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Abstract

Embodied-Al agents must reason about how objects move and interact in 3-D
space over time, yet existing smaller frontier Large Language Models (LLMs) still
mis-handle fine-grained spatial relations, metric distances, and temporal order-
ings. We introduce the general framework Formally Explainable Spatio-Temporal
Scenes (FESTS) that injects verifiable spatio-temporal supervision into an LLM
by compiling natural-language queries into Spatial Regular Expression (SpRE)
— a language combining regular expression syntax with S4,, spatial logic and
extended here with universal and existential quantification. The pipeline matches
each SpRE against any structured video log and exports aligned (query, frames,
match, explanation) tuples, enabling unlimited training data without manual la-
bels. Training a 3-billion-parameter model on 27k such tuples boosts frame-level
F1 from 48.5% to 87.5%, matching GPT-4.1 on complex spatio-temporal rea-
soning while remaining two orders of magnitude smaller, and, hence, enabling
spatio-temporal intelligence for Video LLM.

1 Introduction

The ability to comprehend and reason about how a dynamic, three-dimensional world evolves over
time is fundamental to embodied AI—spanning household robotics, autonomous driving, and assis-
tive manipulation. To train and evaluate such systems we also need tooling that can query and anno-
tate spatio-temporal events in video perception logs. LLMs and Visual Language Models (VLMs)'
already show promise as task-and-motion planners [25, 19] and low-cost annotators [14]. Yet a
growing body of work demonstrates that frontier models remain brittle: they mis-judge fine-grained
spatial relations [24, 27, 13, 23], lose track of temporal dynamics [I1], and struggle when both
aspects matter simultaneously [8, 9]. For instance, VLMs often confuse relative object ordering,
fail to distinguish identical instances, and cannot reason about metric distance—shortcomings that
translate directly into failure modes.

In this paper, we present FESTS, a framework that injects rich, verifiable spatio-temporal supervi-
sion into an LLLM, enabling it to answer — and explain — complex video queries. Our key idea is to
leverage SpREs [2], a language that fuses regular-expression syntax with S4,, spatial logic, to gener-
ate large numbers of self-verifiable queries and corresponding ground-truth matches. These queries
can express properties such as “find all frames in which a car and a bus start at least 10 m apart
and come within 1 m of each other within 20 frames," which go beyond multiple-choice QA, and
naturally scale to 2-D or 3-D data. Crucially, we extend SpREs to support universal and existential

"“Visual” refers to any (potentially multi-modal) model that accepts an image or sequence of images as
input.
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quantification over objects to track entities across time and encode behaviors like “every pedestrian
is at least Im away from the truck.”

Recently, Li et al. [8] showed that Video LLMs [30, 20] — models coupling a video encoder with a
language decoder — can improve reasoning skills through purely textual fine-tuning. Their evidence
suggests that temporal-reasoning bottlenecks lie in the LLM component rather than the video en-
coder, implying that stronger textual supervision can improve reasoning. Our framework capitalises
on this insight: by generating arbitrarily many SpREs-grounded (query, frames, match, explanation)
tuples from any perception dataset, we fine-tune the LLM component to reason about both temporal
orderings and spatial relations.

In more detail, given textual video object annotation data which must include object classes and
bounding box information, and which may include unique object identifiers, pixel depth informa-
tion, or other attributes of interest, e.g., color. Our goal is to fine tune an LLM to be able to reason
about arbitrary spatio-temporal patterns which can be encoded with SpREs. We present a framework
which automates query generation and data annotation with the goal of producing any desired size
training dataset. It is important to highlight three benefits of our framework. First, our framework
can be utilized on both real data and artificially generated data. Second, and most importantly, with
a given video data set or perception data, we can generate an arbitrary number of spatio-temporal
queries for training and fine tuning. Third, our framework can also produce natural language expla-
nations on why a pattern was matched on the annotated dataset. This additional information can be
fed as part of the training process, or even be used in a chain-of-thought spatial reasoning frame-
work as in [21]. To our knowledge, no dataset exists that couples complex queries to spatio-temporal
reasoning capabilities of models. Virtually all the prior works on spatio or spatio-temporal fine tun-
ing use multiple choice question and answering for fine-tuning with much simpler spatio-temporal
properties.

