
Under review as a conference paper at ICLR 2023

EVALUATING ROBUSTNESS OF GENERATIVE MODELS
WITH ADVERSARIAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

With the advent of adversarial robustness as a research area, much novel work
attempts to design creative defense mechanisms against adversarial vulnerabilities
that arise. While classification models are the most common target of adversarial
robustness research, generative models are often underestimated though they play
essential roles in many applications. This work evaluates generative models for
reconstruction tasks in terms of their adversarial robustness. We constructed two
frameworks: a standard and a universal-attack framework. The standard framework
requires an input to find its perturbation, and the universal-attack framework
generates adversarial perturbation from the distribution of a dataset. Extensive
experimental evidence discussed in this paper suggests that both frameworks
can effectively alter how images are reconstructed and classified using classic
generative models trained on MNIST and Cropped Yale Face datasets. Further,
these frameworks outperform state-of-the-art adversarial attacks. Moreover, we
showcase using the proposed framework to retrain a generative model to improve its
resilience against adversarial perturbations. Furthermore, for the sake of generative
models, an attack may desire not to alter the latent space. Thus, we also include
the analysis of the latent space.

1 INTRODUCTION

The societal impact of machine learning applications is self-evident as it continues to solve many
highly complex tasks (e.g., self-driving cars (Rao & Frtunikj, 2018)). However, many of these models
are still susceptible to small perturbations that naturally occur in the world or are fabricated by
learning to model the input space. In the latter case, models could be trained to be robust against
the noise. Goodfellow et al. (2014) and Szegedy et al. (2013) demonstrated how to create small
additive perturbations to mislead classification models and expose the issue. Their research shows
that many state-of-the-art models were not robust against a perturbation that is currently known as an
adversarial example. Naturally, many works (Goodfellow et al., 2014; Papernot et al., 2016b; Xu
et al., 2017; Madry et al., 2017) started trying to determine how to defend models against adversarial
examples effectively. While defense mechanisms were developed, others worked around this finding
new adversarial examples against such defenses (Moosavi-Dezfooli et al., 2016; Papernot et al.,
2016a; 2017; Carlini & Wagner, 2017). Note, however, that most of the existing work focuses on
adversarial examples for classification models, even though generative models are widely used in
practice (e.g., people in clothing (Lassner et al., 2017), music generation (Dhariwal et al., 2020)
and molecule graphs generation (Samanta et al., 2020)). Therefore, our work attempts to construct
frameworks for evaluating the adversarial robustness of generative models. In particular, we focus on
models whose goal is to reconstruct the input. Adversarial examples in this setup try to make the
targeted models generate an output that belongs to a different class than the corresponding input. We
use well-known GANs (Goodfellow et al., 2020) to train a generator to produce small perturbations.
Then, we add such perturbations to an image to create an adversarial example for a target generative
model. This paper introduces two frameworks to demonstrate the general idea, i.e., a standard and a
universal-attack framework. The standard framework trains a generator such that it requires input
to produce perturbation during execution. On the contrary, the universal-attack framework trains
a generator that does not need an input to produce a perturbation during execution. The proposed
methodology produces generators effective on MNIST and Cropped Yale Face dataset (CYFD).
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Figure 1: Example of our trained generator misleading a targeted generative model where Target is
the targeted model and Adv is our generator. This shows what happens in a natural scenario (left) and
an adversarial scenario (right).

Figure 1 shows how to apply our trained generator to mislead a target. The natural circumstance (left)
shows that the target works fine with a clean image since the reconstructed image looks similar to the
clean image. However, a clean image fed to our trained generator in the adversarial circumstance
(right) produces a perturbation multiplied by ✏ (i.e., the perturbation bound). Then, it is added to
the clean image to create an adversarial example. Note that when the adversarial example enters the
target model, the output is a face from a completely different class than the input. We can retrain the
target models with our framework to make them robust against these perturbations. Moreover, we
analyze the latent spaces of the target models and found an interesting pattern. That is, the differences
between latent spaces of the clean samples and their corresponding adversarial examples increase
when the accuracy on the reconstructed images of the adversarial examples increases in MNIST.
However, we did not find this pattern in CYFD. This paper showcases the positive effects of such
retraining on MNIST and CYFD data with good results.

