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Abstract

One-max search is a classic problem in online
decision-making, in which a trader acts on a se-
quence of revealed prices and accepts one of them
irrevocably to maximize its profit. The problem
has been studied both in probabilistic and in worst-
case settings, notably through competitive analy-
sis, and more recently in learning-augmented set-
tings in which the trader has access to a prediction
on the sequence. However, existing approaches
either lack smoothness, or do not achieve optimal
worst-case guarantees: they do not attain the best
possible trade-off between the consistency and the
robustness of the algorithm. We close this gap by
presenting the first algorithm that simultaneously
achieves both of these important objectives. Fur-
thermore, we show how to leverage the obtained
smoothness to provide an analysis of one-max
search in stochastic learning-augmented settings
which capture randomness in both the observed
prices and the prediction.

1. Introduction

Recent and rapid advances in machine learning have pro-
vided the ability to learn complex patterns in data and time
series. These advancements have given rise to a new compu-
tational paradigm, in which the algorithm designer has the
capacity to incorporate a prediction oracle in the design, the
theoretical analysis, and the empirical evaluation of an algo-
rithm. The field of learning-augmented algorithms was born
out of this emerging requirement to leverage ML techniques
towards the development of more efficient algorithms.

Learning-augmented algorithms have witnessed remarkable
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growth in recent years, starting with the seminal works (Lyk/
ouris & Vassilvtiskii,[2018) and (Purohit et al.,[2018), partic-
ularly in online decision making. In this class of problems,
the input is a sequence of items, which are revealed one
by one, with the algorithm making an irrevocable decision
on each. Here, the prediction oracle provides some inher-
ently imperfect information on the input items, which the
algorithm must be able to leverage in a judicious manner.

One of the most challenging aspects of learning-augmented
(online) algorithms is their theoretical evaluation. Unlike the
prediction-free setting, in which worst-case measures such
as the competitive ratio (Borodin & El-Yaniv} 2005) evalu-
ate algorithms on a single metric, the analysis of learning-
augmented settings is multifaceted and must incorporate
the effect of the prediction error to be meaningful. Typical
desiderata (Lykouris & Vassilvtiskii, 2018)) include: an effi-
cient performance if the prediction is accurate (consistency);
a performance that is not much worse than the competitive
ratio if the predictions are arbitrarily inaccurate (robustness);
and between these, a smooth decay of performance as the
prediction error grows (smoothness). This marks a signifi-
cant departure from the worst-case, and overly pessimistic
competitive analysis, and allows for a much more nuanced
and beyond worst-case performance evaluation.

Achieving all these objectives simultaneously is a challeng-
ing task, and is even impossible for certain problems (Elen{
ter et al.,[2024). To illustrate such challenges with an exam-
ple, consider the one-max-search problem, which models a
simple, yet fundamental setting in financial trading. Here,
the input is a sequence of prices (p;)7, € [1, 6], where 0
is a known upper bound, and the online algorithm (i.e., the
trader) must decide, irrevocably, which price to accept.

Under standard competitive analysis, which compares the
algorithm’s accepted price to the maximum price p* :=
max; p; on a worst-case instance, the problem admits a sim-
ple, yet optimal, algorithm (EI-Yanivl [1998)). In contrast,
the learning-augmented setting, in which the algorithm has
access to a prediction of p*, is far more complex. Specif-
ically, Sun et al.| (2021) gave a Pareto-optimal algorithm,
i.e. one that achieves the best possible trade-off between
consistency and robustness. However, this algorithm lacks
smoothness, which results in brittleness. Namely, [Benomar|
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& Perchet| (20235) showed that even if the prediction error is
arbitrarily small, the algorithm’s performance may degrade
dramatically, and collapses to the robustness guarantee. This
renders the algorithm unsuitable for any practical applica-
tions since perfect oracles do not exist in the real world.
Benomar & Perchet| (2025) addressed the issue of brittle-
ness by using randomization: this results in an algorithm
with smoother behaviour, albeit at the cost of deviating
from the consistency-robustness Pareto front. In a similar
vein, /Angelopoulos et al.| (2022) gave a smooth algorithm
without any guarantees on the trade-off between consistency
and robustness. [Sun et al.| (2024)) studied the problem un-
der a model of uncertainty-quantified predictions, in which
the algorithm has access to additional, and more powerful,
probabilistic information about the prediction error.

The following natural question arises: is there an all-around
optimal algorithm, that is simultaneously Pareto-optimal
and smooth, and does not rely on randomisation or proba-
bilistic assumptions about the quality of the prediction?

1.1. Main contributions

Our main result answers the above question in the affirma-
tive by giving a deterministic Pareto-optimal algorithm with
smooth guarantees. Furthermore, we demonstrate how to
leverage smoothness so as to extend this analysis to stochas-
tic settings in which the input and prediction are random.

In previous works on learning-augmented one-max-
search (Sun et al., 2021 Benomar & Perchet, 2025)), the
proposed algorithms select the first price that exceeds a
threshold ®(y), which is a function of the prediction y of
the maximum price p* in the sequence. We revisit the prob-
lem by first characterizing the class P, of all consistency-
robustness Pareto-optimal thresholds ®. Next, we focus
on a specific family of Pareto-optimal thresholds within
‘P~ which generalise the algorithm of |Sun et al.| (2021} but
also exhibit smoothness guarantees. In particular, our anal-
ysis quantifies smoothness in this family, showing it to be
inversely proportional to the maximal slope of the corre-
sponding threshold. Guided by this insight, we find the
threshold that maximizes smoothness within the class P,..

Furthermore, this quantification of smoothness allows to
establish a near-matching lower bound. Specifically, we
show that, for a multiplicative definition of the error, no
Pareto-optimal algorithm can guarantee better smoothness
than our algorithm, for a large range of robustness values.
For the additive definition of the prediction error, which
is commonly used, we show that our algorithm optimises
smoothness for all robustness values, thus attaining the triple
Pareto front of consistency, robustness and smoothness.

The combination of smoothness and Pareto-optimality of
our family of thresholds has direct practical benefits in han-

dling the real-world uncertainty of predictions. When pre-
dictions and prices are both tied to a random environment
(e.g. a financial market), we show how to derive general
form bounds in expectation as a function of the distributions
of predictions and prices and, for the first time, of their
coupling. We provide prediction-quality metrics which help
us better capture the notion of the “usefulness” of a predic-
tion in stochastic environments and give detailed bounds
on concrete settings. We also provide a general framework
of analysis based on optimal transport. The use of optimal
transport for competitive analysis in stochastic contexts is
novel and opens new and interesting research perspectives.

We validate our theoretical results through numerical exper-
iments, in which we compare our algorithm to the state of
the art, by testing it under both synthetic and real data.

1.2. Related work

Learning-augmented algorithms. Algorithms with pre-
dictions have been studied in a large variety of on-
line problems, such as rent-and-buy problems (Gollapudi
& Panigrahi, 2019), scheduling (Lattanzi et al., 2020),
caching (Lykouris & Vassilvtiskii, 2018)), matching (Anto{
niadis et al., 2020)), packing (Im et al.| 2021)), covering (Ba{
mas et al.| 2020) and secretaries Diitting et al.|(2024). This
paradigm also has applications beyond online computation,
and has been used to improve the runtime of algorithms for
classical problems such as sorting (Bai & Coester, [2023)
and graph problems (Azar et al.| 2022), as well as for the
design of data structures such as search trees (Lin et al.|
2022), dictionaries (Zeynali et al.,[2024), and priority queues
(Benomar & Coester). We emphasize that the above lists
only some representative works, and we refer to the online
repository of |Lindermayr & Megow| (2025).

Pareto-optimal algorithms. Several studies have focused
on consistency-robustness trade-offs in learning-augmented
algorithms, e.g. (Sun et al.| 2021; Wei & Zhang, [2020;
Lee et al., 2024} |Angelopoulos} [2023; Bamas et al., [2020;
Christianson et al., [2023; |/Almanza et al.,[2021). However,
Pareto-optimality imposes constraints which may, in certain
cases, compromise smoothness. The brittleness of Pareto-
optimal algorithms for problems such as one-way trading
was observed by [Elenter et al.| (2024)), who proposed a user-
defined approach to smoothness, and by Benomar & Perchet
(2025)) who relied on randomization. These approaches dif-
fer from ours, in that the profile-based framework of [Elenter|
et al.| (2024) does not always lead to an objective and mea-
surable notion of consistency. Moreover, we show that
randomization is not necessary to achieve Pareto optimality.

One-Max Search. [El-Yaniv| (1998) showed that the op-
timal competitive ratio of (deterministic) one-max-search
is 1/ V0, under the assumption that each price in the se-
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quence is in [1, 8], where 6 is a known upper bound on p*.
This assumption is required in order to achieve a bounded
competitive ratio and has remained in all subsequent works
on learning-augmented algorithms for this problem, such
as (Sun et al., [2021; |Angelopoulos et al., [2022; Sun et al.}
2024; |Benomar & Perchet, [2025)). The randomized version
of one-max-search is equivalent to the one-way trading prob-
lem, in which the trader can sell fractional amounts. The op-
timal competitive ratio, for this problem, is O(1/log 6) (El
'Yaniv, [1998). Pareto-optimal algorithms for one-way trad-
ing were given by Sun et al.|(2021)), however |[Elenter et al.
(2024) showed that any Pareto-optimal algorithm for this
problem is brittle and thus cannot guarantee smoothness.
One-max-search and one-way trading model fundamental
settings of trading, and many variants and generalizations
have been studied under the competitive ratio, see the sur-
vey (Mohr et al.| 2014). One must note that worst-case
measures such as the competitive ratio aim to model set-
tings in which no Bayesian assumptions are known to the
algorithm designer. There is a very rich literature on optimal
Bayesian search, see, e.g. (Rosenfield & Shapiro, [1981).

