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ABSTRACT

Symmetry-aware methods for machine learning, such as data augmentation and
equivariant architectures, encourage correct model behavior on all transforma-
tions (e.g. rotations or permutations) of the original dataset. These methods can
improve generalization and sample efficiency, under the assumption that the trans-
formed datapoints are highly probable, or “important”, under the test distribution.
In this work, we develop a method for critically evaluating this assumption. In par-
ticular, we propose a metric to quantify the amount of anisotropy, or symmetry-
breaking, in a dataset, via a two-sample neural classifier test that distinguishes
between the original dataset and its randomly augmented equivalent. We validate
our metric on synthetic datasets, and then use it to uncover surprisingly high de-
grees of anisotropy in several benchmark point cloud datasets. We show theoreti-
cally that distributional symmetry-breaking can actually prevent invariant methods
from performing optimally even when the underlying labels are truly invariant, as
we show for invariant ridge regression in the infinite feature limit. Empirically,
we find that the implication for symmetry-aware methods is dataset-dependent:
equivariant methods still impart benefits on some anisotropic datasets, but not
others. Overall, these findings suggest that understanding equivariance — both
when it works, and why — may require rethinking symmetry biases in the data.

1 INTRODUCTION

By integrating physical symmetries into the model architecture as group invariances, equivariant
neural networks often achieve superior performance across materials science (Liao et al., 2023),
robotics Wang et al. (2024a), drug discovery Igashov et al. (2024), fluid dynamics Wang et al.
(2021), computer vision Esteves et al. (2019), and beyond. The success of equivariant methods is
typically explained in terms of improved sample efficiency and generalizability, resulting from the
ability to relate data sample x and transformed data sample gx (Cohen & Welling, 2016). For g
a group symmetry transformation, such as a rotation or permutation, equivariant neural networks
NN are architecturally constrained such that NN(gx) = gNN(x), tying the predictions for x and
gx. Alternatively, data augmentation may be used to enforce equivariance by applying a random g to
each input x in the training set and its corresponding label. For all of these equivariance methods, it is
an explicit assumption that the ground truth function satisfies f(gx) = gf(x). However, there is also
often an implicit assumption that transformed samples gx occur relatively uniformly in distribution,
i.e. the input density p(x) ≈ p(gx). Theoretical results on the benefits of equivariance almost
always assume that x and gx are equally likely under the data distribution (Elesedy & Zaidi, 2021).

In this paper, we study distributional symmetry breaking (Wang et al., 2024d)—when a datapoint
x and its transform gx are not equally likely under the data distribution. This paper takes a step
towards the goal of understanding how distributional symmetry breaking affects the performance of
equivariant methods, including the ubiquitous practice of data augmentation. Intuitively, although
equivariance can help performance by providing the correct inductive bias on all transformations
of the input data, it may also discard useful information. For example, consider the oft-discussed
example of classifying “6”s and “9”s in the MNIST dataset. The two digits look very similar1 when

1Distributional symmetry breaking differs from functional symmetry breaking (Wang et al., 2024d), where
the mapping between inputs and outputs is not fully equivariant (e.g. during a phase transition in a material).
For the purposes of this paper, we treat “6” and “9” as distinct digits that simply look similar — distributional,
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Figure 1: (a) Distributional symmetry breaking: Baseballs are likely to occur in any orientation
in photos, and are therefore uniform across orbits. In contrast, coffee mugs are more likely to
appear with the handle on the side. The latter is an example of distributional symmetry breaking.
(b) Canonicalization: Canonicalization is when an object only ever appears in one, “canonical”,
orientation. This is the strongest form of distributional symmetry breaking. (c) Inherent vs. user-
defined canonicalization: Datapoints can be canonicalized for reasons that are inherent, such as the
orientation of a digit determining whether it is a 6 or a 9. However, it can also be user-defined, such
as the orientation of a crystal lattice, without any deeper connection to the data-generating process.

rotationally aligned, but are easily distinguishable under their naturally occurring orientations. Thus
under rotational augmentation, this task becomes much more difficult. In general, this discarded
orientation information may be inherent, such as the previous MNIST example, or user-defined,
such as the conventions used to orient crystal structures (Figure 1). In practice, Cohen et al. (2018)
demonstrated that rotational equivariance only improves performance on MNIST when the dataset
is artificially rotated. Thus at a high level, distributional symmetry breaking can impact how non-
equivariant methods perform relative to equivariant methods in-distribution.

Yet, quantifying the amount of symmetry breaking in a distribution remains challenging, particularly
in the absence of domain knowledge (Wang et al., 2024b; 2023; 2024d). We thus propose a metric
to measure the degree of distributional symmetry breaking, which can place a distribution on the
spectrum between fully symmetrized on one side, and fully canonicalized—where only a single
sample x in each orbit {gx}g∈G is in distribution—on the other (Figure 1). We hope this metric will
prove useful both as a practical, easily implementable tool for data exploration, and as a lens for
rethinking the more fundamental questions of why, and when, equivariant methods succeed.

Concretely, we propose a two-sample classifier test (Lopez-Paz & Oquab, 2017), in which a model
is trained to distinguish between samples from pX (the original data distribution) and p̄X (the aug-
mented data distribution) (Figure 2). The accuracy of this classifier on a held-out test set is a natural,
interpretable measure, between 0 and 1.0, of distance between pX and p̄X . This (1) allows for in-
terpretability methods (applied to the classifier itself), and (2) sidesteps the kernel selection required
by Chiu & Bloem-Reddy (2023) in their tests for distributional isotropy, offloading it to the less
impactful choice of architecture. Applying this metric to a variety of datasets, including QM9 (Wu
et al., 2017), revised MD17 (Christensen & von Lilienfeld, 2020), OC20 (Chanussot* et al., 2021),
and ModelNet40 (Wu et al., 2015), we find that all are highly non-uniform under 3D rotations.

Complementing these empirical findings, we provide nuanced theory on the trade-offs between dif-
ferent equivariant methods under distributional symmetry-breaking, and show equivariant methods
can be harmful depending on properties of the data distribution. We use ridge(less) regression as a
model, which captures some of the behavior of neural networks when applied in the neural tangent
kernel space (D’Ascoli et al., 2020; Atanasov et al., 2023; Jacot et al., 2018). We show that even
when the ground-truth function is invariant, data augmentation can be harmful when invariant and
non-invariant features are strongly correlated. As our main contributions, we:

• Define a flexible metric for measuring distributional symmetry breaking in a dataset (Section 2).
This is a tool for probing datasets’ symmetry biases without a priori knowledge of their creation.

• Provide a novel theoretical analysis of invariant ridge regression under distributional asymmetry,
showing that data augmentation sometimes hurts (Section 4).

• Use our metric to discover that point cloud benchmarks, including QM9 and ModelNet40, are
highly canonicalized (Section 5). We correspondingly evaluate the impact of equivariant methods
(augmentation, constrained architecture, and stochastic averaging), and find surprising results on
the relation to distributional symmetry breaking.

not functional, symmetry breaking. This is supported by the observation in e.g. Wang et al. (2024b) that they
can be correctly classified with high accuracy.
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Best 
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Figure 2: (left) Visualizations of unrotated samples from several materials datasets, with their canon-
icalization visible. (right) A classifier test for determining if a sample is from the original dataset,
or rotated. With no distributional symmetry breaking, then no classifier can achieve better than 50%
test accuracy. However, if the original dataset was fully canonicalized, the classifier can theoreti-
cally achieve perfect accuracy (for an infinite group; otherwise, 1− 1/(2|G|)).

Algorithm 1 Metric for Distributional Symmetry Breaking, m(pX)

1: Inputs: Unlabeled train/test sets Dtrain and Dtest, group G, binary classifier network NN
2: For split ∈ {train, test}:
3: Randomly divide Dsplit into equally sized Dsplit and D̃split

4: For each x ∈ D̃split, uniformly sample g ∼ G and apply g to x

5: Define classification dataset Dc
split := {(x, 0) : x ∈ Dsplit} ∪ {(x, 1) : x ∈ D̃split}

6: Train binary classifier NN on the dataset Dc
train with the standard BCE loss

7: Return NN’s test accuracy, E(x,c)∈Dc
test

[1 (NN(x) = c)]

2 PROPOSED METRIC

Consider data points x ∈ X drawn from a distribution pX , acted on by a compact group G. We
assume that there is a ground truth labeling function f : X → Y that is equivariant, i.e. f(gx) =
gf(x). We do not assume that pX(x) = pX(gx); instead, we wish to quantify the degree to which
pX breaks distributional symmetry by failing to satisfy this equality, i.e., to define a metric m(pX)
which measures how close pX is to symmetric. To this end, define the symmetrized density
p̄X(x) :=

∫
g∈G

pX(gx)dg. The density p̄X is the closest invariant distribution to pX : for any
G-invariant measure µ on X it minimizes

∫
x
(i(x)− pX(x))2dµ(x) over all invariant densities i.

We assume a dataset of samples from pX , and obtain samples from p̄X by applying random G-
augmentations. As our metric of distributional symmetry breaking, we now wish to approximate
some notion of distance d between pX and p̄X based on a finite number of samples — but this is not
straightforward to choose or compute.

Chiu & Bloem-Reddy (2023) set d to be the maximum mean discrepancy (MMD) with respect to
some choice of kernel, corresponding to a non-parametric two sample statistical test. However, there
is not always a clear choice of kernel. For example, for materials datasets of geometric graphs, Chiu
& Bloem-Reddy (2023) do not provide an applicable kernel that includes chemical information.
Rectifying this requires choosing a kernel suitable for X , which may be non-trivial, and as noted in
Lopez-Paz & Oquab (2017), may not return values in units that are directly interpretable.

We propose instead applying a two sample classifier test, a common tool for detecting and quanti-
fying distribution shift in machine learning (Lopez-Paz & Oquab, 2017). We train a small neural
network NN to distinguish between distributions as a binary classification task, and define the dis-
tance d between distributions as the test accuracy:

dclass(p0, p1) = Ec∼Bern( 1
2 )

Ex∼pc

[
1
(
NN(x) = c

)]
.

Our metric is then m(pX) := dclass(pX , p̄X). Concretely, we construct a binary classification
dataset from an original dataset as shown in Figure 2 and Algorithm 1, with half of the dataset
transformed by random group elements (label 1), and the rest unchanged (label 0).

