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Abstract

Embodied-AI agents must reason about how objects move and interact in 3-D1

space over time, yet existing smaller frontier Large Language Models (LLMs) still2

mis-handle fine-grained spatial relations, metric distances, and temporal order-3

ings. We introduce the general framework Formally Explainable Spatio-Temporal4

Scenes (FESTS) that injects verifiable spatio-temporal supervision into an LLM5

by compiling natural-language queries into Spatial Regular Expression (SpRE)6

— a language combining regular expression syntax with S4u spatial logic and7

extended here with universal and existential quantification. The pipeline matches8

each SpRE against any structured video log and exports aligned (query, frames,9

match, explanation) tuples, enabling unlimited training data without manual la-10

bels. Training a 3-billion-parameter model on 27k such tuples boosts frame-level11

F1 from 48.5% to 87.5%, matching GPT-4.1 on complex spatio-temporal rea-12

soning while remaining two orders of magnitude smaller, and, hence, enabling13

spatio-temporal intelligence for Video LLM.14

1 Introduction15

The ability to comprehend and reason about how a dynamic, three-dimensional world evolves over16

time is fundamental to embodied AI—spanning household robotics, autonomous driving, and assis-17

tive manipulation. To train and evaluate such systems we also need tooling that can query and anno-18

tate spatio-temporal events in video perception logs. LLMs and Visual Language Models (VLMs)119

already show promise as task-and-motion planners [25, 19] and low-cost annotators [14]. Yet a20

growing body of work demonstrates that frontier models remain brittle: they mis-judge fine-grained21

spatial relations [24, 27, 13, 23], lose track of temporal dynamics [11], and struggle when both22

aspects matter simultaneously [8, 9]. For instance, VLMs often confuse relative object ordering,23

fail to distinguish identical instances, and cannot reason about metric distance—shortcomings that24

translate directly into failure modes.25

In this paper, we present FESTS, a framework that injects rich, verifiable spatio-temporal supervi-26

sion into an LLM, enabling it to answer – and explain – complex video queries. Our key idea is to27

leverage SpREs [2], a language that fuses regular-expression syntax with S4u spatial logic, to gener-28

ate large numbers of self-verifiable queries and corresponding ground-truth matches. These queries29

can express properties such as “find all frames in which a car and a bus start at least 10 m apart30

and come within 1 m of each other within 20 frames," which go beyond multiple-choice QA, and31

naturally scale to 2-D or 3-D data. Crucially, we extend SpREs to support universal and existential32

1“Visual” refers to any (potentially multi-modal) model that accepts an image or sequence of images as
input.
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quantification over objects to track entities across time and encode behaviors like “every pedestrian33

is at least 1m away from the truck.”34

Recently, Li et al. [8] showed that Video LLMs [30, 20] – models coupling a video encoder with a35

language decoder – can improve reasoning skills through purely textual fine-tuning. Their evidence36

suggests that temporal-reasoning bottlenecks lie in the LLM component rather than the video en-37

coder, implying that stronger textual supervision can improve reasoning. Our framework capitalises38

on this insight: by generating arbitrarily many SpREs-grounded (query, frames, match, explanation)39

tuples from any perception dataset, we fine-tune the LLM component to reason about both temporal40

orderings and spatial relations.41

In more detail, given textual video object annotation data which must include object classes and42

bounding box information, and which may include unique object identifiers, pixel depth informa-43

tion, or other attributes of interest, e.g., color. Our goal is to fine tune an LLM to be able to reason44

about arbitrary spatio-temporal patterns which can be encoded with SpREs. We present a framework45

which automates query generation and data annotation with the goal of producing any desired size46

training dataset. It is important to highlight three benefits of our framework. First, our framework47

can be utilized on both real data and artificially generated data. Second, and most importantly, with48

a given video data set or perception data, we can generate an arbitrary number of spatio-temporal49

queries for training and fine tuning. Third, our framework can also produce natural language expla-50

nations on why a pattern was matched on the annotated dataset. This additional information can be51

fed as part of the training process, or even be used in a chain-of-thought spatial reasoning frame-52

work as in [21]. To our knowledge, no dataset exists that couples complex queries to spatio-temporal53

reasoning capabilities of models. Virtually all the prior works on spatio or spatio-temporal fine tun-54

ing use multiple choice question and answering for fine-tuning with much simpler spatio-temporal55

properties.56

Using our benchmark dataset, we show that with just 27k training examples (each paired with expla-57

nations), we boosted a 3-billion-parameter model to be competitive against a state-of-the-art GPT-58