2. Preliminaries

In the standard setting of the one-max-search problem, the
input consists of a (unknown in advance) sequence of prices
p = (p;)", € [1,0]", where the maximal range 6 is known.
At each step ¢ € [n], the algorithm must decide irrevocably
whether to accept p;, terminating with a payoff of p,, or to
forfeit p; and proceed to step ¢ + 1. If no price has been
accepted by step n, then the payoff defaults to 1.

The competitive ratio of an algorithm is defined as the worst-
case ratio (over all sequences p) between the algorithm’s
payoff and p*, the maximum price in the sequence. A natu-
ral approach to this problem is to use threshold-based algo-
rithms, which select the first price that exceeds a predeter-
mined threshold @ € [1,6]. We denote such an algorithm
by Ag. In particular, the optimal deterministic competitive
ratio is 1/ V0 and it is achieved by A JB (El-Yaniv, |1998)).
Focusing on this class of algorithms is not restrictive, as in
worst-case instances any deterministic algorithm performs
equivalently to a threshold algorithm (see Appendix [B).

In the learning-augmented setting, the decision-maker re-
ceives a prediction y of the maximum price in the input p.
The payoff of an algorithm ALG in this setting is denoted
by ALG(p, ). In this context, threshold rules are defined as
mappings ® : [1,6] — [1, 0] that depend on the prediction.
We use again Ag to denote the corresponding algorithm. We
denote by ¢(ALG) and by r(ALG) the consistency and the
robustness of the algorithm, respectively, defined as

¢(ALG) = infw . (ALG) = inf ALG@:Y)

P D Y p*

Sun et al| (2021) established the Pareto front of the
consistency-robustness trade-off, albeit using a different
convention (the inverse ratio p*/ALG) for the competitive
rati(ﬂ Under our convention, their results show that the
Pareto front of consistency and robustness is the curve:

{cr@ =1for (¢,r) € [071/2,1] x [071,071/?] } )

In contrast, we are interested not only in consistency-
robustness Pareto-optimality but also in smoothness, namely
in the performance as a function of the prediction error
n(p*,y) := |p* — y|. An algorithm is called smooth if the
ratio ALG(p, y)/p* is lower bounded by a (non-constant)
continuous and monotone function of the error n(p*, y).

3. Pareto-Optimal and Smooth Algorithms

In this section, we present our main result in regards to
deterministic learning augmented algorithms, namely a
Pareto-optimal and smooth family of algorithms for one-
max-search. Our approach is outlined as follows. We begin
by characterising the class of all thresholds P, which in-
duce Pareto-optimal algorithms (Theorem [3.1). We then
present a family of thresholds in P,, parametrised by a
value p € [0,1] ( Eq. (Z)) that characterises their smooth-
ness and we show that p = 1 yields the best smoothness
guarantees. We complement this result with Theorem [3.3]
which shows that not only is our algorithm smooth, but any
Pareto-optimal algorithm cannot improve on its smoothness.

Before we discuss our algorithms, we note that the ran-
domized algorithm of (Benomar & Perchet| 2025) has a
measurable and significant deviation from the Pareto front,
even in comparison to deterministic algorithms; see Ap-
pendix [D.3]for the expression of the deviation. Furthermore,
the guarantees of their algorithm hold in expectation only,
whereas the results we obtain do not rely on randomisation.

We now proceed with the technical statements. Theorem 3.1
below provides a characterization of all thresholds that yield
Pareto-optimal levels of consistency and robustness.
Theorem 3.1. For any fixed of robustness r, the set of all
thresholds ® : [1,0] — [1, 0] such that Ag has robustness r
and consistency 1/10 is

P, = {(I) :VZG[I,Q]ST’QS(I’(Z)S%

Vze[rf,0]: — < P(z) < z}

=SE

Figure[T]illustrates the set P, (shaded).

We prove the theorem via a double inclusion. First, if a
threshold function ® belongs to P,., then we use the bounds

!The convention that the competitive ratio of the maximization
problem is in (0, 1] allows for cleaner bounds on the performance
as a function of the prediction error.
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1/r

Threshold ®(y)

T T

1 ro 1)r
Prediction y € [1, 6]

g |

Figure 1. A depiction of the set P, of Theorem[3.1] A threshold ®
is r-robust and 1/r@-consistent if and only if it is a function whose
graph lies in the shaded area which defines P..

on ® defining P, to prove its Pareto-optimal robustness and
consistency. Conversely, for a Pareto-optimal ®, we anal-
yse the worst-case instances Z,,(¢) (Equation (13)), where
prices increase uniformly from 1 to g before dropping to 1.
By evaluating the ratio ALG(p, y)/p* on these instances for
well-chosen ¢, we show that & € P,..

We now turn to identifying smooth algorithms within the
class P,. Let us begin by giving the intuition behind our
approach. Our starting observation is that the algorithm
of Sun et al.|(2021)) uses the threshold

rf ify e [1,70)

Oy) = wrly) ifyelrd1/r) |
1/r ify e[l/r,0]
wherein
r0—1 1-1r%0 =z
preze 1—r * 1—r 16

is the line defined by (r6,760) and (6, 1/r). The function ®°
is illustrated in Figure 2] in dashed orange. The analysis of
Benomar & Perchet (2025) revealed that the brittleness of
this algorithm arises from the discontinuity of ®9 at the point
1/r, as illustrated in Figure 2| This observation suggests
that the smoothness of an algorithm Ag is influenced by the
maximal slope of the function z — ®(z). To confirm this
intuition, we analyse a family of algorithms {A}} ,c(0 1]
associated with the thresholds {®?(y)}, defined by

rf ify € [1,r0)

orly) 1 ifye[ro,}) ,
T ¥riy . . ( )

%(%H*ﬂryl ify e[, 24p(0-1))

p(l—7r) 16
1/r ifye[+p0—1)6

T

1/rA
=
Qs
5 0]
)
)
=
L
=
=
704

T

Ur beplo-b) 0
Prediction y € [1, 6]

Figure 2. The threshold functions ®# of A, as defined by Eq. ().
Note that all are equal on [1,771).

Figure [2)illustrates the threshold functions (®£),¢(o,1)- No-
tably, the case p = 0 corresponds to the algorithm of |Sun
et al|(2021), while at the other extreme (p = 1) we obtain
the threshold @} : 2 +— max(r6, o, (2)).

The standard definition of smoothness involves demonstrat-
ing a continuous degradation of algorithm performance as a
function of the prediction error

ne*,y) = I[p" -yl .

A key limitation of 7 is its sensitivity to rescaling—
multiplication of the instance by a constant factor—which
makes it less suitable in the context of competitive analysis.
A common solution is to express bounds in terms of the
relative error

as is often done in prior work on learning-augmented algo-
rithms. However, this introduces another complication: the
asymmetry between y and p*.

To overcome these issues, we use a multiplicative error mea-
sure that retains the desirable properties of scale invariance
and symmetry:

*

E:(p"y) — min{p, y} elp~t1. @3
y'p

This error measure has previously been used in the con-
text of mechanism design with predictions (Balkanski
et al.l 2024)). Note that a perfect prediction corresponds
to £(p*,y) = 1. We primarily focus on £ in the remain-
der of the paper. However, we also provide smoothness
results using the additive error measure 7 for completeness,
in Section 3.2
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3.1. Multiplicative error £

This first theorem establishes smoothness guarantees of the
family {A’}, , with respect to the error measure £.

Theorem 3.2. The family {Al}, , satisfies
AL (p,y)

1
> _ * Sp
= 2 max (r, 5w w) ) )

with s, := max (1, %(lé‘(‘r%) — 2)>,f0rp € [0,1].

For p € [0, 1], the threshold defining A” lies in P,., en-
suring r-robustness and 1/rf-consistency (Theorem 3.1).
To establish smoothness, we determine the best value of s
such that A? /p* > (1/r0)E® across all price sequences and
predictions. Since the threshold is piecewise-defined, it suf-
fices to analyse cases based on y and whether the maximum
price is above or below the threshold. The final smoothness
guarantee is then determined by the worst such case.

The smoothness in Theorem is quantified by the ex-
ponent s, of £. A smaller value of s, results in slower
degradation of the bound as a function of prediction error,
i.e. improved smoothness. In the limit p — 0, the exponent
s, becomes arbitrarily large, which results in extreme sen-
sitivity to prediction errors, i.e. brittleness. In contrast, the
best smoothness is achieved by p = 1, yielding an exponent

szzslzmax(l,%—2> )

The above positive result naturally raises the question: is
the smoothness guarantee of Theorem [3.2] optimal among
Pareto-optimal algorithms? This question is addressed by
Theorem [3.3| which gives a lower bound on the smoothness
achievable by any Pareto-optimal algorithm.

Theorem 3.3. Let A be any deterministic algorithm with
robustness r and consistency 1/r6. Suppose that A satisfies
forallp € [1,0]" and y € [1, 0] that

Ap,y) Lo s u
p* Z max <T7 Eg(p 7y) > (5)

for some u € R, then necessarily u > % -2

We first prove that, on worst-case instances Z,(q), any
Pareto-optimal algorithm behaves like a threshold algorithm.
Using results from Theorem (3.1] we establish that its thresh-
old function must belong to P,.. Finally, using the definition
of P, with well-chosen g and y, we derive lower bounds on
the smoothness s.

This lower bound shows the optimality of the exponent
achieved by Al for r < §=2/3. Indeed, if this condition is
satisfied, then Theorem 3.2] gives

Al 1 Inf
% > max <T, RO 2> :

This implies that, for € [#~*,0~2/3], Algorithm A} at-
tains the triple Pareto-optimal front for consistency, robust-
ness, and smoothness among all deterministic algorithms
for one-max-search. For r € [§~2/3 =1/, A} remains
smooth and Pareto-optimal; however, its smoothness guar-
antee might admit further improvement.