3
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Interpretation of m(pX) The trained classifier’s test accuracy is easily interpretable, reflecting
how often it can distinguish between the original and symmetrized distributions. If pX is already
group-invariant, then pX = p̄X and no network can reliably distinguish between samples from the
two, so m(pX) ≈ 1/2. If in contrast pX is canonicalized in a discernable way, then m(pX) ≈ 1.

To build intuition for how m(pX) interpolates between these two extremes, let us also compute
it for the case of a finite group, with a dataset consisting of a single orbit {gx1 : g ∈ G} :=
{x1, x2, . . . xr}. Parametrize the data distribution as p(xi) = θi,

∑
i θi = 1. What is the optimal

classification accuracy between a uniform distribution over x1, x2, . . . xr (class 1), and p (class 0),
under infinite samples? For each i, the optimal classifier assigns 1 if 1

r > θi, and 0 otherwise. The
resulting optimal accuracy is c(pX) := 1 − 1

2

∑r
i=1 min( 1r , θi). For example, for a multimodal

distribution with probability mass equally distributed among m modes, the best possible accuracy
is 1 − m

2r , which interpolates between 1
2 when m = r and 1 − 1

2r for a perfectly canonicalized
distribution. In this analysis, we have assumed infinite samples, an adequately expressive NN, and
perfect optimization (although it is accurate for MNIST; see section 5). In reality, these factors will
affect m(pX), although ablations (Table 6) indicate little sensitivity to the size of NN. For an infinite
group (e.g. SO(3)), we instead have m(pX) ≤ 1, and rely on a validation set to avoid overfitting.

3 RELATED WORK

Learning symmetry breaking Several works seek to discover functional symmetry breaking, where
the task may be only partially, rather than fully equivariant, i.e. there are some x and g such that
f(gx) ̸= gf(x) (Wang et al., 2024d; Finzi et al., 2021; McNeela, 2023; Hofgard et al., 2024; Smidt
et al., 2021; Urbano & Romero, 2024a). We distinguish this (more common) notion from our focus,
distributional symmetry breaking(p(x) ̸= p(gx)), which Wang et al. (2023; 2024c) showed can
harm the performance of equivariant models. Indeed, several works proposing equivariant methods
have noted that the improvement of their method relative to baselines relies on applying test-time
augmentations (Cohen et al., 2018; Kaba et al., 2023). This motivates our method.

Learning how to augment Learning an augmentation distribution is one way to address either
kind of symmetry breaking. Benton et al. (2020) address functional symmetry breaking by learning
an augmentation distribution. For example, Miao et al. (2023) encode an input using an invariant
network, then use this encoding to sample from a learned distribution, feeding randomly transformed
inputs into a classifier. Urbano & Romero (2024b) pursue a similar goal in a self-supervised setting,
and show their method can be used to canonicalize data, or detect when an input is transformed
out of distribution. Learning to predict transformations applied to data, which is possible only with
distributional symmetry breaking, was proposed for representation learning by Gidaris et al. (2018).

Detecting distributional symmetry In the unsupervised setting, Desai et al. (2022) and Yang et al.
(2023) train discriminative networks for symmetry discovery in a similar way to our binary classifier,
but do not produce a quantitative measure of distributional asymmetry on benchmarks. Chiu &
Bloem-Reddy (2023) consider non-parametric hypothesis tests for distributional symmetry, and use
the distance between the group-averaged and original distributions as the test statistic. Soleymani
et al. (2025) devise a robust kernel test for invariance, where a witness g ∈ G must be provided
to prove p is non-invariant. Charvin et al. (2023) propose an information theoretic framework for
detecting distributional equivariance (rather than invariance, as we consider here).

Pros and cons of invariant methods Our theoretical work follows up on Elesedy & Zaidi (2021);
Chen et al. (2020), who show that when px is invariant, symmetrization or data augmentation im-
prove risk. Most existing work that studies the benefits of invariance in over-parameterized settings
similar to ours also assumes invariant px (Mei et al., 2021; Bietti et al., 2021). On the limitations
of invariant methods, Shao et al. (2024) established that any equivariant algorithm applied to extrin-
sically equivariant data, under certain assumptions on the hypothesis class, cannot obtain optimal
sample complexity in terms of PAC learnability. Lin et al. (2024); Huang et al. (2025) also study
unexpected effects of data augmentation, although not focusing on the effects of symmetry.

4 THEORY: INVARIANT REGRESSION UNDER DATA ASYMMETRY

To exhibit the subtleties of distributional symmetry-breaking, we analyze high-dimensional ridge
regression under non-symmetric covariance. We show that even when the ground-truth function is
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invariant, data augmentation and symmetrization can be harmful when invariant and non-invariant
features are strongly correlated. This is intuitive: a non-invariant feature is useful for an invariant
task if it correlates well with an invariant feature used by the ground truth function, and augmentation
makes such a non-invariant feature unusable. Perhaps surprisingly, data augmentation is always
helpful in the under-parameterized regime, while in the over-parameterized regime it can be harmful
even when data is isotropic (as noted by Huang et al. (2025)).

Suppose G ≤ O(d) acts linearly on Rd, and let yi = x⊤
i β + ϵi for i.i.d. xi ∼ N (0,Σ), ϵi ∼

N (0, σ2), and invariant2 ground truth β (i.e. gβ = β for all g ∈ G). Importantly, we do not assume
gΣg⊤ = Σ (so px may not be invariant). Given data {(xi, yi)}ni=1 and λ > 0, we consider the ridge
regression problem, β̂λ = argminβ

1
n∥y−X

⊤β∥2+λ∥β∥2 = (Σ̂+λI)−1Σ̂yx where Σ̂ = X⊤X/n

and Σ̂yx = X⊤y/n for X ∈ Rn×d the matrix of samples and y ∈ Rn the label vector.

There are several natural approaches to enforcing invariance. Under the standard inner product,
Rd decomposes into two orthogonal subspaces V0 and V⊥, where V0 is the d0-dimensional set of
vectors invariant to G. In the first approach, Elesedy & Zaidi (2021) consider test-time symmetriza-
tion, Eg[gβ̂] = P0β̂, where P0 is the orthogonal projection onto V0. The second approach is to use
only the invariant features in the data, β̂λ,inv = argminβ

1
n∥y − (XP0)

⊤β∥2 + λ∥β∥2 = (Σ̂inv +

λI)−1Σ̂yx,inv where Σ̂inv = (XP0)
⊤XP0/n = P0Σ̂P0 and Σ̂yx,inv = (XP0)

⊤y/n = P0Σ̂yx. In
the linear setting, this turns out to be the same as ridge regression when (1) restricting β to be invari-
ant, or (2) under infinite data augmentation, i.e. the model sees (gxi, y) ∀g ∈ G (Appendix A.2).

For any estimator β̂, we are interested in its generalization error (or risk) on unseen data. Condi-
tioned on the input data X , it takes the form RX(β̂) = Ex,ϵ[(x

⊤β−x⊤β̂)2|X] = Eϵ[∥β− β̂∥2Σ|X],
where ∥β∥2Σ = β⊤Σβ. Elesedy & Zaidi (2021) prove that when px is invariant, one can always do
better by symmetrizing at test time: EX [RX(P0β̂)] ≤ EX [RX(β̂)] (even for non-linear predictors).
In our attempt to see what changes when px is not invariant, we find:

• Under-parametrized ridgeless regime: When d < n − 1 and λ → 0, correlations between
invariant and non-invariant features can drive EX [RX(P0β̂)], the risk of test-time symmetrization,
to infinity. But surprisingly, data augmentation is helpful regardless of any asymmetry in px.

• Over-parametrized regime: When d > n, we use a minimal model to show data augmenta-
tion can be harmful when there are strong correlations, particularly when they lie in a space of
dimension significantly smaller than d.

4.1 THE UNDER-PARAMETERIZED RIDGELESS REGIME

Using straightforward expressions for the bias-variance decomposition (see Lemma 1, Appendix),
we show that data augmentation always improves generalization when d < n− 1 and λ→ 0.
Theorem 1. In the under-parameterized ridgeless setting, assuming Σ is full-rank, E[RX(β̂)] =

σ2d
n−d−1 ≥ E[RX(β̂inv)] =

σ2d0

n−d0−1 , so augmentation helps. In contrast, for test-time symmetrization

we have E[RX(P0β̂)] =
σ2

n−d−1 Tr(Σ
−1Σinv) ≥ σ2d0

n−d−1 , with equality when px is invariant.

While Elesedy & Zaidi (2021, Theorem 7) prove a non-negative gap for test-time symmetrization
when px is invariant, we see its risk can be much larger than that of regular (unconstrained) linear re-
gression, when Σ−1 does not “align” with Σinv. (This is illustrated in an example in Appendix A.5.)

4.2 THE OVER-PARAMETERIZED REGIME

We next consider d > n, taking the regime n, d → ∞ and d/n → γ > 1 to get deterministic
estimates of the risk (assuming Σ has bounded spectrum). Using random matrix theory (Atanasov
et al., 2024b; Bach, 2024b), we characterize the asymptotic risk for test symmetrization and data
augmentation (Appendix A.6).3 As a first consequence, we show data augmentation leads to a

2While such a β must be 0 if G = O(d), the same is not true for G ≤ O(d), e.g. G a subgroup of the
permutation group that acts on only a subspace of Rd.

3This involves a version of the “two-point” deterministic equivalence studied by Atanasov et al. (2024a), of
which we provide a different proof.
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Table 1: Comparison of train/test augmentation, group-averaged, and equivariant models across
datasets. Augmentation settings are: TT = train+test, TF = train only, FT = test only, FF = none. For
MNIST we use a C4 group-averaged model; for other datasets we use a stochastic group-averaged
model. MAE is reported for QM7b and QM9, with equivariant baselines from e3nn Geiger et al.
(2022). Best overall results are in bold; best within augmentation settings are underlined. We use
a CNN for MNIST and a graph transformer for point cloud datasets (Shi et al., 2022; Ying et al.,
2021). See Figure 10 for results relative to the FF baseline.

Setting / Dataset QM7b µ⃗ QM7b αiso QM9 Cv QM9 |µ⃗| QM9 ∆ε MNIST (%) ModelNet40
Units a.u. (↓) a3

0 (↓) cal/mol K (↓) D (↓) eV (↓) % (↑) % (↑)

Equivariant 0.043 0.662 0.119 0.139 0.153 97.8 60.08

Group Averaged 0.044 0.500 0.128 0.216 0.170 97.8 60.12

TT 0.055 0.523 0.157 0.263 0.183 96.35 61.89
FF 0.104 0.695 0.158 0.291 0.195 98.89 78.65
TF 0.054 0.522 0.154 0.262 0.183 96.56 62.75
FT 0.16 1.185 0.207 0.412 0.260 40.41 16.48

Classifier Metric (%) 89.93 97.6 87.50 92.45

blow-up in risk even when px is perfectly symmetric, at the interpolation threshold d0/n→ γ0 = 1,
where effective dimension equals sample size (see Hastie et al. (2022) for the classical case γ → 1).