Using our benchmark dataset, we show that with just 27k training examples (each paired with expla-
nations), we boosted a 3-billion-parameter model to be competitive against a state-of-the-art GPT-
4.1 model on our training and evaluation dataset. This establishes that our framework has the po-
tential to enhance Video LLMs [30, 20] with new spatio-temporal reasoning capabilities since we
enable some more complex patterns than [21]. Although our fine-tuned model consistently achieves
substantial improvements across varied query complexities and frame lengths, there remains strate-
gic room for further enhancement, particularly in existential queries that involve extended object
tracking across frames, where GPT-4.1 currently maintains an advantage.

Contributions Our paper makes the following contributions:

1. Dataset: We release FESTS benchmark dataset, the first automatically-annotated video
corpus whose labels are derived from verifiable spatio-temporal queries rather than crowd-
sourced labels.

2. End-to-end pipeline: FESTS ships code to (i) synthesize diverse SpRE queries, (ii)
match them against structured perception logs, and (iii) export aligned (query, frames,
match, explanation) tuples for training or evaluation.

3. Pattern matching language extension: We add existential and universal quantifiers to
SpRE, enabling persistent object tracking

4. Empirical improvements: Using the resulting “Query—Explain” supervision, we fine-
tune a 3B-parameter LLM (Qwen-2.5-Coder-Instruct) from 48.5 % to 87.5 frame-level F1,
keeping competitive with GPT-4.1 on complex spatio-temporal reasoning with orders of
magnitude fewer parameters.

Collectively, these results show that spatio-temporal fine-tuning, powered by logically-grounded

synthetic supervision, can endow LLM with reasoning skills well beyond what multiple-choice QA
alone affords.

2 Related Work

Spatial reasoning with LLM and VLM. A series of recent papers show that frontier models still
lack spatial reasoning capabilities and propose various model enhancements. Chen et al.’s Spa-
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tial VLM [6], Cai et al.’s SpatialBot [5], Cheng et al.’s SpatialRGPT [7], Ma et al.’s 3D-aware Spa-
tialLLM [22], and Zhang et al.’s COMFORT [31] all attempt to patch these gaps with geometric
priors or object-centered prompts. BLINK [13] proposes “visual" commonsense benchmark prob-
lems that humans can answer within seconds, e.g., multi-view reasoning, depth estimation, and
reflectance estimation. Yet the underlying benchmarks remain limited to local or static relations.
FESTS subsumes this scope by compiling natural-language prompts into Quantified-Spatial Reg-
ular Expression (q-SpRE) that permit metric constraints, set operations, and universal / existential
quantification.

Spatial benchmarks for LLM and VLM. The works [27] and [24] propose benchmarks that can
evaluate whether frontier models poses spatial intelligence which is natural among animals. GRASP
[27] demonstrates that cutting edge LLM cannot produce plans given a spatial reasoning problem.
SPACE [24] exposes failures of LLM and VLM to produce a mental map of the environment when
traversing it. It also demonstrates that foundation models cannot perform smaller-scale reasoning
about object shapes and layouts. FESTS has orthogonal goals and evaluation criteria to GRASP and
SPACE. However, it would be interesting to evaluate if FESTS can also improve spatial intelligence
in frontier models.

Video-LLM benchmarks and temporal reasoning. Temporal understanding has progressed from
early captioning datasets to full video-LLM challenges. Ju et al. [16] prompt VLMs for temporal
localization and reveal poor clip-level accuracy. Li et al.[8] demonstrate that purely textual fine-
tuning lifts ordering performance and temporal localization. V-STaR benchmark [9] assesses spatio-
temporal reasoning ability in answering questions in the context of “when", “where", and “what".
Mementos [28] stresses sequence reasoning over image sets, while PaLM-E [12] proposes and
evaluates embodied language models with additional sensing modalities. The work in [30] shows
that by simply expanding context windows improves performance in performance on long video
question-answering benchmarks. NSVS-TL [1 1] shows that current VLM fail at long-term reason-
ing across frames and propose a temporal logic based framework for temporal reasoning. Nearly
all approaches (besides NSVS-TL) produce benchmarks based on multiple-choice labels or short
captions and question-answering. Even though the aforementioned approaches focus on temporal
relations across frames, they do not really consider spatial reasoning at the same fidelity as FESTS.
g-SpRE instead produces verifiable (query, frames, match, explanation) tuples that jointly
stress spatial and temporal reasoning, and its generator can wrap any perception log—including the
clips used by other benchmarks.

3 Preliminaries

This section reviews the Spatio-Temporal Regular Expression Matching (STREM) framework [2],
highlights its limitations, and presents our contributions to it.