Our main contributions can be summarized as follows:

• We formally define a data reconstruction problem based on generative models introducing
adversarial examples.

• We design and implement a standard and universal-attack framework to train adversaries for
generative models, producing effective adversarial examples using the well-known approach
by Goodfellow et al. (2020).

• We successfully use the proposed standard framework to retrain a generative model improv-
ing its adversarial robustness.

2 RELATED WORKS

Because our framework applies GANs to evaluate generative models, this section briefly describes
previous works that applied GANs to create adversarial examples for discriminative models in Section
2.1. We further go over existing works creating adversarial examples for generative models by using
optimization-based attacks in Section 2.2.

2.1 GANS-BASED ATTACKS

Several works apply GANs to create adversarial examples on classification models. However, the
most related works are described as follows. Xiao et al. (2018) utilized GANs to train a generator
to create perturbation that can be added to a clean image to generate an adversarial example for a
classification model. They proposed the attack under both semi-whitebox and blackbox settings. Bai
et al. (2021) applied the work of (Xiao et al., 2018) and proposed a solution to make it converge
earlier during the training. Their solution is to train a generator with the existing adversarial examples
in the first stage to make the generator know the direction to create perturbation in the same space as
one of the adversarial examples. In the second stage, they followed the training in (Xiao et al., 2018).
Intuitively, the existing works in this area do not consider the generative models.

2.2 ADVERSARIAL EXAMPLES ON GENERATIVE MODELS

Only a few works focused on finding adversarial examples in generative models. Tabacof et al.
(2016) tried to find an adversarial example of a clean image by minimizing the difference between the
adversarial example’s latent space and the target’s image latent space where the perturbation added to
the clean image was minimized. Kos et al. (2018) proposed three attacks against generative models:
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(a) Standard framework (b) Universal-attack framework

Figure 2: The architecture of the standard and universal-attack frameworks where G is the generator,
D is the discriminator, C is the pretrained classifier, T is the targeted generative model, x is an
instance from X , z is a random noise from the normal distribution and ✏ is the perturbation bound.

classifier attack, LV AE attack and latent attack. They were all based on optimization problems and
used Carlini and Wagner attack (Carlini & Wagner, 2017) to approximate the solutions. So far, there
are only attacks based on optimization problems that take time to approximate a solution during
testing. In 2020, Pope et al. (2020) applied the projected gradient descent (Madry et al., 2017) for
evaluating generative models.

To the best of our knowledge, our work is the first to adopt GANs to find adversarial examples on
generative models.

3 OUR APPROACH

This section explains our attacks in detail and starts with defining the problem of adversarial examples
in generative models. Then, we derive the loss functions of the standard framework and describe how
to train the generator with the framework. Furthermore, we discuss the universal-attack framework.

3.1 PROBLEM DEFINITION

Suppose that there is a generative network T (e.g., a VAE) trained on clean dataset X ✓ Rn, where n
is the number of features. We also denote a class set as Y and instance i sampled from distribution
P as (xi, yi) where xi 2 X , yi 2 Y . Note that yi is the ground truth class of xi. The goal of an
adversary is to create an adversarial example (x

0

i) from xi such that x
0

i looks like samples in class
yi; however, T (x

0

i) belongs to another class (not equal to yi). Our approach generates perturbation
which is bound by L1 and then adds it to a clean input to create an adversarial example. Note that
L1(xi, x

0

i) = max|xi � x
0

i|.

3.2 STANDARD FRAMEWORK (SF)

The main concept of our framework is to train a generator to create perturbation such that this
perturbation can be added to clean input and generate an adversarial example for a target network (T ).
Figure 2a shows our framework consisting of a generator (G), a discriminator (D) and a pretrained
classifier (C). In the following, we assume that x is an arbitrary member of X . Each component
in the framework has its own role in the framework as follows. D is used to remain x⇤ in the same
distribution of T (x). To achieve it, D needs to minimize

LD = log(D(T (x)) + log(1�D(x⇤)),

where T (x
0
) = x⇤. Also, G needs to minimize

LG = log(D(x⇤)).