4.1 model on our training and evaluation dataset. This establishes that our framework has the po-59

tential to enhance Video LLMs [30, 20] with new spatio-temporal reasoning capabilities since we60

enable some more complex patterns than [21]. Although our fine-tuned model consistently achieves61

substantial improvements across varied query complexities and frame lengths, there remains strate-62

gic room for further enhancement, particularly in existential queries that involve extended object63

tracking across frames, where GPT-4.1 currently maintains an advantage.64

Contributions Our paper makes the following contributions:65

1. Dataset: We release FESTS benchmark dataset, the first automatically-annotated video66

corpus whose labels are derived from verifiable spatio-temporal queries rather than crowd-67

sourced labels.68

2. End-to-end pipeline: FESTS ships code to (i) synthesize diverse SpRE queries, (ii)69

match them against structured perception logs, and (iii) export aligned (query, frames,70

match, explanation) tuples for training or evaluation.71

3. Pattern matching language extension: We add existential and universal quantifiers to72

SpRE, enabling persistent object tracking73

4. Empirical improvements: Using the resulting “Query→Explain” supervision, we fine-74

tune a 3B-parameter LLM (Qwen-2.5-Coder-Instruct) from 48.5 % to 87.5 frame-level F1,75

keeping competitive with GPT-4.1 on complex spatio-temporal reasoning with orders of76

magnitude fewer parameters.77

Collectively, these results show that spatio-temporal fine-tuning, powered by logically-grounded78

synthetic supervision, can endow LLM with reasoning skills well beyond what multiple-choice QA79

alone affords.80

2 Related Work81

Spatial reasoning with LLM and VLM. A series of recent papers show that frontier models still82

lack spatial reasoning capabilities and propose various model enhancements. Chen et al.’s Spa-83
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tialVLM [6], Cai et al.’s SpatialBot [5], Cheng et al.’s SpatialRGPT [7], Ma et al.’s 3D-aware Spa-84

tialLLM [22], and Zhang et al.’s COMFORT [31] all attempt to patch these gaps with geometric85

priors or object-centered prompts. BLINK [13] proposes “visual" commonsense benchmark prob-86

lems that humans can answer within seconds, e.g., multi-view reasoning, depth estimation, and87

reflectance estimation. Yet the underlying benchmarks remain limited to local or static relations.88

FESTS subsumes this scope by compiling natural-language prompts into Quantified-Spatial Reg-89

ular Expression (q-SpRE) that permit metric constraints, set operations, and universal / existential90

quantification.91

Spatial benchmarks for LLM and VLM. The works [27] and [24] propose benchmarks that can92

evaluate whether frontier models poses spatial intelligence which is natural among animals. GRASP93

[27] demonstrates that cutting edge LLM cannot produce plans given a spatial reasoning problem.94

SPACE [24] exposes failures of LLM and VLM to produce a mental map of the environment when95

traversing it. It also demonstrates that foundation models cannot perform smaller-scale reasoning96

about object shapes and layouts. FESTS has orthogonal goals and evaluation criteria to GRASP and97

SPACE. However, it would be interesting to evaluate if FESTS can also improve spatial intelligence98

in frontier models.99

Video-LLM benchmarks and temporal reasoning. Temporal understanding has progressed from100

early captioning datasets to full video-LLM challenges. Ju et al. [16] prompt VLMs for temporal101

localization and reveal poor clip-level accuracy. Li et al.[8] demonstrate that purely textual fine-102

tuning lifts ordering performance and temporal localization. V-STaR benchmark [9] assesses spatio-103

temporal reasoning ability in answering questions in the context of “when", “where", and “what".104

Mementos [28] stresses sequence reasoning over image sets, while PaLM-E [12] proposes and105

evaluates embodied language models with additional sensing modalities. The work in [30] shows106

that by simply expanding context windows improves performance in performance on long video107

question-answering benchmarks. NSVS-TL [11] shows that current VLM fail at long-term reason-108

ing across frames and propose a temporal logic based framework for temporal reasoning. Nearly109

all approaches (besides NSVS-TL) produce benchmarks based on multiple-choice labels or short110

captions and question-answering. Even though the aforementioned approaches focus on temporal111

relations across frames, they do not really consider spatial reasoning at the same fidelity as FESTS.112

q-SpRE instead produces verifiable (query, frames, match, explanation) tuples that jointly113

stress spatial and temporal reasoning, and its generator can wrap any perception log—including the114

clips used by other benchmarks.115

3 Preliminaries116

This section reviews the Spatio-Temporal Regular Expression Matching (STREM) framework [2],117