Theorem 2. For identity covariance Σ = I , in the λ→ 0 limit we have asymptotic risk R(β̂inv) =
(1− γ−1

0 ) + σ2(γ−1
0 /(1− γ−1

0 )), which explodes as γ0 → 1.

We now suppose γ0 > 1, i.e. there are many possible invariant features to choose from. To more
carefully study effects of correlations between invariant and non-invariant features, we consider a
minimal model for the covariance. Letting dc < min(d0, d− d0) be the number of strong “coupling
modes,” let Σ = (σc − σw)

∑dc

k=1 uku
⊤
k + σwI , where σc > σw are the coupling and weak (or

“white”) eigenvalues, and uk = (v0,k + v⊥,k)/
√
2 are perfect superpositions of orthogonal basis

elements of V0 and V⊥. We consider σw → 0 as the limit of strong correlations. We find that when
# correlational modes << ambient dimension, data augmentation will perform worse.

Theorem 3. Let dc/n → γc and consider the ridgeless limit λ → 0, and n, d → ∞. In the limit
of strong correlations: (i) if γc < 1, both methods are unbiased and data augmentation has larger
variance; (ii) For γc > 1, both methods have bias C(β)∥β∥2(γc − 1)/2γc where C(β) (eq. (53))
is an explicit constant measuring how much of β lies in the coupling subspace, and if moreover
γ0 − γc/2 < 1/2, then data augmentation has larger variance for small σw > 0.

5 EXPERIMENTS

Our theoretical analysis suggests that equivariant methods can sometimes be detrimental under dis-
tributional symmetry breaking; we now investigate this phenomenon on widely-used datasets. Our
experiments serve multiple goals. First, we validate m(pX) by synthetically augmenting subsets of
MNIST, verifying that m(pX) has the correct behavior. Second, we compute our metric, m(pX), to
investigate the degree of distributional symmetry breaking in several benchmark datasets, and detect
high levels of distributional symmetry breaking. We then compare equivariant and non-equivariant
methods on the datasets’ associated regression tasks, testing the applicability of our theory. We
expect that, due to the distribution shift induced by augmentation on highly canonicalized datasets,
training augmentation will hurt performance. Surprisingly, however, this is not the case for QM7b
and QM9. These counterintuitive results motivate further investigation of task-dependent and local
distributional symmetry breaking. Most of these results are contained in Table 1, and additional
experimental details and results can be found in Appendix C. We now discuss each dataset in turn.

We start with MNIST (Deng, 2012), where digits should intuitively be mostly canonicalized with
respect to 90◦ rotations (C4). m(pX) verifies this, showing that transformed and untransformed sam-
ples can be distinguished with nearly optimal (1− 1

2∗4 = 87.5%) accuracy (matching the calculation
from Section 2). We further sanity check m(pX) by rotating p-fractions of the dataset (Figure 13),
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where it achieves nearly optimal accuracy at intermediate levels of canonicalization, too. This is
a relatively easy task, so there is not a large difference between augmentation settings, yet the FF
setting does perform slightly better, see Appendix C.2. This behavior is also seen in ModelNet40.

Moving from 2D images to 3D shape classification, ModelNet40 (Wu et al., 2015) provides a more
complex benchmark dataset for shape recognition consisting of 12,311 CAD models across 40 com-
mon object categories. The version most commonly used in recent works is a pre-aligned variant
(Sedaghat et al., 2016), as confirmed by high m(pX). We also apply the metric per class (Figure 3),
indicating that certain classes are more canonicalized than others. Consistent with our intuition, the
FF setting outperforms other augmentation strategies, demonstrating that here augmenting destroys
useful information and makes the learning task harder.

Shifting to molecular property prediction, QM9 consists of 133k small stable organic molecules
with ≤ 9 heavy atoms, together with scalar quantum mechanical properties (Ramakrishnan et al.,
2014; Wu et al., 2017). m(pX) shows that QM9 is highly canonicalized with respect to ro-
tations (see also Figure 2). The molecular conformers were generated using the commercial
software CORINA Wu et al. (2017), which contains options to align SMILES strings by de-
fault (Sadowski et al., 1994; Schwab, 2010; Molecular Networks Altamira), an example of user-
defined canonicalization (as in Figure 1) where we do not have direct accces to the canonical-
ization function. Analyzing the decision boundary of m(pX) allows for fine-grained analysis
of this unknown canonicalization, and can be used to probe the canonicalization for disconti-
nuities (see Appendix C.4). We find that the degree to which equivariance is beneficial varies
per property (also seen in e.g. Liao & Smidt (2022); see Appendix C.4 for additional proper-
ties), yet for nearly all properties, training augmentation/equivariance still helps performance!
We next consider a molecular dataset that has non-scalar labels to further study this behavior.
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Figure 3: ModelNet40 m(pX) his-
togram over classes.

QM7b is a 7,211 molecule subset of GDB-13 (a database of
stable and synthetically accessible organic molecules) com-
posed of molecules with ≤ 7 heavy atoms (Blum & Reymond,
2009; Montavon et al., 2013). We use a version of the dataset
(Yang et al., 2019) containing non-scalar material response
properties to explore how distributional symmetry breaking
affects higher order geometric quantities. m(pX) shows this
dataset has a high degree of distributional symmetry breaking,
which we believe follows from pre-processing steps reported
in Yang et al. (2019), such as using a kernel-based similarity
metric to arrange atoms. We find that equivariance and aug-
mentation are particularly beneficial for predicting the vector
dipole moment (µ⃗), more so than for scalar properties in the dataset (see Figure 10); nevertheless,
augmentation again improves performance for both types of properties. Thus, we see an unexpected
discrepancy between MNIST/ModelNet40 and QM9/QM7b.

5.1 ADDITIONAL LARGE-SCALE MATERIALS DATASETS
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Figure 4: Test accuracy vs ro-
tated fraction for aspirin and
ethanol from rMD17, OC20 sur-
face+adsorbate, OC20 adsorbate,
and QM9.

We quantify distributional symmetry breaking in additional
materials science datasets (including an LLM dataset) to
demonstrate the utility of m(pX).

We explore two larger scale materials benchmarking datasets
for predicting molecular energies and forces (rMD17, con-
taining 100k structures from molecular dynamics simulations,
and OC20, consisting of adsorbates placed on periodic crys-
talline catalysts (Christensen & von Lilienfeld, 2020; Chanus-
sot* et al., 2021)). Interestingly, the degree of distributional
symmetry breaking varies widely between molecules in MD17
(, seeFigure 34 for all molecules). We hypothesize that this is
both due to the initial conditions for the simulation, and the
differing physical structures of each molecule. For OC20, both
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m(pX) Local QM9 Global QM9

Original 67.6% 98.5%
Rotated 49.9% 49.5%
Canonicalized 99.8% 99.8%

N m(pX) (5 runs)

10 55.6% ± 8.44
50 72.7% ± 4.51
100 81.5% ± 4.79
200 88.8% ± 0.62
500 93.6% ± 0.39
700 96.5% ± 0.12
1024 (global) 96.6% ± 0.04

Figure 5: Left: The local QM9 dataset (top) and results (bottom). Right: Local ModelNet40 results.

the adsorbate and the adsorbate + catalyst are highly canonicalized, likely due to the catalyst’s align-
ment with the xy plane.

Finally, we explore an LLM materials dataset, as there is growing interest training large language
models (LLMs) on diverse datatypes, including molecular data. To this end, Gruver et al. (2024)
convert crystals into a text format, which requires listing their atoms in some ordering, and then
train an LLM to generate new crystal structures. The authors independently noted that permutation
augmentations hurt generative performance (their Appendix A.1), even though the task is ostensibly
permutation invariant. We postulated that this phenomenon was due to distributional symmetry-
breaking, i.e. conventions in the generation of atom order. We thus trained a classifier head on
a pretrained DistilBERT transformer to distinguish between permuted and unpermuted datapoints,
and found m(pX) = 95% accuracy. (Indeed, their Figure 2 reveals clear ordering in the atoms; but
with thousands of datapoints, a systematic test is useful for quantitative verification.)

In summary, our experiments show that many benchmark point cloud datasets are secretly quite
aligned (or, nearly canonicalized4). Perhaps the most mysterious takeaway from our experiments is
that, even though all datasets have high degrees of distributional asymmetry, the relative performance
of data augmentation varies by dataset. In particular, train-time augmentation on ModelNet40 and
MNIST hurt test-time performance on the unaugmented test set (“TF”) relative to training without
augmentations (“FF”), which makes sense from a distribution shift perspective. Yet, train-time
augmentation on QM9 helps even on the unaugmented test set! In the following sections, we explore
possible mechanisms behind this phenomenon.

5.2 TASK-DEPENDENT METRIC

The value m(pX) determines whether there is discernible lack of uniformity over group transfor-
mations in the unlabeled dataset. However, it does not capture whether that distributional symmetry
breaking (e.g. preferred orientations) is correlated with the specific task labels, such as in the case
of MNIST 6s/9s. If it does, then we hypothesize that augmenting is a poor choice, as it discards
task-relevant information contained in the exact position within the orbit. Towards this goal, we
briefly introduce a metric of task-useful distributional symmetry breaking (see Appendix B for full
details). Let c : X → G be a canonicalization function, denoting where on each orbit x is. Since
data augmentation destroys any information contained in c(x), we wish to understand the depen-
dence between orientations c(x) and labels y(x). Inspired by the mutual information, we compute
the classifier distance dclass

(
(c(x), f(x)), (c(x), f(x′))

)
. In other words, we train a small network

to classify whether pairs of group elements and labels are mismatched.5

Swiss Roll As shown in Figure 7, the swiss roll dataset consists of two interleaved spirals (Wang
et al., 2024b). The spirals have distinct z values, so they are easily separable by a horizontal plane.
However, there is also a more complex function fitting the data that is invariant to z-shifts (the group
Z2). Following (Wang et al., 2024b), we create a continuous family of datasets in which only a

4Although high m(pX) does not precisely mean the datasets are perfectly canonicalized, particularly for
infinite groups like SO(3), it does mean that datapoints have clear, sparse preferred orientations.

