
Hierarchical Attention Generates Better Proofs

Anonymous ACL submission

Abstract001

Large language models (LLMs) have shown002
promise in formal theorem proving, but their003
token-level processing often fails to capture the004
inherent hierarchical nature of mathematical005
proofs. We introduce Hierarchical Attention,006
a regularization method that aligns LLMs’ at-007
tention mechanisms with mathematical reason-008
ing structures. Our approach establishes a five-009
level hierarchy from foundational elements to010
high-level concepts, ensuring structured infor-011
mation flow in proof generation. Experiments012
demonstrate that our method improves proof013
success rates by 2.05% on miniF2F and 1.69%014
on ProofNet while reducing proof complexity015
by 23.81% and 16.50% respectively. The code016
and models will be available.017

1 Introduction018

The intersection of AI and mathematics has019

emerged as an important research direction in re-020

cent years, particularly in the domain of formal021

theorem proving. Proof assistants, such as Lean022

(De Moura et al., 2015; Moura and Ullrich, 2021),023

Coq (The Coq Development Team, 2024), and024

Isabelle (Paulson, 1994), have become key plat-025

forms to explore this direction. Traditionally, theo-026

rem provers primarily rely on search-based meth-027

ods to systematically explore proof spaces, often028

guided by complex rule-based techniques or sym-029

bolic heuristics (Han et al., 2021; Jiang et al., 2021;030

Polu and Sutskever, 2020; Polu et al., 2022; Lam-031

ple et al., 2022; Jiang et al., 2022b; Yang et al.,032

2024).033

The advent of large language models (LLMs)034

has brought a transformative shift, leveraging their035

capacity for deep contextual understanding to rea-036

son about mathematical proofs (Xin et al., 2024;037

Welleck and Saha, 2023; Zhao et al., 2023; Jiang038

et al., 2023; Wang et al., 2023a; First et al., 2023).039

These models excel at generating proofs and tack-040

ling a broad array of problems, significantly re-041

ducing the need for manually crafted heuristics. 042

However, they still struggle with key challenges 043

in formal theorem proving, often failing to gener- 044

ate difficult proofs or producing unnecessarily long 045

ones. 046

These limitations arise because mathematics is 047

inherently formal and rigorous, whereas LLMs 048

are primarily designed to process plain token se- 049

quences, without explicit formal semantics. There- 050

fore, the structured nature of formal concepts — 051

where dependencies and relationships between con- 052

cepts play a critical role — is difficult for LLMs to 053

fully capture. This raises a natural question: 054

How to understand structure better? 055

Mathematical theorem proving exhibits inherent 056

hierarchical structures in the flow of information 057

between different components. While large lan- 058

guage models have shown promising results in this 059

domain, their attention mechanisms often fail to 060

capture these natural hierarchies. We propose a 061

novel framework that guides the model’s attention 062

patterns to better align with the hierarchical na- 063

ture of mathematical reasoning, while maintaining 064

flexibility for complex proof steps. 065

Our key insight is that mathematical reasoning 066

follows a natural hierarchical structure, with in- 067

formation flowing from foundational elements to 068

higher-level concepts. As shown in Figure 1, we 069

formalize this intuition through a five-level hierar- 070

chy and implement it by structured attention pat- 071

terns. This hierarchical framework not only re- 072

spects the natural dependencies in mathematical 073

proofs but also provides flexibility in attention dis- 074

tribution, allowing the model to capture both local 075

and cross-level relationships necessary for complex 076

reasoning. 077

Based on this framework, we propose Hierar- 078

chical Attention, a novel regularization method 079

aimed at improving structural learning in LLMs. 080

Our approach constructs a hierarchical tree from 081

1

Figure 1: Overview of our hierarchical attention framework. Left: The five-level hierarchy from inner (context) to
outer (goal) layer, illustrating the natural information flow in mathematical reasoning. Right: A concrete example
showing how different components in a theorem proving state are assigned to hierarchical levels, with guided flow
(solid arrows) representing allowed attention paths and limited flow (dashed arrows) representing restricted attention
paths.