As a result, D should not be able to distinguish between T (x) and x⇤. Further, C directs G to update
its parameters such that C(x⇤) 6= y where C(x⇤) is a class classified by C given x⇤, and y is the
ground truth label of x. Therefore, the loss regarding C is the opposite of categorical cross entropy
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used for training a classification network, and we can define it as

LC =

|Y|�1X

j=0

l[j]log(Z(x⇤)[j]), (1)

where l is the ground truth logit, l[j] is the value at index j of l and Z(x⇤)[j] is the logit at class j of
C given x⇤ (i.e., the output before softmax activation). Note that if X is single-class data, l has 1
only in one index. Nevertheless, if X is multi-class data, l can have 1 in multiple indexes. Moreover,
we also want to maximize the difference between x

0
and x⇤ so that x

0
is not similar to x⇤. We use the

opposite of mean square error as

LMSE = �
n�1X

j=0

(x
0
[j]� x⇤[j])2,

where x
0
[j] is feature j of x

0
. Therefore, the total loss of G is

LTotal = LMSE + �GLG + �CLC ,

where �G and �C are hyperparameters to balance all the losses. Also, ✏ is the perturbation bound,
and we use L1 as described earlier.

During the training time, the pretrained classifier (C) and the targeted generative model (T ) are
untrainable. Then, the framework processes as follows: a) feed x to G and obtain perturbation; b)
multiply the perturbation with ✏ to fit the perturbation in the bound and add it to x to create x

0
; c) feed

x
0

to target T and obtain x⇤; d) feed x to T and obtain T (x); e) feed x⇤ and T (x) to D to compute
LD and LG and feed x⇤ to C to compute LC f) compute LMSE from x

0
and x⇤; g) compute LTotal

from the three losses and update the parameters of D and G by using a gradient descent method on
LD and LTotal respectively.

We can only feed an arbitrary input to the generator (G) during the testing time and obtain perturbation.
Then, we multiply the perturbation with ✏ and add it to the input. Consequently, we obtain an
adversarial example of the input. Note that the last layer of G has to be a tanh activation function to
limit the adversarial example in the bound ✏.

Noticeably, this framework is an untargeted attack because it tries to find adversarial example (x
0
)

such that C(x⇤) 6= y. Hence, T can produce an instance belonging to any class except the correct
class. Additionally, we can also adjust it to create a targeted attack as follows. Instead of using the
logit of the ground-truth label in equation 1, we use the logit of the targeted label instead. Also, we
use the categorical cross entropy loss instead for LC . Thus, the loss is

|Y|�1X

j=0

t[j]log(Z(x⇤)[j]),

where t is the logit of the target class, and t[j] is the value at index j of t.

3.3 UNIVERSAL-ATTACK FRAMEWORK (UF)

In the real world, some attacks may study only the distribution of a dataset and create adversarial
perturbation without requiring inputs. Therefore, we design this framework to evaluate a target model
with respect to the attacks described earlier. Therefore, we do not feed input to G during the testing
time but feed noise z. Figure 2b demonstrates the framework. All the components and their roles are
the same as in the previous framework. However, the training steps are slightly different.

z is sampled from the normal distribution during the training time and fed to G. Then, the rest of the
process is the same as the previous framework. That is, the output of G is multiplied by ✏ and then
added to x to create x

0
. Then, x

0
enters the target model T , and it outputs x⇤. After that, x⇤ is fed to

the discriminator D and the pretrained classifier C. Note that we also perform the same process of x
0

on x. At last, we use the output from D, C and T to compute gradients and train the framework. As
a result, in the testing time, G can generate perturbation later used for creating adversarial examples
on samples from the distribution of X for T .
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Table 1: Accuracy achieved by the classifier on the sets of samples concerning MNIST and CYFD.
Note that adversarial examples were generated by our FGSM, PGD and standard framework (SF).