5In Appendix B.3, we show that this metric is closely related to the accuracy of predicting f(x) directly
from c(x). This is in turn closely related to the concepts of V-information (Xu & Raginsky, 2017) and the
information bottleneck (via the canonicalization) (Tishby et al., 1999).
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p-fraction of one spiral are separated vertically. This creates a spectrum of tasks, where p = 1 is
canonicalized in a task-useful way, whereas p = 0 is not. We find that augmentation of a simple
MLP indeed hurts performance on this task, with the effect increasing along with p (Figure 8). This
is captured by the task-dependent metrics, which increases along with p.

Limitations on other datasets As shown in Appendix B, the task-dependent metric is inconclu-
sive on other datasets, possibly owing to its high sensitivity to architecture (Table 3 and Table 2).
Further exploring task-dependent canonicalization is an interesting avenue for future work.

5.3 LOCALITY EXPERIMENTS

One hypothesis for the effectiveness of equivariant methods is that the features are equivariant func-
tions of their receptive fields, meaning equivariant CNNs and GNNs naturally have local equivari-
ance (Musaelian et al., 2023). The idea is that it may be useful to compute locally equivariant fea-
tures, e.g. featurizations of small, recurrent chemical motifs in molecules, rather than just globally
equivariant features (Du et al., 2022; Lippmann et al., 2025). This provides a plausible explanation
for the effectiveness of equivariant methods on highly canonicalized datasets such as QM9. More-
over, augmenting inputs to a local (e.g. message-passing) architecture implicitly conveys a bias
towards local equivariance. While it is challenging to establish a causal link, we can at least use
m(pX) to quantify the hypothesis that local motifs are comparatively more isotropic in orientation.

Concretely, we generate the local QM9 dataset by extracting local neighborhoods (by bonds) from
each molecule in QM9. In Figure 5, we compare m(pX) between local and ordinary QM9 in three
settings: the original datasets (exploration), and under random rotation and manual canonicaliza-
tion (as sanity checks, which should yield 50% and 100%, respectively). We find that the detection
accuracy is much lower for local QM9, indicating a lower degree of local distributional symmetry
breaking! For ModelNet40, we analogously constructed a local dataset by randomly selecting one
point from each original, 1024-point point cloud, and then collecting its N nearest neighbors. When
the number of sampled points is small, the metric drops significantly, indicating that local regions of
the point clouds are not inherently canonicalized; this effect reduces with the size of the neighbor-
hood. Overall, these findings suggest that the distributional symmetry-breaking present in several
point cloud benchmark datasets is far weaker at the local scale, and may partially explain the success
of rotationally equivariant methods on canonicalized datasets.

6 CONCLUSION

In this work, we aimed to provide both empirical and theoretical analysis of distributional asym-
metry and its implications for learning. Our interpretable metrics quantify the degree of symmetry-
breaking present in a dataset without using any specific knowledge of the domain. Perhaps surpris-
ingly, experiments revealed a high degree of symmetry-breaking in every benchmark dataset, yet
augmentation only impeded (test) performance for ModelNet40 and MNIST.

Overall, these findings have intriguing implications for equivariant learning. First, they affirm that
if evaluated only on in-distribution validation data, non-equivariant models may appear accurate,
yet fail to generalize under transformations. (Assessing whether this is problematic requires do-
main expertise, however.) Moreover, applying canonicalization to data has been proposed as a
flexible method for making black-box models globally equivariant (Kaba et al., 2023). However, if
molecular datasets both are already canonicalized and still experience benefits from augmentation
and equivariance, this suggests that they provide some additional, possibly domain-specific benefit
beyond global equivariance that is currently unexplained. Finally, data augmentation is often consid-
ered universally beneficial for invariant tasks, yet we show that it can sometimes hurt performance
on the test set.

Future Work Predicting when and why different data augmentations can benefit learning, even in
the case of nearly canonicalized data, is a useful future direction. For example, one could examine
whether distributional asymmetry beneficially reduces function space complexity, e.g. covering
number.
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Reproducibility Statement We describe experimental and model details in C. We also include
our code with our submission and plan to make the code public.
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Taco S. Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical CNNs. In International
Conference on Learning Representations, 2018. URL https://openreview.net/forum?
id=Hkbd5xZRb.

T.S. Cohen and M. Welling. Group equivariant convolutional networks. In Proceedings of the
International Conference on Machine Learning (ICML), 2016.
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A THEORY

In this section, we elaborate on the theory of the main paper, including both more context and proofs
of results. The earlier parts are dedicated to our study of ridge regression in Section 4.

• Appendix A.1: we review the result of Elesedy & Zaidi (2021), which says that when
data is invariant in distribution, test symmetrization always improves generalization error.
(Unlike our analysis, this holds even in the non-linear setting.)

• Appendix A.2: we show that using invariant features, or equivalently, restricting to invariant
estimators — which we call training symmetrization — is equivalent to data augmentation
in the ridge regression setting.

• Appendix A.3: we record the bias-variance decompositions of risk for vanilla ridge regres-
sions, test-time symmetrization, and data augmentation.

• Appendix A.4: we prove Theorem 1, which generalizes Elesedy & Zaidi (2021, Theorem
7) to non-invariant data, and to data augmentation.

• Appendix A.5: we demonstrate in an explicit example that test-time symmetrization can ar-
bitrarily increase risk when the data distribution is not invariant (in the under-parameterized
regime).

• Appendix A.6: using random matrix theory, we derive asymptotic expressions (“determin-
istic equivalents”) for the bias and variance of each of our three estimators in the over-
parameterized regime. Theorem 2 is a direct corollary.

• Appendix A.7: we analytically study our minimal model of covariance, proving Theorem 3.
We confirm our results empirically, as shown in Figure 6.

A.1 REVIEW OF THE GENERALIZATION GAP OF ELESEDY & ZAIDI (2021)

Consider data (x, y) ∈ Rd × R generated as y = f∗(x) + ϵ for x ∼ px, a ground-truth invariant
function f∗, and independent mean-zero finite-variance noise ϵ. Considering L2 loss, the excess risk
of a given function f (say the result of learning on some fixed training dataset) is

R(f) = E[(y − f(x))2]− E[(y − f∗(x))2] = E[(f(x)− f∗(x))2] (1)
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Figure 6: Results of ridge(less) regression in our minimal model, with mean and standard deviation
across 200 trials for each value of σw. In agreement with our theory, in the σw → 0 limit of
strong correlations between invariant and non-invariant features, data augmentation is harmful. See
Appendix A.7.2 for details on the group and hyperparameters.

since E[ϵ(f(x) − f∗(x)] = 0. We define a new inner product on functions, ⟨f1, f2⟩px
=

E[f1(x)f2(x)]. The excess risk of f is then ∥f − f∗∥2px
, with the norm induced by this inner

product.

Let f̄(x) = Eg[f(gx)] be the symmetrization of f with respect to uniformly random g ∈ G. We can
think of this as test-time augmentation. We can ask what the difference is between the excess risk
of f and f̄ ,

∆(f, f̄) := ∥f − f∗∥2px
− ∥f̄ − f∗∥2px

= −2
〈
f∗ − f̄ , f − f̄

〉
px

+ ∥f − f̄∥2px
. (2)

Elesedy and Zaidi show that when x is invariant in distribution, f − f̄ is orthogonal (in the inner
product defined above) to invariant functions, and thus in particular to f∗−f̄ . In this case ∆(f, f̄) ≥
0, meaning for any f one can always achieve better generalization using f̄ . When px is not invariant,
however, the inner product might make the overall expression negative. This case thus warrants
further investigation.

A.2 EQUIVALENCE OF TRAINING SYMMETRIZATION AND DATA AUGMENTATION

We consider the estimator obtained by infinitely many augmentations,

β̂λ,aug = argmin
β

1

n

n∑
i=1

Eg[(yi − (gxi)
⊤β)2] + λ∥β∥2 = (Σ̂aug + λI)−1Σ̂yx,inv (3)

where Σ̂aug = Eg[gΣ̂g
⊤]. As a linear map Rd → Rd, Σ̂aug is equivariant, so by Schur’s lemma

it is block-diagonal in V0, V⊥ (or more generally, in irreps). Since Σ̂yx,inv is non-zero only in the
V0 component, (Σ̂aug + λI)−1Σ̂yx,inv = (Σ̂inv + λI)−1Σ̂yx,inv, and thus β̂λ,aug = β̂λ,inv. We
therefore refer to β̂λ,inv interchangeably as using data augmentation or invariant features.

A.3 BIAS-VARIANCE DECOMPOSITIONS

The risk of any estimator β̂ has a bias-variance decomposition RX(β̂) = BX(β̂) + VX(β̂) with

BX(β̂) =
∥∥∥E
[
β̂ | X

]
− β

∥∥∥2
Σ

VX(β̂) = Tr(Cov(β̂ | X)Σ) (4)

In the case of vanilla ridge(less) regression, the expressions above have well-known and easily de-
rived forms (Bach, 2024a; Hastie et al., 2022). We list the equivalent expressions for test-time
symmetrization and data augmentation below. The proof is standard, being a simple expansion of
definitions. One may notice that the expressions are the same as the vanilla case except (1) test-time
symmetrization replaces Σ with Σinv = P0ΣP0, and (2) data augmentation replaces Σ̂ with Σ̂inv.
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Lemma 1. For unaugmented ridge(less) regression, the bias and variance terms are standard:

BX(β̂λ) = λ2β⊤(Σ̂ + λI)−1Σ(Σ̂ + λI)−1β VX(β̂λ) =
σ2

n
Tr(Σ̂(Σ̂ + λI)−2Σ) (5)

BX(β̂) = β⊤ΠΣΠβ VX(β̂) =
σ2

n
Tr(Σ̂+Σ) (6)

where Π = I − Σ̂+Σ̂ projects onto the null space of X . Test-time symmetrization gives

BX(P0β̂λ) = λ2β⊤(Σ̂ + λI)−1Σinv(Σ̂ + λI)−1β VX(P0β̂λ) =
σ2

n
Tr(Σ̂(Σ̂ + λI)−2Σinv)

(7)

BX(P0β̂) = β⊤ΠΣinvΠβ VX(P0β̂) =
σ2

n
Tr(Σ̂+Σinv), (8)

whereas for invariant features and data augmentation, we obtain

BX(β̂λ,inv) = λ2β⊤(Σ̂inv + λI)−1Σ(Σ̂inv + λI)−1β VX(β̂λ,inv) =
σ2

n
Tr(Σ̂inv(Σ̂inv + λI)−2Σ)

(9)

BX(β̂inv) = β⊤ΠinvΣΠinvβ VX(β̂inv) =
σ2

n
Tr((Σ̂inv)

+Σ), (10)

where Πinv = P0 − (Σ̂inv)
+Σ̂inv. In latter case, we note that every instance of Σ can equivalently

be replaced with Σinv, being multiplied “on both sides” by invariant objects.