the input token sequence, assigning levels to tokens082

and guiding information flow based on these levels.083

Specifically, we enforce the following constraints:084

• Tokens at higher levels can access information085

from the same level or lower levels.086

• Tokens at lower levels are restricted from ac-087

cessing higher-level information.088

Through extensive experiments on multi-089

ple theorem-proving benchmarks—including090

miniF2F (Zheng et al., 2021) and ProofNet (Azer-091

bayev et al., 2023)—our method demonstrates092

significant improvements in both proof success093

rates and proof conciseness. Specifically, our094

approach achieves a 2.05% improvement in proof095

success rates while reducing the proof length096

by 23.81% in successful cases. These results097

highlight the advantages of preserving semantic098

and hierarchical structures in theorem proving.099

This is further confirmed by our ablation studies100

and attention pattern analysis.101

The main contributions of this work are as fol-102

lows:103

• We identified the hierarchical structure inher-104

ent in mathematical reasoning, from founda-105

tional definitions to final goals.106

• We proposed a new algorithm for better struc-107

ture learning for LLMs.108

• We demonstrated substantial improvements109

on multiple standard benchmarks in proof ac-110

curacy and proof conciseness.111

2 Related Work 112

Formal Theorem Proving. Formal theorem prov- 113

ing systems are typically classified into two cate- 114

gories: Automated Theorem Proving (ATP) and In- 115

teractive Theorem Proving (ITP). ATP systems aim 116

to discover proofs without human intervention auto- 117

matically. Saturation-based provers like E (Schulz, 118

2002) and Vampire (Kovács and Voronkov, 2013) 119

use resolution calculus, while specialized solvers 120

like SAT and SMT solvers (e.g., MiniSat (Eén 121

and Sörensson, 2003), Z3 (De Moura and Bjørner, 122

2008)) focus on boolean satisfiability and other 123

mathematical theories. Domain-specific systems 124

like GEX (Chou et al., 2000) handle geometric 125

problems through specialized deduction rules. 126

In contrast, ITP systems like Lean (De Moura 127

et al., 2015; Moura and Ullrich, 2021), Coq (The 128

Coq Development Team, 2024), and Isabelle (Paul- 129

son, 1994) emphasize human-machine collabora- 130

tion. These systems provide expressive proof lan- 131

guages and sound kernels, enabling mathemati- 132

cians to formalize theorems and construct proofs 133

in a manner that mirrors informal mathematical 134

reasoning while ensuring logical correctness. 135

Neural Theorem Proving. Neural Theorem 136

Proving has risen to prominence alongside the rapid 137

development of LLMs and more specialized neural 138

architectures for formal reasoning. A central fo- 139

cus has been autoformalization (Wang et al., 2018, 140

2020; Wu et al., 2022b; Murphy et al., 2024; Jiang 141

et al., 2022a, 2023; Lu et al., 2024; Ying et al., 142

2024a; Azerbayev et al., 2023; Liu et al., 2023; Xin 143

2

et al., 2024), which converts informal mathematical144

statements and proofs into machine-verifiable lan-145

guages despite the ongoing challenges in semantic146

alignment. Another key area is premise selection147

(Irving et al., 2016; Kucik and Korovin, 2018; Pi-148

otrowski and Urban, 2020; Ferreira and Freitas,149

2020a,b; Wu, 2022; Mikuła et al., 2023; Holden150

and Korovin, 2025), where models retrieve the151

most relevant lemmas from vast libraries to aid in152

proving a target statement. Researchers also tackle153

proof-step generation (Huang et al., 2018; Yang154

et al., 2024; Welleck and Saha, 2023; Sanchez-155

Stern et al., 2020, 2023; Yang and Deng, 2019;156

Polu and Sutskever, 2020; Han et al., 2021; Wang157

et al., 2023b, 2024; Lin et al., 2024; Wu et al., 2024;158

Rute et al., 2024), aiming to accurately predict159

the next formal step or tactic, often through auto-160

regressive models that learn from existing proofs.161

A further challenge is proof search (Loos et al.,162

2017; Suda, 2021; Aygün et al., 2020, 2022; Chval-163

ovskỳ et al., 2023; Rawson and Reger, 2019, 2021;164

McKeown and Sutcliffe, 2023; Fokoue et al., 2023;165

Abdelaziz et al., 2022; Crouse et al., 2021), where166

deep learning-guided algorithms, sometimes using167

Monte Carlo Tree Search or reinforcement learning,168

explore and prune massive proof spaces, balancing169

correctness with computational efficiency.170

Hierarchical Attention Mechanisms for Math-171

ematical Reasoning. Mathematical documents172

typically have an implicit multilevel structure, from173

foundational definitions to the main theorems. Pre-174

vious studies have attempted to exploit this hier-175

archical nature by parsing formulas or proofs into176

trees or graphs to better represent logical struc-177

tures (Wang et al., 2017; Peng and Ma, 2017; Pali-178

wal et al., 2020; Rawson and Reger, 2020), or by179

building dependency graphs over entire libraries180

to capture relationships between statements and181

lemmas (Ferreira and Freitas, 2020b; Bauer et al.,182

2024). These approaches, while promising, often183

depend on carefully crafted rules or programmati-184

cally generated data, lacking mechanisms to ensure185

that neural models respect the partial orders and186

compositional dependencies inherent in mathemat-187

ical logic.188

The attention mechanism is central to modern189

Transformer-based models (Vaswani, 2017). Al-190

though studies have explored their use in tasks such191

as generating math problems or document classifi-192

cation (Yang et al., 2016; Wu et al., 2022a), there193

is a gap in leveraging attention-based methods ex-194

plicitly for mathematical reasoning.195

3 Preliminaries 196

3.1 Hierarchical Structure in Lean 197

Lean is a strongly typed language, which allows all 198

tokens to be naturally unfolded across multiple se- 199

mantic levels. These levels align with various com- 200

ponents of reasoning, with each successive level 201

built upon the foundations of the preceding ones. 202

The categorization of these layers can be delineated 203

as follows: 204

Lowest or contextual layer: Contains back- 205

ground information, auxiliary concepts, or 206

general knowledge relevant to the proof (T0: 207

context). 208

Intermediate layers: Include pattern matching 209

and case analysis (T1: case), type declarations 210

and definitions (T2: type), instance declara- 211

tions and concrete examples (T3: instance) 212

that support the proof. 213

Highest or goal layer: Represents the core theo- 214

rem or proposition to be proved (T4: goal), 215

which relies on the information introduced in 216

the lower layers. 217

These layers follow a natural partial order: 218

context ≺ case ≺ type ≺ instance ≺ goal. 219

Structuring mathematical reasoning within this hi- 220

erarchy yields two key benefits: 221

• Proper Scoping: Contextual elements and def- 222

initions are confined to their appropriate lev- 223

els. Intuitively, each concept is most mean- 224

ingfully analyzed in conjunction with others 225

at the same level, ensuring logical coherence 226

and clarity. 227

• Clear Semantic Flow: The reasoning pro- 228

gresses seamlessly from foundational defini- 229

tions to the final goal, reflecting the natural 230

and intuitive structure of mathematical argu- 231

ments. 232

3.2 Information Flow 233

We want to exploit the hierarchical structure by 234

incorporating flow control into the model. Let T be 235

the set of all tokens of the input theorem. We use 236

ti, tj to denote individual tokens, L for the number 237

of transformer layers, and 1 ≤ l ≤ L for layer 238

indices. For tokens ti, tj in layer l, we define: 239

• attl(ti, tj): attention score from ti to tj , rep- 240

resenting how much ti will affect embedding 241

of tj at layer l, 242

3

• Mij : binary attention mask, controlling the243

information flow from ti to tj ,244

• αl = 1 − l/L: layer-wise adaptation factor,245

which attenuates flow control for deeper lay-246

ers.247

We use level(ti) to denote the hierarchical level248

of token ti, taking value from {0, 1, 2, 3, 4}, cor-249

responding to the five levels in our hierarchy. By250

controlling attention flow based on these levels, we251

encourage the model to follow natural mathemati-252

cal reasoning patterns, where higher-level concepts253

build upon lower-level foundations.254

4 Approach255

To enhance the model’s comprehension of the hier-256

archical structure and its ability to reason in align-257

ment with it, we propose a two-step approach. First,258

we extract the flow pattern from the input by identi-259

fying different hierarchical levels in mathematical260

statements. Second, we guide the model’s attention261

through a specialized loss function that encourages262

the model to respect these hierarchical relationships263

during training.264

4.1 Extract Flow Pattern265

In mathematical reasoning, different components266

of a statement naturally form a hierarchy. We iden-267

tify five distinct levels (labeled 0 to 4): basic tokens,268

case-specific elements, type definitions, problem269

instances, and goal statements. The flow from to-270

ken ti to token tj may follow one of three types,271

based on their hierarchical levels:272 
Unrestricted if level(ti) = level(tj)
Guided if level(ti) < level(tj)
Limited if level(ti) > level(tj)

(1)273

This structure ensures that semantic dependen-274

cies respect the hierarchical nature of mathematical275

reasoning, with tokens primarily attending to those276

at the same or lower levels, while limiting attention277

in the reverse direction to maintain logical consis-278

tency.279

4.2 Algorithm Implementation280

Based on these flow patterns, we implement a hi-281

erarchical attention mechanism as shown in Al-282

gorithm 1. The algorithm first parses the input283

into different hierarchical levels using string pattern284

matching to identify key mathematical components.285

Algorithm 1: Hierarchical Attention Imple-
mentation
Input: Theorem text T , Model layers L
Output: Flow loss Lflow
/* Initialize hierarchical levels

*/
Parse input into level sets {T0, ..., T4} ;
// Using string pattern matching

;
Initialize attention mask M , Lflow ← 0;

for each layer l in 1 to L do
αl ← (1− l/L) ; // Layer
adaptation factor

for tokens ti, tj in input do
/* Construct attention mask

*/
if level(ti) ≤ level(tj) then

Mij ← 1 ; // Allow
upward/horizontal flow

else
Mij ← 0 ; // Limit
downward flow

/* Compute loss contribution
*/

invalidflow ←
attl(ti, tj) · (1−Mij);
Lflow ←
Lflow + αl · ReLU(invalidflow);

Lflow ← Lflow/|T |;
return Lflow;

It then constructs attention masks and computes a 286

flow loss that penalizes attention patterns violating 287

hierarchical constraints. 288

The flow loss Lflow penalizes attention patterns 289

that violate hierarchical constraints: 290

Lflow =
1

|T |

L∑
l=1

αl·
∑
i,j

ReLU(attl(ti, tj)·(1−Mij))