3.1 The Spatio-Temporal Regular Expression Matching Framework

The STREM framework [2] is designed to match queries over perception data streams. The queries
are expressed as SpREs, which combine Regular Expressions (REs) with the spatial logic S4,, [18],
enabling patterns to capture both temporal and spatial relationships among objects. The matching
procedure uses a formal-methods approach based on Deterministic Finite Automata (DFA), which
determines whether a perception stream satisfies a given query.

3.1.1 Limitations

In the current variation, there are several limitations to the STREM framework that do not support
the ability to perform more complex temporal queries.

In the current version, SpRE queries such as, a simple “Find all frames where the same pedestrian is
present for five frames”, or more complicated, “Find all frames where the same pedestrian overlaps
with any car or bus for five frames” are not possible. Furthermore, reasoning over all kinds of
objects at a specific point in time across multiple points of time is not possible and thus queries
such as, “Find all frames where all cars are more than 500 units away from any pedestrian for three
frames” do not have any inherit support. These limitations enforce a per-frame reasoning query to
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Figure 1: The FESTS framework begins with (1) which processes the SpRE and perception stream
inputs to produce the two formal method-based results; (2) processes the explanation to improve
readability for LLMs; and (3) packages this into a distributable data formats.

be formed by the user and thus does not enable a wide range of multi-frame temporal reasoning
expressions that would otherwise strengthen the capabilities of the querying language overall.

3.2 Quantification Support

To support operations of quantification-based queries to extend the capabilities of LLMs, we first
adjust the syntax of the SpRE grammar to include RE-level quantifiers. The modified SpRE syntax
is shown in Eq. 1 below.

RQ=0¢|Q1Q2|Q1Q2| Q" |I2.Q | V2.Q (1)

where J and V correspond to the new existential and universal quantifier and V corresponds to the
new universal quantifier introduced. The syntactic definitions of the other operators may be reviewed
in [2]. For a formal review of the semantics, see Sect. 10;

To support the semantics of these quantification operators, we integrate a new matching algorithm
alongside additional components to support the semantics of the existential and universal quantifiers
within SpRE queries.

4 Formally Explainable Spatio-Temporal Scenes

The FESTS framework (see Fig. 1) accepts as input a data stream D of downstream perception-
based data such as object annotations; examples of pre-existing datasets containing such information
include Woven Perception [17] or nuScenes [4]. As output, the FESTS data pipeline returns a
perception stream of with each entry organized as follows:

(Q',D',M,S) 2)

where @' is the Natural Language (NL) variant of the SpRE query Q, D’ = (F;, Fi41,...,F;) € D
is the sampled data stream, M is the set of matches from STREM, and S is the set of NL explanations
linearized from the set of explanations F.

Let us consider the following NL query written for an Autonomous Vehicle (AV) system affixed
with image-based sensors and a downstream object detector:

Find all frames where the bounding box of the same car intersects with a bounding
box of a bus for two frames.

From this query, the goal is to identify frames from the perception stream that match the properties
outlined. This query is composed of both spatial properties such as intersection as well as temporal
properties such as sequences. However, while current LLMs such as GPT-4o [ | 5] initially showcase
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positive performance on single property-based queries, queries containing a mix of both spatial and
temporal elements begin to demonstrate failures. These failures consist of hallucinations in the
perception stream, incorrect ranges, and reduced accuracy over longer traces as concluded in [10].
To improve upon these limitations, we utilize fine-tuning of LLMs through a formal methods-based
approach to the data generated for training and fine-tuning of the models.

If the query above is processed through our framework, the resulting output would be as follows:

{
"input": {

"input": "You identify video scenes matching a natural language query
using frame-level object detections.\nInput XML
structure:\n<root>\n <query>Natural language scene
description.</query>\n <data>\n
frame,identifier,label,score,xmin,ymin,xmax,ymax\n
0,AB,pedestrian,1.0,1254,603,269,101\n
1,AC,car,0.9,1300,600,280,110\n ...\n </data>\n</root>\nOutput
format:\n-Matched frames as lists of consecutive indices in
<result> tags.\n-Brief explanation inside <reasoning> tags.\n-If no
match, output: <result>[]</result><reasoning></reasoning>\nExample
output:\n<result>[[1,2,3],[7,8]]1</result>\n<reasoning>Frames 1-3
and 7-8 matched due to presence of pedestrians crossing the
road.</reasoning>\nNo extra text outside <result> and <reasoning>
tags.---\n<root>\n\t<query>Find all frames where the bounding box
of the same car intersects with a bounding box of a bus for two
frames.</query>\n<data>\nindex,identifier,class,xmin,ymin,xmax,ymaj
x\n23,aa,bus,232,538,307,571\n23,ba, car,323,504,518,643\n23,ca, car
,558,508,741,672\n23,da,car,488,517,570,579\n23,ea,car,893,517,101J
1,554\n23,fa,car,285,525,366,578\n23,ga, car,480,521,537,562\n23,ha |
,car,265,526,407,604\n24,ga,car,485,521,540,561\n24,ia,car,39,528,J
258,623\n24,da,car,497,517,574,576\n24,ca, car,564,507,736,662\n24, |
ha,car,281,526,415,600\n24,aa,bus,217,538,293,57O\n24,ba,car,343,5J
05,523,636\n24,fa,car,293,525,366,576\n24,ea,car,893,516,1011,554\ |
n</data>\n</root>\n"

!

A

1},
"output": [

23,
24
]
] 3
"explanations": [
"From index 23 to 24, area of the bounding box of a car with id ba
— overlaps with a bus."

5 Experiments

To evaluate the effectiveness of our approach, we fine-tune an LLM, Qwen2.5-3B-Instruct [29],
on the outputs of our framework from an AV perception dataset, Woven Perception [17]. In the
following sections, the dataset composition, fine-tuning procedure, evaluation metrics, and results
are presented.

5.1 Dataset Composition

To fine-tune an LLM on the outputs of our framework, a perception stream source is required. The
Woven Perception [17] dataset was chosen for its comprehensive selection of perception streams
and high-quality, hand-labeled object annotations. This dataset is comprised of 180 different scenes
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with each scene containing a stream of 126 frames from 7 different monocular camera sensors,
which provides 1.2K+ perception streams to process with our framework.

To generate the data for fine-tuning, the perception streams were sampled at incremental frame
lengths of 1, 2, 4, 6, 8, 10, 12, 14, and 16 to gradually increase the difficulty for the LLM. For
each sample, our framework joins the satisfaction result and explanation from the STREM frame-
work with the corresponding NL query and perception stream data for 15 templated queries. This
procedures yields 27K+ outputs as the inputs to fine-tune the LLM on.

5.1.1 Query Types

The queries we fine-tune the model on can be grouped into five distinct categories. These categories
and considerations of each are outlined below:

Sequence: A query containing multiple temporally adjacent events.

. Spatial: A query that contains operations such as intersection of bounding boxes.
. Temporal: A query that contains eventual events.

. Metric: A query that contains measurement-based operations.

U S N -

. Existential: A query that contains reasoning on the same or all objects over time.

5.2 Models and Fine-Tuning Configurations

The fine-tuning was performed entirely on the LLM, Qwen2.5-3B-Instruct [29]. This model was
selected for several reasons: (1) publicly and readily available, (2) small parameter size, (3) ideal
for task completion and fine-tuning, and (4) size of context-length. The model was fine-tuned under
the following two training configurations:

C1. Supervised Fine-Tuning: The model was trained exclusively on the query and match out-
puts of our framework, with no explanation field. The Parameter-Efficient Fine-Tuning
(PEFT) using the Low Rank Adaptation (LoRA) method was applied to the attention and
MLP layers with a rank of 16, scaling of 32, and a dropout of 0.05; trained for 5 epochs
with an effective batch size of 60; optimized with AdamW (8-bit) with a learning rate of
1 x 10~ and cosine scheduling.

C2. Supervised Fine-Tuning with Reinforcement Learning: The model was pre-trained from
the C1 configuration. The Reinforcement Learning (RL) with Proximal Policy Optimiza-
tion (PPO) used where the PPO used a custom hierarchical-based reward function (see
Sect. 5.3); trained for 1 PPO epoch with 4 optimization epochs per PPO batch; optimized
with AdamW (8-bit) with a learning rate of 1 x 10~6, effective batch size of 4, a KL
divergence coefficient of 0.05, and upper bound of 512 tokens for rollouts.

In addition, the fine-tuned models were compared against the GPT-4.1? [ 1] model representing the
state-of-the-art and the Qwen2.5-Coder-3B-Instruct model [29] representing the baseline.

5.3 [Evaluation Metrics

To evaluate the model during fine-tuning, we developed two methods distinct for each fine-tuning
configuration in Sect. 5.2.

For the C1 configuration, the causal language modeling objective is optimized using cross-entropy
loss, minimizing differences between the predicted and ground-truth token probabilities such that
all tokens except the results are masked.