Model X RX
FGSM PGD SF

A RA A RA A RA

MNIST
VAE 99.47% 91.51% 98.78% 32.37% 99.39% 34.82% 99.22% 4.84%

VAEGAN 94.65% 98.72% 50.37% 99.41% 43.33% 99.15% 5.63%
CYFD

VAE 99.39% 77.8% 70.88% 18.33% 99.98% 37.68% 74.95% 18.13%
VAEGAN 82.48% 77.19% 19.14% 99.39% 31.77% 76.37% 6.92%

4 EXPERIMENTS AND RESULTS

In this section, we first evaluate our approach as untargeted and targeted attacks on MNIST (Deng,
2012) and the Cropped Yale Face dataset (CYFD) (Lee et al., 2005). MNIST is a hand-written-digit-
image dataset consisting of 50000 training samples and 10000 test samples and thus has ten classes.
CYFD is a human-face dataset consisting of 1960 training samples and 491 test samples and has 38
classes (i.e., 38 faces). Further, we also explore the universal-attack framework on the same datasets.
We choose a variational autoencoder (VAE) (Kingma & Welling, 2013) and a VAEGAN (Yu et al.,
2019) as our targeted generative models because they are well-known in this kind of model. For
different datasets, we use different architectures of components in the frameworks. We used the
test samples of the datasets unseen by our attacks to evaluate the efficiency of our attacks. Further,
because crowdsourcing was costly, we used the pretrained classifiers in our frameworks to predict
classes of the input and output of the targets for the evaluation. The architectures of our frameworks
and the targets and how we preprocessed the framework are explained in Appendix A.

4.1 BASELINES

We can use the attack in (Pope et al., 2020) as a baseline. However, the attack did not use the
pretrained classifier, and this pretrained classifier had information to mislead the target model. Thus,
it was not fair to use it as a baseline. Then, we have designed a framework on which we can apply
state-of-the-art attacks. This framework includes only the pretrained classifier from our approach.
First, an input is fed to the target (i.e., VAE or VAE-GAN), and the output is fed into the pretrained
classifier. Then, the attack uses the classifier’s output to compute the gradients with respect to the
input and performs a state-of-the-art gradient-based attack. Further, in our framework, we have two
baselines which are based on Pope et al. (2020) and our attack. The first one uses the fast gradient
sign method (FGSM) (Goodfellow et al., 2014), and the second one uses projected gradient descent
(PGD) (Madry et al., 2017).

4.2 STANDARD FRAMEWORK

For MNIST, we trained our standard framework with the setting of 250 batch size and ✏ = 0.1 for
100 epochs. For CYFD, we trained it with the setting of 140 batch size and ✏ = 0.05. Further, we
set �G to be 0.5 because most of the images from the targets were valid. For the untargeted attack,
we set �C to be 1 since we wanted to change the class of the output of the targets. For the targeted
attack, we set it to 2 because we would like to focus on changing the class of the reconstructed image,
and the reconstructed images did not look like the inputs when increasing it (e.g., 3 and 4).

4.2.1 UNTARGETED ATTACK

After we trained the adversary and used our generator to create adversarial examples, then, we denote
a set of clean test samples as X , a set of their reconstructed images as RX , a set of their corresponding
generated adversarial examples as A and a set of their reconstructed images as RA. A is obtained by
feeding X to G, multiplying G’s output with ✏ and adding it to X . RA is simply obtained by feeding
A to the target model T . Note that we use these notations throughout Section 4 and 5.
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Table 1 shows accuracy obtained from the MNIST and CYFD classifiers on those four sets of images
according to two baselines and our standard framework (SF). Explicitly, all the attacks (i.e., FGSM,
PGD and SF) work very well because the accuracy of the classifiers on the reconstructed images
generated from our attack was significantly reduced while the ones on X and A were still high.
Specifically, our attack explicitly outperformed the two baselines since the accuracy of the classifier
on RA of SF is significantly lowest. However, in CYFD, PGD did not perform well compared to the
other two attacks because it did not find the correct direction to mislead the target. Note that PGD
required a gradient direction multiple times. Then, it did not perturb the clean images so much since
the classifier’s accuracy on A was about the same.

4.2.2 TARGETED ATTACK

When we trained our generator, we excluded training samples that belong to the targeted class because
it did not update any parameter for the targeted-class samples. For MNIST, we picked all the classes
to be the targeted classes. Therefore, we had ten generators, each of which is for each targeted class.
For CYFD, we randomly picked only three classes (i.e., 2, 10 and 28) to be the targeted classes. Thus,
we had three generators.