(2) 291

where αl = (1− l
L) provides stronger regulariza- 292

tion in earlier layers while allowing more flexibility 293

in later layers. 294

The final training objective combines this flow 295

loss with the standard cross-entropy loss LLM : 296

L = LLM + λLflow (3) 297

where λ controls the strength of hierarchical con- 298

straints. A larger λ enforces stricter adherence to 299

4

the hierarchy, while a smaller value allows more300

flexible attention patterns.301

In summary, our approach:302

• Identifies natural hierarchical levels in mathe-303

matical statements.304

• Guides attention patterns to respect hierarchi-305

cal relationships.306

• Enables flexible reasoning through layer-wise307

adaptation.308

5 Experiments309

In this section, we evaluate our method through310

comprehensive experiments on multiple theorem-311

proving benchmarks.312

5.1 Experimental Setup313

Training Data and Configuration We use Le-314

anDojo Benchmark 41 as our training dataset.315

The training process involves fine-tuning a Pythia-316

2.8B2 (Biderman et al., 2023) model for 3 epochs.317

Detailed hyperparameters and training configura-318

tions are provided in Appendix A.1.319

Evaluation Protocol We conduct comprehen-320

sive evaluations across four benchmark datasets:321

miniF2F (test/valid)3 and ProofNet (test/valid)4.322

Our evaluation employs two complementary strate-323

gies: best-first search and single-pass sampling, to324

demonstrate the robustness of our method (detailed325

algorithms in Appendix A.2).326

For both strategies, we define the computation327

budget as K × T , where T indicates the number328

of expansion iterations, which is set to 100 across329

all our experiments, and K = N × S. For the best-330

first search, N represents the number of parallel331

search attempts and S denotes the number of tactics332

generated per expansion. For single-pass sampling,333

N represents the total number of sampling attempts334

per problem, while S is fixed to 1 as only one tactic335

is attempted at each expanded node. The search336

process employs parallel sampling with fixed time337

constraints per theorem. In the following sections,338

we use K to denote the product of N and S for339

simplicity.340

1Yang, K. (2023). LeanDojo Benchmark (v1) [Data set].
Zenodo. https://doi.org/10.5281/zenodo.8016386

2https://huggingface.co/EleutherAI/pythia-2.
8b

3https://huggingface.co/datasets/cat-searcher/
minif2f-lean4

4https://huggingface.co/datasets/UDACA/
proofnet-lean4

Our method is a general-purpose fine-tuning 341

technique that can be applied to any formal 342

theorem-proving system. For empirical validation, 343

we chose LLMSTEP (Welleck and Saha, 2023) as 344

our primary baseline, which provides full access 345

to its model, dataset, and hyperparameters, ensur- 346

ing complete reproducibility of our comparative 347

analysis. 348

5.2 Main Results 349

We present a comparative analysis of our method 350

against the baseline, highlighting its performance 351

and advancements. 352

Metrics We evaluate our method using two key 353

metrics: pass@K accuracy and proof complexity. 354

The pass@K metric measures the model’s ability 355

to generate a valid proof within K sampling at- 356

tempts, where K = N × S represents the total 357

number of tactic samples considered during this 358

iteration of proof search. 359

For proof conciseness analysis, we measure the 360

number of proof steps required to solve the goals. 361

Let Tcom be the set of theorems successfully proved 362

by both methods with different proof lengths. For 363

each theorem t ∈ Tcom, we define its proof com- 364

plexity as: 365

C(t,m) = |pt,m| (4) 366

where pt,m is the proof generated for theorem 367

t using method m, and |pt,m| denotes the number 368

of proof steps. We then compute the average com- 369

plexity ratio: 370

Ravg =
1

|Tcom|
∑

t∈Tcom

C(t, ours)
C(t, baseline)

(5) 371

This metric provides a direct measure of our 372

method’s proof conciseness, where Ravg < 1 indi- 373

cates that our method generally produces shorter 374

proofs. Note that we only consider theorems where 375

both methods succeed but generate proofs of 376

different lengths, as this provides a meaningful 377

comparison of the proof conciseness. We also re- 378

port Diff. (%), which indicates the percentage of 379

such theorems among all theorems that both meth- 380

ods successfully prove, reflecting how often the 381

methods differ in their proof strategies. 382

Overview Figure 2 presents a comprehensive 383

evaluation of our method across miniF2F (test/- 384

valid) and ProofNet (test/valid) datasets at K = 64. 385

5

https://doi.org/10.5281/zenodo.8016386
https://huggingface.co/EleutherAI/pythia-2.8b
https://huggingface.co/EleutherAI/pythia-2.8b
https://huggingface.co/datasets/cat-searcher/minif2f-lean4
https://huggingface.co/datasets/cat-searcher/minif2f-lean4
https://huggingface.co/datasets/UDACA/proofnet-lean4
https://huggingface.co/datasets/UDACA/proofnet-lean4

Figure 2: Performance comparison between our method and baseline at K = 64. Left: Pass rate comparison across
miniF2F (test/valid) and ProofNet (test/valid) datasets. Best-first search (BFS) consistently outperforms single-pass
sampling (SPS), with our method further enhancing BFS performance. Solid bars represent our method while
transparent bars represent the baseline. Right: Proof complexity ratio (Ravg), where values below 1.0 (dashed line)
indicate more concise proofs. Our method with BFS achieves consistent complexity reductions across all datasets.

Table 1: Results on miniF2F test set with best-first
search strategy.

K
PASS(%) COMPLEXITY

Ravg Diff. (%)
Baseline Ours Baseline Ours

1 14.75 14.34 - - - -
2 18.44 17.62 - - - -
4 22.54 23.36 - - - -
8 26.23 26.23 2.00 1.86 0.93 11.67
16 29.10 28.28 2.11 1.50 0.71 13.24
32 29.51 31.15 1.89 1.67 0.88 12.50
64 29.51 31.56 2.10 1.60 0.76 8.11

Table 2: Results on miniF2F validation set with best-
first search strategy.

K
PASS(%) COMPLEXITY

Ravg Diff. (%)
Baseline Ours Baseline Ours

1 12.70 13.52 - - - -
2 15.16 14.75 - - - -
4 20.49 23.77 - - - -
8 27.05 29.51 2.83 2.67 0.94 9.68
16 31.15 33.20 2.89 1.89 0.65 13.89
32 31.56 34.02 3.11 2.00 0.64 12.00
64 31.56 34.02 3.11 2.00 0.64 12.68

The results demonstrate that best-first search (BFS)386

is the superior search strategy across all datasets,387

consistently outperforming single-pass sampling388

(SPS). When combined with our hierarchical at-389

tention mechanism, BFS achieves even stronger390

results. For example, on the miniF2F test set, our391

method improves the pass rate by 2.05% while392

reducing proof complexity by 23.81%. Similar im-393

provements are observed on the ProofNet test set,394

with a 1.69% increase in pass rate and a 16.50% re-395

duction in proof complexity. Notably, our method396

also significantly improves SPS performance, par-397

Table 3: Results on miniF2F test set with single-pass
sampling strategy.

