blue basketball green basketball volleyball

bowling ball golf ball tennis ball whiffle ball 1

whiffle ball 2 yellow whiffle ball orange whiffle ball

Figure D.2: Trajectories after 2 seconds predicted by uncovered physical laws.

E.1 LORENZ SYSTEM

The 3-dimensional Lorenz system is governed by

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

(6)

with parameters σ = 10, β = 8/3, and ρ = 28, under which the Lorenz attractor has two lobes
and the system, starting from anywhere, makes cycles around one lobe before switching to the

17

Published as a conference paper at ICLR 2023

Estimated DerivativesNoisy Measurement

Figure E.1: Lorenz system for the experiment. Noisy measurement data and numerically estimated
derivatives smoothed by Savitzky–Golay filter.

Table E.1: Discovered governing equations for the Lorenz system.

Model Discovered Governing Equations

Eureqa ẋ = −0.56− 9.02x+ 9.01y
ẏ = −0.047 + 18.79x+ 1.86y − 0.046xy − 0.74xz
ż = −3.04− 2.23z + 0.88xy

pySINDy ẋ = −0.46− 9.18x+ 9.17y
ẏ = 22.32x+ 0.15y − 0.85xz
ż = 6.04− 2.83z + 0.15x2 + 0.81xy

NGGP ẋ = 0.0047− 10.02x+ 10.01y − 0.007x2 + 0.007xy − 0.37x/z − 0.00074x2y
+0.00063x3 + 0.00018x2z + 0.00011xy2 − 6.59e−5xyz − 0.00011yz

ẏ = 26.36x− 1.5y − 0.83xz − 7.20x/z + 13.08y/z + 4.52e−5x3 − 0.0038xz2

− 44.25x/z2 + 0.00028x3/z − 0.00017x3z + 5.98e−6x3z2

ż = −0.64− 0.036y − 2.64z + 1.038xy + 0.00021xz + 0.0011yz − 0.00021x/z
− 8.04e−8y/x+ 0.00022y/z − 8.04e−8z2 − 0.00021xyz + 0.00021xy/z
− 0.001y2z − 0.00021y2/z + 1.17y/z2 − 3.89e−7yz2/x+ 6.66e−9z2/x

SPL ẋ = −9.966x+ 9.964y
ẏ = 27.764x− 0.942y − 0.994xz
ż = −2.655z + 0.996xy

True ẋ = −10x+ 10y
ẏ = 28x− y − xz
ż = −2.667z + xy

other and iterates repeatedly. The measurement data of the Lorenz system states in this experiment
contains a clean signal with 5% Gaussian white noise. The derivatives of Lorenz’s state variables
are unmeasured but numerically estimated and smoothed by the Savitzky–Golay filter. The noisy
synthetic measurement data and numerically obtained derivatives are shown in Figure E.1.

Table E.1 presents the distilled governing equations for the Lorenz system by the SPL machine
compared with 3 baseline models. It is observed that the SPL machine uncovers the explicit form
of equations accurately in the context of active terms, whereas Eureqa, pySINDy and NGGP yield
several false-positive terms in the underlying governing equations. The predicted system responses
(starting from a different initial condition) simulated from these uncovered equations are shown in
Figure E.2. Although it is hard to reproduce the most accurate coefficients due to the tremendous
errors induced by numerical differentiation of noisy measurement data as depicted in Figure E.1, the
SPL machine is still capable of distilling the most concise symbolic combination of operators and
variables to correctly formulate the parsimonious mathematical expressions that govern the Lorenz
system dynamics. The predicted responses for the governing equations unearthed by the SPL machine
simulate the system in a decent manner.

18

Published as a conference paper at ICLR 2023

Eureqa PySINDy SPL

Figure E.2: Response prediction for 5 seconds by identified governing equations (dashed plots) under
a different validation IC of Lorenz system, in comparison with the ground truth trajectory (grey).

A B

C
𝒍𝟏

𝒍𝟐

𝜽𝟏

𝜽𝟐

D

Figure E.3: Double Pendulum system experiment and measurement data (Asseman et al., 2018): A.
experiment setup. B. displacements of the two moving masses. C. model the system with θ1 and θ2.
D. angles of two masses transformed from displacements.

