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Depth-aware and Semantic Guided Relational
Attention Network for Visual Question Answering

Yuhang Liu, Wei Wei†, Daowan Peng, Xian-Ling Mao, Zhiyong He, Pan Zhou

Abstract—Visual relationship understanding plays an indis-
pensable role in grounded language tasks like visual question
answering (VQA), which often requires precisely reasoning about
relations among objects depicted in the given question. However,
prior works generally suffer from the deficiencies as follows,
(1) spatial-relation inference ambiguity, it is challenging to
accurately estimate the distance of a pair of visual objects in
2D space if there is a visual-overlap between their 2D bounding-
boxes, and (2) language-visual relational alignment missing, it is
insufficient to generate a high-quality answer to the question if
there is a lack of alignment in the language-visual relations of
objects during fusion, even using a powerful fusion model like
Transformer. To this end, we first model the spatial relation of
a pair of objects in 3D space by augmenting the original 2D
bounding-box with 1D depth information, and then propose a
novel model named Depth-aware Semantic Guided Relational
Attention Network (DSGANet), to explicitly exploit the formed
3D spatial relations of objects in an intra-/inter-modality manner
for precise relational alignment. Extensive experiments conducted
on the benchmarks (VQA v2.0 and GQA) demonstrate DSGANet
achieves competitive performance compared to pretrained and
non-pretrained models, such as 72.7% vs. 74.6% based on the
learned grid features on VQA v2.0.

Index Terms—Visual question answering, relational reasoning,
depth estimation, multi-modal representation.

I. INTRODUCTION

Recently, cross-modal problem has received a considerable
amount of attentions from both computer vision (CV) and
natural language processing (NLP) communities, which re-
quires to simultaneously span both modalities (i.e., vision and
language) for achieving domain-specific tasks, such as visual
question answering (VQA) [1]–[6], the goal of which is to
answer questions about images through fully understanding
of the semantics of the input text-image, and generating the
correct answer to the question.

Generally, VQA methods attempt to answer the question
according to the visual clues mined from the image and the
semantics of the corresponding question. Prior studies have
explored attention mechanisms, such as co-attention based
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Fig. 1. (a) An example of image-question-answer triplet and its corresponding
pixel-wise depth map (brighter means farther in distance). (b) The grayscale
histograms of corresponding objects. The number indicates the peak gray
value of each region. (c) An illustration of 2D&3D spatial relations. x, y, z-
axies denote the directions along the width, height and depth of the image.

[7], densely-connected attention-based [8], and modular co-
attention based [9]. Another line of works have explored to
learn cross-modal alignment via pretraining with large-scale
unlabeled data [10]–[14]. Despite effectiveness, there is a
natural deficiency of visual-reasoning ability for such methods
to answer the questions requiring in-depth understanding of the
spatial relations among visual objects. To address this, there
exist several attempts on neural module network to decom-
pose the input question into several self-designed functions
to answer the questions step-by-step, such as heterogeneous
modules [15], [16] and homogeneous modules [17]–[19]. Nev-
ertheless, these methods still easily fail to achieve the VQA
task due to heavily relying on the handcrafted modules [20].
Instead, several approaches utilize the monolithic networks
to enrich the visual features with the multimodal/contextual
information required for reasoning, such as graph neural
network [21]–[24] and Transformer [25] which has become
an effective and widely-used solution as its well-designed
modules (e.g., self-attention) achieve the promising perfor-
mance on cross-model alignment (inter-model) and contextual
information acquisition (intra-modal). Following the success
of Transformer, many variants of Transformer-based VQA
models are proposed [2], [9], [26].

Nevertheless, the vanilla Transformer with self-attention
module is far from enough for visual reasoning during infer-
ence (especially for spatial-relation related questions), since
it solely relies on visual features to measure correlations of
two objects. Indeed, several works have already attempted
to make use of 2D bounding-box relations [21], [26], [27]
for learning the representation of spatial-relations of objects
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by narrowing down the gap between their visual features
and linguistic semantics. However, they may even deteriorate
the performance. Without loss of generality, we take the
example in Figure 1-(a) for illustration, in Figure 1-(a), for
answering the question, VQA models apparently need to infer
the relative distance of the table to the four different women
for distinguishing. However, previous studies modeling spatial-
relations in 2D space (Figure 1-(c) (up)) may mislead the
alignment of the spatial relation (rbbox<woman,table>) and the
linguistic semantics (rsemantic

beside ).
Inspired by the observation, in this paper we consider to

model the spatial relation of two objects in 3D space instead of
2D bounding-box via augmenting with 1D depth information
(as shown in Figure 1-(c) (down)), for accurately inferring
the relative relations of different visual objects. Therefore, the
distances between the table to the four different women can be
calculated more accurately by means of depth information, and
thus we can find that woman-3 is more closely to the table
as compared to the others (i.e., woman-1,2,4). Additionally,
we also propose an innovative relation alignment model,
named Depth-aware and Semantic Guided Relational Attention
Network (DSGANet), to accurately locate the target visual
objects through fully exploiting the formed 3D visual relations
for relation alignment during visual-language features fusion.
In contrast to self-attention that derives correlations only based
on feature similarities, DSGANet is capable of capturing the
spatial relevant context for accurate relation reasoning, via
estimating the distance of a pair of objects in 3D space.
Furthermore, we claim that our proposed DSGANet can be
applicable to two different types of visual features, i.e., objects
[1] and grids [2], and achieve competitive performance in
terms of different evaluation metrics.

In summary, the main contributions are the following,
• To the best of our knowledge, this is the first attempt that

explicitly builds 3-dimensional spatial-relations between
objects, and performs cross-modal relational alignments
for more accurate visual reasoning about the objects
depicted in the given question.

• We propose a Depth-aware and Semantic Guided Rela-
tional Attention Network (DSGANet) to precisely capture
the spatial context via modeling relational alignment in an
inter-/inter-modality manner simultaneously. Meanwhile,
we also evaluate the effectiveness of joint vision and
language understanding by our proposed model equipped
with two different types of grid-based features, and which
work surprisingly well.

• We conduct extensive experiments to evaluate the effec-
tiveness of our proposed DSGANet, in which our pro-
posed model achieves competitive performance compared
to pretrained and non-pretrained models over different
datasets, for example, 74.06% overall accuracy on VQA
v2.0 and 58.32% on GQA.