For the C2 configuration, a hierarchical-based reward function is used. This reward function evalu-
ates several properties including: (1) structural validity such as XML formatting; (2) match accuracy
with mAP IoU and exact match; and (3) reasoning fidelity, which assesses semantic similarity to
ground-truth explanations using a sentence transformer from [26] and numerical IoU of referenced
frames. The penalties of the reward function account for excessive response length, spurious text
outside delimited tags, and invalid formats.

2This model was accessed and used for evaluation on 05/01/2025.
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Figure 2: Average Performance across frame lengths. Blue = Overall F1, orange = Exact Match;
shaded o. Starred points denote the best-performing model for each frame length.

While the reasoning fidelity guides the RL training, it noted that primary performance metrics in
Sect. 5.4 focus on the accuracy of the predicted frames.

5.4 Results

Main Findings. Table 1 summarizes key results. Adding explanations yields large improvements.
Supervised fine-tuning on query—answer pairs (Q-SFT) improves overall Frame F1 from 48.5% to
80.4%. Reinforcement learning on top of those explanations (Q-SFT+RL) pushes Frame F1 to
87.5%, just above GPT-4.1 at 84.8%. The jump is primarily driven by recall (+28 points during
SFT) and then by precision (+2.2 points during RL). Exact-match rises from 25.0% (Baseline) to
56.6% (Q-SFT) and 64.5% (Q-SFT+RL).

Impact of Query Length. Fig. 2 shows that gains scale with query length. For 16-frame inputs
Frame F1 climbs from 65.7 % (Q-SFT) to 82.7 % (Q-SFT+RL), a +17-point jump. Exact-match
improves by +39.5 points over baseline and by +29.5 points over GPT-4.1 (64.5 % vs. 35.0 %).
Most of the improvement comes from SFT. RL improves a further 7.9 points.

Table 1: Performance comparison across models and target lengths. Metrics: Frame F1 (F1), Exact
Match (EM), and Segment F1 (F1;). Best results per column are in bold.

4 8 12 16 Overall
Model Fl; EM Flg Fl; EM Fl, Fly EM Fl, Fly EM Flg Flg EM Flg
Q-Baseline 0.472 0.211 0.325 0456 0.191 0.258 0452 0.187 0.231 0416 0.187 0215 0485 0.250 0.326
Q-SFT 0.836 0.636 0.644 0.786 0.507 0.582 0.771 0.451 0.565 0.657 0.329 0.454 0.804 0.566 0.636
Q-SFT+RL 0.881 0.676 0.694 0.856 0.611 0.686 0.852 0.549 0.659 0.827 0.440 0.629 0.875 0.645 0.723
GPT-4.1 0.888 0.269 0.640 0.813 0.236 0.528 0.797 0.236 0497 0.756 0.231 0.447 0.848 0.350 0.610

Per-Query Type Performance.

Table 2 confirms the pattern across five query types. SFT im-
proves F1 by +0.35 (Sequence), +0.35 (Spatial), +0.31 (Temporal), +0.31 (Metric), and +0.28 (Exis-
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tential). RL improves recall above 0.90 for Sequence, Metric, and Existential and raises F; to 0.90+
for Sequence, Metric, and Temporal. Spatial and Existential stay at 0.82-0.83 F;. Exact-match
is 0.821 for Sequence and 0.706 for Metric but does not perform as well at 0.531 for Existential
queries.

Summary. The query-explanation—RL pipeline delivers consistent, order-of-magnitude improve-
ments with minimal extra annotation, suggesting strong potential for transfer to other video-language
tasks governed by symbolic logic.

Our analysis refrains from comparing against reasoning models, as this introduces an additional
learning signal and thus another source of variance, complicating attribution in experimental studies.
Moreover, reasoning models exacerbate the inherent textual-context limitations of LMMs, necessi-
tating truncated analyses or aggressive token pruning to accommodate input data within memory
constraints.

Table 2: Precision (P), Recall (R), F;, and Exact-Match (EM) for each query type. Values are
averaged across 8-, 12-, and 16-frame lengths.