highlights its limitations, and presents our contributions to it.118

3.1 The Spatio-Temporal Regular Expression Matching Framework119

The STREM framework [2] is designed to match queries over perception data streams. The queries120

are expressed as SpREs, which combine Regular Expressions (REs) with the spatial logic S4u [18],121

enabling patterns to capture both temporal and spatial relationships among objects. The matching122

procedure uses a formal-methods approach based on Deterministic Finite Automata (DFA), which123

determines whether a perception stream satisfies a given query.124

3.1.1 Limitations125

In the current variation, there are several limitations to the STREM framework that do not support126

the ability to perform more complex temporal queries.127

In the current version, SpRE queries such as, a simple “Find all frames where the same pedestrian is128

present for five frames”, or more complicated, “Find all frames where the same pedestrian overlaps129

with any car or bus for five frames” are not possible. Furthermore, reasoning over all kinds of130

objects at a specific point in time across multiple points of time is not possible and thus queries131

such as, “Find all frames where all cars are more than 500 units away from any pedestrian for three132

frames” do not have any inherit support. These limitations enforce a per-frame reasoning query to133
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Figure 1: The FESTS framework begins with (1) which processes the SpRE and perception stream
inputs to produce the two formal method-based results; (2) processes the explanation to improve
readability for LLMs; and (3) packages this into a distributable data formats.

be formed by the user and thus does not enable a wide range of multi-frame temporal reasoning134

expressions that would otherwise strengthen the capabilities of the querying language overall.135

3.2 Quantification Support136

To support operations of quantification-based queries to extend the capabilities of LLMs, we first137

adjust the syntax of the SpRE grammar to include RE-level quantifiers. The modified SpRE syntax138

is shown in Eq. 1 below.139

Q := ϕ | Q1 Q2 | Q1|Q2 | Q∗ | ∃x.Q | ∀x.Q (1)

where ∃ and ∀ correspond to the new existential and universal quantifier and ∀ corresponds to the140

new universal quantifier introduced. The syntactic definitions of the other operators may be reviewed141

in [2]. For a formal review of the semantics, see Sect. 10;142

To support the semantics of these quantification operators, we integrate a new matching algorithm143

alongside additional components to support the semantics of the existential and universal quantifiers144

within SpRE queries.145

4 Formally Explainable Spatio-Temporal Scenes146

The FESTS framework (see Fig. 1) accepts as input a data stream D of downstream perception-147

based data such as object annotations; examples of pre-existing datasets containing such information148

include Woven Perception [17] or nuScenes [4]. As output, the FESTS data pipeline returns a149

perception stream of with each entry organized as follows:150

(Q′, D′,M, S) (2)

where Q′ is the Natural Language (NL) variant of the SpRE query Q, D′ = (Fi, Fi+1, . . . , Fj) ⊆ D151

is the sampled data stream, M is the set of matches from STREM, and S is the set of NL explanations152

linearized from the set of explanations E.153

Let us consider the following NL query written for an Autonomous Vehicle (AV) system affixed154

with image-based sensors and a downstream object detector:155

Find all frames where the bounding box of the same car intersects with a bounding156

box of a bus for two frames.157

From this query, the goal is to identify frames from the perception stream that match the properties158

outlined. This query is composed of both spatial properties such as intersection as well as temporal159

properties such as sequences. However, while current LLMs such as GPT-4o [15] initially showcase160
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positive performance on single property-based queries, queries containing a mix of both spatial and161

temporal elements begin to demonstrate failures. These failures consist of hallucinations in the162

perception stream, incorrect ranges, and reduced accuracy over longer traces as concluded in [10].163

To improve upon these limitations, we utilize fine-tuning of LLMs through a formal methods-based164

approach to the data generated for training and fine-tuning of the models.165

If the query above is processed through our framework, the resulting output would be as follows:166