II. RELATED WORK

A. Visual Question Answering

Generally, VQA aims at answering a question to its cor-
responding given image. Indeed, there already exist several

early works in VQA domain to research on fusion strategies
[4]–[6], [28] and attention mechanisms [1], [29] to preserve
fine-gained feature of images for joint visual-language repre-
sentation learning, e.g., small objects [29] or question-relevant
regions [1]. Despite their significant improvement, it remains
challenging to answer the questions that involve multiple
objects and require visual reasoning for grounding. To solve
this problem, there already exist several efforts dedicated to
research on two parts: task-decomposing and graph-based
reasoning. Neural module networks (NMN) [15], [17]–[19]
decompose questions into sub-tasks and accordingly compose
neural modules to sequentially answer the questions. These
works perform well on synthetic datasets and preserve the
compositional interpretability. However, they are not widely
adopted in real-world datasets, which are characterized by
open vocabulary and require more reasoning abilities. In
contrast to NMN that explicitly decomposes questions, graph-
based methods perform implicit visual reasoning along the
scene graph of images via message passing [21]–[24]. The
resulting regional features are fully contextualized and dis-
tinguishable for object groundings. In our work, we follow
the graph-based framework with Transformer [9], and build
graph networks with explicit 3D spatial relationships to learn
contextual object representations in 3D space.

B. Visual Relationship Modeling

Visual relationship modeling plays an important role in
image understanding. Currently, there are tremendous related
works focusing on the task of visual relation extraction [30],
which brings a great impact on a variety of visual comprehen-
sion tasks, such as change captioning [31], visual question an-
swering [32], etc. Indeed, relationships encode the interactions
among objects, which are vital in locating the targets via con-
textual information. However, existing VQA methods simplify
this process with implicit relations [21], [24], [33] and explicit
relations [21], [22], [27], [34]. Implicit relations are derived
from the feature correlations (e.g., self-attention) and explicit
relations denote as the geometric or semantic relationships
between objects. Limited by computational efficiency, implicit
relations are widely adopted in the state-of-the-art methods
[9], [21], [24]. However, the ignorance of input structure limits
their ability for visual reasoning. In contrast, explicit relations
take account of geometric or semantic relationships between
objects. For example, a few works [21], [26], [27], [32], [35]
attempt to build geometric relations with bounding boxes and
achieve significant performance. However, it’s still intractable
for 2D bounding-boxes to represent the real world spatial
relations (e.g., the distance in 3D space). In this work, we
extend 2D bounding-box relations between objects with 1D
depth information and learn the relational alignment between
vision and language with graph-based framework.

C. Depth Estimation

Depth estimation has been a popular research area due to
its importance in the understanding of 3D world [36], [37].
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For example, the depth information shares common knowl-
edge with semantic segmentation which can be transferred to
semantic segmentation task [38] and boost the performance. In
addition, 2D images lose the depth information, which could
lead to ambiguity when inferring positions of the objects in the
visual scenes. Scene Graph based Change Captioning (SGCC)
proposed to describe the relative position relationship via 3D
information of images, which overcomes the disturbances from
viewpoint changes [31]. Depth-aware MGAT devised depth
information to distinguish different objects, improving the
answering of counting-related questions [39]. The recently
proposed work [40] exploited similar depth information to our
method. The main difference is that [40] regards the depth
information as weakly supervised labels which are used for
pretraining the models. However, there is no corresponding
module designed for modeling the 3-dimensional relationships
between objects, which limits the visual reasoning capabilities
of the model. To address this issue, we propose a depth-
aware and semantic guided relational attention mechanism,
which explicitly models the 3-dimensional spatial relations and
learns the cross-modal relational alignment with graph-based
framework.

D. Visual Features

It has been shown that recent advances in VQA benefit
to a certain extent from the visual representations of images
[41]. The visual features used in VQA can be divided into
three categories, i.e., global, objects and grids. Global method
directly encodes the image into a global feature vector [28],
[42], [43], which fails to attain fine-grained information about
the image. Therefore, objects have been the de facto choice
for most VQA models [1], [3], [9], [11], [21], [26], [29], [44].
Specifically, a pre-trained Faster R-CNN [45] is used to detect
objects from the images, resulting in a set of object features
and bounding boxes. In common practice, the object detection
model is pre-trained in advance on Visual Genome dataset [46]
with annotations of object classes and attributes. The objects
act as visual priors and promote VQA models to focus on
salient regions. Due to the pre-training strategy, the object
features contains semantics of object categories and attributes,
which facilitates cross-modal alignment. Since object-based
features [1] were proposed, they have been widely used in the
subsequent researches [3], [6], [21], [44]. However, Jiang et
al. [2] observed that the key factor contributing to the good
performance with bottom-up features [1] do not rely on the
feature format (i.e., object or grid). Therefore, they proposed
grid features, which skips the expensive region-related steps
and directly uses C4 output of Faster R-CNN backbone as
visual input. Their experiments show that the grid features
can perform competitive and even better than object features
with less inference time.

Nevertheless, they simply replace the object input with grid
features, which still ignores the spatial relations between grids.
To demonstrate the generalization of our proposed attention
mechanism, we adapt our DSGA to grid features, which brings
a significant improvement.

III. PRELIMINARY

In this section, we first give the statement of our visual
question answering problem (Section III-A), and then present
an overview of our proposed model (Section III-B). For clarity,
some notations and their definitions are listed in Table I.

A. Problem Statement

Let I , Q and A = {ai}|A| be the image, the question
grounded on I and the candidate answer set respectively,
where ai is an answer in A; O = {oi}|O| denotes the
visual objects extracted from I; and rij indicates the spatial
relation between object oi and object oj . Hence, the problem
of visual question answering aims at selecting a correct answer
from candidate answer set A when given a text-image input
< I,Q >, which can be formed as a classification problem as
follows,

a∗ ← arg maxa∈APr(a|I,Q) (1)

B. Overview

Next, we present an overview (as shown in Figure 2) of
our approach to addressing the visual question answering
problem. Specifically, it consists of 4 components, namely, (i)
Image Representation, (ii) Question Representation, (iii)
Encoding Module, (iv) Prediction Module.