A.4 PROOF OF THEOREM 1

When d < n − 1, the matrices Π and Πinv defined in Lemma 1 are almost surely equal to the
zero matrix. Thus the vanilla, test-time symmetrization, and data augmentation estimators are all
unbiased, and we compare only their variances.

Having assumed xi ∼ N (0,Σ), the empirical covariance is a scaling of Wishart-distributed matrix:
nΣ̂ ∼ W(Σ, n). Since Σ is full rank, the standard form for the expectation of the inverse Wishart
1
n Σ̂

−1 ∼ W−1(Σ−1, n) gives

E[Σ̂−1] =
nΣ−1

n− d− 1
⇒ E[VX(β̂)] =

σ2 Tr(Σ−1Σ)

n− d− 1
=

σ2d

n− d− 1
. (11)

For test-time symmetrization, note that the trace term in the variance only depends on V0 components
of the inverse empirical covariance: Tr(Σ̂−1Σinv) = Tr(P0Σ̂

−1P0Σinv). We thus use the fact that
diagonal sub-matrices of inverse-Wishart matrices are inverse-Wishart of a certain form. Letting V
be the change of basis matrix into V0, V⊥, so that any matrix M can be written as

V ⊤MV =

(
M00 M0⊥
M⊥0 M⊥⊥

)
, (12)

we have nV ⊤Σ̂V ∼ W(V ⊤ΣV, n) and 1
n (Σ̂

−1)00 ∼ W−1((Σ−1)00, n−d⊥) where d⊥ = dimV⊥.
We thus have

E[VX(P0β̂)] =
σ2 Tr((Σ−1)00Σ00)

(n− d⊥)− d0 − 1
=

σ2 Tr(Σ−1Σinv)

n− d− 1
. (13)

For invariant features, the relevant trace term is Tr((Σ̂inv)
+Σinv) = Tr((Σ̂00)

−1Σ00). The result
follows the same logic as in the vanilla case: nΣ̂00 ∼ W(Σ00, n), and thus

E[(Σ̂00)
−1] =

n(Σ00)
−1

n− d0 − 1
⇒ E[VX(β̂inv)] =

σ2 Tr((Σ00)
−1(Σ00))

n− d0 − 1
=

σ2d0
n− d0 − 1

. (14)
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A.5 PERMUTATION EXAMPLE

Consider the case of G = S3 acting on three-dimensional inputs x ∈ R3 by permuting coordinates.
Let V be the change of basis matrix into the G-invariant subspaces V0, V⊥, and write M00 for the
(V0, V0)-block of V ⊤MV . We then consider a covariance

V ⊤ΣV =

σ2
inv ρ ρ
ρ 1 τ
ρ τ 1

 ⇒ (Σ−1)00 =
1

σ2
inv −

2ρ2

1+τ

(15)

such that Tr(Σ−1Σinv) =
(
1− 2ρ2

σ2
inv(1+τ)

)−1

. This term is large when |ρ|, the correlation strength

between invariant and non-invariant features, is large compared to the invariant signal σ2
inv. In

particular, we have E[RX(β̂)] < E[RX(P0β̂)]→∞ as 2ρ2 grows from 2
3σ

2
inv(1+τ) to σ2

inv(1+τ).

While we do not do so here, this example can be extended to general G and Σ by using the Schur
complement formula for (Σ−1)00, in which case the “size” of Σ0⊥ in the Loewner order plays the
role of the correlation ρ.

A.6 DETERMINISTIC EQUIVALENTS FOR BIAS AND VARIANCE

In the proportional asymptotic regime, where n, d → ∞ and d/n → γ, we leverage the notion of
deterministic equivalence of possibly random matrices An and Bn. In particular, we write An ≃ Bn

when for any matrices Cn of bounded trace norm,

|Tr((An −Bn)Cn)| → 0. (16)

In our derivations below, we take advantage of the “calculus of deterministic equivalents” as devel-
oped by Dobriban & Sheng (2018); Sheng & Dobriban (2020), as well as proof techniques of Hastie
et al. (2022), which in turn rely on the generalized Marchenko-Pastur theorem of Rubio & Mestre
(2011). We also utilize the notions of first- and second-order degrees of freedom, df1 and df2, used
by Atanasov et al. (2024b); Bach (2024b),6 and introduced by Caponnetto & De Vito (2007) as
“effective dimension.”

Our goal is to find deterministic equivalents for the matrix products appearing in the bias and vari-
ance expressions in Lemma 1 (for λ > 0), which all take the two forms

Bµν = λ2β⊤(Σ̂µ + λI)−1Σν(Σ̂µ + λI)−1β Vµν =
σ2

n
Tr((Σ̂µ + λI)−2Σ̂µΣν) (17)

where µ, ν run over empty or inv subscripts. Here, we assume the setting of the generalized
Marchenko-Pastur theorem — namely, that we have the deterministic equivalence

λ(Σ̂µ + λI)−1 ≃ κµ(Σµ + κµI)
−1 (18)

where κµ is the unique positive solution to

κµ =
λ

1− Tµ(κµ)
Tµ(κ) =

1

n
df1µ(κ) =

1

n
Tr((Σµ + κI)−1Σµ) (19)

and can be seen as the effective or renormalized ridge parameter; this includes the setting of i.i.d.
Gaussian data, but extends much further, to the Gaussian universality regime (Hastie et al., 2022;
Zavatone-Veth, 2024). We prove the deterministic equivalences

Bµν ≃
κ2
µαµν

1− αµµ
β⊤(Σµ + κµI)

−2Σµβ + κ2
µβ

⊤(Σµ + κµI)
−1Σν(Σµ + κµI)

−1β (20)

Vµν ≃ σ2 αµν

1− αµµ
(21)

where we define generalized second-order degrees of freedom,

αµν =
1

n
df2µν(κµ) df2µν(κ) = Tr((Σµ + κ)−2ΣµΣν). (22)

6Note that the notion used by Atanasov et al. (2024b) is scaled by 1/d with respect to that of Bach (2024b);
we use the latter convention.
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We do not claim our calculation of these deterministic equivalents is novel; indeed our presentation
closely follows the notes of Zavatone-Veth (2024), and the “two-point” equivalences we consider
were recently analyzed in the context of cross validation by Patil (2022) and Atanasov et al. (2024a).
To our knowledge, however, our work is the first to apply these techniques to study invariant learning.

A.6.1 BIAS TERM

Note that

λ2(Σ̂µ + λI + λτΣν)
−1Σν(Σ̂µ + λI + λτΣν)

−1
∣∣∣
τ=0

(23)

=− ∂τλ(Σ̂µ + λI + λτΣν)
−1
∣∣∣
τ=0

(24)

We find a deterministic equivalent for the expression inside the derivative. First, note

λ(Σ̂µ + λI + λτΣν)
−1 = λ(I + τΣν)

−1/2(Σ̂τ + λI)−1(I + τΣν)
−1/2 (25)

where we define

Σ̂τ = (I + τΣν)
−1/2Σ̂µ(I + τΣν)

−1/2, (26)

That is, our expression is a product of deterministic matrices with the matrix ridge resolvent for a
scaled version of the empirical covariance. This resolvent thus has the deterministic equivalent

λ(Σ̂τ + λI)−1 ≃ κτ (Στ + κτI)
−1 (27)

where Στ is the population covariance Σµ scaled in the same way as Σ̂τ is, and κτ is the unique
positive solution to

κτ =
λ

1− Tτ (κτ )
. (28)

We thus have

λ(Σ̂µ + λI + λτΣν)
−1 ≃ κτ (Σµ + τI + κττΣν)

−1. (29)

Under the assumption that Σµ is trace class, one can exchange the n, d→∞ limit and the derivative
to obtain

λ2(Σ̂µ + λI)−1Σν(Σ̂µ + λI)−1 ≃ −∂τκτ (Σµ + κτI + κττΣν)
−1
∣∣∣
τ=0

(30)

Let us write δ = ∂τκτ |τ=0, and note that κτ |τ=0 = κµ. We get, first using the matrix identity
∂M−1 = −M−1(∂M)M−1, and then combining terms,

− δ(Σµ + κµI)
−1 + κµ(Σµ + κµI)

−1(δI + κµΣν)(Σµ + κµI)
−1 (31)

=− δΣµ(Σµ + κµI)
−2 + κ2

µ(Σµ + κµI)
−1Σν(Σµ + κµI)

−1. (32)

It remains to evaluate δ, which we do by differentiating the fixed-point equation at τ = 0,

κτ − κτTτ = λ → δ − δTτ

∣∣∣
τ=0
− κµ∂τ (Tτ )

∣∣∣
τ=0

= 0. (33)

Recognizing 1− Tτ |τ=0 as λ/κµ (from the fixed-point equation at τ = 0), we get

δ =
κ2
µ

λ
∂τ (Tτ )

∣∣∣
τ=0

= −
κ2
µ

λn
δTr((Σµ + κµI)

−2Σµ)−
κ3
µ

λ
αµν (34)

Since (Σµ + κµI)
−1 = (I + (Σµ + κµI)

−1Σµ)/κ,

1

n
Tr((Σµ + κµ)

−2Σµ) =
1

κµ
(Tτ |τ=0 − αµµ) =

1

κµ

(
1− λ

κµ
− αµµ

)
. (35)

Subsequently,

δ = −κµδ

λ

(
1− λ

κµ
− αµµ

)
−

κ3
µ

λ
αµν = −

(κµ

λ
(1− αµµ)− 1

)
δ −

κ3
µ

λ
αµν . (36)

We can then solve,

δ = − λ

κµ(1− αµµ)

κ3
µ

λ
αµν = −κ2

µ

αµν

1− αµµ
. (37)
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A.6.2 VARIANCE TERM

We begin by noting that

σ2

n
Tr((Σ̂µ + λI)−2Σ̂µΣν) = −

σ2

n
∂λ Tr((Σ̂µ + λI)−1Σ̂µΣν) =

σ2

n
∂λλTr((Σ̂µ + λI)−1Σν).