Base Stage-1: SFT Stage-1I: SFT + RL
P R Fy EM P R Fy EM P R Fy EM

Query type

Sequence 0.875 0.668 0.570 0206 0.931 0961 0923 0.715 0971 0.978 0.962 0.821

Spatial 0.785 0.557 0415 0.190 0.825 0.853 0.761 0.502 0.845 0.905 0.819 0.552
Temporal 0.863 0.597 0.504 0.348 0.883 0.857 0.810 0.553 0910 0.902 0.866 0.615
Metric 0.872 0.551 0.457 0200 0.903 0.830 0.769 0.597 0917 0.960 0.903 0.706

Existential  0.875 0.574 0.480 0.306 0.817 0.861 0.757 0.463 0.826 0937 0.828 0.531

Average 0.854 0.589 0485 0.250 0.872 0.872 0.804 0.566 0.894 0.936 0.876 0.645

6 Limitations

The current set of limitations of this work includes: (1) missing component to automate the trans-
lation between NL-based queries into SpRE counterparts; (2) the perception stream strictly requires
pre-labeled data; (3) accuracy of the results depends on the quality of the sourced labels; (4) manual
curation and creation of the queries are required; and (5) evaluation on a single model.

7 Conclusions

In this work, we developed FESTS, a benchmark dataset leveraging verifiable, logically-grounded
queries for automated annotation and explainability, substantially advancing video-language model
training without reliance on crowd-sourced labels. Through systematic fine-tuning of the Qwen-
3B model using our FESTS dataset, we achieved a notable improvement in frame-level F1 perfor-
mance, from 48.5% to 87.5%, achieving similar performance with GPT-4.1. Despite these results,
the generalization capabilities of our model still trail behind state-of-the-art models such as GPT-4.1,
particularly on Existential and Spatial queries.

For future work, the following items are of immediate interest: (1) develop methods for synthetic
generation of queries and subsequent perception streams to improve generalizability, (2) perform
additional comparisons against a wider range of model configurations, and (3) incorporate other
spatial information such as point clouds or depth maps.
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8 Reinforcement Learning Fine-Tuning Algorithm

The model is fine-tuned using a simplified Proximal Policy Optimization (PPO) variant. The ob-
jective is to optimize the policy 7y to maximize an expected custom reward, regularized by the KL
divergence from a frozen reference policy ¢ (initialized from the SFT model).

Algorithm 1 Abstract PPO for Structured Output Generation

1: Input: Initial policy parameters ; dataset D of (x, ansg, expgt) pairs; hyperparameters.
. Initialize: Policy my with 6 < 6g; reference m.¢ with 6y (frozen); Optimizer for 6.

2
3:
4: for epoch e = 1 to Eppp do

5: for each batch {(x;, ansg;, expgtj)}f:1 from D do

6 Sample responses (trajectories) y; ~ mg(-|x;) for each x;.

7 Compute rewards R; = RewardFunction(x;,y;, anSg ;, expgtj). (Described below)
8

9: For each trajectory y;:
10: Estimate Dxyj = By unit(1, ]y, ) [108 Trer (¥5,61%5, yj,<t) — log 7o (y;.¢ %5, Yj,<t)]-
11:
12 Define batch loss £(6) = —% > R+ Br - + > Dxuje
13: Update 6 using Vo L(0) (e.g., AdamW, with gradient accumulation).

14: Output: Fine-tuned policy parameters 6.

Reward Function

The RewardFunction(x, y, ans, expgt) is a composite function. It first evaluates the generated re-
sponse y against the prompt x and ground truth data (ans,;, expgt) to produce a set of detailed metrics
M. These metrics assess:

* Format Validity: Correctness of required XML-like tags (e.g., <reasoning>, <result>)
and structural validity of content within tags.

* Answer Accuracy: Structural Exact Match (EM) and mean Average Precision (mAP_IoU)
of the <result> content against ansg;.

* Reasoning Faithfulness: Evaluates the text content yreasoning Within the <reasoning> tag
against exp,,. This score is a product of:

1. Numerical IoU: Intersection over Union of key numerical entities (e.g., frame num-
bers) mentioned in Yreasoning Versus those in eXPgy-
2. Semantic Relevance: A binary value indicating if Y easoning 15 seémantically similar to
expy,. This similarity is determined by:
(a) Encoding both texts into vector embeddings using the Sentence Transformer
model sentence-transformers/all-mpnet-base-v2.
(b) Calculating the cosine similarity between these embeddings.
(c) Checking if this similarity score meets or exceeds a predefined threshold 7, (set
to 0.5 in our experiments).

* Penalties: For excessive length, spurious content outside defined tags, and invalid answer
formats.