‘We conclude this section with some observations. First, note
that many learning-augmented algorithms in the literature
express consistency and robustness in terms of a parameter
A € [0, 1], which reflects the decision-maker’s trust in the
prediction. A simple yet effective parametrisation of Ai
can be achieved by setting r = §~1=*/2), Noting that
1/rf = 6=>2, and hi?r%) = 2, the result of Theorem
can be restated, with this parametrization, as

1
AB0) 5 max (90,0 2o 03

p*
A second observation is that the obtained bounds can be
readily adapted to the inverse ratio p* /AL (p, y), which is
also commonly used to define the competitive ratio in one-
max-search (El-Yaniv, [1998). Specifically, by defining the
Py

inverse error as £ = 1/€ = max g e We obtain

*
A
2

S min (01_%79 g(p*’y)maX(l,%—2)> .

A (p,y)

3.2. Extension to the additive error 7

While the multiplicative error provides a more natural fit for
the problem at hand, we also derive smoothness guarantees
for A} using the additive error n(p*,y) = [p* — y|. More-
over, we prove that the smoothness it achieves is optimal for
n, for all possible values of » € [#~1,071/2].

Theorem 3.4. Let A be any deterministic algorithm with
robustness r and consistency 1/r6. Suppose that A satisfies
forallp € [1,0]" and y € [1, 0] that

APY) S s (T’ 1 Bn(p’ﬂy)) ©)

p* 7’0 p*

for some 3 > 0, then necessarily 5 > (3*, where

2
B*::l remax< 1 1 )

r0 1—r’'rf—1

Moreover, Algorithm A satisfies (6) with § = (3*, which
shows its optimality.

The above theorem establishes that A,l. has the best possi-
ble smoothness guarantee amongst all Pareto-optimal algo-
rithms. Consequently, it achieves a triple Pareto-optimal
trade-off between consistency, robustness, and smoothness.
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4. Stochastic One-Max Search

One-max-search under competitive analysis is a worst-case
abstraction of online selection which is highly skewed to-
wards pessimistic scenarios. This is an approach rooted in
theoretical computer science that has the benefit of worst-
case guarantees, but does not capture the stochasticity of
real markets, e.g. (Cont & Tankov, 2004} Donnelly, [2022).
In contrast, in mathematical (and practical) finance, prob-
abilistic analyses such as risk management are preferred,
e.g. (Merton, |1975). While reconciling the two approaches
remains a very challenging perspective, we aim to narrow
the very large gap between the worst-case and stochastic
regimes by leveraging a probabilistic approach. This ne-
cessitates algorithms that can be robust to the randomness
of the market, and to this end, the established smoothness
of our algorithm (Section [3)) will play a pivotal role, as we
will show. A probabilistic analysis can thus yield two main
practical benefits: 1) estimate performance under price dis-
tributions obtained from financial modelling; 2) leverage
the consistency-robustness trade-off to handle risk.

In the stochastic formulation of one-max-search, we now
consider the prices (P;)?_; to be random variables whose
maximum is P* ~ F'*. Since market prices are random, the
historical data used to generate a machine-learned prediction
should also be random, hence we consider the prediction
to be a random variable Y ~ (. As before, we consider
that P;, for ¢ € [n], and Y take value in [1, 6]. The trading
window unfolds as in the classic one-max-search problem,
except that the prices and predictions are now random.

We will first give, in Section a general probabilistic
competitive analysis of the one-max-search problem which
shows that the bounds of Section [3] transfer naturally by
weighting the bounds of Theorem [3.2]according to the cou-
pling of (P*,Y"). In order to better understand the intuition
behind these results, in Section we instantiate the analy-
sis with three insightful models. Finally, in Section we
analyse the effects of F'* and G, first in isolation, and then
jointly using analytical tools from optimal transport theory,
to characterize how their interaction influences the outcome
beyond their individual effects.

4.1. Competitive analysis in the stochastic framework

In the stochastic setting, we will evaluate the perfor-
mance of the algorithm using the ratio of expectations
E[ALG(P*,Y)]/E[P*], but our results and arguments
transfer readily to E[ALG(P*,Y")/P*].

Because any algorithm must operate on the realisation of Y,
its performance becomes a random variable depending on
the specific relationship of P* and Y. This is captured the

coupling 7* of (P*,Y), yielding

BALG(P",Y)] = [ ALGG 0)dr (0). - ()

In consequence, we can identify 7* and the instance
(P*,Y) ~ 7* without loss of generality, as all such in-
stances are indistinguishable to a probabilistic analysis.

Taking into account the coupling, the bound of Theorem
adapts to the stochastic setting to yield Lemma4.1

Lemma 4.1. The family {Al}, satisfies

E[AL(P*,Y)] 1 E[P*E(P*,Y)"]

—_vrh 07 [ S A
EP ] -\ e B[P ®

Proof. Apply Jensen’s inequality to Theorem [3.2] O

As expected, (§) shows that the robustness of {A}}, carries
over to the stochastic setting through the max{r, -} term.

4.2. Instantiations of Lemma [4.1]

The coupling 7*, and Eq. (8) more broadly, encode effects
that influence the quality of a prediction from two different
sources: the relationship of G and F™* and the relationship
between Y and P* themselves (e.g. correlation). In this
section, we aim to isolate the effect of G and F™.

Stochastic predictions, deterministic prices

This semi-deterministic model, in which F'* = §,,- (which
is to say P* = p* almost surely), isolates the effect of G.
From a practical standpoint, it can also be used to model
predictions which are noisy measurements of deterministic,
but unknown, quantities. Its theoretical interest comes from
the fact that it simplifies Eq. into an integral over F'*.
This allows us to derive Corollary .2]from Lemmaf.1] in
which the function A : [1, 0] — [0, 1] defined by

A(p") =E[E(P",Y)*|P" = p7] ©

for p* € [1, 0], directly quantifies the quality of the predic-
tion in terms of the performance, with respect to the true,
realised, maximal price p*. Indeed, A(p*) < 1 for all p*,
and the closer to one, the better the prediction.

In particular, if the maximal price is deterministic, but the
prediction is stochastic, this yields the following guarantees.
Note that, for the sake of clarity of the results, we will no
longer specify the term coming from the robustness, with
the understanding that one can add a maximum with r to
any bound on the performance of {A} },..

Corollary 4.2. Let F* = §,+ for some p* € [1,0), then the
family {AL}, satisfies
E[AL(P*Y)] _ 1

> —A(p*).

E[P*] r0 (19)
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Viewing A as a map (taking G to a real-valued function
on [1, A]) reveals that it quantifies the usefulness of G as a
prediction distribution at any p* € [1, 6].

As an integral functional of G, A may not admit a closed
form. Nevertheless, it can be estimated to capture subtle
stochastic phenomena as demonstrated by Example 4.3

Example 4.3. Let F* = §,+ for some p* € [1,0] and
G = Unif([p* — €,p* + €]). There is a constant C' > 0,
dependent only on (s, ), such that

E[A,(P*,Y)] _ 1 s 2
BT 2w (g O0) 00

as soon as 0 < ¢ < min{f — p*,p* — 1}.

Eq. (TT)) reveals that the performance of {Al},. decays from
consistency at a rate linear in the uncertainty e, determined
by the smoothness s of the algorithm. This captures the
scale of the effect of smoothness on a practical example. In
Eq. (TT) we characterised the rate up to the second order
(€%), but higher-order estimates can be obtained similarly.

Moreover, this shows that all sufficiently regular distribu-
tions can be approximated in terms of A using mixtures over
the model of Example ie. G = Zszl wiUnif(I) for
w; > 0,>, w; =1, and (), disjoint subintervals of [1, 6]
(see Corollary [C.Z). Numerical integration (e.g. Monte-
Carlo) offers another alternative method to estimate A.

Deterministic predictions, stochastic prices

The performances of our family of algorithms can also be
computed if the prices are stochastic, but the prediction
is deterministic. This model swaps the randomness: now
the prices are random so that p* ~ F™* is generic and it is
Y ~ 4, which is deterministic.

While this setting appears symmetrical to the previous one,
this is not the case as the one-max-search problem itself is
highly asymmetrical. Indeed, using a threshold means that
predictions too high or too low do not have the same impact.
By defining

E[P*E(P™, Y)Y =y

T(y): = P fory € [1,6],

we can establish a quality quantification which mirrors A:
this functional of F'™* states how good any unique prediction
vy is at influencing algorithmic performance. This yields the
following Corollary [4.4] an analogue of Corollary #.2] Note
that T(y) < 1forally € [1,0].

Corollary 4.4. Let G = §, for some y € [1,0]. The family
{AL}, satisfies

1 *
W > ST(). (12)

Independent stochastic predictions and prices

The theoretical value of the above two models is their isola-
tion of the effect of GG into A (resp. F™* into T). We now turn
to a model in which Y and P* are independent (denoted by
7 = F* ® ) which will illustrate that predictions can be
useful even without any correlation. The intuition is simple:
some inaccurate predictions can still induce (on average)
good thresholds because of the algorithm’s internal mechan-
ics. This effect is captured by the interaction between the
functional A and the distribution of prices F™* (resp. Y and
(), as shown by Corollary@

Corollary 4.5. Let 7* = F*®G, the family {AL}, satisfies

Since A(z) is always smaller than 1 (and again, the closer
to one, the better the predictions are), Eq. gives an
intuitive bound on the performance of the algorithms.

The theoretical benefit of the model transpires in Corol-
lary 4.3} independence separates the integral against 7* in
Eq. (7) into a double integral revealing Y. Unfortunately,
it is often difficult to obtain a closed form for the resulting
expression (see, e.g. , Proposition [C.5), but one can rely on
numerical integration instead (see Figure[5|in Appendix [C).