Table 2: Results achieved by the classifier, the two baselines and our targeted attack performed by
our standard framework on VAE in MNIST with each targeted class. Note that A RX is the accuracy
on RX , TC RX is the confidence on the targeted class on RX , SR is the success rate and TC RA is
the confidence on the targeted class on RA.

Class A RX TC RX
FGSM PGD SF

SR TC RA SR TC RA SR TC RA

0 91.04% 0.010 9.73% 0.10 28.02% 0.26 73.46% 0.72
1 90.63% 0.004 2.17% 0.02 11.31% 0.12 28.76% 0.29
2 91.73% 0.006 20.8% 0.21 41.29% 0.39 81.79% 0.78
3 91.94% 0.009 9.15% 0.09 22.45% 0.22 75.16% 0.74
4 91.78% 0.008 7.00% 0.07 23.26% 0.23 47.75% 0.47
5 92.59% 0.010 3.78% 0.40 11.58% 0.12 48.54% 0.47
6 91.17% 0.007 2.52% 0.30 13.70% 0.14 36.12% 0.35
7 91.86% 0.011 26.00% 0.26 42.77% 0.40 76.57% 0.74
8 92.40% 0.015 21.16% 0.21 44.01% 0.42 83.55% 0.82
9 91.95% 0.016 8.13% 0.08 31.42% 0.30 75.90% 0.74

We evaluated our generators and a generative model (i.e., VAE) on the test samples as shown in Table
2. Note that we excluded samples belonging to the targeted classes from the test samples to evaluate
our generators fairly. Moreover, we consider that our generator successfully creates an adversarial
example when its reconstructed image belongs to the targeted class.

According to Table 2, the classifier could achieve high accuracy on the reconstructed images of the
clean samples on VAE with significantly low average confidences on the targeted classes. Further,
FGSM achieved a very low success rate and average targeted confidence on every class. Then,
PGD could achieve a slightly higher success rate and average targeted confidence. Essentially, our
attack (SF) significantly outperformed those two baselines with a much higher success rate and
average targeted confidence on every class. Nonetheless, it achieved low success rates and average
targeted confidence on some targeted classes (i.e., class 1, 4, 5 and 6) (still higher than the baselines).
Implicitly, those targeted classes are distinct from the other classes. We also found similar results on
VAEGAN.

However, in the entire test samples of CYFD, the generators on those targeted classes cannot achieve
high success rates, as seen in Table 3, especially the targeted class 28. The reason is that humans’
faces are very similar to each other. Thus, it is tough for the targeted attack to transform reconstructed
images into its target. Nevertheless, our attack could outperform the baselines. We found the similar
results when the target was VAEGAN. Despite low success rates (still higher than the baselines),
they can increase the classifier’s confidence on the targeted classes by some significant amounts.
Therefore, our generators are still effective on CYFD. Also, our attack could be effective in some
classes, as demonstrated in Figure 7.
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Table 3: Results achieved by the classifier, the two baselines and our targeted attack performed by
our standard framework on VAE in CYFD with each targeted class. Note that A RX is the accuracy
on RX , TC RX is the confidence on the targeted class on RX , SR is the success rate and TC RA is
the confidence (the final output after the softmax activation function) on the targeted class on RA.

Class A RX TC RX
FGSM PGD SF

SR TC RA SR TC RA SR TC RA

2 76.31% 0.007 13.62% 0.12 36.69% 0.32 41.51% 0.38
10 75.83% 0.010 7.92% 0.07 23.96% 0.21 33.33% 0.31
28 76.53% 0.004 6.13% 0.06 20.72% 0.20 21.78% 0.2

4.3 UNIVERSAL-ATTACK FRAMEWORK

This section explores the performance of the universal-attack framework. We used the same setting
as the standard framework during the training steps. The input size of the generator is 100 in our
experiment. Note that the input of the generator in this framework is noise z.

Table 4: Accuracy achieved by the classifier on the sets of samples concerning MNIST and CYFD.
Note that adversarial examples were generated by our universal-attack framework.