These metrics M are then combined into a scalar reward R using a hierarchical weighting scheme.
Good formatting acts as a primary gate, scaling the rewards obtained from answer accuracy and rea-
soning quality. This encourages the model to first produce well-structured outputs before optimizing
for content accuracy and faithfulness.

9 Queries
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S4 (Set-based): enables set operations such as intersection, union, complement, interior,
and closure over spatial regions.

Metric (Real number-based): arithmetic operations, like addition, subtraction, multipli-
cation, division, exponentiation, and common unary/binary functions.

S4u (Boolean-based): conjunctions, disjunctions, relational operators, esp. characterized
by spatial constraints.

Regular Expressions (Symbol-based): characterized by concatenation, alternation, and
Kleene-star.
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10 Regular-Expression Semantics with Quantification and Storage

In this section, we present our extension of regular expressions to regular expressions with data
variable quantification operations. For simplicity in the presentation, we do not present the spatial
reasoning syntax and semantics, but rather we focus on the semantics of the quantifiers. We refer
the reader to [2] for the definitions and implementation of the spatial operators in SpREs.

Alphabet, variables, and storage. Fix a finite data alphabet > and a finite set of variables V. A
storage function is a (partial) mapping
c: V=%,

which we update with the usual functional override o[z +— d] for x € V and d € X.

Extended syntax.

re=01]ela (@€X)|x (V)| rlra | ri-ro | r" | Jz.r | Ya.r

Intuitively, the atomic expression x matches the current symbol iff that symbol equals the value
stored for z.

Indexed satisfaction with storage. For a finite trace w = wy . .. w,_1 and a storage o, we write

(w7i’j7o-) ': r

meaning “the sub-trace w[i : j) satisfies  under environment o.” The rules below generalise the
regular expression matching to qunatified regular expressions. The generalization is needed in order
to define how values are stored and retrieved in the variables.

Base cases
(w,i,7,0) =0 : never true;
(w,i,j,0) e : i=7;
( o)Ea @ it+l=jAw =g
(w,i,j,0) Ex : i+1=7Aoc(x)] ANw; =0o(x),

where “o(x)|” means that z is defined in o.

w, 1,7,

Boolean and Kleene cases (the environment is threaded unchanged):
(w,i,j,0) Eri|re <= (w,i,j,0) Eri V (w,i,j,0) F 2
(w,i,k70)):7"1’7'2 — E'_](ZS]S]’C/\ (w7iajao-)):7'1 A (w,j,k,a))zrg);

(w,i,j,0) Er* < Im>0,i=ko<k1<...<kp =jstVl<m, (w, ke, kes1,0) =r.

Quantifiers (bind a fresh value and store it for the continuation):
(w,i,4,0) EJw.r < 3dEX. (w,i,j, 0z —d]) = r;

(w,i,j,0) EVx.r <= VdeX. (w,i,j,olz—d]) Er

Word-level semantics (closed expressions). For a closed expression (no free variables) we can
start with the empty storage:

wEr < (v,0,w|,o) ="
Remark. The storage function o behaves exactly like the valuation environment used in first-order

temporal logics [3]: it stores every value chosen by a quantifier so that subsequent occurrences of
the corresponding variable x can test equality with the previously stored data symbol.
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11 User Guide

This guide provides the basics to build, install, and run the FESTS framework for generating spatio-
temporal data based on the Woven Perception dataset.

11.1 The Formally Explainable Spatio-Temporal Scenes Framework

This framework can be found under the fests/ folder provided in the supplementary materials. To
use this tool, you must first have completed the following pre-requisites:

1. Install the STREM tool (v0.1.1)
2. Install the Python interpreter (v3.10)
3. Install the FESTS library (v0.1.0)

Note: For the following subsections below (Sects. 11.1.1 to 11.1.3), all commands are ran from the
root project directory as the working directory—the directory where these instructions reside.

11.1.1 Installing the STREM Tool

The STREM tool is used to generate the formally verifiable match results from the perception data
provided to be appended in the creation of the FESTS dataset.