4.3. Dependent predictions and optimal transport

The previous models successfully isolated the effect of the
distributions F™* and G. Using tools from Optimal Trans-
port (OT) theory, one can generalise this approach. For
brevity, we refer simply to (Villani,2009) for the technical-
ities and background of this field. The key observation is
that the right-hand side of Eq. (7) is a transport functional
of m*, which can be lower bounded uniformly over the set
of couplings II(F*, G) of F* and G. This set is exactly the
set of joint distributions for (P*,Y") when P* ~ F* and
Y ~ (. Minimising a transport functional over couplings is
the classic OT problem (Villanil 2009), hence Theorem @

Theorem 4.6. The family {A}, satisfies

E[AL(P*,Y)] _ 1 inf/p*g(p*’y)sdﬂ(p*’y)
BP] S EP B

where the infimum is taken over couplings m € II(F*,G) ;
in particular, this implies the numerator is as most E[P*].

Theorem [4.6) highlights a novel connection between
(stochastic) competitive analysis and optimal transport. Con-

The following result also applies to sampling of distribution-
valued predictions (Angelopoulos et al.| 2024} Dinitz et al.l [2024).
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trary to most literature in OT, in which the optimal configura-
tion tries to minimise the distance points (p*,y) are moved,
the infimum in Eq. (T4) tries to push them far apart to induce
the algorithm to make mistakes.

Optimal transport tools have been used before in algorithms
with predictions, notably in the distributional predictions
setting in which the algorithm is given G itself (Angelopou}
los et al.l [2024; Dinitz et al.||2024). This analysis, however,
is fundamentally different: it uses Wasserstein distances
(see Appendix in place of 7 in quantifying the error
of the distributional prediction G of F'*. Our stochastic
framework ties its error metric closely to the asymmetric
nature of the problem through p*&(p*, y)*®, which is why
our OT problem, i.e. Eq. @), is not symmetric: exchanging
the roles of (G, F'*) cannot be expected to yield the same
performance.

The optimal transport problem in Eq. (T4) generally has
no closed form, but thanks to its (strong) dual form (see
Appendix [C.2), one can use problem-specific knowledge to
derive lower bounds, as demonstrated by Proposition

Proposition 4.7. The family {A}}, satisfies

2

ro E[P~]

1
02 0
*«1+s YR x1—s YR
Enl\i(])*,if)] 1 (/fl) dF (p )414:1p dF (p )

E[P*]

>

Moreover, the RHS is the infimum over G of Eq. (T4).

Proposition[.7]once more highlights the asymmetry of the
problem through different contributions of the regions above
and below \/5, which is the threshold that guarantees 1/ Vo-
robustness. The dual problem provides thus a practical tool
for designing lower bounds for the performance of {Ai}r
in the stochastic one-max-search setting.

5. Numerical Experiments

To complement our theoretical analysis and evaluate the
performance of our algorithm in practice, we present exper-
imental results in this section. We defer additional experi-
mental results to Appendix [E]

5.1. Experiments on synthetic data

We fix § = 5, A = 0.5, and r = 6~ (1=*2/2) We consider
instances {Z,,(q) }4e[1,07» Where Z,,(q) is the sequence start-
ing at 1, and increasing by % at each step until reaching
q, after which the prices drop to 1. A more formal defini-
tion of this instance can be found in Equation [I5] These
instances model worst-case instances with maximum price
q, and they are used in general to prove impossibility results
in the one-max-search problem.

We fix an error level &,y and, for each p* € [1, 6], we

1/r64
0.6

0.51

Empirical ratio

0.41

1/r0] S p=

0.51

0.44

Empirical ratio

0.34

0.0 0.2 Oj4 Oi() 0.8 1.0
o €0,1]

Figure 4. Comparison of AL and A® on the Bitcoin price dataset.

generate the prediction y by sampling uniformly at ran-
dom in the interval [p*Epmin, p*/Emin] = {2z : E(p*,2) >
Emin}, then compute the ratio A?(Z,(p*),y)/p*. For
Emin € (0,1], Figure [3| illustrates the worst-case ratio
inf,,- c1,0) By [AL(p*, y)]/p*, where the expectation is es-
timated empirically using 500 independent trials. The figure
also shows, with dashed lines, the theoretical worst-case
ratio corresponding to the given error level Epin.

Figure |§| shows that for the different values of p, the worst-
case ratio is 1/r6 when the prediction is perfect, i.e. Emin =
1, and degrades to r when the prediction can be arbitrarily
bad, which is consistent with Theorem @ However, the
ratio achieved for p = 0 drops significantly even with a
slight perturbation in the prediction, while the ratios with
p € {0.5,1} decrease much slower. This is again consistent
with the smoothness of Af , as shown in Theorem

5.2. Experiments on real data

To further validate our algorithm’s practicality, we evaluate
it on the experimental setting of (Sun et al,|2021). Specifi-
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cally, we use real Bitcoin data (USD) recorded every minute
from the beginning of 2020 to the end of 2024. The dataset’s
prices range from L = 3,858 USD to U = 108, 946 USD,
yielding § = U/L = 28.

We randomly sample a 10-week window of prices W, let
W_; be the 10-week window of prices preceding W, and
take the prediction y = amaxW_; + (1 — o) max W.
Here, « captures the prediction error: o = 0 represents
perfect foresight, while o = 1 corresponds to a naive pre-
diction equal to the maximum price in W_;. To simulate
worst-case scenarios, the last price in Wy is changed to L
with a probability of 0.75. For each value of o, we sam-
ple m = 100 windows (W{)”., and compute the ratio
R,, = min; {A?(W{,y)/ maxW{} for p € {0,1}. We
then empirically estimate E[R,,] by repeating this process
50 times. We choose the robustness r of A? by setting
A€ [0,1]and r = §=(1=2/2),

Figure 4| shows the obtained results with A = 0.5, and com-
pares our algorithm Ai to the algorithm of (Sun et al., 2021},
which corresponds to AS. For a = 0, i.e. perfect predic-
tion, they both achieve the consistency 1/r6. However, as
the error increases, A? quickly degrades to the robustness
guarantee r, whereas Ai degrades more gradually.

6. Conclusion

We provided an intuitive Pareto-optimal and smooth algo-
rithm for a fundamental online decision problem, namely
one-max-search. We believe our methodology can be
applied to generalizations such as the k-search prob-
lem (Lorenz et al.| [2009), i.e. multi-unit one-max-search,
recently studied in a learning-augmented setting (Lee et al.|
2024). More broadly, we believe our framework can help
bring competitive analysis much closer to the analysis of real
financial markets since it combines three essential aspects:
worst-case analysis, adaptivity to stochastic settings, and
smooth performance relative to the error. A broader research
direction is thus to extend the study of competitive financial
optimization (see, e.g. , Chapter 14 in (Borodin & El-Yaniv,
2005)) to such realistic learning-augmented settings. This
work also sheds light on connections between competitive
analysis and optimal transport, suggesting the study of the
geometry of OT problems induced by competitive analysis
as a promising direction for both theories.

Our work also lays the groundwork for exploring triple
Pareto-optimal frontiers among consistency, robustness, and
smoothness. While our results establish optimal worst-case
smoothness guarantees for both multiplicative and additive
prediction errors, an intriguing direction for future research
is to investigate how these bounds improve under additional
assumptions, such as when the prediction error is known to
be bounded.
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Appendices

A. Organisation and Notation
A.1. Organisation of Appendices

The following appendices are divided in the following way: Appendix [B|contains the proofs of Section 3] while Appendix
contains proofs of Section[d] In both cases, they follow the order of the main text. Appendix [E]provides further experiments
not included in Section[5] After these sections which are ordered according to the text, Appendix [D]is transversal and
regroups results in which the error analysis is additive instead of multiplicative.

A.2. Notation

The space of probability measures over a set S is denoted £?(S). The set of couplings between G and F* is II(G, F*) :=
{r e 2([1,0)%) : n(-,[1,0]) = G,n([1,0],-) = F*} For z € R, §, denotes the Dirac Delta distribution (i.e. the
distribution of a degenerate random variable X satisfying P(X = z) = 1).

B. Proofs of Section
We present in this appendix the proofs of the results stated in Section[3] Let us introduce some notations and observations
that we will use throughout the proofs. For all n > 1, we denote by (p!*)?_, the sequence of prices defined by
0—1
,— 1
1 (Z ) Y

and for all ¢ € [1, 0], we denote by Z,,(¢) the sequence of prices that are equal to p}* while the latter is smaller than ¢ then
drops to 1. Formally, the i" price in this sequence is

In(Q)i =1+ (p? - 1)1p?§q - (15)

Vien]: pf=1+
n—

On the class of instances {Z,,(q) } 4e[1,6]> any deterministic learning-augmented algorithm for one-max-search is equivalent
to a single-threshold algorithm Ag. Moreover, observe that the payoff of Ag satisfies

Ao (Zn(q),y) = { é)(y) +0(2) iofﬂi(rzv)i; !

Indeed, if the threshold exceeds the maximum price g in the sequence, then no price is selected and the algorithm is left
with a payoff of 1. On the hand, if the threshold is at most g, then the selected price is min{p} | p}* > ®(y)}. By definition
of the prices p?’, this value is in [®(y), ®(y) + Z:ﬂ. In particular, for n arbitrarily large, the payoff of an algorithm with

threshold ®(y) < q is arbitrarily close ®(y). This observation will be useful in our proofs.

(16)

B.1. The class of all Pareto-optimal thresholds

Theorem 3.1. For any fixed of robustness r, the set of all thresholds ® : [1,0] — [1, 0] such that Ag has robustness r and
consistency 1/70 is

A
&
N
A

P = {<I> :Vze[1,0]:r0

Vz € [r6,0] :

Proof. Let ® : [1,60] — [1, 0], and consider that Ag is r-robust and 1/r6-consistent. We will prove that ® is necessarily in
the set P,..