(38)

By assumption λ(Σ̂µ + λI)−1 ≃ κµ(Σµ + κµI)
−1. Exchanging limits and the derivative (which is

justified by the assumption of bounded trace norm) we get the deterministic equivalent

1

n
∂λκµ Tr((Σµ + κµI)

−1Σν) =
1

n
∂λ(κµ) Tr((Σµ + κµI)

−2ΣµΣν) = ∂λ(κµ)αµν . (39)

To find the derivative, we differentiate the fixed-point equation

κµ − κµTµ = λ → ∂λ(κµ)− ∂λ(κµTµ) = ∂λ(κµ)(1− αµµ) = 1, (40)

where in the first equality on the right we used the chain rule and ∂κµ(κµTµ) = αµµ. Thus,
∂λ(κµ) = 1/(1− αµµ), which plugged into the expression above proves the result.

A.7 ANALYSIS OF THE MINIMAL MODEL FOR COVARIANCE

Recall that our minimal model is

Σ = σc

dc∑
k=1

uku
⊤
k + σw

d∑
k=dc+1

uku
⊤
k (41)

where the first dc eigenvectors uk = (v0,k+v⊥,k)/
√
2 represent coupling modes, and the remaining

uk complete the orthonormal basis. Note that when the coupling and weak directions have the same
strength (σc = σw), we reduce to the isotropic case. We thus are interested what changes as σc/σw

grows, which we study by taking the σw → 0 limit.

The fixed-point equation for κ is

κ

(
1− γc

σc

σc + κ
+ (γ − γc)

σw

σw + κ

)
= λ. (42)

This has the same solutions as a cubic in κ. One option is to directly study the large σc limit,
in which case the equation becomes independent of σc. We instead take the over-parameterized
ridgeless limit (λ→ 0 and γ > 1), where κ solves

1 = γc
σc

σc + κ
+ (γ − γc)

σw

σw + κ
. (43)

Comparison to training symmetrization must be delicate. The effective ridge parameter solves

κinv

(
1− γc

σ̄

σ̄ + κinv
+ (γ0 − γc)

σw

σw + κinv

)
= λ (44)

where σ̄ = (σc + σw)/2. We again take λ → 0. When γ0 < 1 we obtain an effective ridge of
κinv = 0. This is intuitive: if d0 < n we are back in the ordinary least squares regime once we
project the data down into V0. If d0 = O(1) (i.e. the number of invariant features in the problem
is finite) then we are in the γ0 → 0 regime of Theorem 1, where training symmetrization helps.
However, as in the isotropic example, if γ > 1 but 0 < γ0 < 1 then R(β̂inv) can still grow
arbitrarily large as we approach the new interpolation threshold. (This also means the order one
takes the γ0 → 0 and γ →∞ limits matters; taking the latter first, for example fixing d0 and n and
taking d→∞, still shows harmful effects for training symmetrization.)

A.7.1 PROOF OF THEOREM 3

We consider the case γ0 > 1 and λ→ 0, in which

1 = γc
σ̄

σ̄ + κinv
+ (γ0 − γc)

σw

σw + κinv
. (45)
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This has the same form as the equation for κ. Indeed, we can write κ = κ(σc, σw, γ) and κinv =
κ(σ̄, σw, γ0) where κ(s, w, g) solves the quadratic system

κ(s, w, g)2 + b(s, w, g)κ(s, w, g) + c(s, w, g) = 0 (46)
b(s, w, g) = (s+ w)− γcs+ (g − γc)w (47)

c(s, w, g) = (1− g)sw (48)

For g > γc, one can observe κ(s, w, g) is increasing in its arguments. Thus, κinv ≤ κ — training
symmetrization has a smaller effective regularization. In the “strong correlation” limit w → 0, we
have κ(s, 0, g) = max(0, s(γc − 1)). That is, we have a new threshold, corresponding to when the
model is over-parameterized with respect to the number of correlational modes.

Similarly, α = α(σc, σw, γ) and αinv,inv = α(σ̄, σw, γ0) where

α(s, w, g) = γc

(
s

s+ κ(s, w, g)

)2

+ (g − γc)

(
w

w + κ(s, w, p)

)2

. (49)

The second term and approaches (1 + κ′(s, 0, g))−1 as w → 0 when γc < 1, where we use ′ to
denote differentiation with respect to w. Evaluating the derivative, in the regime of γc < 1 we have
α(s, w, g)→ γc +

(1−γc)
2

g−γc
, and thus αinv,inv > α.

In the correlationally over-parameterized regime γc > 1, the second term vanishes as w → 0, and
we get α(s, w, p) → γ−1

c (using our result for κ(s, 0, g)), which we note is independent of s and
g. So, in the limit of strong correlations, α = αinv,inv. We thus examine the derivatives α′(s, 0, p).
Doing so, we again find that αinv,inv > α in a neighborhood of w = 0 when γ0 − (γc/2) < 1/2,
i.e. when a good portion of the invariant features are captured in correlational modes.

Since x 7→ x/(1 − x) is monotonically increasing, the above behavior fully describes how VX(β̂)

compares asymptotically to VX(β̂inv).

Understanding the biases

BX(β̂) ≃ κ2

1− α

(
σc

(σc + κ)2

dc∑
k=1

(u⊤
k β)

2 +
σw

(σw + κ)2

d∑
k=dc+1

(u⊤
k β)

2

)
(50)

BX(β̂inv) ≃
κ2
inv

1− αinv,inv

(
σ̄

(σ̄ + κinv)2

dc∑
k=1

(v⊤k β)
2 +

σw

(σw + κinv)2

d0∑
k=dc+1

(v⊤k β)
2

)
(51)

requires handling the dependence on β. Since β is assumed invariant, and thus ∥β∥2 =∑d0

k=1(v
⊤
k β)

2,
d∑

k=dc+1

(u⊤
k β)

2 = ∥β∥2 −
dc∑
k=1

(u⊤
k β)

2 = ∥β∥2
(
1− C(β)

2

)
, (52)

where we define the coupling factor

C(β) =

dc∑
k=1

(v⊤k β)
2/∥β∥2. (53)

The expressions for biases become

BX(β̂) ≃ κ2∥β∥2

1− α

(
σc

(σc + κ)2
C(β)

2
+

σw

(σw + κ)2

(
1− C(β)

2

))
(54)

BX(β̂inv) ≃
κ2
inv∥β∥2

1− αinv,inv

(
σ̄

(σ̄ + κinv)2
C(β) +

σw

(σw + κinv)2
(1− C(β))

)
. (55)

The γc > 1 regime is straightforward reusing our previous calculations, giving

BX(β̂) ≃ BX(β̂inv) ≃
σc(γc − 1)C(β)∥β∥2

2γc
, (56)

at σw = 0, while for γc < 1 both go to zero with σw → 0.
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A.7.2 SIMULATION DETAILS

We now describe the simulations used to obtain Figure 6. We first describe the hyperparameter
settings, and then the group symmetry.

We fix values of n = 100, d = 5n, d0 = 2n, and dc = ⌊n/2⌋, which puts us in the over-
parameterized regime, but where the model is “correlationally under-parameterized” (γc < 1). In
this setting, our theory predicts that as σw → 0, both methods become unbiased, but data augmen-
tation has higher variance. This is indeed what we observe in simulations. To generate Figure 6, we
set σc = 1, so that we examine σw as a fraction of σc. The noise is generated as ϵi ∼ N (0, σ2) with
σ = 0.5, and we set nominal regularization λ = 10−8 to approximate the ridgeless setting.

In order to set d0, we use the permutation group G = Sd−d0+1 acting on the first d − d0 + 1
coordinates of Rd. The invariant space V0 then consists of a one-dimensional subspace of Rd−d0+1

(the one with equal entries) together with the remaining d − (d − d0 + 1) = d0 − 1 coordinates
unaffected by G. We therefore indeed get d0 total invariant directions.

B TASK-DEPENDENT METRIC

B.1 DERIVATION AND EXPLANATION

m(pX) does not capture whether distributional symmetry breaking contains useful information for
the task at hand. If it does, for example in cases of inherent symmetry breaking as in Figure 1, then
we predict that performing full-group data augmentation is a poor choice, as it discards task-relevant
information contained in the exact position within the orbit. However, if the distributional symmetry
breaking is superficial in the sense that it has no relation to the task of interest, then it is more subtle
whether full-group data augmentation will hurt performance, as shown in Section 5. As such, we
seek to refine the metric from Section 2 to produce a stronger signal for when data augmentation is
harmful.

We now derive a potential task-dependent metric from first principles. Intuitively, we wish to capture
how much information about the task labels are captured by the non-uniformity in the data points’
orbits. Let c : X → G be a canonicalization function, such that c(x) denotes where on each orbit
x is7. Since data augmentation and invariant featurizations destroy any information contained in
c(x), we wish to understand the dependence between orientations c(x) and labels y(x). A standard
information-theoretic quantity for measuring dependence is the mutual information, which is the
KL-divergence between the joint distribution and the product of the marginals

MI(c(·), f(·)) := KL
(
(c(x), f(x))

∣∣∣∣∣∣ (c(x), f(x′))
)

Here, x and x′ are independent draws from px. However, the KL divergence is inefficient to approx-
imate with finite samples, places stringent requirements on the distributions’ supports, and does not
capture any notion of ease of learnability or computability. Instead, we replace this divergence be-
tween product distributions with the classifier distance dclass

(
(c(x), f(x)), (c(x), f(x′))

)
. In other

words, we train a small network to classify whether pairs of group elements and labels are mis-
matched. Note that the task-independent and task-dependent metric are not necessarily correlated;
one can be high while the other is low, and vice versa, as verified in Section 5.

One complication for this metric is that it depends on the choice of canonicalization c(·). We assume
there is some “natural” choice of c(·), i.e. which is easily computable by a neural network, as we care
about the implications of distributional symmetry-breaking on downstream learning tasks. To give
an example of a “bad” choice, imagine a c(·) which is discontinuous in x, or which is so complex to
compute that even if it correlates very well with f(·), it would be difficult for a network to compute
it as a feature. Therefore, we parametrize c(·) via a small equivariant network, which can be either
trained alongside the binary classifier for dclass or just randomly initialized.