Model MNIST CYFD
X RX A RA X RX A RA

VAE 99.47% 91.96% 99.28% 25.54% 99.39% 76.58% 73.93% 35.23%
VAEGAN 99.47% 91.89% 99.28% 25.46% 99.39% 84.73% 74.54% 24.24%

Although Table 4 shows that this universal-attack framework is highly effective in MNIST and
CYFD, it is weaker than the standard framework when we compare their results in Table 1. The
generator trained by the standard framework can reduce the accuracy more than the one trained by
this framework. In addition, this universal-attack framework could outperform FGSM and PGD in
MNIST even though these baselines required clean images as their inputs, as seen in Table 4 and 1.
Also, in CYFD, it outperformed PGD. However, FGSM slightly outperformed this framework as seen
in Table 4 and the column FGSM in Table 1.

4.4 ABLATION STUDY

Since our framework consists of several components, we show what happens when we exclude
the classifier and/or the discriminator. Then, we used the standard framework to find adversarial
examples of VAE on MNIST to demonstrate the effect of lacking each part. Hence, we evaluated four
frameworks: the complete standard framework (F1), the standard framework without the discriminator
(F2), the standard framework without the classifier (F3) and the standard framework without the
discriminator and the classifier (F4).

Table 5: Accuracy achieved by the classifier on the sets of samples from MNIST with VAE as the
target. Note that adversarial examples were generated by our standard framework.

Framework X RX A RA

F1

99.47% 91.51%

99.22% 4.84%
F2 99.23% 4.04%
F3 99.21% 76.65%
F4 99.19% 18.72%

Table 5 shows the results after we trained and evaluated the frameworks (i.e., F1, F2, F3 and F4).
Implicitly, by training the framework with the classifier, the generator could generate more effective
adversarial examples than training it without the classifier due to the higher accuracy of the classifier
on RA. Further, training it with the discriminator slightly reduced the accuracy of the classifier on
RA. However, we found that training with the discriminator results in more valid reconstructed
images than training without it. The visual comparison can be found in Appendix C.
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Table 6: Accuracy achieved by the classifier on the sets of samples with retrained VAE as the target,
attacked by the baselines and the universal-attack framework (UF)

Dataset X RX
FGSM PGD UF

A RA A RA A RA

MNIST 99.47% 91.7% 99.05% 75.15% 99.41% 79.55% 99.12% 89.68%
CYFD 99.39% 89.21% 82.89% 48.07% 99.39% 49.49% 71.08% 70.67%

Table 7: Euclidean distance and cosine similarity between the latent spaces of VAE with standard
dataset and the adversarial examples on MNIST and CYFD

Metric No Retrain Retrain
FGSM PGD SF UF FGSM PGD SF UF

MNIST
Euclidean 4972 4695 5855 5443 4689 4678 4618 4590

Cosine 0.72 0.75 0.67 0.71 0.76 0.76 0.76 0.76
CYFD

Euclidean 267.58 236.95 267.53 262.35 283.86 264.73 256.57 270.89
Cosine 0.64 0.71 0.64 0.65 0.58 0.69 0.68 0.60

5 RETRAINING FOR ROBUSTNESS

In addition to finding adversarial examples, our framework can improve generative models’ robustness
by utilizing the trained framework from the previous section. Intuitively, suppose a generative model
is robust against the untargeted attack. In that case, it will also be robust against the targeted attack
since the untargeted attack will likely result in reconstructed images belonging to the easiest classes
for their ground-truth classes. Similarly, suppose a generative model is robust against the standard
framework. In that case, it will be robust against the universal-attack framework because it is much
more difficult to find adversarial examples than the standard one. Therefore, we used only the trained
standard framework for the untargeted attack to retrain a pretrained generative model to promote its
robustness.

Note that we used only a pretrained VAE as our target for our experiment. For each epoch of our
retraining, we first trained our framework for two epochs with the training mentioned in Section 3 and
then trained the target for one epoch with the general training of VAE. However, the training samples
of the target included the general training samples used in the previous section and the samples
generated by our generator in the framework after feeding the general training samples. Hence, the
target’s training samples were twice more extensive than the general training samples.