Figure 2 gives a brief illustration about our proposed DS-
GANet: (1) Image Representation extracts regional features
and depth map from image I , which are used to construct and
initialize a fully-connected object graph G with region features
V , implicit relations E imp, and explicit spatial relations Espa.
(2) Question Representation encodes questions with Bert [47]
or GRU, resulting in a set of word embeddings S = {si}M−1

i=0 ,
where M denotes the question length. (3) Encoding Module
adopts Transformer framework to refine region features with
context-aware information under the guidance of question
semantics, in which Depth-aware and Semantic Guided At-
tention (DSGA) mechanism is proposed to take 3D spatial
relations between objects into account, facilitating the visual

TABLE I
NOTATIONS AND DEFINITIONS

Notation Definition

Input and Output
I The input image.
Q The input question.
A The candidate answer set, {ai}|A|.
Object Graph

G The fully-connected object graph,
G = {V, Eimp, Espa}.

V The object set of graph G.
Eimp The implicit relation set of graph G.
Espa The explicit spatial relation set of graph G.
b The bounding-box features.
dephist

i The histogram vector of i-th object.
depi The grayscale with the highest frequency.
rbboxi,j The bbox relation of i, j-th objects.
rdepthi,j The depth relation of i, j-th objects.
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Fig. 2. The overall architecture of our proposed model, which consists of 4 modules, i.e., Image Representation, Question Representation, Encoding Module
and Prediction Module.

reasoning about spatial relationships. (4) Prediction Module
combines the features from both image and question, which
is used to predict the final answer.

IV. DEPTH-AWARE AND SEMANTIC GUIDED RELATIONAL
ATTENTION NETWORK

In the following sections, we first formulate the image as
a fully-connected object graph G = {V, E imp, Espa}, so that
relational visual reasoning can be performed among the objects
(Section IV-A). Specifically, G represents regions as nodes
and constructs implicit&explicit relations for edges. Then, the
question is embedded into a set of semantic vectors using
BERT or GRU (Section IV-B). Thereafter, a Transformer-
based architecture is exploited to encode the question represen-
tations and the fully-connected object graph (Section IV-C). In
the encoding module, we present Depth-aware and Semantic
Guided Relational Attention (DSGA), which is incorporated
with Transformer to perform visual reasoning via message
passing on G. Finally, the output features from image and
question are combined to predict the final answer using multi-
class classification (IV-D).

A. Image Representation

The image is represented as a fully-connected graph G =
{V, E imp, Espa}, in which the nodes V are initialized using
the object features O = {oi}|O| extracted from Faster R-
CNN, and the edges E are built from our proposed implicit
and explicit 3D spatial relations.

Node Initialization. The nodes V are initialized with object or
grid features, and each node additionally contains 2D position
vector b as well as 1D depth feature depi, which can be used
for explicit 3D spatial relationship modeling.

Object features are generated via bottom-up atten-
tion [1], which produces N 2048-dimensional RoI fea-
tures and bounding-boxes specified by coordinates b =
(xtl, ytl, xbr, ybr), where (xtl, ytl) and (xbr, ybr) are the top-
left and bottom-right corners of the bounding-box. Each
feature vector and its corresponding bounding-box are con-
catenated to initialize node features. As for depth features,
we exploit depth estimation model [37] to predict the pixel-
wise depth map of the image, and scale the values to the
range of 0 to 255 (Fig.1-(a)). To obtain the 1D depth feature
for each object, the grayscale histogram of i-th object is
generated from its bounding-box region (Fig.1-(b)), and the
grayscale value with the highest frequency is regarded as the
object depth. However, we find that the histogram with 256
bins tends to produce multiple peaks, which could lead to
inaccurate depth estimation if we simply choose the highest
frequency. In addition, 256-bins histogram are redundant to
represent the depth distribution since most of the grayscale
values are concatenated in a few bins. As a result, we perform
a “smooth” mechanism using fewer bins (i.e., 16 bins) for
histogram, which estimates the averaged depth in each bound-
ing box. Specifically, the grayscale values are divided into
k (k = 16) bins (0∼15, 16∼31, ..., 240∼255), producing a
k-dimensional frequency vector dephist

i ∈ [0, 1]
k. The gray

value depi ∈ [0, 255] with the highest frequency is regarded
as the object depth (refer to Figure 1 for illustration).

Grid features are extracted from the output of ResNet C5

layer [2], producing HW 2048-dimensional feature vectors,
where H,W indicates the height and width of the feature map.
Each grid is assigned with a Cartesian coordinate b = (x, y)

(e.g., (0, 0), (0, 1), ..., (W − 1, H − 2), (W − 1, H − 1)) for
2D position representation. To obtain the 1D depth feature
for each grid, we associate each grid to a square region in
the original image. Specifically, we split the depth map into
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Fig. 3. Illustrations for spatial relationship modeling. The spatial relation
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H ×W regions. Similar to object features, the depth features
dephist and dep for each grid can be generated from the
corresponding region.

Implicit Relations. Formally, we treat the self-attention (SA)
in the vanilla Transformer as the implicit relations E imp for
object pairs. Without loss of generality, the nodes V are
embedded and transformed to a set of N dh-dimensional
vectors, which is packed into a matrix X ∈ RN×dh . We follow
MCAN [9] to implement SA on X, which generates queries
Q ∈ RN×dh , keys K ∈ RN×dh and values V ∈ RN×dh .
Thereafter, the correlation score of xi and xj is calculated by
scaled dot-product of the corresponding query qi and key kj .
In matrix form, the equation is described as follows:

SA(X) =
QKT

√
dh

V

Q = WQX

K = WKX

V = WV X

(2)

where WQ,WK ,WV are fully-connected layers that project
input X into queries, keys, and values, respectively. According
to equation 2, it can be observed that correlation scores depend
on feature similarities. It means that the regional features
will gather contextual messages with similar semantics (e.g.,
color, shape, semantics, etc.), which is insufficient for image
encoding due to the structural nature of images. Hence, we
propose to construct explicit 3D spatial relations for object
pairs, which captures the spatial dependency between objects
more effectively.

Spatial Relations. We extend the 2D bounding-box with 1D
depth information to construct 3D spatial relations Espa. The
augmented spatial relations facilitate the comprehension of the
visual distance and help to narrow the relational gap between
2-dimensional image and the real world.