K
PASS(%) COMPLEXITY

Ravg Diff. (%)
Baseline Ours Baseline Ours

1 9.84 18.44 - - - -
2 12.30 20.90 - - - -
4 16.80 24.18 - - - -
8 19.63 25.00 1.95 1.86 0.95 51.16
16 20.49 26.23 1.85 1.92 1.04 26.00
32 23.36 26.64 1.83 1.78 0.97 15.38
64 23.36 27.87 2.00 1.85 0.93 23.21

Table 4: Results on miniF2F validation set with single-
pass sampling strategy.

K
PASS(%) COMPLEXITY

Ravg Diff. (%)
Baseline Ours Baseline Ours

1 9.43 14.75 - - - -
2 12.30 15.16 - - - -
4 16.80 20.08 - - - -
8 18.03 21.13 2.33 1.73 0.74 37.50
16 18.44 24.59 1.95 1.89 0.97 43.18
32 20.08 25.41 1.92 1.92 1.00 27.66
64 21.72 26.64 2.12 2.38 1.12 16.33

ticularly on the miniF2F dataset where we observe 398

pass rate improvements of 4.51% and 4.92% on 399

test and valid sets respectively. 400

Results on miniF2F Tables 1-4 present compre- 401

hensive results on the miniF2F benchmark. With 402

best-first search, our method achieves consistent 403

improvements in pass rates at higher computation 404

budgets, reaching 31.56% on test set (vs. baseline’s 405

29.51%) and 34.02% on validation set (vs. base- 406

line’s 31.56%). The performance gain becomes 407

more pronounced as the computation budget in- 408

6

Table 5: Results on ProofNet test set with best-first
search strategy.

K
PASS(%) COMPLEXITY

Ravg Diff. (%)
Baseline Ours Baseline Ours

16 11.86 11.86 - - - -
32 13.56 14.69 1.83 1.83 1.00 28.57
64 13.56 15.25 2.00 1.67 0.84 26.09

Table 6: Results on ProofNet validation set with best-
first search strategy.

K
PASS(%) COMPLEXITY

Ravg Diff. (%)
Baseline Ours Baseline Ours

16 9.04 10.73 - - - -
32 9.04 10.73 2.00 1.00 0.50 12.50
64 10.17 11.86 2.00 1.00 0.50 18.75

creases, particularly when K exceeds 16.409

Single-pass sampling results also demonstrate410

the effectiveness of our method, achieving 27.87%411

and 26.64% pass rates on test and validation sets412

respectively at K = 64, compared to baseline’s413

23.36% and 21.72%. This represents substantial414

improvements of 4.51% and 4.92% respectively.415

For proof conciseness evaluation, we focus on416

higher computation budget scenarios (K ≥ 8)417

where sufficient successful proofs are available418

for reliable complexity comparison. At K = 64,419

our method demonstrates significant advantages420

in proof conciseness with the search strategy, re-421

ducing the average proof length from 3.11 to 2.00422

steps (Ravg = 0.64) on the validation set and from423

2.10 to 1.60 steps (Ravg = 0.76) on the test set.424

The reliability of these complexity metrics is sup-425

ported by a substantial proportion of comparable426

cases (Diff.), where both methods succeed but with427

different proof lengths. For instance, at K = 64428

with best-first search, these comparable cases con-429

stitute 8.11% and 12.68% of all successful proofs430

for test and validation sets respectively, providing431

a meaningful sample size for complexity compari-432

son. Similar reliability is observed in single-pass433

sampling, where Diff. reaches 23.21% and 16.33%,434

ensuring the robustness of the reported complexity435

improvements.436

Results on ProofNet Tables 5-8 present the re-437

sults on ProofNet benchmark. With best-first438

search strategy, our method achieves consistent439

improvements in PASS rates at higher computation440

budgets, reaching 15.25% on test set (vs. base-441

line’s 13.56%) and 11.86% on validation set (vs.442

Table 7: Results on ProofNet test set with single-pass
sampling strategy.

K
PASS(%) COMPLEXITY

Ravg Diff. (%)
Baseline Ours Baseline Ours

16 9.60 11.30 - - - -
32 10.17 12.80 2.00 2.00 1.00 31.25
64 13.56 14.12 2.40 1.80 0.75 21.74

Table 8: Results on ProofNet validation set with single-
pass sampling strategy.

K
PASS(%) COMPLEXITY

Ravg Diff. (%)
Baseline Ours Baseline Ours

16 7.34 7.34 - - - -
32 8.47 7.34 1.50 1.50 1.00 18.18
64 8.47 9.04 1.50 1.50 1.00 30.77

baseline’s 10.17%) at K = 64. 443

Single-pass sampling results also demonstrate 444

the effectiveness of our method. On the test set, 445

our method shows consistent improvements across 446

computation budgets, achieving 14.12% at K = 64 447

compared to baseline’s 13.56%, with improve- 448

ments ranging from 1.70% to 2.63%. On the valida- 449

tion set, while performance is initially comparable 450

at K = 16 (both 7.34%), our method shows im- 451

provement at higher computation budgets, reaching 452

9.04% at K = 64 compared to baseline’s 8.47%. 453

For proof conciseness evaluation at K = 64, 454

our method demonstrates significant advantages 455

across all settings. With the search strategy, the 456

average proof length decreases from 2.00 to 1.67 457

steps (Ravg = 0.84) on the test set and from 2.00 458

to 1.00 steps (Ravg = 0.50) on the validation set, 459

based on 26.09% and 18.75% of differing proofs 460

respectively. The single-pass sampling shows simi- 461

lar improvements with Ravg = 0.75 on the test set 462

across 21.74% of differing cases. 463

5.3 Visualization and Analysis of Attention 464

Patterns 465

The attention distribution analysis shown in Fig- 466

ure 3 demonstrates that our mechanism success- 467

fully implements and maintains the designed infor- 468

mation flow structure (Equation 1) throughout the 469

model. Our analysis reveals several key findings 470

across both constrained and unconstrained layers: 471

7

Figure 3: Attention distribution analysis in different layers. Left: Hierarchy-constrained layers (where αl ̸= 0).
Right: Unconstrained layers (where αl = 0). This visualization is derived from averaging attention patterns across
all evaluation samples on the LeanDojo Benchmark 4 test set. The x-axis represents different hierarchical levels,
while the y-axis shows the percentage of attention scores, combining both cases where the level’s tokens serve as
source (ti) and target (tj). Blue and green bars represent the baseline and our method respectively, with different
transparency levels indicating different attention flow types based on the relationship between source level(ti) and
target level(tj).