{
"input": {

"input": "You identify video scenes matching a natural language query
using frame-level object detections.\nInput XML
structure:\n<root>\n <query>Natural language scene
description.</query>\n <data>\n
frame,identifier,label,score,xmin,ymin,xmax,ymax\n
0,AB,pedestrian,1.0,1254,603,269,101\n
1,AC,car,0.9,1300,600,280,110\n ...\n </data>\n</root>\nOutput
format:\n-Matched frames as lists of consecutive indices in
<result> tags.\n-Brief explanation inside <reasoning> tags.\n-If no
match, output: <result>[]</result><reasoning></reasoning>\nExample
output:\n<result>[[1,2,3],[7,8]]</result>\n<reasoning>Frames 1-3
and 7-8 matched due to presence of pedestrians crossing the
road.</reasoning>\nNo extra text outside <result> and <reasoning>
tags.---\n<root>\n\t<query>Find all frames where the bounding box
of the same car intersects with a bounding box of a bus for two
frames.</query>\n<data>\nindex,identifier,class,xmin,ymin,xmax,yma ⌋
x\n23,aa,bus,232,538,307,571\n23,ba,car,323,504,518,643\n23,ca,car ⌋
,558,508,741,672\n23,da,car,488,517,570,579\n23,ea,car,893,517,101 ⌋
1,554\n23,fa,car,285,525,366,578\n23,ga,car,480,521,537,562\n23,ha ⌋
,car,265,526,407,604\n24,ga,car,485,521,540,561\n24,ia,car,39,528, ⌋
258,623\n24,da,car,497,517,574,576\n24,ca,car,564,507,736,662\n24, ⌋
ha,car,281,526,415,600\n24,aa,bus,217,538,293,570\n24,ba,car,343,5 ⌋
05,523,636\n24,fa,car,293,525,366,576\n24,ea,car,893,516,1011,554\ ⌋
n</data>\n</root>\n"
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},
"output": [

[
23,
24

]
],
"explanations": [

"From index 23 to 24, area of the bounding box of a car with id ba
overlaps with a bus."↪→

]
}

5 Experiments167

To evaluate the effectiveness of our approach, we fine-tune an LLM, Qwen2.5-3B-Instruct [29],168

on the outputs of our framework from an AV perception dataset, Woven Perception [17]. In the169

following sections, the dataset composition, fine-tuning procedure, evaluation metrics, and results170

are presented.171

5.1 Dataset Composition172

To fine-tune an LLM on the outputs of our framework, a perception stream source is required. The173

Woven Perception [17] dataset was chosen for its comprehensive selection of perception streams174

and high-quality, hand-labeled object annotations. This dataset is comprised of 180 different scenes175
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with each scene containing a stream of 126 frames from 7 different monocular camera sensors,176

which provides 1.2K+ perception streams to process with our framework.177

To generate the data for fine-tuning, the perception streams were sampled at incremental frame178

lengths of 1, 2, 4, 6, 8, 10, 12, 14, and 16 to gradually increase the difficulty for the LLM. For179

each sample, our framework joins the satisfaction result and explanation from the STREM frame-180

work with the corresponding NL query and perception stream data for 15 templated queries. This181

procedures yields 27K+ outputs as the inputs to fine-tune the LLM on.182

5.1.1 Query Types183

The queries we fine-tune the model on can be grouped into five distinct categories. These categories184

and considerations of each are outlined below:185

1. Sequence: A query containing multiple temporally adjacent events.186

2. Spatial: A query that contains operations such as intersection of bounding boxes.187

3. Temporal: A query that contains eventual events.188

4. Metric: A query that contains measurement-based operations.189

5. Existential: A query that contains reasoning on the same or all objects over time.190

5.2 Models and Fine-Tuning Configurations191

The fine-tuning was performed entirely on the LLM, Qwen2.5-3B-Instruct [29]. This model was192

selected for several reasons: (1) publicly and readily available, (2) small parameter size, (3) ideal193

for task completion and fine-tuning, and (4) size of context-length. The model was fine-tuned under194

the following two training configurations:195

C1. Supervised Fine-Tuning: The model was trained exclusively on the query and match out-196

puts of our framework, with no explanation field. The Parameter-Efficient Fine-Tuning197

(PEFT) using the Low Rank Adaptation (LoRA) method was applied to the attention and198

MLP layers with a rank of 16, scaling of 32, and a dropout of 0.05; trained for 5 epochs199

with an effective batch size of 60; optimized with AdamW (8-bit) with a learning rate of200

1× 10−5 and cosine scheduling.201

C2. Supervised Fine-Tuning with Reinforcement Learning: The model was pre-trained from202

the C1 configuration. The Reinforcement Learning (RL) with Proximal Policy Optimiza-203

tion (PPO) used where the PPO used a custom hierarchical-based reward function (see204

Sect. 5.3); trained for 1 PPO epoch with 4 optimization epochs per PPO batch; optimized205

with AdamW (8-bit) with a learning rate of 1 × 10−6, effective batch size of 4, a KL206

divergence coefficient of 0.05, and upper bound of 512 tokens for rollouts.207

In addition, the fine-tuned models were compared against the GPT-4.12 [1] model representing the208

state-of-the-art and the Qwen2.5-Coder-3B-Instruct model [29] representing the baseline.209