First inclusion. Let us first prove that ®(z) € [rf,1/r| for all z € [1,0]. Let z € [1, 6], and consider the sequence of
prices Z,(q). Since Ag is r-robust, then by Eq. (T6), it holds for ¢ = ®(z) — 1 and y = = that
ATz 11

q a O(2)—

3=

12



Pareto-Optimality, Smoothness, and Stochasticity in Learning-Augmented One-Max-Search

On the other hand, for ¢ = 6, we obtain again using Eq. (I6) that

We deduce that ®(z) satisfies ®(z) € [r6 — O(%),1/r + 1], and taking the limit for n — oo gives that ®(z) € [r6,1/r].
Consider now z € (r0, 6], and let us prove that ®(z) € [-5, z]. We first prove by contradiction that ®(z) < z. Suppose
this is not the case, i.e. ®(z) > z then using Equation and that the algorithm is 1/rf-consistent, considering that the

maximum price is z and the prediction is perfect, we deduce that

1 AuT()2) 1

rd — z oz
hence z < rf, which contradicts the initial assumption that z € (6, 6]. Therefore, ®(z) < z for all z € (r6, §]. Using this
inequality, it follows again by Eq. (I6) and 1/r-consistency of the algorithm that

L
rf z z
Consequently, ®(z) € [ 5, 2] for all z € (rf, 0]. This proves that the set of all thresholds yielding Pareto-optimal levels of

robustness and consistency (r, 1/76) is included in the set P,..

Second inclusion. The other inclusion is easier to prove. Let ® € P,, and let us prove that Ag is r-robust and 1/76-
consistent. Consider an arbitrary sequence of prices p = (p;)?_; € [1, 6] and a prediction y € [1, 6], and let us denote by p*
the maximum price in the sequence p.

The robustness of Ag follows from the bounding ®(y) € [r6, 1/r]. Indeed, we obtain using Eq. (16) that

* ifp* < D(y) then Ae) — 1> 15

. ifp* Z (I)(y) then A@}Sfﬂ) — 2(y) Z 2(y) Z r,

which proves that Ag is r-robust. Now the consistency of the algorithm follows from the bounding ®(z) € [, 2] for all
z € (r#,0]. Indeed, assume that the prediction is perfect, i.e. y = p*, then we have the following:

« if p* < 76 then Reer) _ 1 5 1
— p* p* = rb

* if p* > r0 then we have that &(p*) < p*, hence % = Cpgf) > 719.
This proves Ag is 1/rf-consistent, which concludes the proof. O

B.2. Smoothness analysis of A”

LemmaB.1. Leta > 0, b € R, and u < v € (0, 00) satisfying that z — az + b > 0 on the interval [u,v], then it holds for
all ! € R that

max ————— = Ia
2€[u,v] 2t £ ’ vt

(az + b)iHt N { (au + )+t (av +b)**! } .

Proof. For all z € [u,v], we can write that

{41
(a2 +0)1 _ (az4b )7 (astres bzfe/wl))“l
o SO/ (+1)
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hence, computing the derivative gives

d [(az+b)+! _d 1/(€+1) —£/(€+1) o
dz [zz = (az +bz )

= (L+1) (Halz—fz/(ul) _ Zflz—e/(eﬂ)—l) (azl/(“l) +bZ—Z/(e+1))€

_ gt/ <Z B M) (az1/(z+1) erZJ/(EH))é '
a

(az+b)**1
AUl

The monotonicity of z +— on the interval [u,v] is therefore determined by the sign of z — % Indeed,

¢, )
az=*/(HD=1 > ( because @ > 0 and z > u > 0, and the term (az/(“FV) 4 bz=#/(+1))" is also non-negative be-
cause we can write that

T (417 T
(azl/(€+1) n bz—f/(€+1))e _ [(az1/(4+1) n bz_e/(eﬂ))“l} "1 [(az +£b) ]m |
z

and both z and az + b are positive on the interval [u, v].

. . . 1 .
Consequently, depending on how % compares to the bounds u, v of the interval, the mapping z +— % can be either
z

decreasing, increasing, or decreasing then increasing. In the three cases, its maximum is reached in one of the interval limits
u or v, thus

+1 41 £+1
ax (az +b) R { (au +b) 7 (av —;eb) } .

z€[u,v] 2t ut

Corollary B.2. For all p € (0,1], for s = £ (25 — 2) it holds that

CI)/’ = s+1
max & <rf.
ze[L t4p(6-2) 27

Sie

Proof. By definition of the threshold ®#, we have for z € [, 1 4 p(6 — 1)]

S =

@ﬂ@=w4@+(z—1),

- — pr(2)
p(0—7) r

which can be written as az + b with @ = % > 0 because ¢, (z) < 1/r for all z < 6. Consequently, Lemma@
gives that

max s
cel itp(0-2) 2

T

BT (B B p(0 = 1)
Urs 7 (34000 -7

ety
= { 1/ wi+m0—bf}' a7

We will now prove that both terms in the maximum are at most equal to 76.

For all h € R, we have the equivalences

1/rhtt 1 9
T <" Ty
> —hln(1+p(r6 —1)) <In(r’0) = —(In6 — 21In(r))
— > Inf — 21n(rd)
T In(14p(ro —1))

14
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Moreover, we have by concavity of = — In z that

In(1+p(rd—1)) =ln(prd + (1 —p)) > pIn(ré) + (1 — p)Inl = pln(rd) ,

therefore, s = 4 (1 Ino__ 2) satisfies
p \In(ro)

s = —
p

1 ( ng >_ Ing — 21n(ro) - In6 — 21In(rd)

In(r6) pln(rd)  ~ In(1+4p(rd — 1))’

and we deduce with the previous equivalences that

1/rstt

- L < rf. 18
Cipo-Dy =" 4o

Let us now prove that %:)SH < rf. Since ¢, is a linear mapping with a positive slope, using that 1/r € [r6, 0] and

Lemma[B.1] we obtain that

er(1/r)t ma pr(2)*
1/’/‘5 - ze[rG}SQ] 25
_ Pr (TQ)S-H ‘Pr(e)s—H
- maX{ (ro)s o0
_ (ro)*tt (1/r)**H
- max{ O

=~ maxd g 0
= ma T’(r0)5+1 .

Observing that k = ps = 11;1:)0 — 2 is the solution of (Te)% = rf, and given that k < s and p < 1, we have that
4 < o _ rf
(7“0)5‘*‘1 = (rg)k+1 - )
hence . -
er(1/r)* T pr(I/r) 4 _
1/7‘3 § 1/7"k = max 7'9, W =rf. (19)
Finally, using Equations (T7), (I8), and (19), we deduce that
[0Y4 s+1
max & <rf,
z€[L, 1 +p(6—1)] 25
which concludes the proof. O
Theorem 3.2. The family {Al}, , satisfies
A? 1 s
r(p,y) > max (n 5(p*’y)‘,,> 7 @
p* r0

with s, := max (17 %(lé’(‘r‘%) — 2)),f0rp € [0,1].

Proof. Consider r € [#~*,071/2], an instance p = (p;)?,, a prediction y of p*, and let £ = min (%, %) We will prove
the smoothness guarantee separately on the intervals [1,768), [r0,1/r], [1/r,1/r 4+ p(6 — 1/7)],and [1/r + p(6 — 1/7), 6].
To lighten the notation, we simply write s for max (1, %(lé?r%) — 2)) instead of s,,.

15
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Casel. Ify € [1,r0), then ®2(y) = ro. If p* < r6 then

AL (p,y)

1
7>
p* T p*

1 1
— > g5,
9 rf
and if p* > r6 then the payoff of the algorithm is at least equal to the threshold 6, hence
Alpy) o Py) 10 y

0585 les L
p*

p* p* T op* T rf T 7“95 '

We used in the last two inequalities that y >&,rf>1lands > 1.

Case 2. Consider now the case of y € [r6,1/r], then ®2(y) -1 | 12020 U If p* > $(y) then the payoff

=pr(y) =14
of the algorithm is at least equal to the threshold. Using that L >&,1 > & and p* < 60, we obtain

Alp,y) o 20(y) _ er(y)
D* p* p*
rd—1 1 1—-r20 1 y
1—r p* 1—r 10 p*

p
rd—1 1 1—7%20 1
> C—+ -— | &
1—7r p* 1—r

IV

r

-1 1 1-—7%20 1
<1—7“.9+ 1—r 10
1

_ 2, 2
_71'9(171")(769 r+1 7’9)5

1 1
R > s .
7"05 - 7“98 (20)

On the other hand, if p* < ®L(y), recalling that ®2(z) = p,.(2) for z € [rf,1/r], we can use Inequality from the proof

of Corollary|B.2} which gives for k = ln 9) — 2 that

() () 6\
T T = g p =0

and it follows that

P
A% (p,y) >1s pl
p* p* — ®7(y)
L1 ettt 1 (o)
TRy 0 yk 0\ oy
Wk
> () s Loy Lo
rd \ y r0 rf
where we used in the last inequality that £ < 1 and k < % < max(1, %) =5

Case3. Fory € [1/r,1/r+ p(6 — 1/r)], if p* > ®L(y), then observing that P2(y) > ¢, (y), we obtain with the same
computation as Eq. that

S
3
—
<
~—
—_

P P
p* p* p* 7,0
On the other hand, if p* < ®2(y), then by Corollary B.2| we have for k =

( )

max (2 1
z€[3 1 +p(0—1)] ze

16
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therefore, the ratio between the algorithm’s payoff and the maximum payoff can be lower bounded as follows

P
Arlpy) S 1o pl
p* pr Pr(y)
11 et 1 (e
- y% Y Yy

> 1 p) > Lets
>G5l ) 2 >
k

The last inequality holds because % < max(1, ;) =s.

Case 4. Finally,ify € (1/r + p(6 — 1/r), 0], then ®2(y) = 1/r. If p* > 1/r, then we have immediately that

P o
Al(p,y) > PP(y) 1 > 1 > LY
P p* rp* — rf — rf
Now if p* < 1/y, letk = —li?r%) —2and z, = 1/r + p(6 — 1/r). Observing that s > % >k,andy > z,,and ry > 1, we
deduce from Corollary B.2]
s k/ k_q k_q ki q k_q
DLV L) _amE it et et
r Ty r rYy Y /p Z’;/P Z’;/P ZE[%7Z;,] Zk//)

which yields for p* < ®2(y) = 1/r that

AL (p,y)

Conclusion. All in all, for any y € [1, 6], it holds that

: _ 1 In@
with s = max (1, ;(ln(re) - 2))
Finally, the threshold function ®Z is in the class P, then we have by Theoremthat A’T) is r-robust, and it deduce that
AP 1 .
Ar(p.y) > max (r, €‘S> ,
p* r6

which concludes the proof.