7Formally, all this requires is that c(gx) = gc(x). Although such a map is not well-defined for objects
x with self-symmetry, we ignore this issue for the sake of exposition. Note that c(·) makes an arbitrary, but
hopefully logical (barring unavoidable discontinuity (Dym et al., 2024)) choice of which x to assign to the
identity element of the group.
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Body-Centered Cubic (BCC) Crystal Structure
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Figure 7: (Left) The swiss roll dataset (Wang et al., 2024b) provides varying levels of dependence
between the canonicalization (with respect to the group of discrete vertical translation), and the task.
Augmentation by vertical shifts destroys the useful canonicalization of the p = 1 dataset, forcing
the network to learn a complicated rather than a simple decision boundary. (Right) Input datapoints
are assigned orientations by a small equivariant network c(·), and we create pairs of orientations
with labels that may or may not match. A binary classifier network then tries to distinguish between
matched and mismatched (orientation, labels) pairs, as a proxy for how informative the orientation
is for the task.

In Appendix B.3, we show that this metric is closely related to the accuracy of predicting f(x)
directly from c(x) (referred to as the direct task-dependent metric in our experiments). This is in
turn closely related to the concepts of V-information (Xu & Raginsky, 2017) and the information
bottleneck (via the canonicalization) (Tishby et al., 1999). Although we chose to define our detection
task-dependent metric in terms of the above classification objective, since it is easily interpretable
as an accuracy regardless of the label space, we compute both in experiments.

B.2 RESULTS
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Figure 8: MNIST task-independent metric (left) and swiss roll augmentation performance and met-
rics (center and right) as functions of dataset canonicalization.

Swiss Roll As shown in Figure 7, the swiss roll dataset consists of two interleaved spirals (Wang
et al., 2024b). The spirals have distinct z values, so they are easily separable by a horizontal plane.
However, there is also a more complex function fitting the data that is invariant to z-shifts (the group
Z2). Following (Wang et al., 2024b), we create a continuous family of datasets in which only a
p-fraction of one spiral are separated vertically. This creates a spectrum of tasks, where p = 1 is
canonicalized in a task-useful way, whereas p = 0 is not. We find that augmentation of a simple
MLP indeed hurts performance on this task, with the effect increasing along with p (Figure 8).
This is captured by the task-dependent metrics, which increases along with p. However, the task-
independent metric cannot capture the dataset canonicalization, as this would nearly require solving
the hard spiral task itself!

To elaborate, we can think of the p = 1 distribution as a perfectly canonicalized dataset. The reason
that our task-dependent metric does not pick up on this, and instead has only 50% accuracy, is
essentially that the canonicalization was not simple – in fact, it effectively solved the prediction task
(i.e. given a point (x, y,−), z was set based on spiral − class(x, y)). So, it is hard for a small
network to detect on its own whether an input is canonicalized or not.
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When p = 0 (see Figure 3), the classifier knows that any datapoint with z = 1 came from the
transformed distribution, since the original p = 0 distribution always has z = 0. The classifier
can guess the label corresponding to the original dataset when z = 0, and this will achieve 75%
accuracy as shown. Moving from p = 0 to p = 1 simply interpolates between these two scenarios,
and this is why the task-independent metric drops. In a sense, as p goes from 0 to 1, we continuously
transform from a task-useless canonicalization to a task-useful canonicalization, which is reflected
more accurately by the task-dependent metrics.

MNIST The task-dependent metric is essentially 50% (related to the small size of |G| = 4,
Appendix C.2), which is consistent with this behavior.

QM9 We also train the task-dependent metric for each property to determine if certain properties
are more impacted by distributional symmetry breaking than others. Interestingly, we observe that
the task-dependent metric varies per property and that there is a slight negative correlation with the
MAE per property.

QM7b Response Properties The task-dependent metric with c untrained for the dipole vector µ⃗
yields an accuracy of 66%. For the scalar property αiso, the metric is 52%, thus not yielding a signif-
icant signal. This aligns with the intuition that orientation should matter more for predicting vectors
than scalars. However, we found in section 5 that group averaging/equivariant models performed
slightly better than no augmentation (FF) for both vector and scalar quantities, demonstrating that in
this case the task-dependent metric may not be predictive for whether to augment or not. Also see
Appendix C.7 for further exploration of task-dependent canonicalizations and impacts on predicting
µ⃗.

ModelNet40 For the task-dependent detection metric, we follow (Kaba et al., 2023) and use
a vector neuron network (Deng et al., 2021) for canonicalization. For the direct prediction task-
dependent metric, we use a four-layer MLP. The direct prediction achieves 24.98% accuracy, and
binary detection 57.54%—both better than chance, indicating task-informative asymmetry.

Cv G H U U0
alp

ha ga
p

ho
mo

lum
o mu r2

zpv
e

Target

0

20

40

60

80

M
ea

n 
Te

st
 A

cc
ur

ac
y

c untrained
c trained

(a) Task-dependent detection metric using a
trained vs. untrained small equiariant network
for c.

52 53 54 55 56 57 58
Task-Dependent Detection Accuracy

10 3

10 2

10 1

100

101

M
AE

Cv
GHUU0 alpha

gap
homo lumo

mu

r2

zpve

FF
TF

(b) Normalized MAE for QM9 vs the task-
dependent detection metric, with c untrained.

Figure 9: QM9 task-dependent figures with MAE table and plots.

As shown in Table 2 and Table 3, the metric is overly sensitive to the canonicalization and classifier
network architectures.

B.3 THEORY

For simplicity, throughout this section we assume c(·) is not learned, e.g. coming from a small
equivariant network with frozen weights as in the experiments.

We introduced the task-dependent metric as a measure of the dependence between the canonicaliza-
tion c(x) and the label f(x). Instead of using the mutual information, as below,

MI(c(·), f(·)) := KL
(
(c(x), f(x))

∣∣∣∣∣∣ (c(x), f(x′))
)
,

we used the classifier distance (from the task-independent metric) between the joint distribution and
the product of the marginals. Recall the classifier distance:

dclass (p0, p1)) = Eb∼Bern( 1
2 )

Ex∼pb

[
1
(
NN(x) = b

)]
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Table 2: Ablations on the canonicalization network architecture for task-dependent metric, averaged
over 2 independent runs on QM9. As shown, there is indeed variation in the task-dependent metric
with the architecture of the canonicalization network. Although we expect some variation—since
the task-dependent metric is supposed to pick up on a “simple” canonicalization, we did intend to
restrict the maximum size of the network—the ablations below surprisingly demonstrate that the
highest accuracies were achieved by the smallest networks. We note that the loss curves were fairly
unstable, possibly pointing to optimization difficulties with tensor product equivariant networks that
might be alleviated for smaller/shallower networks. For a fair comparison in practice, one should fix
an architecture size, and only compare accuracies computed with the same architecture.

Layers Irrep Dimension Test Accuracy Parameters acc mean acc std param float

4 16x0e + 4x1e 72 ± 3 38,000 72 3.0 38,000
2 16x0e + 4x1e 69 ± 0.9 19,000 69 0.9 19,000
2 32x0e + 8x1e 72 ± 2 74,000 72 2.0 74,000
4 32x0e + 8x1e 76 ± 2 150,000 76 2.0 150,000
3 32x0e + 8x1e 74 ± 1 110,000 74 1.0 110,000
3 16x0e + 4x1e 86 ± 2 29,000 86 2.0 29,000
2 8x0e + 2x1e 89 ± 0.1 5,400 89 0.1 5,400
4 8x0e + 2x1e 89 ± 0.4 10,000 89 0.4 10,000
3 8x0e + 2x1e 88 ± 2 7,900 88 2.0 7,900

Table 3: Ablations on the classifier network architecture for task-dependent metric. The classifier
network is an MLP, for which we vary the number of layers and the hidden dimension.

Depth Hidden Dimension Test Accuracy Parameters

4 32 68.2 3,800
4 128 88.1 52,000
2 64 88.2 5,200
4 64 70.0 14,000
8 64 87.6 31,000
2 32 74.9 1,600

Specializing to our distributions, where p0 is the joint and p1 is the product of marginals:

m1(c(·), f(·)) := dclass ((c(x), f(x)), (c(x), f(x
′))) =

1

2
Ex

[
1
(
NN(c(x), f(x)) = 0

)]
+

1

2
Ex,x′

[
1
(
NN(c(x), f(x′)) = 1

)]
In other words, we assess a classifier (NN)’s ability to distinguish between pairs of canonicalization
and label that are matched, vs mismatched. In practice, we of course train NN on a training set, and
then approximate this expectation via a held-out test set.

However, another natural measure of the dependence between c(x) and f(x) is to assess how pre-
dictive c(x) is of f(x), that is: how well can a neural network predict f(x) directly from c(x)? If
there is no dependence between them, then it can do no better than random. Letting ℓ be a loss
function, we define

m2(c(·), f(·)) := Ex,x′
[
ℓ(NN′(c(x)), f(x′))

]
− Ex

[
ℓ(NN′(c(x)), f(x))

]
Here, the second term captures how well c(x) can be used to predict f(x), while the first term
regularizes/calibrates by how well NN performs with independent inputs.

Intuitively, m1 and m2 are quite related to each other, and it is a straightforward exercise to make
this precise. Letting ℓ be the 0/1 loss (i.e. 0 if NN′(c(x)) = f(x) and 1 otherwise), one can obtain
one direction of a bound between m1 and m2 by using NN’ to define NN. In particular, define
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NN(c, f) := 0 if NN′(c) = f , and 1 otherwise. Then,

m2(c(·), f(·)) := Ex,x′
[
1− 1(NN′(c(x)) = f(x′))

]
− Ex

[
1− 1(NN′(c(x)) = f(x))

]
= Ex

[
1(NN′(c(x)) = f(x))

]
− Ex,x′

[
1(NN′(c(x)) = f(x′))

]
= Ex [1(NN(c(x), f(x)) = 0)]− Ex,x′ [1(NN(c(x), f(x′)) = 0)]

= Ex [1(NN(c(x), f(x)) = 0)]− Ex,x′ [1− 1(NN(c(x), f(x′)) = 1)]

= 2m1(c(·), f(·))− 1

In the other direction, we could start with NN and define NN′(c) to be any f such that NN(c, f) = 0.

Therefore, when optimizing independently over NN and NN’, m2 is at least 2m1 − 1, while at the
same time, m1 is at least m2+1

2 . The two quantities are thus related by an affine transformation —
at least under a certain choice of loss (and optimization practicalities notwithstanding).