5.3 Evaluation Metrics210

To evaluate the model during fine-tuning, we developed two methods distinct for each fine-tuning211

configuration in Sect. 5.2.212

For the C1 configuration, the causal language modeling objective is optimized using cross-entropy213

loss, minimizing differences between the predicted and ground-truth token probabilities such that214

all tokens except the results are masked.215

For the C2 configuration, a hierarchical-based reward function is used. This reward function evalu-216

ates several properties including: (1) structural validity such as XML formatting; (2) match accuracy217

with mAP IoU and exact match; and (3) reasoning fidelity, which assesses semantic similarity to218

ground-truth explanations using a sentence transformer from [26] and numerical IoU of referenced219

frames. The penalties of the reward function account for excessive response length, spurious text220

outside delimited tags, and invalid formats.221

2This model was accessed and used for evaluation on 05/01/2025.
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Figure 2: Average Performance across frame lengths. Blue = Overall F1, orange = Exact Match;
shaded σ. Starred points denote the best-performing model for each frame length.

While the reasoning fidelity guides the RL training, it noted that primary performance metrics in222

Sect. 5.4 focus on the accuracy of the predicted frames.223

5.4 Results224

Main Findings. Table 1 summarizes key results. Adding explanations yields large improvements.225

Supervised fine-tuning on query–answer pairs (Q-SFT) improves overall Frame F1 from 48.5% to226

80.4%. Reinforcement learning on top of those explanations (Q-SFT+RL) pushes Frame F1 to227

87.5%, just above GPT-4.1 at 84.8%. The jump is primarily driven by recall (+28 points during228

SFT) and then by precision (+2.2 points during RL). Exact-match rises from 25.0% (Baseline) to229

56.6% (Q-SFT) and 64.5% (Q-SFT+RL).230

Impact of Query Length. Fig. 2 shows that gains scale with query length. For 16-frame inputs231

Frame F1 climbs from 65.7 % (Q-SFT) to 82.7 % (Q-SFT+RL), a +17-point jump. Exact-match232

improves by +39.5 points over baseline and by +29.5 points over GPT-4.1 (64.5 % vs. 35.0 %).233

Most of the improvement comes from SFT. RL improves a further 7.9 points.234

Table 1: Performance comparison across models and target lengths. Metrics: Frame F1 (F1f ), Exact
Match (EM), and Segment F1 (F1s). Best results per column are in bold.

4 8 12 16 Overall

Model F1f EM F1s F1f EM F1s F1f EM F1s F1f EM F1s F1f EM F1s

Q-Baseline 0.472 0.211 0.325 0.456 0.191 0.258 0.452 0.187 0.231 0.416 0.187 0.215 0.485 0.250 0.326
Q-SFT 0.836 0.636 0.644 0.786 0.507 0.582 0.771 0.451 0.565 0.657 0.329 0.454 0.804 0.566 0.636
Q-SFT+RL 0.881 0.676 0.694 0.856 0.611 0.686 0.852 0.549 0.659 0.827 0.440 0.629 0.875 0.645 0.723
GPT-4.1 0.888 0.269 0.640 0.813 0.236 0.528 0.797 0.236 0.497 0.756 0.231 0.447 0.848 0.350 0.610

Per-Query Type Performance. Table 2 confirms the pattern across five query types. SFT im-235

proves F1 by +0.35 (Sequence), +0.35 (Spatial), +0.31 (Temporal), +0.31 (Metric), and +0.28 (Exis-236
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tential). RL improves recall above 0.90 for Sequence, Metric, and Existential and raises F1 to 0.90+237

for Sequence, Metric, and Temporal. Spatial and Existential stay at 0.82–0.83 F1. Exact-match238

is 0.821 for Sequence and 0.706 for Metric but does not perform as well at 0.531 for Existential239

queries.240

Summary. The query-explanation–RL pipeline delivers consistent, order-of-magnitude improve-241

ments with minimal extra annotation, suggesting strong potential for transfer to other video-language242

tasks governed by symbolic logic.243

Our analysis refrains from comparing against reasoning models, as this introduces an additional244

learning signal and thus another source of variance, complicating attribution in experimental studies.245

Moreover, reasoning models exacerbate the inherent textual-context limitations of LMMs, necessi-246

tating truncated analyses or aggressive token pruning to accommodate input data within memory247

constraints.248

Table 2: Precision (P ), Recall (R), F1, and Exact-Match (EM) for each query type. Values are
averaged across 8-, 12-, and 16-frame lengths.