Specifically, the spatial relationship is divided into two parts
(refer to Figure 3): bbox relations and depth relations. We
denote bbox relations between two objects i and j as rbboxi,j ,
which is a 4-dimensional vector of the relative position and

size of the bounding boxes:

rbboxi,j =
(

log(
|xci − xcj |

wi
), log(

|yci − ycj |
hi

), log(
wj

wi
), log(

hj
hi

)
)
, (3)

where (xci , y
c
i ), wi, hi are the center coordinate, width, and

height of the i-th bounding box, respectively. This term mea-
sures coarse relative distance and position in 2-dimensional
space [21], [22], [27]. As for depth relation between i-th and j-
th object, we denote it as rdepthi,j and formulate with depi, depj
by:

rdepthi,j =
(

log(
depj
depi

), log(
wj · depj
wi · depi

), log(
hj · depj
hi · depi

),
Sinter
i,j

wi · hi

)
, (4)

where Sinter
i,j denotes the intersection area of bounding boxes

i and j. Eq.4 aims to estimate the relative depth of object
pairs (i.e. depi

depj
), which can help the model to judge the visual

distance from the image more accurately.
Finally, the 3D spatial relationship rspatiali,j is generated by

simple concatenation of bbox relation and depth relation:

rspatiali,j = [rbboxi,j ; rdepthi,j ]. (5)

We project rspatiali,j to a high-dimensional representation
Rspatial

i,j with an FC layer followed by a ReLU activation:

Rspatial
i,j = ReLU(FC(rspatiali,j )), (6)

where Rspatial ∈ RN×N×ds denotes the latent pairwise spa-
tial relationships, which can be incorporated into the attention
mechanism and learned through end-to-end training for intra-
and inter-modal relational alignment.

B. Question Representation

The question is embedded into a set of word embeddings
S = {si}M−1

i=0 and a global semantic vector q using BERT
or GRU. These embeddings enable our model to attend to
question-relevant objects or relations, so that question-guided
visual reasoning can be performed over the object graph G.

C. Encoding Module

On the basis of question and image representations, the
encoding module aims at extracting question semantics (Ques-
tion Encoder) and performing visual reasoning over the fully-
connected object graph under the guidance of question seman-
tics via message passing (Image Encoder), depicted in Figure
4.

Question Encoder. The classic Transformer [25] is exploited
to encode the question semantics. Specifically, the question
representations S are fed to a stack of Self-attention and Feed
Forward layers, denoted as follows:

Ŝl−1 = LN(Sl−1 + SA(Sl−1)), (7)

Sl = LN(Ŝl−1 + FFN(Ŝl−1)), (8)

where LN, SA and FFN represent the layer normalization, self-
attention and feed forward network respectively. l = {1, ..., L}
denotes the l-th Transformer layer. The output of L-th layer
SL is regarded as question representation, which is used to
guide the image encoding and visual reasoning.
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residual connection and layer normalization are not displayed for simplicity.

Image Encoder. The image encoder aims to refine regional
features with intra-modal and inter-modal contexts, which
enables the model to perform visual reasoning among objects
and attend to question-relevant regions. Specifically, the nodes
features V are fed to a stack of DSGA, Guided Attention and
Feed Forward layers, formulated as:

Ôl−1 = LN(Ol−1 + DSGA(Ol−1,q)), (9)

Õl−1 = LN(Ôl−1 + GA(Ôl−1,SL)), (10)

Ol = LN(Õl−1 + FFN(Õl−1)), (11)

where O ∈ R|V|×dh denotes the stacked vectors of the node
features.

In Eq. (10), GA represents the guided attention (same as
MCAN [9]), which refines regional features using inter-modal
contexts, i.e., question semantics. The difference between SA
and GA is that SA derives query/key/value from regional
features while GA derives key/value from question features,
formulated as follows:

GA(O,S) = softmax(
QOKST

√
dh

)VS , (12)

where QO,KS ,VS are derived in the similar way to SA in
Eq. (2), but from different inputs.

The DSGA in Eq. (10) represents our proposed Depth-aware
and Semantic Guided Relational Attention mechanism, which
refines regional features with intra-modal contexts, i.e., visual
contexts, formulated as follows:

DSGA(O,q) = softmax(ADSGA)V, (13)

V = FCV (O), (14)

where ADSGA denotes the attention map, and FC is the
fully-connected layer. In the vanilla Transformer, the attention
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Attention Map



Question representation

Summation

Dot-product

Fig. 5. Illustrations for DSGA mechanism. DSGA consists of three compo-
nents: i.e., self-attention (SA), semantic-guided attention (SGA), and depth-
aware attention (DAA). The attention map measures correlation scores from
different perspectives, i.e., feature similarity, semantic relevance, and spatial
relevance in the 3D space.

map is calculated via self-attention. However, according to
Eq. (2), it can be observed that the correlation scores only
rely on the feature similarities, ignoring the explicit spatial
structures of the image. We argue that the vanilla self-attention
is insufficient for visual reasoning. Therefore, we further take
the explicit spatial relations into account in DSGA mechanism.
Concretely, DSGA consists of three terms: Self-attention
(SA), Depth-aware Attention (DAA), and Semantic Guided
Attention (SGA), which are combined using simple summa-
tion (depicted in Fig. (5)). Compared to SA, DAA focuses
on spatially closer objects within the visual modality (intra-
modal), and SGA pays more attention on question-relevant
object pairs according to the semantics of language modality
(inter-modal). In the following descriptions, we present the
implementation of DSGA with regard to different types of
image features: objects and grids.

As for objects, given the input regional features O ∈
RN×dh , where N denotes the number of objects, the attention
map ADSGA is calculated as follows:

ADSGA =SA(Q,K) + DAA(Q′,K′,Rspatial)

+ SGA(Q′′,K′′,Rspatial,q),
(15)

where Q′,K′ ∈ RN×ds and Q′′,K′′ ∈ RN×ds are queries
and keys that are calculated in the same way as Q,K with
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different projecting matrices. All the three components (SA,
DAA, and SGA) output a score matrix of shape N ×N . For
simplicity, we set the same weights for the three terms and
leave models to balance the weights during training.

In Eq. 15, the first term is derived from implicit relations,
which indicates that the correlation weights reflect the simi-
larities of input semantics.