E.2 MOUNTED DOUBLE PENDULUM SYSTEM

The second nonlinear dynamics discovery experiment is a chaotic double pendulum system (Asseman
et al., 2018). The measured data, in form of videos, represents the chaotic motion of a double
pendulum on the device shown in Figure E.3A filmed with a high-speed camera. The positional data
is converted into angular form based on the geometry information (see the model shown in Figure
E.3C). The governing equations can be derived using the Euler–Lagrange method, given by

(m1 +m2)l1θ̈1 +m2l2θ̈2 cos(θ1 − θ2) +m2l2ω
2
2 sin(θ1 − θ2) + (m1 +m2)g sin(θ1) = F1,

m2l2θ̈2 +m2l1θ̈1 cos(θ1 − θ2)−m2l1ω
2
1 sin(θ1 − θ2) +m2g sin(θ2) = F2,

(7)

which, by denoting ω as the velocity, can be converted to the following state-space form:

θ̇1 = ω1,

θ̇2 = ω2,

ω̇1 = c1ω̇2 cos(∆θ) + c2ω
2
2 sin(∆θ) + c3 sin(θ1) +R1(θ1, θ2, θ̇1, θ̇2),

ω̇2 = c1ω̇1 cos(∆θ) + c2ω
2
1 sin(∆θ) + c3 sin(θ2) +R2(θ1, θ2, θ̇1, θ̇2)

(8)

where ∆θ = θ1 − θ2, and R1(θ1, θ2, θ̇1, θ̇2) and R2(θ1, θ2, θ̇1, θ̇2) denote the damping terms for the
last two differential equations.

The data source contains multiple video datasets. For this discovery, 5,000 denoised random sub-
samples from 5 datasets are used for training purposes, and 2,000 random sub-samples from another
2 datasets for validation, and 1 dataset for testing. Some prior knowledge guiding this discovery
includes:

19

Published as a conference paper at ICLR 2023

Table E.2: Discovered governing equations of the mounted double pendulum by the SPL model.

Phase Expression

ω̇1 −0.0991ω̇2 cos(∆θ)− 0.103ω2
2 sin(∆θ)− 69.274 sin(θ1) + 0.515 cos(θ1)

ω̇2 −1.368ω̇1 cos(∆θ) + 1.363ω2
1 sin(∆θ)− 92.913 sin(θ2) + 0.032ω1

1. the two terms ω̇2 cos(∆θ) for ω̇1 and ω̇1 cos(∆θ) for ω̇2, which can be easily derived based
on our prior knowledge on the system, are assumed known in the two governing equations.
However, their coefficients are unknown and need to be estimated.

2. the remaining of the formulas are potentially comprised of the free combination of ω̇1, ω̇2,
ω1, ω2, as well as the angles (θ1, θ2, ∆θ) under the trigonometric functions cos(·) and
sin(·).

3. velocities and relative velocities of two masses, as well as their directions (sign function)
might contribute to the damping.

Based on the above information, the candidate production rules for ω̇1 and ω̇2 equations are shown
below, where non-terminal nodes are V = {A,W, T, S} and C denotes the placeholder symbol for
the constant coefficient values.

A → A+A, A → A×A, A → C, A → A+A, A → W ,
W → W ×W , W → ω1, W → ω2, W → ω̇1, W → ω̇2,
A → cos(T), A → sin(T), T → T + T , T → T − T , T → θ1, T → θ2,
A → sign(S), S → S + S, S → S − S, S → ω1, S → ω2, S → ω̇1, S → ω̇2,
A → ω̇1 cos(θ1 − θ2), A → ω̇2 cos(θ1 − θ2).

Note that our prior knowledge can be easily incorporated in the proposed SPL machine to improve
the discovery performance, rather than relying on the free combination of mathematical operators
and symbols. The hyperparameters are set as η = 1, tmax = 20, and 40,000 episodes of training are
regarded as one trail. 5 independent trials are performed and the equations with the highest validation
scores are selected as the final result. The uncovered equations are shown in Table E.2. They
are validated through interpolation on the testing set and compared with the smoothed derivatives,
as shown in Figure E.4. The solution appears felicitous as the governing equations of the testing
responses.

F DISCUSSION AND FUTURE DIRECTIONS

The effectiveness of the proposed SPL machine is empowered by the following elements: (1) The use
of MCTS enables the flexible representation of search space with customized computational grammars,
composed of a finite set of mathematical operators and symbols, to guide the search tree expansion.
(2) The exploration-exploitation trade-off nature of MCTS is remarkably useful for searching the
optimal mathematical expression tree. (3) The key adjustments, including the greedy search, the
adaptive-scaled rewarding, the reward regularizer, and the expression tree module transplantation,
make it possible to efficiently uncover the best path to formulate complex equations. (4) The SPL
machine straightforwardly accepts our prior or domain knowledge, or any sort of constraints of the
tasks in the grammar design while leveraging great flexibility in expression formulation.