Query type
Base Stage-I: SFT Stage-II: SFT + RL

P R F1 EM P R F1 EM P R F1 EM

Sequence 0.875 0.668 0.570 0.206 0.931 0.961 0.923 0.715 0.971 0.978 0.962 0.821
Spatial 0.785 0.557 0.415 0.190 0.825 0.853 0.761 0.502 0.845 0.905 0.819 0.552
Temporal 0.863 0.597 0.504 0.348 0.883 0.857 0.810 0.553 0.910 0.902 0.866 0.615
Metric 0.872 0.551 0.457 0.200 0.903 0.830 0.769 0.597 0.917 0.960 0.903 0.706
Existential 0.875 0.574 0.480 0.306 0.817 0.861 0.757 0.463 0.826 0.937 0.828 0.531

Average 0.854 0.589 0.485 0.250 0.872 0.872 0.804 0.566 0.894 0.936 0.876 0.645

6 Limitations249

The current set of limitations of this work includes: (1) missing component to automate the trans-250

lation between NL-based queries into SpRE counterparts; (2) the perception stream strictly requires251

pre-labeled data; (3) accuracy of the results depends on the quality of the sourced labels; (4) manual252

curation and creation of the queries are required; and (5) evaluation on a single model.253

7 Conclusions254

In this work, we developed FESTS, a benchmark dataset leveraging verifiable, logically-grounded255

queries for automated annotation and explainability, substantially advancing video-language model256

training without reliance on crowd-sourced labels. Through systematic fine-tuning of the Qwen-257

3B model using our FESTS dataset, we achieved a notable improvement in frame-level F1 perfor-258

mance, from 48.5% to 87.5%, achieving similar performance with GPT-4.1. Despite these results,259

the generalization capabilities of our model still trail behind state-of-the-art models such as GPT-4.1,260

particularly on Existential and Spatial queries.261

For future work, the following items are of immediate interest: (1) develop methods for synthetic262

generation of queries and subsequent perception streams to improve generalizability, (2) perform263

additional comparisons against a wider range of model configurations, and (3) incorporate other264

spatial information such as point clouds or depth maps.265
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8 Reinforcement Learning Fine-Tuning Algorithm366

The model is fine-tuned using a simplified Proximal Policy Optimization (PPO) variant. The ob-367

jective is to optimize the policy πθ to maximize an expected custom reward, regularized by the KL368

divergence from a frozen reference policy πref (initialized from the SFT model).369

Algorithm 1 Abstract PPO for Structured Output Generation
1: Input: Initial policy parameters θ0; dataset D of (x, ansgt, expgt) pairs; hyperparameters.
2: Initialize: Policy πθ with θ ← θ0; reference πref with θ0 (frozen); Optimizer for θ.
3:
4: for epoch e = 1 to EPPO do
5: for each batch {(xj , ansgtj , expgtj

)}Bj=1 from D do
6: Sample responses (trajectories) yj ∼ πθ(·|xj) for each xj .
7: Compute rewards Rj = RewardFunction(xj ,yj , ansgtj , expgtj

). (Described below)
8:
9: For each trajectory yj :

10: Estimate DKL,j := Et∼Unif(1,|yj |)[log πref(yj,t|xj , yj,<t)− log πθ(yj,t|xj , yj,<t)].
11:
12: Define batch loss L(θ) := − 1

B

∑
j Rj + βKL · 1

B

∑
j DKL,j .

13: Update θ using ∇θL(θ) (e.g., AdamW, with gradient accumulation).
14: Output: Fine-tuned policy parameters θ.

Reward Function370

The RewardFunction(x,y, ansgt, expgt) is a composite function. It first evaluates the generated re-371

sponse y against the prompt x and ground truth data (ansgt, expgt) to produce a set of detailed metrics372

M. These metrics assess:373

• Format Validity: Correctness of required XML-like tags (e.g., <reasoning>, <result>)374

and structural validity of content within tags.375

• Answer Accuracy: Structural Exact Match (EM) and mean Average Precision (mAP_IoU)376

of the <result> content against ansgt.377

• Reasoning Faithfulness: Evaluates the text content yreasoning within the <reasoning> tag378

against expgt. This score is a product of:379

1. Numerical IoU: Intersection over Union of key numerical entities (e.g., frame num-380

bers) mentioned in yreasoning versus those in expgt.381

2. Semantic Relevance: A binary value indicating if yreasoning is semantically similar to382

expgt. This similarity is determined by:383

(a) Encoding both texts into vector embeddings using the Sentence Transformer384

model sentence-transformers/all-mpnet-base-v2.385

(b) Calculating the cosine similarity between these embeddings.386

(c) Checking if this similarity score meets or exceeds a predefined threshold τsim (set387

to 0.5 in our experiments).388

• Penalties: For excessive length, spurious content outside defined tags, and invalid answer389

formats.390

These metricsM are then combined into a scalar reward R using a hierarchical weighting scheme.391