5.3.1 Implementation of Limited Flow472

Constraint473

Our approach enforces the limited flow constraint474

by minimizing attention flows from higher to lower475

levels across all layers. In constrained layers (Fig-476

ure 3, left), this is evidenced by the near-zero per-477

centages of level(ti) > level(tj) attention across478

all hierarchical levels, compared to the baseline’s479

substantial invalid flows ranging from 5.5% to480

27.8%. Remarkably, this pattern persists in un-481

constrained layers (Figure 3, right), where invalid482

flows remain minimal (ranging from 0.5% to 3.2%483

across different levels), demonstrating the robust-484

ness of our hierarchical structure.485

5.3.2 Effectiveness of Guided Flow Design486

Our method successfully implements and main-487

tains the guided flow design throughout the model.488

In constrained layers, the goal level effectively in-489

tegrates information from lower levels with 68.7%490

upward attention while restricting reverse flows to491

just 0.2%. Type and instance levels receive sub-492

stantial guided information flow from lower lev-493

els (77.7% and 71.0% respectively), demonstrating494

strong hierarchical information propagation. This495

pattern strengthens in unconstrained layers, where496

the goal level receives even stronger attention from497

lower levels (84.5%), and type and instance levels498

maintain robust upward attention flows (89.0% and499

81.5% respectively).500

5.3.3 Global Impact on Model Behavior 501

The consistency of hierarchical patterns between 502

constrained and unconstrained layers is particularly 503

significant, indicating that our method induces a 504

global, coherent hierarchical information process- 505

ing framework. Rather than merely responding to 506

external constraints, the model appears to have in- 507

ternalized the hierarchical structure, as evidenced 508

by the preservation of desired attention patterns 509

in unconstrained layers. This seamless continu- 510

ation of attention patterns throughout the model 511

architecture suggests that our hierarchical attention 512

mechanism effectively shapes the model’s overall 513

information processing strategy, establishing a sta- 514

ble and consistent hierarchical flow structure. 515

6 Conclusion 516

We introduced Hierarchical Attention, a regular- 517

ization method that aligns transformer attention 518

with mathematical reasoning structures through a 519

five-level hierarchy. Our approach balances struc- 520

tured information flow with the flexibility needed 521

for complex proofs through layer-wise adaptation. 522

Experimental results show improved proof suc- 523

cess rates and conciseness across multiple bench- 524

marks, while attention pattern analysis confirms 525

the method’s effectiveness in helping models in- 526

ternalize mathematical hierarchies. The consistent 527

improvements demonstrate a promising direction 528

for bridging neural language models and mathemat- 529

ical reasoning. 530

8

Limitations531

Our approach has three main limitations: (1) the532

hierarchy definition is specific to Lean’s seman-533

tics and may require adaptation for other proof534

languages, (2) the fixed hierarchy structure may535

limit dynamic reasoning patterns, and (3) data con-536

straints prevented evaluation on advanced mod-537

els like DeepSeek-Prover (Xin et al., 2024) and538

InternLM-Math (Ying et al., 2024b). Future work539

could explore adaptive hierarchies and the cross-540

domain generalization.541

Ethical Considerations542

Our work focuses on improving theorem proving543

through Hierarchical Attention while addressing544

several ethical considerations. We use publicly545

available datasets, including LeanDojo Benchmark546

4 under the MIT license5, and strictly follow data547

usage policies. While mathematical content is gen-548

erally objective, we acknowledge potential biases549

in theorem selection and proof styles. Our method,550

though designed for positive applications, should551

be used with human oversight as it could poten-552

tially generate misleading proofs. To promote trans-553

parency and reproducibility, we will release our554

code and models with appropriate licenses and us-555

age guidelines.556

References557

Ibrahim Abdelaziz, Maxwell Crouse, Bassem Makni,558
Vernon Austel, Cristina Cornelio, Shajith Ikbal, Pa-559
van Kapanipathi, Ndivhuwo Makondo, Kavitha Srini-560
vas, Michael Witbrock, et al. 2022. Learning to guide561
a saturation-based theorem prover. IEEE Transac-562
tions on Pattern Analysis and Machine Intelligence,563
45(1):738–751.564

Eser Aygün, Zafarali Ahmed, Ankit Anand, Vlad Firoiu,565
Xavier Glorot, Laurent Orseau, Doina Precup, and566
Shibl Mourad. 2020. Learning to prove from syn-567
thetic theorems. arXiv preprint arXiv:2006.11259.568

Eser Aygün, Ankit Anand, Laurent Orseau, Xavier Glo-569
rot, Stephen M Mcaleer, Vlad Firoiu, Lei M Zhang,570
Doina Precup, and Shibl Mourad. 2022. Proving571
theorems using incremental learning and hindsight572
experience replay. In International Conference on573
Machine Learning, pages 1198–1210. PMLR.574

Zhangir Azerbayev, Bartosz Piotrowski, Hailey575
Schoelkopf, Edward W Ayers, Dragomir Radev, and576
Jeremy Avigad. 2023. Proofnet: Autoformalizing577

5https://github.com/lean-dojo/LeanDojo/blob/
main/LICENSE

and formally proving undergraduate-level mathemat- 578
ics. arXiv preprint arXiv:2302.12433. 579

Andrej Bauer, Matej Petković, and Ljupco Todorovski. 580
2024. Mlfmf: data sets for machine learning for 581
mathematical formalization. Advances in Neural In- 582
formation Processing Systems, 36. 583

Stella Biderman, Hailey Schoelkopf, Quentin Gregory 584
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal- 585
lahan, Mohammad Aflah Khan, Shivanshu Purohit, 586
USVSN Sai Prashanth, Edward Raff, et al. 2023. 587
Pythia: A suite for analyzing large language mod- 588
els across training and scaling. In International 589
Conference on Machine Learning, pages 2397–2430. 590
PMLR. 591

Shang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong 592
Zhang. 2000. A deductive database approach to au- 593
tomated geometry theorem proving and discovering. 594
Journal of Automated Reasoning, 25(3):219–246. 595

Karel Chvalovskỳ, Konstantin Korovin, Jelle Piepen- 596
brock, and Josef Urban. 2023. Guiding an instanti- 597
ation prover with graph neural networks. In LPAR, 598
pages 112–123. 599

Maxwell Crouse, Ibrahim Abdelaziz, Bassem Makni, 600
Spencer Whitehead, Cristina Cornelio, Pavan Kapa- 601
nipathi, Kavitha Srinivas, Veronika Thost, Michael 602
Witbrock, and Achille Fokoue. 2021. A deep re- 603
inforcement learning approach to first-order logic 604
theorem proving. In Proceedings of the AAAI Con- 605
ference on Artificial Intelligence, volume 35, pages 606
6279–6287. 607

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: 608
An efficient smt solver. In International conference 609
on Tools and Algorithms for the Construction and 610
Analysis of Systems, pages 337–340. Springer. 611

Leonardo De Moura, Soonho Kong, Jeremy Avigad, 612
Floris Van Doorn, and Jakob von Raumer. 2015. The 613
lean theorem prover (system description). In Auto- 614
mated Deduction-CADE-25: 25th International Con- 615
ference on Automated Deduction, Berlin, Germany, 616
August 1-7, 2015, Proceedings 25, pages 378–388. 617
Springer. 618

Niklas Eén and Niklas Sörensson. 2003. An extensible 619
sat-solver. In International conference on theory and 620
applications of satisfiability testing, pages 502–518. 621
Springer. 622

Deborah Ferreira and André Freitas. 2020a. Natu- 623
ral language premise selection: Finding supporting 624
statements for mathematical text. arXiv preprint 625
arXiv:2004.14959. 626

Deborah Ferreira and André Freitas. 2020b. Premise 627
selection in natural language mathematical texts. In 628
Proceedings of the 58th Annual Meeting of the Asso- 629
ciation for Computational Linguistics, pages 7365– 630
7374. 631

9

https://github.com/lean-dojo/LeanDojo/blob/main/LICENSE
https://github.com/lean-dojo/LeanDojo/blob/main/LICENSE

Emily First, Markus N Rabe, Talia Ringer, and Yuriy632
Brun. 2023. Baldur: Whole-proof generation and633
repair with large language models. In Proceedings of634
the 31st ACM Joint European Software Engineering635
Conference and Symposium on the Foundations of636
Software Engineering, pages 1229–1241.637