The second term means that the weights also rely on
the spatial relations of object pairs. Following [26], the key
features are omitted due to its harm on the performance, and
the second term is calculated via dot-product of query and
spatial relations:

DAA(Q′i,K
′
j ,R

spatial
i,j ) =

Q′
T
i R

spatial
i,j√
dh

. (16)

The last term in Eq. 15 indicates that the correlation weights
should be adaptive to question semantics (object pairs related
to question should have higher weights). Following [27], the
pairwise relations are first projected to semantic space Rsem,
and then combined with the question semantics to calculate
the attention scores, formulated as follows:

SGA(Rsem
i,j ,q) = wTσ(Wa

1q + Wa
2R

sem
i,j ), (17)

Rsem
i,j = Ws[Q′′i;R

spatial
i,j ;K′′j ], (18)

where Ws ∈ Rds×3ds transforms the query-key pairs com-
bined with their spatial relationships to semantic relation
space. Wa

1 ,W
a
2 ∈ Rds×ds are trainable weights. σ denotes

the activation function, such as ReLU. wT is used to obtain
correlation scores. We also attempt to fuse frequency vectors
into keys and values via concatenation, but get little improve-
ment for answer prediction. For simplicity, we keep Rsem

i,j and
remove the frequency vector term in Eq. 18.

As for grids, grid features retain more visual features but
lead to unbearable computational complexity for pair-wise
relational modeling (∼ 6002). We claim that our DSGANet
can generalize to grid features and obtain further performance
improvement. Specifically, we generalize DSGA for grid fea-
tures with DAA and omit SGA due to the computational
complexity. The attention map ADSGA is calculated by:

ADSGA =SA(Q,K) + α · [DAAbbox(Q′,K′)

+ DAAdepth(Q′,K′,dephist)],
(19)

where α is a hyper-parameter to adjust the weights of two
attention terms (we set α = 1/3 in our experiments). In Eq.
(19), to reduce the computational complexity, we divide DAA
into two parts, i.e., DAAbbox and DAAdepth. The former part
calculates the correlation scores based on 2D spatial relations,
indicating that a grid might put different attention on the
others with different relative coordinate distance. This term
is predicted based on the query features:

DAAbbox(Q′,K′) = f∆x(Q′) + f∆y(Q′), (20)

f∆t(Q′) = Wt
2ReLU(Wt

1Q
′), t = {x, y}, (21)

where ∆x,∆y denote the coordinate distance of the query-key
pair in x-axis and y-axis, respectively. Wt

1 ∈ R
dh
2 ×dh ,Wt

2 ∈
RGs× dh

2 are the trainable weights. f∆t(Qi) ∈ RGs denotes

the attention weights of i-th grid on the others with different
relative distances, where Gs is the feature map size (H or W ).

The depth part means that queries might put varied attention
on keys with different depth. To ease the computational
complexity, this term is formulated via dot-product of query-
key pairs with depth features:

DAAdepth(Q′,K′,dephist) =
Q′′

T
K′′√
ds

, (22)

Q′′ = WQ[Q′;dephist], (23)

K′′ = WK [K′;dephist], (24)

where WQ,WK ∈ Rds×(dk+dh) are trainable weights.
Finally, equipped with GA and our proposed DSGA mech-

anism in Eq. (10), the regional features are refined via intra-
modal and inter-modal contexts under the guidance of question
semantics. The output visual features OL contains contextual
information which can be used to predict the answer.

D. Prediction Module

The Question Encoder and Image Encoder separately use
L = 6 stacked layers for image and question encoding.
The outputs are further fed to an attention reduction module
to obtain the attended features ŝ and ô. Specifically, given
the outputs SL and OL of the encoders, a self-attention
mechanism is performed on SL or OL to obtain the aggregated
representation of the whole question and image. Following
[9], denoting XL as an output, we adopt a two-layer MLP
with ReLU activation and Dropout between them to obtain
the attended feature x̂:

αX = Softmax(WX
2 ReLU(WX

1 XL)), (25)

x̂ =

T∑
i=1

αX
i XL

i , (26)

where X represents S or O, corresponding to the output
of question and image, respectively. WX

2 ,W
X
1 are learnable

weights. T denotes the number of words or objects and αX is
the normalized attention weights. x̂ denotes the final attended
representation of the question or image. Then, a linear fusion
function is applied to merge two representations:

hf = LayerNorm(Woô + Wsŝ), (27)
α = Sigmoid(Wahf + ba), (28)

where Wv,Wq,Ws,bs are learnable parameters, and α ∈
R|A| denotes the probability of the |A| candidate answers.
Following [9], the model is trained using the binary cross-
entropy loss.

V. EXPERIMENTS

A. Datasets

The reported results in the following sections are evaluated
on the widely used VQA v2.0 [48] and GQA [49] datasets.

VQA-v2 is the most commonly used VQA benchmark dataset.
It contains images from MS-COCO [50] and annotated
question-answer pairs. Each image has an average of 3 ques-
tions. Each question has 10 answers annotated by different
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TABLE II
STATISTICS OF SAMPLES IN VQA-V2 DATASET

Split #Images #Questions #Answers
Train 82,783 443,757 4,437,570
Val 40,504 214,354 2,143,540
Test 81,434 447,793 \
All 204,721 1,105,904 \

TABLE III
STATISTICS OF BALANCE-SPLIT IN GQA DATASET

Split #Images #Questions #Vocab
Train 72,140 943,000

3,097
Val 10,234 132,062

Test-dev 398 12,578
Test 2,987 95,336
All 85,759 1,182,976 3,097

annotators, and the answer with most frequency is regarded
as the ground-truth answer. All answers are divided into three
types, i.e., Yes/No, Number, and Other. The dataset is split
into train, val and test sets, and there are two test subsets to
evaluate model performance online, i.e., test-dev and test-std.
The statistical details are depicted in Table II. The evaluation
metric (i.e., accuracy) on this dataset is robust to inter-human
variability, calculated by:

Acc(ans) = min
{#humans that said ans

3
, 1
}

(29)

GQA is a newly proposed VQA dataset, featuring composi-
tional questions over real-world images. It is designed to pro-
vide accurate indication of visual understanding capacity and
mitigate the language priors that exist widely in previous VQA
datasets. In contrast to VQA-v2 dataset, GQA is generated by
leveraging Visual Genome [46] scene graph structures to create
diverse reasoning questions with less language bias. Therefore,
it requires more complicated reasoning skills to answer the
questions. GQA consists of two splits (i.e., balance-split and
all-split). The balanced-split consists of QA pairs with re-
sampled question-answer distribution. Following the common
practice, we use balanced-split for training and evaluation. The
dataset is split into 70% train, 10% validation, 10% test and
10% challenge. The statistical details are depicted in Table III.