Good formatting acts as a primary gate, scaling the rewards obtained from answer accuracy and rea-392

soning quality. This encourages the model to first produce well-structured outputs before optimizing393

for content accuracy and faithfulness.394

9 Queries395
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• S4 (Set-based): enables set operations such as intersection, union, complement, interior,396

and closure over spatial regions.397

• Metric (Real number-based): arithmetic operations, like addition, subtraction, multipli-398

cation, division, exponentiation, and common unary/binary functions.399

• S4u (Boolean-based): conjunctions, disjunctions, relational operators, esp. characterized400

by spatial constraints.401

• Regular Expressions (Symbol-based): characterized by concatenation, alternation, and402

Kleene-star.403
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10 Regular–Expression Semantics with Quantification and Storage404

In this section, we present our extension of regular expressions to regular expressions with data405

variable quantification operations. For simplicity in the presentation, we do not present the spatial406

reasoning syntax and semantics, but rather we focus on the semantics of the quantifiers. We refer407

the reader to [2] for the definitions and implementation of the spatial operators in SpREs.408

Alphabet, variables, and storage. Fix a finite data alphabet Σ and a finite set of variables V . A409

storage function is a (partial) mapping410

σ : V ⇀ Σ,

which we update with the usual functional override σ[x 7→ d] for x ∈ V and d ∈ Σ.411

Extended syntax.

r ::= ∅ | ε | a (a ∈ Σ) | x (x ∈ V) | r1 | r2 | r1 · r2 | r∗ | ∃x. r | ∀x. r.

Intuitively, the atomic expression x matches the current symbol iff that symbol equals the value412

stored for x.413

Indexed satisfaction with storage. For a finite trace w = w0 . . . wn−1 and a storage σ, we write414

(w, i, j, σ) |= r

meaning “the sub-trace w[i : j) satisfies r under environment σ.” The rules below generalise the415

regular expression matching to qunatified regular expressions. The generalization is needed in order416

to define how values are stored and retrieved in the variables.417

Base cases418

(w, i, j, σ) |= ∅ : never true;

(w, i, j, σ) |= ε : i = j;

(w, i, j, σ) |= a : i+ 1 = j ∧ wi = a;

(w, i, j, σ) |= x : i+ 1 = j ∧ σ(x)↓ ∧wi = σ(x),

where “σ(x)↓” means that x is defined in σ.419

Boolean and Kleene cases (the environment is threaded unchanged):420

(w, i, j, σ) |= r1 | r2 ⇐⇒ (w, i, j, σ) |= r1 ∨ (w, i, j, σ) |= r2;

(w, i, k, σ) |= r1 ·r2 ⇐⇒ ∃ j
(
i≤j≤k ∧ (w, i, j, σ) |= r1 ∧ (w, j, k, σ) |= r2

)
;

(w, i, j, σ) |= r∗ ⇐⇒ ∃m≥0, i = k0≤k1≤ . . .≤km = j s.t. ∀ℓ<m, (w, kℓ, kℓ+1, σ) |= r.

Quantifiers (bind a fresh value and store it for the continuation):421

(w, i, j, σ) |= ∃x. r ⇐⇒ ∃d∈Σ. (w, i, j, σ[x 7→ d]) |= r;

(w, i, j, σ) |= ∀x. r ⇐⇒ ∀d∈Σ. (w, i, j, σ[x 7→ d]) |= r.

Word-level semantics (closed expressions). For a closed expression (no free variables) we can422

start with the empty storage:423

w |= r ⇐⇒ (w, 0, |w|,∅) |= r.

Remark. The storage function σ behaves exactly like the valuation environment used in first-order424

temporal logics [3]: it stores every value chosen by a quantifier so that subsequent occurrences of425

the corresponding variable x can test equality with the previously stored data symbol.426
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11 User Guide427

This guide provides the basics to build, install, and run the FESTS framework for generating spatio-428

temporal data based on the Woven Perception dataset.429

11.1 The Formally Explainable Spatio-Temporal Scenes Framework430

This framework can be found under the fests/ folder provided in the supplementary materials. To431

use this tool, you must first have completed the following pre-requisites:432

1. Install the STREM tool (v0.1.1)433

2. Install the Python interpreter (v3.10)434

3. Install the FESTS library (v0.1.0)435

Note: For the following subsections below (Sects. 11.1.1 to 11.1.3), all commands are ran from the436

root project directory as the working directory—the directory where these instructions reside.437