B.3. Lower Bound on Smoothness

Theorem 3.3. Let A be any deterministic algorithm with robustness r and consistency 1/r0. Suppose that A satisfies for all
p € [1,0]" and y € [1,0] that
Ap,y)

p*

for some u € R, then necessarily u > 15?39) -2

1 * u
> max (7‘7 —5E0"y) ) ®)

Proof. Let A be a deterministic algorithm for one-max-search with, and assume that it satisfies for all p and y that

A(p,y)
p*

1
> - *\ U )
> max (T, ng(y,p) >

17
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In particular, A has robustness r and consistency 1/76.

To prove the lower bound, we will use the instances {Z,,(q)}4c[1,0) defined in Eq. (I3). On these instances, for a fixed
prediction g, any deterministic algorithm behaves as a single threshold algorithm. Therefore, there exists ® : [1,6] — [1, 6]
satisfying that A(Z,,(q),y) = As(Z,(q),y) forall ¢,y € [1,0].

The lower bound satisfied by A ensures that it achieves Pareto-optimal consistency 1/(rf) and robustness r. Consequently,
Ag also attaints them on the sequences of prices {Z,,(q)}qe[1,6- These instances are precisely those used to establish
the constraints on Pareto-optimal thresholds in Theorem[3.1] which implies that the theorem’s constraints hold for ®. In

particular, we have that ®(rf) = r0 and ®(0) = 1/r.
Lety =6and ¢ = qf_(fs) = 114/_2 for some € > 0. Since ¢ < ®(), when A is given as input the instance Z,,(q), it does not
select the maximum price and ends up selecting a price of 1, hence

AZ.(q),0) 1

=—-=14+¢)r.
. . (1+¢)

Furthermore, by assumption, this ratio above is at least

1 w_ 1 1 “_i 1 v 1 u
79549 _r08<(1+€)r’9) 0 ((1+5)r9> = o et

therefore, we have that

(1+e)r> W(l +e)".
This inequality holds for all € > 0, which gives in the limit ¢ — 0 that
r> 71
= (rg)utt’
and we obtain by equivalences that
1 0
r> o = (rf)* > 072
<= uln(rf) > Inb — 21n(ro)
= u> ﬂ -2
~ In(r0) ’

which gives the claimed lower bound on .

C. Complements to Section [

Recall in this section the notations P* ~ F™* for the maximum price, and Y ~ G for the prediction. When considered, their
coupling is denoted 7*.

C.1. Complements on Section 4.2]

Stochastic predictions, deterministic prices.
Corollary 4.2. Let F* = 6, for some p* € [1, 6], then the family {A}}, satisfies

BANP'LY)] Ly
22 Lae). (10

Proof. This is obtained by direct instantiation of Lemma In particular, for F'* = 4,,» the second term of Eq. (8] can be
substituted into with

*

(ko8 ro(DF Y\ PF _ Al -y P’
B[P, )] = 5P (P Yy IP =l = [win{ 22 acy).
Computing this integral explicitly reveals it to be A(p*). O
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Through this section, we will use the following identity

A(p) = /f* (;’) dG(y) + /: (py*)sdG(y)- e

which is easily derived from the proof above.

Inspection of Eq. (ZI) reveals that A contains two different regimes (above and below p*). The mirrored coefficients of
(p*,y) in each term reflect the inherent asymmetry of a threshold algorithm: performance is highly sensitive to whether
p* < ®L(Y), which transfers to Eq. (Z1)) via the definition of £.

Example 4.3. Let F* = §,+ for some p* € [1,0] and G = Unif([p* — €,p* + ¢€]). There is a constant C > 0, dependent
only on (s,0), such that

E[A.(P*Y)] _ 1 s 2
BT 2 (a0 "

as soon as 0 < e < min{f — p*, p* — 1}.
Proof of Example

1. Consider first s > 1. Compute p* A for this choice of G, which yields

p* 1—-s pp* p* 14+s pp*+e
pA(p") = / y°dy + / Yy~ °dy
P P

2e “_e 2¢ .
_ p*l—s p*l-‘rs _ (p* _ 6)1+S N p*l-‘rs (p* + 6)1—3 _p*l—s (22)
2€ 1+s 2 1—s '
x1+s

Continuous differentiability of p* — p and p* — p*' 7%, along with Taylor’s theorem, implies the existence of
(p*1,p*2) € [p* — €,p*] x [p*, p* + €] such that:

x«l4+s * 1+s 2 3 el
P 1<is o o — %Sp*s—l N %S(s gt
* 1—s _ xl—s _ 2 L 3 o
(p 6)1 — p — €p* s isp* 1—s _ 15(8 + 1)p*2 (2+5) .

Remark that one has the remainder bounds:

Cy = 5(5 = 1) gminfo.2-s) < Mﬁ*ﬁ
6 6
s(1+s s(l1+s
CQ = ( 6 ) S (,\ 2_;’_5) .

6p*4
Applying these bounds and the Taylor expansions of ® to Eq. (22), yields

S
PAPY) Zp" - e Cp*e? (23)

with C' = (C10~*% + C5)/2. Finally, injecting Eq. (23) into Corollaryand recalling that G = 0~ implies I' = ¢/p*
yields Eq. (10).

2. Now, for s = 1, the computation of A reduces to

1p?—(p*+e?  p*’ /”*“ 1
AR 2e 2 + 2e J,- Y Y
* *2
p €, D * *
=5+ + 5 (log(p" +¢€) —log(p")) .

2 4 2€
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Using a Taylor expansion on log, for some ¢ € [0, 1], we have

%2 *2 2 3
P p € e 1 € 1
log(p* _log(p*)) > B T .
5 (log(p™ +€) —log(p™)) = < (p* 5776 2(p*+6t)3>
* 2
p € €
> — 4 —.
=3 1t w
and thus, we obtain an overall bound matching Eq. (23)) up to modifying C. O

Corollary C.1. Let F* = §,+ for some p* € [1,0] and G = Unif([p* (1 — ¢'),p* (1 + €')]). There is C' > 0 dependent only
on (s, 0) such that

E[A.(PY)] _ 1 )2
B[P =10 (1 - 56 —Ce ) @4

as soon as 0 < ¢ < min{1 —p*’lﬁp**1 -1}
Proof. Follow the proof of Example with € = €'p*. O

Corollary C.2. Let (Iy)E |, I, == [ur — €k, ik + €x] for k € [K] be a collection of (w.l.o.g. disjoint) sub-intervals of
[1,0]. Let F* = 0p,- and let

K
G =) wpUnif(})
k=1

be a mixture of Uniforms of the intervals Iy, i.e. wy, > 0 for all k € [K] and )", wy, = 1. Then, there is a constant C" > 0
dependent only on (r,0) such that

DL e (o (- 55) G+ )

k#k* ke[K]

in which k* denotes the index (if it exists) such that p* € Ij«.

Proof. Note that G has density

1 9 HZ ]l{ye[,uk —e€ksrter]}

with respect to the Lebesgue measure. We can thus express A as a function of Ay, its analogues for each Unif(1},) as

K
(P*) = wihi(p"). (25)

We will now be able to proceed on each Ay, as in the proof of the first part of Example 4.3

Let us remark that the case of k* permits a direct application of Example #.3]1, as p* € Ij. This readily implies a
contribution to the final bound of

1 s
_ (1= Z—ep — Cé 26
rOE[P"] (w‘“ (=g 6’“)) ’ 2o
which is the first term of Eq. (23).

Let us now fix k = k*. Without loss of generality, we will order the intervals, so that k¥ < k* implies that x < p* for every
x € Ij, and conversely for k£ > k*. Notice that this implies that exactly one integral in each Ay, k # k£*, may be non-zero,
which is to say

x1—s 1+s 1+s *1+6 — 1—s

wn fay D (e + ex)' ™ = (g — )™ . (4 1) — (ux — €x) .
A = Hk <k 1{k > k

P Ap(p”) 5%, T s { y 42 5%, T { }
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for any k # k*. Let us take each term in turn and apply Taylor’s theorem following the same methodology as the
proof of Example By adding and subtracting /i,lfs (resp. ,u,l;S), and using Taylor’s theorem yields the existence of

(C,E.l), C,iz))k;ﬁk* such that

(ke + €x)™5 — (i — €)1 F*

3
> Qe + %’“C,ﬁ” :

1+s
(4 1) — (e — ex)'™* e, A2
1— S 2 26k,ufk + ng .