B. Implementation Details

The question is tokenized and encoded via BERT1 to gen-
erate contextual word embeddings Q ∈ RM×dh and question
representation q ∈ Rdh . As for images, we adopt object
features [1] extracted by pre-trained Faster R-CNN, denoted as
V ∈ R100×2048, and grid features [2] extracted from X-1522,
denoted as V ∈ RHW×2048, where H,W denote the height
and width of the feature map. The pixel-wise depth features
are extracted via BTS [37] pre-trained on NYU-Depth V2 [51].
The classic Transformer-based model (i.e., MCAN with layers

1bert-base-uncased: https://github.com/huggingface/transformers
2https://github.com/facebookresearch/grid-feats-vqa

of L = 6) is chosen as our base model. The hidden size dh
and spatial dim ds are set to 768 and 160, respectively.

For model training, we use Adamax optimizer with initial
learning rate of 5e−5 and warmup [52] strategy. Concretely,
the learning rate starts with 5e−6 and linearly increases to
5e−5 until epoch 4. The model is trained for 13 epochs with
batch-size 64 totally and the learning rate is decayed by 0.2
in epoch 11 and 13.

Baselines. For VQA v2.0 dataset, our model is compared with
various state-of-the-art approaches, including MCAN [2], [9],
DC-GCN [22], CMR [53], and MN-GMN [23]. A few pre-
training models are also taken into account, i.e., VL-BERT
[10], LXMERT [11], and UNITER [12].

• ReGAT. The graph attention network (GAT) with rela-
tional attention mechanism. This model builds graphs
of objects with three types of relations, i.e., implicit
relations, bbox relations and semantic relations, which
is a classic graph-based image encoding network.

• DC-GCN. The dual channel graph convolution network
(GCN). This model considers the dependency relations
between question words and adopts GCN to capture such
dependency semantics.

• MCAN and MCAN-Grid. The Transformer-based co-
attention network with different types of image features,
i.e., object and grid, respectively. These two models
stack Transformer layers to facilitate dense interactions
between each pair of input entities from vision and
language modality.

• CMR. The cross-modal relevance model that uses con-
volution layers to capture the relevance patterns of the
visual and language features. The input embeddings are
derived from the pre-trained LXMERT.

• MN-GMN. A graph-based network that incorporates both
regional textual captions and visual features for image
encoding. The visual/textual information are iteratively
computed and updated to an external spatial memory,
achieving object relational reasoning.

• VL-BERT, LXMERT, and UNITER. The large-scale
multi-modal pre-training models based on Transformer.
These models exploit large amount of unlabeled multi-
modal data for pre-training, and fine-tuning in the down-
stream tasks to boost the performance.

For GQA, several baselines proposed by [20] and TRRNet
[20] are listed for comparison. For fairness, LXMERT [11]
and NSM [54] is not listed due to its usage of large-scale
extra data or high-quality scene graphs.

• LCGN. A graph-based method that iteratively updates
objects representations using GAT under the guidance of
language semantics, which can be regarded as reasoning
process.

• TRRNet. The tiered relation reasoning network that
selects question-related objects and generates pairwise
relations to achieve relational reasoning. This model
uses reinforcement learning to determine the number of
reasoning steps.
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TABLE IV
RESULTS ON THE VQA V2.0 DATASET.

Model
Test-dev Test-std

All Y/N Num Other All

Bottom-up 65.3 81.8 44.2 56.1 65.7
MFH 68.8 84.3 50.7 60.5 -
BAN 70.0 85.4 54.0 60.5 70.4
ReGAT 70.3 86.1 54.4 60.3 70.6
MCAN 70.6 86.8 53.3 60.7 70.9
CMR 72.6 - - - 72.6
MCAN-Grid 72.6 88.5 55.7 62.9 72.7
DC-GCN 71.2 87.3 53.8 61.5 71.5
MN-GMN 73.2 88.2 56.0 64.2 73.5

VL-BERT 70.5 - - - 70.8
LXMERT 72.5 - - - 72.5
UNITER-L 73.8 - - - 74.0

DSGANet-O 71.7 87.9 55.2 61.6 72.0
DSGANet-G 74.2 89.9 58.6 64.9 74.6

TABLE V
RESULTS ON THE GQA DATASET.

Model Binary Open Accuracy

Bottom-up 66.64 34.83 49.74
MAC 71.23 38.91 54.06
BAN 76.00 40.41 57.10
GRN 74.93 41.24 57.04
LCGN 73.77 42.33 57.07
TRRNet - - 57.86

DSGANet-O 76.34 42.47 58.32

C. Experimental Results

The test results of the state-of-the-art models and our DS-
GANet variants on VQA v2.0 dataset are shown in Table IV.
DSGANet-O and DSGANet-G denote our DSGANet model
with visual features of objects and grids, respectively. Specif-
ically, with the object features, our DSGANet-O achieves
a competitive result of 71.7% overall accuracy on test-dev.
When replacing objects with grids features, DSGANet-G sig-
nificantly outperforms the current approaches on both overall
and per-type accuracies. In particular, with the same visual
features, our DSGANet-G outperforms MCAN-Grid by 1.6%
and 1.9% on test-dev and test-std, respectively. Table V shows
the comparisons on GQA dataset to evaluate our model on
more complex questions. It is worth mentioning that we
report testdev accuracy from TRRNet for fair comparison. As
illustrated in Table V, our DSGANet achieves accuracy of
58.32% on testdev and outperforms TRRNet by 0.46%.

D. Ablation Studies

In this section, a series of ablations are conducted on VQA
v2.0 and GQA to analyze the effectiveness of our proposed
methods. Moreover, a subset Rel is split from val set to assess
the performance on relation-related questions. Specifically,
we first keep the top-100 relationships from Visual Genome

TABLE VI
THE EFFECTS OF DIFFERENT RELATION TYPES (bbox AND depth) ON THE

VQA 2.0 VALIDATION SET.