11.1.1 Installing the STREM Tool438

The STREM tool is used to generate the formally verifiable match results from the perception data439

provided to be appended in the creation of the FESTS dataset.440

Pre-Requisites The STREM tool is a Rust-based command-line interface tool which relies on the441

Rust compiler and toolchain to build and install, correctly. Therefore, installation of the toolchain is442

required, this can be done by running the following command:443

$ curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

Installation To install the STREM tool to your system to be ran as a command-line tool, run the444

following command from the root directory, accordingly:445

$ cargo install --path strem/

11.1.2 Installing the Python Interpreter446

In this demonstration, a Linux-based environment is assumed for proper installation of the correct447

Python interpreter. For this guide, we will assume an Ubuntu-based system. To install the correct448

Python version, run the following command from the root directory, accordingly:449

$ sudo apt update && \
sudo apt install software-properties-common -y

$ sudo add-apt-repository ppa:deadsnakes/ppa && \
sudo apt update

$ sudo apt install python3.10 python3.10-venv python3.10-dev

11.1.3 Install the FESTS Library450

To install the FESTS library for FESTS-based dataset generation, run the following command from451

the root directory, accordingly:452

$ pip install fests/

To verify successful installation, run the following commands:453

$ strem --version && \
python --version && \
python fests/scripts/process.py --help
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11.1.4 Running the FESTS Framework Tool454

To run the tool and generate a uniformly sampled FESTS dataset, run the following command from455

the root directory, accordingly:456

$ python fests/scripts/process.py \
--output="output/" \
--recursive \
--jobs=32 \
--context="fests/data/" \
fests/data/woven/

After running the command above, the results will be saved to the output/data/ folder. From this,457

the format of such a file may look as follows:458

{
"input": {

"input": "You identify video scenes matching a natural language query
using frame-level object detections.\nInput XML
structure:\n<root>\n <query>Natural language scene
description.</query>\n <data>\n
frame,identifier,label,score,xmin,ymin,xmax,ymax\n
0,AB,pedestrian,1.0,1254,603,269,101\n
1,AC,car,0.9,1300,600,280,110\n ...\n </data>\n</root>\nOutput
format:\n-Matched frames as lists of consecutive indices in
<result> tags.\n-Brief explanation inside <reasoning> tags.\n-If no
match, output: <result>[]</result><reasoning></reasoning>\nExample
output:\n<result>[[1,2,3],[7,8]]</result>\n<reasoning>Frames 1-3
and 7-8 matched due to presence of pedestrians crossing the
road.</reasoning>\nNo extra text outside <result> and <reasoning>
tags.---\n<root>\n\t<query>Find all instances where the area of a
car is greater than 5000 pixels for one or two frames.</query>\n<d ⌋
ata>\nindex,identifier,class,xmin,ymin,xmax,ymax\n23,aa,car,232,53 ⌋
8,307,571\n23,ba,car,323,504,518,643\n23,ca,car,558,508,741,672\n2 ⌋
3,da,car,488,517,570,579\n23,ea,car,893,517,1011,554\n23,fa,car,28 ⌋
5,525,366,578\n23,ga,car,480,521,537,562\n23,ha,car,265,526,407,60 ⌋
4\n24,ga,car,485,521,540,561\n24,ia,car,39,528,258,623\n24,da,car, ⌋
497,517,574,576\n24,ca,car,564,507,736,662\n24,ha,car,281,526,415, ⌋
600\n24,aa,car,217,538,293,570\n24,ba,car,343,505,523,636\n24,fa,c ⌋
ar,293,525,366,576\n24,ea,car,893,516,1011,554\n</data>\n</root>\n"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

},
"output": [

[
23,
24

]
],
"explanations": [

"From index 23 to 24, area of the bounding box of a car is greater than
5000."↪→

]
}

In addition, you may view the output/stats.json to view a set of overall and per-query dataset459

statistics such as the elapsed time, seed, number of files processed, percentage of files that have460

non-empty matches, etc.461

11.1.5 Important462

The table below highlights some important resources provided in the supplementary materials and463

their purposes for inspection:464
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Resource Details

strem/ The STREM tool source code with modifications
fests/ The FESTS framework source code
fests/data/woven/ A sample from the Woven Perception dataset
fests/data/prompt.txt The LLM prompt used for fine-tuning the LLM model
fests/data/queries.json The set of SpRE and NL queries fine-tuned with
dataset/fests/ A sample FESTS dataset generated from the Woven dataset

Table 4: A set of important resources and locations.
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