Combining these over k € [K] yields

—s s * 145 —s 1 —s
Z wir Ak (p") > p*! Z Wiy, + P 1+ Z Wy, ® + - (Z C,E})el Swyer + Z C,(f)wkei> . 27

k#k* k<k* k>k* k<k* k>k*

Now, add together Equations (23) and (26)), recalling Eq. (27)), and appeal to Corollary f.2]to obtain

E[Ai(P*a) )l S Hi ° P\’ 1" 2
—_—= > . — iy £
E[P"] >T | wg <1 o €k> + E W <p* ) + kék* Wy, <Mk> +C g € (28)

k<k* ke[K]

for a suitably chosen constant C*” > 0. To complete the proof, notice that the two sums can be combined using £ as u; < p*
if an only if & < k*. O

Deterministic predictions, stochastic prices

Hereafter, we will use the following identity

T(y):= ﬁp* /1y (py*)de*(p*)ﬂLp* /ye <;>SdF*(p)-

Stochastic independent predictions and prices
Corollary 4.5. Let 7* = F* ® G, the family {Ai}r satisfies

E[AL(P*,Y)] _ 1
L= o [ e
,}g/pEﬁ(gzi}>dF*(p*)~ (13)

Proof. Starting from Lemma4.1] this follows from

O
Corollary C.3. Let * = F* @ G, with F'*, G having density with respect to the Lebesgue measure, then the family {Ai}r

satisfies
]E[A}”(P*’Y)] > 1 o *I*SdF* * o -5dG o *1+de* * o sdG
= e ([ TR [ s+ [ are) e

6 y 0
_[ <ys/1 p*l*SdF*(p*)_‘_yfs/ p*lJrSdF*(p*)) dG(y)) (29)
Yy

Remark C.4. The result of Corollary [C.3|can be slightly tweaked to hold even without densities using Lebesgue-Stieltjes
integration by parts. We omit these details for the sake of conciseness.
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Proof. Starting with Corollary .5 decompose the integral as

/fp A" )AF* (") / / y*dG(y)dF* (p*) + / *”S/;y‘sdG(y)dF*(p*)-

B

Using integration by parts, in which the parts for A are z — " p ' T*dF*(p*) and x — [1 y*dG(y) yields

7
A:/ p*1*SdF*(p*)/ y~2dG(y / / ITSAF (p*)dG(y) - (30)
1 1

Similarly, B can be integrated by parts with parts z — — f p*1+de*(p*) and z — f y~5dG(y), which yields

0
1

Combining Equations (30) with (31)) completes the proof. O

Proposition C.5. Let 7 = F* ® G and F* = G = Unif([c1, cz)) the family {AL}, satisfies

BIALPSY)] 12 A7 +9)
E[P) ZMMUP<Q2$«1$2—S
D)

TC24s)C(14+s)— 2 5t

—c(3>(2is—2is>>

when s & {1,2}, with ¢ : v € (0, +00) — (c3 — )y~
Proof. Starting with the decomposition of Corollary [C.3] we can compute the terms separately. For the first two, we have

0 0 2—s 2—s 1-—s 1—s
wl—s 1, x — G — O my — — My
F s = 2
/119 d (p)/ly dG(y) C( 5, >( s ) (32)
0 0 2+s 2+s 1+s 1+s
c —c m —m
*adF* * sd — 2 1 2 1
/1p (p)/ly G(y) C( s )( 1T s ) (33)
in which 1
C .=

(ca —e1)(mg —ma)
Turning now to the second term of Eq. (29), we have

Y 1 2—s _ 2—s 2—s _ 2—s
*x1—s * (% Yy 1 Co G
/1 p dF*(p*) = < 9 _ ¢ ]l{ye[m,m]} + 9 _ s ]l{y>c2}>

C2 —C1

and

0 1 2+9 _y S-{-s %—&-9
/ p*idFT(p*) = p— ( 2T s {ye[c17c2]}+72+8 {y<C1}> :
Yy

so that, by integrating according to Eq. (29) yields
3 145 7C2AM2VeL 2—s 2—s 1457 C2Vme
x1—s * Y 2-s Y Co -G Yy
dF*(p*)dG C = — 34
/ / PACy) = (25[3 “ 1+5] + 2—s {a] ) (34)

c1Vmi/Aca caVmy

0 6 1-s 37 c2/AmaVer 245 2+s 1—s ] C1AM2
1 —
—s I 24+s Y Y Co G Y
dF dG(y) =C | —— - = 35
/1y /yp (p")dG(y) (2—1—5[02 1—s 3} + 245 [1—3} ) 32

c1VmiAca c1/Amq

Recombining Equations (32)—(33) yields the result, up to simplifying for m; = ¢; i € {1,2}. O
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Figure 5. Numerical quadrature of Propositionfor c1 =1, ¢ =0 (for § € [1,10]) as a function of s € [1, 5].

C.2. Complements to section [4.3]

Since it holds regardless of the coupling 7*, the bound Eq. (T4) has two direct benefits. First, it provides a notion of
robustness for uncertainty in the coupling which is relevant for risk-assessment in practical applications. Second, it isolates
the influence of the marginal distributions on the prediction from the coupling of Y and P*. Consequently, we can return to
(8) and isolate the contribution of the coupling, either through its transport sub-optimality

E[P*E(Y, P*)* 1] — Weni(%fF*)IE[P*E(Y, P>

or through a multiplicative analogue
E[P*E(Y, P*)*Y]
infreri(q, ) E[P*E(Y, P*)o=1]

The geometry of these objects is highly intricate and unfortunately doesn’t appear to have been studied previously. This
highlights an interesting direction of research in the competitive analysis of optimal transport.

Duality. The Kantorovich problem Eq. (T4) admits a dual problem under general conditions (see e.g. Thm. 5.10 in (Villani
2009)). In our case, the cost function is ¢ := (p*,y) € [1,0]2 — p*E(p*,y)* € [0,0]. This duality is strong, meaning that

inf /p*f(p*,y)sdﬂ(p*,y) = sup /w(G)dG(y) + /w(p*)dF*(y), (36)
m€Il(F*,G) (p,p)€E
in which
2:={(p,¢): [1, 0]2 — [0, +oo)2 bounded and measurable : V(p*,y) € [1,0]2 o(p*) +v(y) <clp,y)}.

Given a bounded measurable function f, let f¢ denote its c-transform, i.e. the operator -¢ such that maps f to

fe:p* = inf p*E(p*,y)° — py). (37)
y€[1,6]
The definition Eq. (37) shows that any bounded measurable function ¢ : [1, 0] — R forms an admissible (¢, ¢°) € E with
its c-transform (this is symmetrical in the sense that (1)¢, ¢) is admissible if ¢ is bounded and measurable).

From the perspective of competitive analysis, the dual problem offers an appealing tool, as it suffices to propose a potential
, compute its c-transform, and integrate it to obtain a bound. Of course, guessing the optimal potential ¢ is as hard as
solving the primal, but sub-optimal proposals can effectively leverage insights about the problem. Proposition[4.7] gives an
example of this methodology. Note that it is possible to improve the potential ¢ again by proposing (¢¢), which we omit
for brevity.
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Proposition 4.7. The family {A}}, satisfies

1
02 0
x14+s %[k x1—s %[k
E[ALP",Y)] | 1 /119 dF*(p )+/0%p dF™(p%)
E(P] - 10 E[P*] '
Moreover, the RHS is the infimum over G of Eq. (T4).

Proof. We split the proof into two parts, starting with the bound, and then the equality.

1. We start with the potential ¢/ = 0, whose c-transform (see Eq. (37)) is

e(P*) =v°(p*) = inf p*&(p”,y)*
y€[1,0]

Inserting into Eq. (36) yields the result.

2. By duality of the optimal transport problem,

/ (p", y)dm(p* ) = sup / (7 )AF* (57) + / $(y)dG(y)

inf
GeZ([1,0]) (p,h)EE

> sup { [etrraro)+ it [ w<y>dG<y>}. (38)

(p)€E GeZ([1,0])

inf inf
Ge2([1,0) nell(F*,G)

The inner infimum in Eq. isequal to ¢ := inf{¢(y) : y € [1, 0]} € R. Consequently, the constraint set = can be
replacecﬂ without changing the value of the problem by

S:={(p,1) € [0,400) M xR:  Wp* € [1,6]> (p*) < inf c(p*,y) — ¢}
Y )

so that

up { [etwrraro)+ it [ ¢<y>dG<y>}= sup { / so(p*)dF*(p*m}

()€ Gez([1.0 (pL)ES

= sup sup /(pL(p*)dF* P*) +v¢, (39)
teR 1, €S,

in which S, := {9, : ¢, <infyep g7 c(p*, y) — ¢}
As F* is positive, the inner maximisation over v, in Eq. @I) saturates the constraints, whereafter, since f WdF* =
and by combining with Eq. (38), one has the result. O

D. Additive Prediction Error

Theorem 3.4. Let A be any deterministic algorithm with robusmmess r and consistency 1/16. Suppose that A satisfies for all
p € [1,0]" and y € [1,0] that
A 1 *
(P:Y) S ax (T’ 1 ﬁn(p ,y)> ©)
ro p*

for some 3 > 0, then necessarily 5 > (3*, where

ﬂ*._l—ﬂe 1 1
T M1 1)

Moreover, Algorithm Ai satisfies (B) with B = [3*, which shows its optimality.

3Hereafter, all optimisation problems are over functions (¢, %) which are bounded and measurable. We omit this line by line to reduce
notational clutter.
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We separately prove the lower and upper bounds stated in the theorem. First, in Lemma|[D.2] we establish the lower bound

on the performance of Ai:
1 *
> max (n _ﬁ*n(p ,y)> .
r0 p*

A (p,y)
p*

Next, in Lemma|[D.3] we show that 5* is the best possible constant.

D.1. Smoothness guarantee on Ai

We begin by proving a lemma that will be useful for establishing the smoothness of Ai.

2
Lemma D.1. The function ¢, : z — Tf:rl + 16 =5 satisfies for all z that

1—7r

B 1—1720
T -1

p(z) —r6 (z = or(2)) -

Proof. This lemma can be proved with immediate computation. For all z € R, it holds that

. (z>_z_r9—1+1—r29 z
or B 1—r 1—r 16
0 — 120 = 1+ 120 2_7”0—1

1—r 7“79 1—r

:Tle—_rl (r%_l) ’

On the other hand, we have that

-1 1—1%0 =z
@r(z)_l—r+ 1—r ~E—r9
rd—1—r0+1r20 1—1r20 z

1—r + 1—r ré
2
- 11 —rre (%_1)

1-1%0 TG_l(ifl)

-1 1—7r \r0
1—1r20
- o — 1 (Z - @T(Z)) )
which concludes the proof. O
Lemma D.2. Algorithm Ai satisfies
A, 1 *
~(,y) > max <r7 7ﬁn(p ,y)> 7 40)
p* ,'ne p*
where 3 1= 1;’:9 max (1;, 77'0171) .