# DAA-Bbox DAA-Depth Overall Rel.

1 68.07 65.43
2 X 68.39 65.62
3 X 68.32 65.55
4 X X 68.47 65.67

dataset [46] and filter the words or phrases that are unrelated
to relations, e.g., is, am, are, have been, etc.. Then, all the
questions that contain these relationship words or phrases
are split as the subset Rel.. The resulting subset consists of
89k question-answer pairs in total. For a fair assessment of
proposed modules, we exploit MCAN as base architecture
and keep the experimental settings consistent throughout the
comparisons.

Different relationship types. Table VI shows the ablations
of two relation types (i.e., bbox and depth). Specifically, we
separately exploit 4-dimensional bbox relation rbbox and depth
relation rdepth as spatial relationships for experiments. Table
VI shows that either Bbox or Depth can improve the results.
Specifically, compared to the base model, the incorporated
bbox and depth increase the overall accuracy by 0.32% and
0.25%, respectively. In particular, our complete DAA improves
the accuracy from 68.07% to 68.47%. We further perform
additional 3 runs of our best-performing model (i.e., line
4), and obtain a standard deviation of 0.04% and 0.03% on
Overall and Rel., respectively.

Effects of main components. Table VII shows the ablation
studies on visual features, question encoder and attention
mechanism(i.e., DAA and SGA). As for object features, line
1&2 shows that Bert encoding contributes to a significant gain
of +0.6% and +0.7% for Overall and Rel., respectively. Line 2-
5 illustrates the improvement via adding attention mechanisms.
Specifically, the incorporated DAA and SGA increase the
overall accuracy by 0.40% and 0.31%, respectively (line 2
vs 3, line 2 vs 4). However, little improvement is achieved
between line 5 and line 3&4. The reason might be specified
by the small proportion of the complex questions in VQA
v2.0 dataset. Hence, we conduct additive ablation studies on
GQA dataset in Table VIII. As for grid features, the consistent
performance gains in Table VII prove the generalization of
attention mechanism shift from object to grid input. Specif-
ically, our full model (line 8) with grid feature achieved the
highest accuracy of 70.60% and 67.95% for overall and Rel.,
respectively. To measure the confidence of the results, we have
performed additional 3 runs of our best-performing model over
both object and grid features (i.e., line 5 and 8 in Table VII),
getting standard deviations of 0.08% and 0.10%, respectively.

Different datasets. To illustrate the effects of our proposed
model on more complex questions, we further conduct ab-
lations on GQA datasets. As suggested by [49], the model is
trained on train+val and evaluated on testdev. Table VIII shows
the testdev performance on GQA dataset. In the experiments,
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TABLE VII
THE EFFECTS OF QUESTION ENCODER AND ATTENTION MODULES (DAA

AND SGA) ON VQA 2.0 VALIDATION SET.

# V-features Bert DAA SGA Overall Rel.

1

Objects

67.43 64.68
2 X 68.07 65.43
3 X X 68.47 65.67
4 X X 68.38 65.65
5 X X X 68.47 65.70

6
Grids

- 69.54 67.00
7 X - 70.19 67.70
8 X X - 70.60 67.95

TABLE VIII
THE EFFECTS OF QUESTION ENCODER AND ATTENTION MODULES (DAA

AND SGA) ON THE GQA DATASET.

# Model Bert DAA SGA Acc.

1 Baseline 56.75

2

Our Model

X 57.35
3 X X 57.76
4 X X X 58.54

we use object features by default for simplicity. As table
shows, consistent improvement can be observed by adding
DAA or SGA module to our base model (line 2 vs. line 1,
and line 3 vs. line 1), which demonstrates the generalization of
our proposed methods cross different datasets. The full model
achieves the highest gain of +1.79% compared to the base
model (line 1). Additionally, we perform 3 runs for the best
performing model (i.e., line 4 in Table VIII), and obtain a
standard deviation of 1.01%.

Analysis on accuracy improvement. From Table VII and
VIII, it can be observed that our proposed methods bring more
significant improvement for GQA than VQA v2.0 dataset, e.g.,
+0.41% vs. +0.03% by adding SGA module. This is mainly
due to the different proportions of the relation-related data. Ac-
cording to our statistics, the proportions of such data in GQA
and VQA 2.0 datasets are ∼50% and 15%∼25%, respectively.
In addition, we collect relation-related words that frequently
appear in VQA v2.0 dataset using POS tagging tools, and
found that most of the relation words are relatively simple, e.g.,
have, in, on, etc. This makes it easier for the model to solve
such questions without exploiting depth information, and thus
the improvements on VQA v2.0 dataset appear not obvious.
Moreover, from the perspective of the image, the improvement
also depends on the visual content, and most of the images on
VQA v2.0 only contain one or two core objects referred by
questions, which may not require relation modeling to locate
the target and answer the questions.

E. Visualization

To qualitatively illustrate the effects of our proposed meth-
ods, we visualize the learned attentions from our DSGANet in
Figure 7. Moreover, we conduct case studies and visualize the

attention flow between objects (Figure 6 and 8), illustrating
the effects of different attention modules.

In Figure 7, DSGANet-G model is exploited for visualiza-
tion. Specifically, we display the attention weights of woman
object (red solid bbox) and visualize it on the image. To obtain
the weights, we split the object bounding box into grids and
sum up the corresponding normalized attention values. For
better visualization, the weights are smoothed with Gaussian
kernel and overlaid on the image. It can be observed that in
Layer-1, SA puts attention on two women (the middle and
the right side) while DAA concentrates on the object edges.
This reveals that SA gathers context mainly based on feature
similarity while DAA can focus on the junction area between
objects. In Layer-6, both SA and DAA are more focused and
put much attention on the clothes. This can be explained by
the fact that after multiple layers of encoding, the model has
gained much contextual information and is able to locate the
ground-truth area.

In Figure 6 and 8, we exploit DSGANet-O model for
cases study, illustrating the effects of bbox and depth rela-
tions. Specifically, Base, Bbox and Depth correspond to our
DSGANet variants with different relation types, i.e., implicit
relations, bbox relations and depth relations, respectively. The
three blocks display the inputs, histograms of the correspond-
ing areas, and the visualizations of the query-key pairs from
the last layer of our DSGANet. Each connection indicates a
query-key pair (from yellow to red star) from the attention
map, and the query is fixed to denote the object mentioned by
questions (i.e., he, field). Three connections with the highest
scores (summed over all heads) in each attention module are
displayed in the image.