While SPL shows huge potential in both symbolic regression and governing equation discovery tasks,
there are still some imperfections to be improved. In this appendix section, a few bottlenecks and
their potential solutions are presented:

1. Computational cost. Computational cost for this framework is one of the major issues,
especially when constant coefficient estimation is required. Evaluating the solution in the
simulation phase happens very frequently for the MCTS algorithm where the policy selection
relies heavily on a large number of historical rewards. However, the constant coefficient
value estimation, which requires repeated calls for an optimization process and can be slow,

20

Published as a conference paper at ICLR 2023

𝜃ሷ ଵ
 ሾ

ra
d/
𝑠ଶ
ሿ

𝜃ሷ ଶ
 ሾ

ra
d/
𝑠ଶ
ሿ

Time ሾSecሿ

Time ሾSecሿ

𝜃ሷ ଵ
 ሾ

ra
d/
𝑠ଶ
ሿ

𝜃ሷ ଶ
 ሾ

ra
d/
𝑠ଶ
ሿ

Figure E.4: Discovered governing equations of the mounted double pendulum system on a different
dataset in different time sections: in 2-8 seconds the two masses are in chaotic motions while in 30-36
seconds the masses tend to move periodically due to accumulative damping. θ̈1 and θ̈2 are obtained
through smoothed numerical differentiation and predicted from the discovered governing equations.

Table E.3: Average training time (in seconds) of SPL and NGGP in the Nguyen’s benchmark problems

Benchmark SPL [s] NGGP [s]

Nguyen-1 8.776 2.734
Nguyen-2 7.296 3.296
Nguyen-3 81.287 3.945
Nguyen-4 567.061 5.764
Nguyen-5 431.228 77.627
Nguyen-6 64.651 104.588
Nguyen-7 14.995 3.024
Nguyen-8 5.59 2.896
Nguyen-9 5.743 13.229
Nguyen-10 53.245 86.497
Nguyen-11 10.163 44.399
Nguyen-12 187.9 334.757
Nguyen-1c 452.734 362.075
Nguyen-2c 295.769 1188.215
Nguyen-5c 2178.891 1365.777
Nguyen-8c 77.892 129.349
Nguyen-9c 2001.402 3066.41

21

Published as a conference paper at ICLR 2023

is needed for evaluation purposes. In particular, the constant coefficient value is estimated
via concurrently solving an optimization problem, e.g., by Powell’s conjugate direction
method (Powell, 1964). For example, when the tree structure changes or is updated, the
optimization of the constant coefficients should be re-performed simultaneously. The SPL
machine is not the only symbolic regressor suffering from the computational cost in constant
coefficient value estimation. In fact, the state-of-the-art symbolic regression model, the
neural-guided GP (NGGP) (Mundhenk et al., 2021), becomes much slower in the Nguyen’s
benchmark variant tasks (see Table E.3). The current implementation of the SPL machine
tries to empirically avoid this issue by limiting the number of placeholders in a discovered
expression and simplifying the expression before evaluation, but still cannot reach great
efficiency. This bottleneck might be mitigated if parallel computing is introduced to the
MCTS simulation phase.

2. Graph modularity underexamined. The current design of the SPL training scheme does
not leverage the full graph modularity: modules are reached by transforming a complete
parse tree into a grammar. However, in some cases, there might be some influential modules
appearing frequently as part of the tree. This type of graph modularity is described in the AI-
Feynman method (Udrescu et al., 2020). Deploying a more comprehensive graph modularity
into the SPL machine will boost its efficacy in the complex equation and nonlinear dynamics
discovery tasks.

3. Robustness against extreme data noise and scarcity. Although it is observed that this
reinforcement learning-based method is able to unearth the parsimonious solution to the
governing equations from synthetic or measurement data with a moderate level of noise and
scarcity. It is not effective when the data condition is extreme, or if there are missing values
that make it challenging to numerically calculate the state derivatives. It is reasonable to
investigate the integration between the SPL framework with a differentiable surrogate model
built upon neural networks (Long et al., 2018; Chen et al., 2021) or spline learning (Sun
et al., 2021) for further robustness in nonlinear dynamics discovery tasks.

22

	Introduction
	Background
	Methods
	Symbolic Regression: Finding Mathematical Formulas
	Data Noise & Scarcity
	Nguyen's Symbolic Regression Benchmark

	black Physical Law Discovery: Free Falling Balls with Air Resistance
	Chaotic Dynamics Discovery: The Lorenz System
	Experimental Dynamics Discovery: Double Pendulum
	Conclusion and Discussion
	black Hyperparameter Setting
	Nguyen's Benchmark Problems
	black Results of Ablation Study
	Free Falling Balls with Air Resistance
	Nonlinear Dynamics Discovery
	Lorenz System
	Mounted Double Pendulum System

	Discussion and Future Directions