Achille Fokoue, Ibrahim Abdelaziz, Maxwell Crouse,638
Shajith Ikbal, Akihiro Kishimoto, Guilherme Lima,639
Ndivhuwo Makondo, and Radu Marinescu. 2023. An640
ensemble approach for automated theorem proving641
based on efficient name invariant graph neural repre-642
sentations. arXiv preprint arXiv:2305.08676.643

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W644
Ayers, and Stanislas Polu. 2021. Proof artifact co-645
training for theorem proving with language models.646
arXiv preprint arXiv:2102.06203.647

Edvard K Holden and Konstantin Korovin. 2025. Graph648
sequence learning for premise selection. Journal of649
Symbolic Computation, 128:102376.650

Daniel Huang, Prafulla Dhariwal, Dawn Song, and651
Ilya Sutskever. 2018. Gamepad: A learning en-652
vironment for theorem proving. arXiv preprint653
arXiv:1806.00608.654

Geoffrey Irving, Christian Szegedy, Alexander A Alemi,655
Niklas Eén, François Chollet, and Josef Urban. 2016.656
Deepmath-deep sequence models for premise selec-657
tion. Advances in neural information processing658
systems, 29.659

Albert Q Jiang, Wenda Li, and Mateja Jamnik. 2023.660
Multilingual mathematical autoformalization. arXiv661
preprint arXiv:2311.03755.662

Albert Q Jiang, Sean Welleck, Jin Peng Zhou,663
Wenda Li, Jiacheng Liu, Mateja Jamnik, Timo-664
thée Lacroix, Yuhuai Wu, and Guillaume Lample.665
2022a. Draft, sketch, and prove: Guiding formal666
theorem provers with informal proofs. arXiv preprint667
arXiv:2210.12283.668

Albert Qiaochu Jiang, Wenda Li, Jesse Michael Han,669
and Yuhuai Wu. 2021. Lisa: Language models of670
isabelle proofs. In 6th Conference on Artificial Intel-671
ligence and Theorem Proving, pages 378–392.672

Albert Qiaochu Jiang, Wenda Li, Szymon Tworkowski,673
Konrad Czechowski, Tomasz Odrzygóźdź, Piotr674
Miłoś, Yuhuai Wu, and Mateja Jamnik. 2022b. Thor:675
Wielding hammers to integrate language models and676
automated theorem provers. Advances in Neural In-677
formation Processing Systems, 35:8360–8373.678

Laura Kovács and Andrei Voronkov. 2013. First-order679
theorem proving and vampire. In International Con-680
ference on Computer Aided Verification, pages 1–35.681
Springer.682

Andrzej Stanisław Kucik and Konstantin Korovin. 2018.683
Premise selection with neural networks and dis-684
tributed representation of features. arXiv preprint685
arXiv:1807.10268.686

Guillaume Lample, Timothee Lacroix, Marie-Anne 687
Lachaux, Aurelien Rodriguez, Amaury Hayat, 688
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet. 689
2022. Hypertree proof search for neural theorem 690
proving. Advances in neural information processing 691
systems, 35:26337–26349. 692

Haohan Lin, Zhiqing Sun, Yiming Yang, and Sean 693
Welleck. 2024. Lean-star: Learning to in- 694
terleave thinking and proving. arXiv preprint 695
arXiv:2407.10040. 696

Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying 697
Liu, Ye Yuan, Haiming Wang, Wei Ju, Chuanyang 698
Zheng, Yichun Yin, Lin Li, et al. 2023. Fimo: A chal- 699
lenge formal dataset for automated theorem proving. 700
arXiv preprint arXiv:2309.04295. 701

Sarah Loos, Geoffrey Irving, Christian Szegedy, and 702
Cezary Kaliszyk. 2017. Deep network guided proof 703
search. arXiv preprint arXiv:1701.06972. 704

Jianqiao Lu, Yingjia Wan, Zhengying Liu, Yinya Huang, 705
Jing Xiong, Chengwu Liu, Jianhao Shen, Hui Jin, 706
Jipeng Zhang, Haiming Wang, et al. 2024. Process- 707
driven autoformalization in lean 4. arXiv preprint 708
arXiv:2406.01940. 709

Jack McKeown and Geoff Sutcliffe. 2023. Reinforce- 710
ment learning for guiding the e theorem prover. In 711
The International FLAIRS Conference Proceedings, 712
volume 36. 713

Maciej Mikuła, Szymon Tworkowski, Szymon An- 714
toniak, Bartosz Piotrowski, Albert Qiaochu Jiang, 715
Jin Peng Zhou, Christian Szegedy, Łukasz Kuciński, 716
Piotr Miłoś, and Yuhuai Wu. 2023. Magnushammer: 717
A transformer-based approach to premise selection. 718
arXiv preprint arXiv:2303.04488. 719

Leonardo de Moura and Sebastian Ullrich. 2021. The 720
lean 4 theorem prover and programming language. In 721
Automated Deduction–CADE 28: 28th International 722
Conference on Automated Deduction, Virtual Event, 723
July 12–15, 2021, Proceedings 28, pages 625–635. 724
Springer. 725

Logan Murphy, Kaiyu Yang, Jialiang Sun, Zhaoyu 726
Li, Anima Anandkumar, and Xujie Si. 2024. Aut- 727
oformalizing euclidean geometry. arXiv preprint 728
arXiv:2405.17216. 729

Aditya Paliwal, Sarah Loos, Markus Rabe, Kshitij 730
Bansal, and Christian Szegedy. 2020. Graph repre- 731
sentations for higher-order logic and theorem proving. 732
In Proceedings of the AAAI Conference on Artificial 733
Intelligence, volume 34, pages 2967–2974. 734

Lawrence C Paulson. 1994. Isabelle: A generic theorem 735
prover. Springer. 736

Kebin Peng and Dianfu Ma. 2017. Tree-structure cnn 737
for automated theorem proving. In Neural Infor- 738
mation Processing: 24th International Conference, 739
ICONIP 2017, Guangzhou, China, November 14-18, 740
2017, Proceedings, Part II 24, pages 3–12. Springer. 741

10

Bartosz Piotrowski and Josef Urban. 2020. State-742
ful premise selection by recurrent neural networks.743
arXiv preprint arXiv:2004.08212.744

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Man-745
tas Baksys, Igor Babuschkin, and Ilya Sutskever.746
2022. Formal mathematics statement curriculum747
learning. arXiv preprint arXiv:2202.01344.748

Stanislas Polu and Ilya Sutskever. 2020. Generative749
language modeling for automated theorem proving.750
arXiv preprint arXiv:2009.03393.751

Michael Rawson and Giles Reger. 2019. A neurally-752
guided, parallel theorem prover. In Frontiers of Com-753
bining Systems: 12th International Symposium, Fro-754
CoS 2019, London, UK, September 4-6, 2019, Pro-755
ceedings 12, pages 40–56. Springer.756

Michael Rawson and Giles Reger. 2020. Directed graph757
networks for logical reasoning. In PAAR+ SC2@758
IJCAR, pages 109–119.759

Michael Rawson and Giles Reger. 2021. lazycop: Lazy760
paramodulation meets neurally guided search. In761
Automated Reasoning with Analytic Tableaux and762
Related Methods: 30th International Conference,763
TABLEAUX 2021, Birmingham, UK, September 6–9,764
2021, Proceedings 30, pages 187–199. Springer.765