As measured by Equation 3 and 4, bbox relations calculate
the distance via the width/height ratio of object pairs (i.e.,
log(

wj

wi
), log(

hj

hi
)). Intuitively, objects that are closer to the

“camera” have larger sizes, and thus the same objects that
are closer should have similar sizes. From the perspective of
bboxes, the distances between objects 1-6 can be inferred by
solely bbox relations, i.e., objects 1-3 are closer to object 0
compared to objects 4-6. Additionally, the distances can also
be inferred by the depth. As shown in the second column of
Figure 6, take the histogram peak value of the object 0 as
the basis, objects 1-3 have closer depth values than objects
4-6, which indicates the closer distances between objects 1-3
and 0. In this case, benefit from the bbox and depth relations,
DAA and SGA consider the spatial relations between objects,
hence looking for spatially-relevant regions (i.e., objects 1-3)
corresponding to the question.

Figure 8 shows another case, in which bbox relations cannot
reflect the distance between objects. Specifically, from the
perspective of bboxes, object 2 is closer to 0 than object 1 due
to the more similar width/height ratio/size, which misleads the
model focuses on the bench instead of skateboard. In this case,
the main reason for this problem is the size variance between
different types of objects, e.g., the skateboard itself is relatively
small, making it look father in distance. Therefore, depth
information is necessary to measure more accurate relative
distances between objects. As shown in the second column of
Figure 8, the depth histogram is able to reflect such relative
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Fig. 6. Case study from our DSGANet variants and illustrations of the importance of explicit spatial relations, i.e., bbox and depth relations.

Q: What color is the shirt of 

the woman beside the table?

A: gray

SA(woman)-1 SA(woman)-6

Grids corresponding 
to woman object

DAA(woman)-1 DAA(woman)-6

Layer-1 Layer-6

Detected objects

Grid Split

Fig. 7. Visualizations of attention weights of the grids corresponding
to woman object (softmax(qT

womanK/
√
d)). SA and DAA denote Self-

attention and Depth-aware Attention, respectively.

spatial relations via the margin of histogram peak values.

VI. CONCLUSION

We propose to construct 3D explicit spatial relations via
incorporating 1D depth information into 2D bounding-box
relations. On the top of the spatial relations, we develop Depth-
aware and Semantic Guided Relational Attention Network
(DSGANet) that refines the visual features based on both
semantic and spatial relations. Besides, we generalize the
attention mechanism from object to grid features and obtain
consistent performance improvement. We conduct extensive
experiments on VQA v2.0 and GQA datasets to evaluate the
performance of our proposed DSGANet. The experimental
results demonstrate that our proposed models achieve compet-
itive performance compared to pretrained and non-pretrained
models over different datasets, and the visualization of atten-
tions provides the intuitive explanation of model behavior.
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APPENDIX

This appendix provides the additive illustrations about our
proposed methods, i.e., derivation of the bbox term in DAA
for grid features.

A. Derivation of DAA for grid

We claim that the bbox term of depth-aware attention (DAA)
(i.e., Equation 20) for grid features is equivalent to that for
object features under some assumptions. In the following
description, we demonstrate how to derive Equation 20 from
the perspective of bounding box relations in object features.

Assuming that only bounding box features are used for
explicit relational modeling, the spatial relations between
objects can be calculated by:

rbboxi,j =
(

log(
|xci − xcj |

wi
), log(

|yci − ycj |
hi

), log(
wj

wi
), log(

hj
hi

)
)
,

(30)
Thereafter, the spatial relation Rspatial

i,j is generated by an FC
layer followed by ReLU activation:

Rspatial
i,j = ReLU(FC(rbboxi,j )), (31)

After that, we calculate the spatial attention through dot-
product of the query and the spatial relation:

DAAbbox(Q′i,R
spatial
i,j ) = Q′

T
i R

spatial
i,j . (32)

Derivation. Suppose each grid corresponds to a square region
of the original image, then the bounding box of grid i, j can
be denoted as (xi, yi, xi+1, yi+1) and (xj , yj , xj +1, yj +1),
respectively. (xi, yi), (xj , yj) denotes the top-left coordinates.
Thereby, Equation 30 should be rewritten as:

rbboxi,j =
(

log(|xi − xj |), log(|yi − yj |), 0, 0
)

=
(

log(|∆xij |), log(|∆yij |), 0, 0
)
,

(33)

where ∆xij ,∆yij denotes the relative distance of grid i, j in
x-axis and y-axis. Rewrite FC in Equation 31 in vector form
as follows:

Rspatial
i,j = ReLU(FC(rbboxi,j ))

= ReLU(Wrbboxi,j )

= ReLU([w0 w1 w2 w3][log(|∆xij |) log(|∆yij |) 0 0]T )

= ReLU(w0 · log(|∆xij |) + w1 · log(|∆yij |)),
(34)

Since ∆x,∆y is discrete for grid features, we initialize a
trainable vector wX

∆x,w
Y
∆y randomly for each value of ∆x or

∆y, which indicates the relative distance embedding, hence
Rspatial

i,j is rewritten as follows:

Rspatial
i,j = ReLU(wX

∆xij
+ wY

∆yij
), (35)

Assume that the effects of the relative distance on x-axis and
y-axis are separate:

Rspatial
i,j = ReLU(wX

∆x) + ReLU(wY
∆y)

= w′
X
∆xij

+ w′
Y
∆yij

,
(36)

where w′
∗
∗ denotes another initialized non-negative vector that

satisfy w′
∗
∗ = ReLU(w∗∗). Take this into account, Equation 32

is rewritten as follows:

DAAbbox(Q′i,R
spatial
i,j ) = Q′

T
i R

spatial
i,j

= Q′
T
i (w′

X
∆xij

+ w′
Y
∆yij

)

= Q′
T
i w
′X
∆xij

+ Q′
T
i w
′Y
∆yij

,

(37)

We pack the weights w′X∆x,w
′Y
∆y corresponding to all ∆x and

∆y values into matrices W′
X,W

′
Y, and get the equation as

follows:

DAAbbox
i,j (Q′i,R

spatial
i,j ) = (W′

X
T
Q′i)[∆xij ] + (W′

Y
T
Q′i)[∆yij ]

= f∆x(Q)[∆xij ] + f∆y(Q)[∆yij ],
(38)

where f∆x(·), f∆y(·) denotes FC layers with different
weights. In our implementation, we adopt multi-layer percep-
tron (MLP) for expressive ability.
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