Pre-Requisites The STREM tool is a Rust-based command-line interface tool which relies on the
Rust compiler and toolchain to build and install, correctly. Therefore, installation of the toolchain is
required, this can be done by running the following command:

$ curl --proto '=https' --tlsvl.2 -sSf https://sh.rustup.rs | sh

Installation To install the STREM tool to your system to be ran as a command-line tool, run the
following command from the root directory, accordingly:

$ cargo install --path strem/

11.1.2 Installing the Python Interpreter

In this demonstration, a Linux-based environment is assumed for proper installation of the correct
Python interpreter. For this guide, we will assume an Ubuntu-based system. To install the correct
Python version, run the following command from the root directory, accordingly:

$ sudo apt update && \
sudo apt install software-properties-common -y

$ sudo add-apt-repository ppa:deadsnakes/ppa && \
sudo apt update

$ sudo apt install python3.10 python3.10-venv python3.10-dev

11.1.3 Install the FESTS Library

To install the FESTS library for FESTS-based dataset generation, run the following command from
the root directory, accordingly:

$ pip install fests/
To verify successful installation, run the following commands:
$ strem --version && \

python --version && \
python fests/scripts/process.py --help
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11.1.4 Running the FESTS Framework Tool

To run the tool and generate a uniformly sampled FESTS dataset, run the following command from
the root directory, accordingly:

$ python fests/scripts/process.py \
--output="output/" \

--recursive \

--jobs=32 \

--context="fests/data/" \
fests/data/woven/

After running the command above, the results will be saved to the output/data/ folder. From this,
the format of such a file may look as follows:

{
"input": {

"input": "You identify video scenes matching a natural language query
using frame-level object detections.\nInput XML
structure:\n<root>\n <query>Natural language scene
description.</query>\n <data>\n
frame,identifier,label,score,xmin,ymin,xmax,ymax\n
0,AB,pedestrian,1.0,1254,603,269,101\n
1,AC,car,0.9,1300,600,280,110\n ...\n </data>\n</root>\nOutput
format:\n-Matched frames as lists of consecutive indices in
<result> tags.\n-Brief explanation inside <reasoning> tags.\n-If no
match, output: <result>[]</result><reasoning></reasoning>\nExample
output:\n<result>[[1,2,3],[7,8]]1</result>\n<reasoning>Frames 1-3
and 7-8 matched due to presence of pedestrians crossing the
road.</reasoning>\nNo extra text outside <result> and <reasoning>
tags.---\n<root>\n\t<query>Find all instances where the area of a
car is greater than 5000 pixels for one or two frames.</query>\n<d
ata>\nindex,identifier,class,xmin,ymin,xmax,ymax\n23,aa,car,232,53
8,307,571\n23,ba,car,323,504,518,643\n23, ca,car,558,508,741,672\n2 |
3,da,car,488,517,570,579\n23,ea, car,893,517,1011,554\n23,fa,car,28
5,525,366,578\n23,ga,car,480,521,537,562\n23,ha, car,265,526,407,60 |
4\n24,ga,car,485,521,540,561\n24,ia,car,39,528,258,623\n24,da,car, |
497,517,574,576\n24,ca,car,564,507,736,662\n24 ,ha, car, 281,526,415, |
600\n24,aa,car,217,538,293,570\n24,ba,car,343,505,523,636\n24,fa,c
ar,293,525,366,576\n24,ea,car,893,516,1011,554\n</data>\n</root>\n"

{

A

1,
"output": [

23,
24
]
]’
"explanations": [
"From index 23 to 24, area of the bounding box of a car is greater than
— 5000."
]
}

In addition, you may view the output/stats. json to view a set of overall and per-query dataset
statistics such as the elapsed time, seed, number of files processed, percentage of files that have
non-empty matches, etc.

11.1.5 Important

The table below highlights some important resources provided in the supplementary materials and
their purposes for inspection:
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Resource Details

strem/ The STREM tool source code with modifications
fests/ The FESTS framework source code
fests/data/woven/ A sample from the Woven Perception dataset

fests/data/prompt.txt The LLM prompt used for fine-tuning the LLM model
fests/data/queries.json The set of SpRE and NL queries fine-tuned with
dataset/fests/ A sample FESTS dataset generated from the Woven dataset

Table 4: A set of important resources and locations.

18



	Introduction
	Related Work
	Preliminaries
	The Spatio-Temporal Regular Expression Matching Framework
	Limitations

	Quantification Support

	Formally Explainable Spatio-Temporal Scenes
	Experiments
	Dataset Composition
	Query Types

	Models and Fine-Tuning Configurations
	Evaluation Metrics
	Results

	Limitations
	Conclusions
	Reinforcement Learning Fine-Tuning Algorithm
	Queries
	Regular–Expression Semantics with Quantification and Storage
	User Guide
	The Formally Explainable Spatio-Temporal Scenes Framework
	Installing the STREM Tool
	Installing the Python Interpreter
	Install the FESTS Library
	Running the FESTS Framework Tool
	Important