Jason Rute, Miroslav Olšák, Lasse Blaauwbroek, Fi-766
del Ivan Schaposnik Massolo, Jelle Piepenbrock, and767
Vasily Pestun. 2024. Graph2tac: learning hierar-768
chical representations of math concepts in theorem769
proving. arXiv preprint arXiv:2401.02949.770

Alex Sanchez-Stern, Yousef Alhessi, Lawrence Saul,771
and Sorin Lerner. 2020. Generating correctness772
proofs with neural networks. In Proceedings of the773
4th ACM SIGPLAN International Workshop on Ma-774
chine Learning and Programming Languages, pages775
1–10.776

Alex Sanchez-Stern, Emily First, Timothy Zhou,777
Zhanna Kaufman, Yuriy Brun, and Talia Ringer. 2023.778
Passport: Improving automated formal verification779
using identifiers. ACM Transactions on Program-780
ming Languages and Systems, 45(2):1–30.781

Stephan Schulz. 2002. E–a brainiac theorem prover. Ai782
Communications, 15(2-3):111–126.783

Martin Suda. 2021. Improving enigma-style clause784
selection while learning from history. In Automated785
Deduction–CADE 28: 28th International Conference786
on Automated Deduction, Virtual Event, July 12–15,787
2021, Proceedings 28, pages 543–561. Springer.788

The Coq Development Team. 2024. Coq. URL https:789
//coq.inria.fr.790

A Vaswani. 2017. Attention is all you need. Advances791
in Neural Information Processing Systems.792

Haiming Wang, Huajian Xin, Zhengying Liu, Wenda Li,793
Yinya Huang, Jianqiao Lu, Zhicheng Yang, Jing Tang,794
Jian Yin, Zhenguo Li, et al. 2024. Proving theorems795
recursively. arXiv preprint arXiv:2405.14414.796

Haiming Wang, Huajian Xin, Chuanyang Zheng, Lin 797
Li, Zhengying Liu, Qingxing Cao, Yinya Huang, 798
Jing Xiong, Han Shi, Enze Xie, et al. 2023a. Lego- 799
prover: Neural theorem proving with growing li- 800
braries. arXiv preprint arXiv:2310.00656. 801

Haiming Wang, Ye Yuan, Zhengying Liu, Jianhao Shen, 802
Yichun Yin, Jing Xiong, Enze Xie, Han Shi, Yujun 803
Li, Lin Li, et al. 2023b. Dt-solver: Automated theo- 804
rem proving with dynamic-tree sampling guided by 805
proof-level value function. In Proceedings of the 806
61st Annual Meeting of the Association for Compu- 807
tational Linguistics (Volume 1: Long Papers), pages 808
12632–12646. 809

Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. 810
2017. Premise selection for theorem proving by deep 811
graph embedding. Advances in neural information 812
processing systems, 30. 813

Qingxiang Wang, Chad Brown, Cezary Kaliszyk, and 814
Josef Urban. 2020. Exploration of neural machine 815
translation in autoformalization of mathematics in 816
mizar. In Proceedings of the 9th ACM SIGPLAN 817
International Conference on Certified Programs and 818
Proofs, pages 85–98. 819

Qingxiang Wang, Cezary Kaliszyk, and Josef Urban. 820
2018. First experiments with neural translation of 821
informal to formal mathematics. In Intelligent Com- 822
puter Mathematics: 11th International Conference, 823
CICM 2018, Hagenberg, Austria, August 13-17, 2018, 824
Proceedings 11, pages 255–270. Springer. 825

Sean Welleck and Rahul Saha. 2023. Llmstep: Llm 826
proofstep suggestions in lean. arXiv preprint 827
arXiv:2310.18457. 828

Qinzhuo Wu, Qi Zhang, and Xuanjing Huang. 2022a. 829
Automatic math word problem generation with topic- 830
expression co-attention mechanism and reinforce- 831
ment learning. IEEE/ACM Transactions on Audio, 832
Speech, and Language Processing, 30:1061–1072. 833

Yuhuai Wu. 2022. Formal premise selection with lan- 834
guage models. In Conference on Artificial Intelli- 835
gence and Theorem Proving (AITP), volume 4. 836

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus 837
Rabe, Charles Staats, Mateja Jamnik, and Christian 838
Szegedy. 2022b. Autoformalization with large lan- 839
guage models. Advances in Neural Information Pro- 840
cessing Systems, 35:32353–32368. 841

Zijian Wu, Jiayu Wang, Dahua Lin, and Kai Chen. 842
2024. Lean-github: Compiling github lean repos- 843
itories for a versatile lean prover. arXiv preprint 844
arXiv:2407.17227. 845

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, 846
Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and 847
Xiaodan Liang. 2024. Deepseek-prover: Advancing 848
theorem proving in llms through large-scale synthetic 849
data. arXiv preprint arXiv:2405.14333. 850

11

https://coq.inria.fr
https://coq.inria.fr
https://coq.inria.fr

Kaiyu Yang and Jia Deng. 2019. Learning to prove851
theorems via interacting with proof assistants. In In-852
ternational Conference on Machine Learning, pages853
6984–6994. PMLR.854

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chala-855
mala, Peiyang Song, Shixing Yu, Saad Godil, Ryan J856
Prenger, and Animashree Anandkumar. 2024. Le-857
andojo: Theorem proving with retrieval-augmented858
language models. Advances in Neural Information859
Processing Systems, 36.860

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,861
Alex Smola, and Eduard Hovy. 2016. Hierarchical at-862
tention networks for document classification. In Pro-863
ceedings of the 2016 conference of the North Ameri-864
can chapter of the association for computational lin-865
guistics: human language technologies, pages 1480–866
1489.867

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang,868
Dahua Lin, and Kai Chen. 2024a. Lean work-869
book: A large-scale lean problem set formalized870
from natural language math problems. arXiv preprint871
arXiv:2406.03847.872

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou,873
Yunfan Shao, Zhaoye Fei, Yichuan Ma, Jiawei Hong,874
Kuikun Liu, Ziyi Wang, Yudong Wang, Zijian Wu,875
Shuaibin Li, Fengzhe Zhou, Hongwei Liu, Songyang876
Zhang, Wenwei Zhang, Hang Yan, Xipeng Qiu, Jiayu877
Wang, Kai Chen, and Dahua Lin. 2024b. Internlm-878
math: Open math large language models toward veri-879
fiable reasoning. Preprint, arXiv:2402.06332.880

Xueliang Zhao, Wenda Li, and Lingpeng Kong. 2023.881
Decomposing the enigma: Subgoal-based demon-882
stration learning for formal theorem proving. arXiv883
preprint arXiv:2305.16366.884

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu.885
2021. Minif2f: a cross-system benchmark for for-886
mal olympiad-level mathematics. arXiv preprint887
arXiv:2109.00110.888

12

https://arxiv.org/abs/2402.06332
https://arxiv.org/abs/2402.06332
https://arxiv.org/abs/2402.06332
https://arxiv.org/abs/2402.06332
https://arxiv.org/abs/2402.06332

A Appendix889

A.1 Training Details890

We use Pythia-2.8B6 as our base model. The train-891

ing data is sourced from LeanDojo Benchmark 4 7,892

which consists of 169,530 samples for training and893

3,606 samples for validation.894

We train the model for 3 epochs on 8 NVIDIA895

A800 GPUs using DeepSpeed8 with ZeRO-3 opti-896

mization, taking approximately 40 hours. The train-897

ing uses a per-device batch size of 2 with gradient898

accumulation steps of 2, resulting in an effective899

batch size of 32. We adopt a learning rate of 1e-5900

with a cosine decay schedule and 3% warmup ratio.901

The training process employs FP16 precision with-902

out weight decay, and ZeRO-3 is configured with903

parameter and optimizer state partitioning across904

GPUs. For reproducibility, we set the random seed905

to 42 across all experiments.906

During training, we evaluate the model every907

500 steps and save checkpoints at the same fre-908

quency, maintaining the 3 most recent checkpoints.909

The best model is selected based on validation per-910

formance at the end of training. The training objec-911

tive combines the standard cross-entropy loss with912

our hierarchical flow loss. Table 9 shows the spe-913

cific hyperparameters (λ and L) used for different914

evaluation sets.915

Table 9: Hyperparameters for different evaluation sets.