Proof. By Theorem and by definition of A}n, we have that A,{ is r-robust, hence it satisfies for all p € [1,60]™ and
1

y € [1,0] that ﬁ: > r. It remains to prove the second lower bound that characterizes smoothness. We will prove it
separately for y € [1,70] and y € [r0, §].

Case 1. For y € [1,r0)], the acceptance threshold is ®1(y) = r6. If p* < rf then

1
Ap1)

1
— >
p* p*

1 1
>
rd — ro p*
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Assume now that p* > r6. It holds that

Al
T (]17 T) 2 73 (41)
p D
Since 76 > 1, we have that (1“(9)2 > r6, thus the mapping z — Zz_jizz is non-decreasing on (76, 0], and we deduce that

292

1—1r20 1 1 1 1-—72%0 1 6—r26? 1 p*—r
8= max | ——, > L e Loy
rf 1—r'7r6-1 rd 1-—r rd  0—rf rd p*—rd

and successive equivalences, recalling that p* > 76, show that

Combining this with Eq. (@T)) and using that y < 76, we obtain

As(p,r )>—B( 7“9>2r10_6(1_;):1_5n(p*,y).

p* o 0 p*

Case 2. Fory € (r0, 6], the threshold is ®1(y) = =2 + % A

Assume that p* < ®1(y). Since y > 70, using the definition of 3 and Lemmayields

1—1r%0 1 1 1 1-720 1 ¢.(y)—r0
8= max , > — =—r— .
r6 1—r'r6—-1 rd r0—1 18 y—o.(y)
2= is non-decreasing on [1,y], and given thaty < ®}(y) = ¢, (y)
and both y and ¢, (y) are within the interval [1,y] (p(z ) § z for z > r6), we deduce that

Using again that y > 76, we have that the mapping z —

1 p*—rf
B>
2

and using that y < ®1(y) < v, this is equivalent to writing

Hence we have the lower-bound

1 1 y—p° 1 n(y,p*
)L ey L )
P P rf p rf P

Assume now that p* € [®!(y),y). Since A} is r-robust and 1/r-consistent, Theorem shows that the threshold @
satisfies ®1(z) > Z forall z € (r6, 6], which is in particular true for y with the current assumptions. Therefore, we obtain
immediately that

1 1 *
A (p,y) izizi_ﬂn(p,y).
p* p* r — ro p*
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Finally, assume that p* € [y, §]. Using the expression of ®}(y), we have

1 1 _ —r2
Apy) , & _1-rf 1 1-1% y
p* T p* 1—r p* (1—r)r p*
1—7r0 1 1—-7r20 gy
> N -
“1l-r 6 ({A-7rré p*
_1—r0 1_’_ 1—72%0 - 1—72%0 Y
Cl—r 0 Q=7 (1—7r)rb p*
_ 1 r2—r+1—r29_ 1—1r20 Y
o 1—r (1—r)ré p*
_ L 1=y
rd  (1—r)rd p*
Zi_ﬁn(p ,y),
rf p*
h d in the last inequality that 3 := 152" L ) = A= and that n(p*, y) = p* — y since p* >
where we used in the last inequality that 8 := =2 max (1, 1) > (-1yrg and that n(p*,y) = p* — y since p* > y.
This concludes the proof. O

D.2. Lower bound on smoothness

Lemma D.3. Let A be any algorithm with robustness r and consistency 1/r0. Suppose that A satisfies for all p € [1, 0]"
and y € [1,0] that

A 1 *
®:9) < (n 1 g »w) , (42)
p* rf p*
for some 5 € R, then necessarily § > 17(;29 max (ﬁ, ﬁ)

Proof. Consider an algorithm A and 8 € R satisfying the assumptions of the theorem. To establish the lower bound, we
consider the instances {Z,,(q) }4¢[1,9) as defined in Eq. (T3)). On these instances, any deterministic algorithm is equivalent to
a threshold-based algorithm. In particular, A is identical to Ag for some ® : [1,6] — [1,6].

The assumption on A ensures that it achieves Pareto-optimal consistency 1/(r6) and robustness r. Consequently, A also
attaints them on the sequences of prices {Z,,(q) }4e[1,69)- These instances are precisely those used to establish the constraints
on Pareto-optimal thresholds in Theorem 3.1} which implies that the theorem’s constraints hold for ®. In particular, we have
that ®(rf) = rf and ®(0) = 1/r.

Let us now prove the lower bound on 3. Let y = 6 and g. = % < ®(6) for some ¢ > 0. Using Eq. and the assumed
lower bound on A, it holds that
A(Zn(4z),y) _ Ao (Zn(q:),y) _ 1 > 1 3. 0 —qe
p* qe ge 1t qe

Taking the limit when ¢ — 0 and recalling that ®(0) = 1/r, we obtain that

1 6—-1/r 1
> _3. —— _B.-(r—
"= p 1/r 6 (rf =1,

and it follows that
S 1/r0 —r 1— 1726

pz rd —1 :7'9(1"9—1)' “3)

On the other hand, for y = r6 and ¢ = 6, using Eq. (T6), the assumed lower bound on A, and that ®(r0) = 0, we have

AulTal0).0) _ AalTu9) _ O FOG) gy L g 001 gy
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Taking the limit for n — oo, we obtain that

1/r0—r  1—1%9
fz 1—r  r0(1—7r) (44)

Finally, combining Equations (3) and ({@4), we deduce that

5> 1—172%0 1—72%0 _1—7"29 1 1
= max r0(r — 1) r(1—7r)) 1 e 11—/

D.3. Comparison with prior smooth algorithms

In (Benomar & Perchet, [2025)), the authors introduce a randomized family {Ap} p€[0,1] of algorithms. For a fixed p, the

1/2 'hence remains bounded away from 6~1/2. Given

=)

maximum robustness that their algorithm can achieve is at most %9_

any robustness level 7 € [0~ 1, %9_1/ 2], the corresponding consistency achieved by their algorithm is ¢ = (
This algorithm ensures smoothness in expectation with respect to the error 7(p*, y), i.e. that

E[A"(p,y)] N <1 —e”>2 L _ gty

p* P rg  f p*

with 3, a constant proportional to 1/p. The major drawbacks of this approach are that

1. the achieved robustness and consistency are not Pareto-optimal, i.e. they deviate from the front defined in Eq. (T)),

2. the guarantees of the algorithm only hold in expectation, since the algorithm is randomized.

D.4. Probabilistic analysis

Corollary D.4. The family {Al}, satisfies
E[A, (P, Y)] L EP (P Y)]
o SRR Rl B —_p=t S 7]
E[P"] > max{r, vy B8 E[P"] } . (45)

Corollary D.5. The family {Ai}r satisfies the worst-case performance ratio bound

[A.(P*,Y)] > 1 5 sw S (", y)dr(p*,y)
E[P*] 0 rell(F*,G) E[P~]

: (46)

One can observe that the bounds of Corollary [D.5]represent the supremum version of the transport problem associated with
#1 (see below). The supremum is expected due to the additive nature of the analysis, which makes the error term a negative
(additive) correction rather than a multiplicative factor. While not a classical optimal transport problem, this supremum can
be transformed into an optimal transport problem with cost (y, p*) — — |y — p*| and one can recover (parts of) the standard
theory from there, see e.g. (Villani, 2009).

Note that the Wasserstein-p distance, for p € [1, +00), denoted %, on the space Z?([1, 6]) of probability distributionsﬂ
over [1,0] is

#,: (F*,G)—  inf *—ylPdn(p*,y).
pi (F*,G) ﬂerf(r}:*,c:)/lp ylI" dr(p*, y)

E. Additional Numerical Experiments

We give here an additional experiment made with the same synthetic data described in Section[5] While the first experiment
shows the performance of the algorithm as a function of the multiplicative error. Instead of fixing &,in, We set a maximum
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— p=0
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Figure 6. Performance of A? with p € {0,0.5,1}.

error level 7., and sample y uniformly at random from the interval [p* — Nmax, P* + Jmax]- Figure@presents the results
in this setting.

Similarly to the behaviour with respect to the multiplicative error, Figure[6|shows that p = 0 yields a significant performance
degradation for an arbitrarily small error, which confirms the brittleness of |Sun et al.|(2021))’s algorithm. In contrast, p = 1
achieves the best smoothness, having a performance that gracefully degrades with the prediction error.

E.1. Experiments on real datasets

We use the same experimental setting and Bitcoin data as in Section but we set different values of A € {0.2,0.8} instead
of fixing A = 0.5 as in Figure This yields different robustness levels, again expressed as = #~(1=*/2)_ The results are
shown in Figures[7and[§|for A = 0.2 and 0.8, respectively.

18] — — p=0 — p=0
p=1 p=1
@) o) 1/}'9 T
E 0.7 1 ““ E
S W\, S
E 059 \ E 041
Qu \ joN
= =
8a) \ 8a)
03 1 \\iﬁ S o -
7 0.35 1
0.0 02 04 06 08 10 0.0 02 04 06 08 10
a€l0,1] a€0,1]
Figure 7. Comparison of A and A® on the Bitcoin price dataset Figure 8. Comparison of A} and AY on the Bitcoin price dataset
with A = 0.2. with A = 0.8.

For A = 0.2, Figure shows that the performances of A:, and Ag are similar when ) is small, i.e., when 7 is close to 1/.
This corresponds to a consistency of 1, meaning that the algorithm fully trusts the prediction. Since both algorithms rely
heavily on the prediction in this setting, their behaviour is naturally similar.

For larger ), as seen in Figures []and[8] the performance gap between the two algorithms increases. However, for A close to
1, both consistency and robustness approach 1/r. While the performance of Al degrades significantly more slowly than
that of Ag for A = 0.8 (Figure , the values of 7~ and 1 /7 remain close. Figure 4, presented in Section|3} is an intermediate

*If [1, 6] had been unbounded, #;, would only have been defined for distributions with a a p"-moment.
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setting between these two extremes, where Ai yields a better smoothness than Ag, without having the values r and 1/r close
to each other.
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