To evaluate it, we used our untrained framework and trained it with the retrained target by following
the instruction of the previous section. As a result, when we fed the samples created by our generators
in the standard frameworks to the retrained target, we obtained the reconstructed images similar to
the input. We achieved an accuracy of 89.5% in MNIST and 81.87% in CYFD on the reconstructed
images produced by the retrained target in the standard framework. Furthermore, the classifiers also
achieved high accuracy on the reconstructed images produced by the retrained target in both the
universal framework and the baselines (i.e., FGSM and PGD), as demonstrated in Table 6. However,
in CYFD, the robustness of the target against those baselines did not significantly improve in those
baselines. They were still more robust than the original target. Moreover, we did not find any
drawback in this retraining process because the accuracy of the classifier on RX reconstructed by the
retrained target was about the same as the one reconstructed from the natural target, as seen in Table
6.

Additionally, we also trained the standard frameworks with ✏ = 0.05 and ✏ = 0.15. Note that we
used ✏ = 0.1 for all the previous experiments on MNIST. We found that the framework with ✏ = 0.05
did not work on the retrained VAE and the framework with ✏ = 0.15 was less effective. However, the
attack with ✏ = 0.15 was too obvious.
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6 LATENT SPACE ANALYSIS

This section experiments the latent spaces of a targeted model (i.e., VAE) on MNIST and CYFD.
Table 7 shows the average differences between the latent spaces of VAE after passing the clean images
and adversarial examples. Noticeably, the euclidean distance and cosine similarity follow the same
pattern. That is, when the euclidean distance increases, the cosine similarity decreases. According
to Table 1 and Table 7, even though SF can harm VAE the most, it also changes the latent spaces
the most. Therefore, if an attacker needs the latent space to remain the same, we can add another
factor to the loss function for it. Further, when we retrain VAE with our SF, as seen in Table 7, all the
similarities increase.

For CYFD, in Table 7, the results of no-retrained VAE follows the same trend as in MNIST. Nonethe-
less, The results of the retrained VAE are interesting. Although the retrained VAE is more robust
against those attacks than the no-retrained one, the cosine similarity achieved by FGSM, PGD and
UF decrease from the no-retrained one. This phenomenon implies that the VAE for CYFD is not very
organized since the latent vectors that are far away from the original ones can result in the similar
reconstructed images.

7 DISCUSSION AND CONCLUSION

We proposed two GAN-based frameworks. We focused on attacking generative models that recon-
structed images that looked like their corresponding inputs and mathematically defined the problem.
We discussed their corresponding loss functions and how to train standard and universal-attack frame-
works. After training a generator in the standard framework, the framework needs an image input
to find how to perturb the image within the specified perturbation bound to generate an adversarial
example for a targeted generative model. As a result, it is effective over MNIST on both untargeted
and targeted attacks. Similarly, the strategy is also effective on CYFD for both attacks, although not
as good as in MNIST. Furthermore, we created two baselines based on state-of-the-art adversarial
attacks in the literature (e.g., FGSM and PGD) for generative models. Essentially, the proposed attack
could outperform those baselines.

Moreover, we further experimented with the universal-attack framework. It trained a generator which
is also effective in MNIST. Although it could not reduce the classification accuracy of the classifier
as much as the one trained by the standard framework, it is perfect for attacking a target in real-time.
Furthermore, from the ethical point of view, although our framework can be negatively used, we
could successfully apply our framework to retrain generative models to improve their robustness
and empirically show that our attacks can no longer harm the retrained generative models. Also, the
retrained model could be robust against other attacks (i.e., FGSM and PGD).

Despite the success of our attack, it needs so much preprocessing time to train the whole framework.
Hence, this preprocessing can be a significant limitation of this attack while FGSM and PGD do not
require any training or preprocessing.

In addition to the generative models that reconstruct the inputs, these frameworks can be applied
to evaluate other applications that use generative models (e.g., interpretable keypoints from videos
(Jakab et al., 2020), anomaly detection (Zhou & Paffenroth, 2017), and graph prediction (Tran, 2018)
by slightly adjusting the loss functions and their architectures. We leave this as future work.
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