Dataset λ L

miniF2F (test) 0.1 4
miniF2F (valid) 0.1 16
ProofNet (test) 0.2 16
ProofNet (valid) 0.2 4

A.2 Evaluation algorithm916

We implement two evaluation algorithms for theo-917

rem proving: best-first search and single-pass sam-918

pling. Both algorithms share the same computation919

budget K × T , where T = 100 is the maximum920

expansion steps.921

Best-First Search maintains a priority922

queue of states ranked by trajectory score923 ∑i−1
j=0 log p(aj |sj). For each expansion, it selects924

the highest-scoring state si, generates S candidate925

6https://huggingface.co/EleutherAI/pythia-2.
8b

7Yang, K. (2023). LeanDojo Benchmark (v1) [Data set].
Zenodo. https://doi.org/10.5281/zenodo.8016386

8https://github.com/microsoft/DeepSpeed

tactics, and creates new states by applying valid 926

tactics. The search succeeds when reaching a state 927

with no remaining goals within N expansions. 928

Single-Pass Sampling runs K parallel proof at- 929

tempts. Each attempt samples tactics sequentially 930

until finding a valid one or reaching the attempt 931

limit. A proof succeeds if it completes within N 932

valid tactics. This approach simplifies the search 933

process by setting S = 1 and focusing on trajectory 934

sampling rather than state ranking. 935

A.3 Ablation Studies 936

To validate the effectiveness of our layer-wise adap- 937

tation mechanism (αl = 1− l/L), we conduct abla- 938

tion studies on miniF2F and ProofNet benchmarks 939

using best-first search with K = 64. The results 940

are shown in Table 10. 941

Table 10: Ablation study results on miniF2F and
ProofNet benchmarks with best-first search (K = 64).

Method
miniF2F ProofNet

Test Valid Test Valid

PASS (baseline) 29.51 31.56 13.56 10.17
PASS (w/o adaptation) 30.74 32.34 14.69 11.30
PASS (w/ adaptation) 31.56 34.02 15.25 11.86

Ravg (w/o adaptation) 0.53 0.82 0.69 0.50
Ravg (w/ adaptation) 0.76 0.64 0.84 0.50
Diff.(w/o adaptation) (%) 9.86 11.27 22.73 18.75
Diff.(w/ adaptation) (%) 8.11 12.68 26.09 18.75

The results demonstrate an interesting trade-off 942

in our layer-wise adaptation mechanism. Without 943

adaptation, where hierarchical constraints are ap- 944

plied uniformly across layers, the model achieves 945

better proof complexity ratios across three bench- 946

marks but lower pass rates. This suggests that grad- 947

ually reducing the constraint strength in deeper lay- 948

ers through layer-wise adaptation (αl = 1− l/L) 949

helps achieve better proof success rates at the cost 950

of slightly longer proofs. The superior pass rates 951

across all benchmarks validate that our adaptive 952

approach effectively enhances the model’s theorem 953

proving capabilities while maintaining reasonable 954

proof complexity. Notably, even without layer-wise 955

adaptation, our hierarchical attention mechanism 956

still outperforms the baseline substantially in both 957

pass rates and proof complexity, demonstrating the 958

effectiveness of our basic hierarchical structure de- 959

sign. 960

13

https://huggingface.co/EleutherAI/pythia-2.8b
https://huggingface.co/EleutherAI/pythia-2.8b
https://doi.org/10.5281/zenodo.8016386
https://github.com/microsoft/DeepSpeed

A.4 Case Studies961

To demonstrate the effectiveness of our hierarchical962

attention mechanism in generating concise proofs,963

we present three representative examples from964

different mathematical domains in the miniF2F965

dataset.966

These examples showcase how our hierarchical967

attention mechanism improves proof generation968

across different mathematical domains. In Table 11,969

our model directly combines the function defini-970

tion with the given value, eliminating the need for971

intermediate expansion. Table 12 demonstrates972

improved pattern recognition, where our model973

directly applies the appropriate modular multipli-974

cation rule instead of decomposing the operation975

into addition. Table 13 shows enhanced tactic un-976

derstanding, combining function expansion with977

field simplification in a single step. The consistent978

reduction in proof steps across these diverse exam-979

ples demonstrates how our hierarchical attention980

mechanism enables better mathematical reasoning.981

Lean4 Statement

theorem mathd_algebra_148 (c : Real) (f : Real -> Real)

(h0 : ∀ x, f x = c * x^3 - 9 * x + 3)

(h1 : f 2 = 9) : c = 3

Baseline Proof

rw [h0] at h1 -- Substitute f(2) with its definition

linarith -- Solve the resulting equation c * 8 - 18 + 3 = 9

Our Proof

linarith only [h0 2, h1] -- Directly solve using h0 applied to 2 and h1

Table 11: Case Study 1: Basic Algebra Problem

Lean4 Statement

theorem mathd_numbertheory_185 (n : Nat)

(h0 : n % 5 = 3) : 2 * n % 5 = 1

Baseline Proof

rw [two_mul] -- Convert 2 * n to n + n

rw [Nat.add_mod, h0] -- Apply modular addition: (3 + 3) % 5 = 1

Our Proof

rw [Nat.mul_mod, h0] -- Apply modular multiplication: 2 * 3 % 5 = 1

Table 12: Case Study 2: Number Theory Problem

Lean4 Statement

theorem amc12a_2016_p3 (f : Real -> Real -> Real)

(h0 : ∀ x, ∀ (y) (_ : y != 0),

f x y = x - y * Int.floor (x / y)) :

f (3/8) (-(2/5)) = -(1/40)

Baseline Proof

simp [h0] -- Expand function definition

field_simp [two_ne_zero] -- Simplify rational expressions

norm_cast -- Convert between types

Our Proof

field_simp [h0] -- Combine function expansion and field simplification

norm_cast -- Convert between types

Table 13: Case Study 3: Advanced Algebra Problem

14

	Introduction
	Related Work
	Preliminaries
	Hierarchical Structure in Lean
	Information Flow

	Approach
	Extract Flow Pattern
	Algorithm Implementation

	Experiments
	Experimental Setup
	Main Results
	Visualization and Analysis of Attention Patterns
	Implementation of Limited Flow Constraint
	Effectiveness of Guided Flow Design
	Global Impact on Model Behavior

	Conclusion
	Appendix
	Training Details
	Evaluation algorithm
	Ablation Studies
	Case Studies