These quantities are also very related to V -information (Xu & Raginsky, 2017). In particular, when
ℓ in the definition of m2 is the cross-entropy loss, m2 is essentially the predictive V -information
from c(·) to f(·) (Xu & Raginsky, 2017). In subsequent experiments, when we report m2 (the
“task-dependent direct prediction” metric), we report only the latter term Ex

[
ℓ(NN′(c(x)), f(x))

]
.

B.3.1 TASK-DEPENDENT METRICS FOR FINITE GROUPS

When G is finite and |G| is much smaller than the number of class labels, then it is clear that c(x)
can not be expected to predict f(x) perfectly (hence the role of the first term in the expression for
m2). In the case of MNIST, for example, the group of 90◦ rotations has 4 elements, while there are
10 digits to classify (which occur with equal probabilities). Therefore, directly predicting the digit
label from c(x) is impossible, regardless of the dataset distribution; one can only associate one label
to each of the four elements of c(x). (Indeed, Fano’s inequality can provide a lower bound on this
probability of error.)
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C EXPERIMENTS

For all experiments, we provide further details on the training, model specifications, and results. To
reproduce our experiments, we include a README.md file in the supplemental codebase, specifying
the exact commands for each dataset and setting. We also summarize the task-independent metric
in Table 4. As shown, every dataset experiences distributional symmetry-breaking, to varying (but
all high) degrees.

Dataset Test Acc.
rMD17 Aspirin 97.869
rMD17 Ethanol 79.834

OC20 Surface+Adsorbate 99.280
OC20 Adsorbate 96.529

QM9 97.6
Local QM9 67.6

QM7b 89.93
MNIST 87.50

ModelNet40 92.45
Local ModelNet40 N = 10 55.6

Local ModelNet40 N = 100 81.5
LLM Materials 95

Table 4: Task-independent metric on selected datasets (omitting the toy Swiss Roll dataset and
ModelNet40 reported per class in Figure 11).

Figure 10: To complement Table 1, we show the percentage improvement relative to the FF setting
for the different augmentation settings (TT, TF, FT), equivariant, and group averaged models. We
see that the relative improvement is largest for the vector quantity µ⃗, and there is no improvement
for MNIST/ModelNet40.

C.1 MODELNET40

C.1.1 CLASSIFICATION RESULTS ON TRANSFORMER MODEL

To show that the results in the main text are not specific to the Graphormer architecture, we also
run experiments with a transformer architecture. We train a transformer with the four different
augmentation settings and report the test accuracies: TF=76.778%, TT=75.723%, FT=7.86%, and
FF=84.49%. Thus, for this dataset, FF setting is better which align with the results in the main text.

C.1.2 RELATION BETWEEN THE DEGREE OF CANONICALIZATION AND ACCURACY ON
FF/TF AUGMENTATION SETTINGS PER CLASS

We show the scatterplot of the FF/TF test accuracy vs. the degree of canonicalization per class in
Figure 11. As above, FF indicates no augmentation at train or test time and TF indicates augmen-
tation at train but not test time. We do not notice a trend in the relative improvement between FF
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and TF as a function of the task-independent metric, but is interesting to note a weak positive trend
between the task-independent metric and both test accuracies. It is unclear why this is the case. We
hypothesize that perhaps certain classes are defined by simple features, which would then tend to re-
sult in both the task-independent metric and the test accuracy being higher – but further exploration
is needed to truly explain this phenomenon.

65 70 75 80 85 90 95

Task independent metric (detection accuracy) (%)

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

19
19

30

30

10

10

2

221
21

33

33

11

11

27

27

2020

38

38

18

18

1717

23

23
2828

12
12

15

15

4

4

8

8

37

37

29

29

39

39

00

1

1

25

25

13

13

3

3

77

2626

14

14

32

32

16

16

55

22

22

35

35

99

24

24

31
31

36

36

34

34

66

Relation between Task independent metric (detection accuracy) and Test Accuracy on FF/TF settings
TrainF_TestF accuracy
TrainT_TestF accuracy

Figure 11: Relation between task independent metric and accuracy on FF/TF augmentation settings.

C.1.3 TRAINING CURVE

We show the training curve of ModelNet40 classification task with different augmentation settings
in Figure 12. The training curve shows that the FF setting achieves the best performance all the
time, while TF and TT settings achieve similar performance, and FT setting achieves the worst
performance. It is interesting to contrast this result with QM9, where the best-performing setting on
the unaugmented test-set is to still augment (TF). This suggests a fundamental difference between
ModelNet40 and QM9.
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Figure 12: Test accuracy curve of ModelNet40 classification task with different augmentation set-
tings.

C.1.4 MODEL DETAILS

For training the task-independent metric, we use a four layer transformer architecture with four
attention heads and 128 hidden dimensions as the backbone. The number of parameters in the model
is 793k. For the task-dependent detection metric and task-dependent direct prediction metric, we use
a three layer vector neuron network (Deng et al., 2021) as the canonicalization network, and a four
layer MLP as the prediction backbone, respectively. The number of parameters for the vector neuron

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

network is 6.1K, and for the MLP is 14.2K for direct prediction and 13.8K for detection. To ensure
fair model comparison, we use the Graphormer model used in QM9/QM7b for the classification
task in the main text Shi et al. (2022). In this setting, each point cloud is uniformly downsampled
to 512 points. We run the base Graphormer setup with 4 blocks, 6 transformer layers, 8 heads, an
FFN width of 256, and distance encodings using 32 Gaussian kernels. The regularization applied is
dropout=0.1 on attention and on the final layer only—no dropout is used on inputs or intermediate
activations. The number of parameters in this model is 822K.

For the equivariant counterpart, we build on e3nn(Geiger et al., 2022; Kleinhenz & Daigavane).
Graph edges are defined via k-nearest neighbors with k = 15. Point embeddings are first lifted
to the mixed representation irreps hidden = 64x0e + 16x1o. Edge attributes derive from relative
offsets within a cutoff distance (max radius = 5.0) and are then expanded in spherical harmonics
with irreps sh = 1x0e + 1x1o to encode angular structure. We stack three equivariant convolutional
stages with gated nonlinearities and include linear self-interaction terms. The head performs global
node pooling and an equivariant MLP, producing outputs with irreps out = 40x0e. The number of
parameters in this model is 772K.

For the transformer baseline, the architecture we use is a six layer transformer architecture with
eight attention heads and 256 hidden dimensions as the backbone. The number of parameters in this
model is 4.7M.

C.1.5 TRAINING DETAILS

The data split for all ModelNet40 experiments is 80/10/10 for training/validation/testing. The train-
ing details of classification experiments in the main text are as follows: Graphormer uses Adam with
learning rate 1e−4 and batch size 16. The e3nn uses Adam at 1e-3 with batch size 16. To make
the comparison fair, we implement a stochastic, group-averaged Graphormer: at each forward pass
we sample n = 3 random rotations from SO(3), run the network on each, and average the resulting
predictions. For transformer models, we trained each setting for 300 epochs with batch size 128.

We train the task-independent metric for 30 epochs, the task-dependent detection metric for 1200
epochs and the direct prediction task-dependent metric for 300 epochs. All models are trained on
one NVIDIA GeForce RTX 4090. The training time for the task-independent metric was about
20 minutes, for the task-dependent detection metric was about 9.5 hours, and the direct prediction
task-dependent metric was about 8.5 hours. The classification task took about two hours and a half
for each setting for transformer model. For graphormer model, it will take about 8 hours for each
setting. For the equivariant model, it will take about 16 hours for each setting.
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C.2 MNIST

C.2.1 TRAINING AND MODEL DETAILS

All experiments were run on a single NVIDIA RTX A5000 with batch size 128, 50 epochs, and
standard 3e-4 learning rate for the Adam optimizer, which took roughly 30 minutes each. For the
data splits, we split the original training set of 60k images, and split it into 60%/20%/20% for
train, validation, and test. MNIST training runs with/without augmentation used as a base network
a basic 421k-parameter CNN with two convolutional layers, followed by a two-layer MLP. For the
task-independent metric, the training hyperparameters and model architecture were the same, with
only the final number of model outputs modified from 10 to 2. The group-averaged model used this
base architecture taking the average over the C4 group at each forward pass. Note this is equivalent
to an equivariant model over a discrete group.

For the task-dependent detection metric, we use as the canonicalization network c(·) a 19k-parameter
90◦-rotation equivariant classifier outputting a four-dimensional vector, corresponding to the four
elements of G (90◦-rotations). (The classifier essentially applies a 2-layer CNN to all four rotations
of the input image.) To obtain a single element of G from this vector, we simply apply a softmax
with low temperature (1e-3), effectively setting it to be one-hot at the index of maximum value. For
the network that predicts a binary class from pairs (c(x), f(x)), we simply concatenate all of these
inputs into a 4-layer 13.5k-parameter MLP, with 64 hidden features per layer.

C.2.2 TASK-INDEPENDENT AND -DEPENDENT METRICS
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Figure 13: MNIST task-independent metric as function of proportion randomly rotated.

In Figure 13, we report m(pX) as a function of what fraction of the dataset was randomly rotated,
and recover the predicted optimal accuracies.

In Figure 14 and Figure 15, we report the task-dependent metrics. They all performed quite poorly,
possibly as a result of on how much information can be encoded in a canonicalization with respect
to a group of only four elements (see Appendix B.3), or possibly because the orientation is not
practically that informative for most of the digits (despite the 6/9 toy example).

C.2.3 LOSS CURVES

See fig. 16. We can also analyze the test accuracy per class as in fig. 17.
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Figure 14: MNIST task-dependent detection metrics.
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Figure 15: MNIST task-dependent prediction metrics.

Accuracy over the course of training for the
MNIST classification task, in different augmen-
tation settings (“TF” = augmentation for training,
no augmentation for testing, etc).

Figure 16: MNIST loss curves. Dashed lines indicate test losses, while solid lines indicate train
losses. We omit the FT setting as the test accuracy was around 40%.
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Figure 17: MNIST loss curves per selected classes. It is interesting to note the variability in the FT
setting that corresponds to whether test-time augmentation destroys useful information or not. For
example, for 6/9 FT is much worse than the other settings. However, for more symmetric shapes
like 0/8, FT performs better.
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C.3 SWISS ROLL

C.3.1 TRAINING AND MODEL DETAILS

All experiments were run on a single NVIDIA RTX A5000. The swiss roll dataset was originally
proposed by Wang et al. (2024c), and as described in the main body, consists of two interleaved
spirals with different labels, separated by a horizontal plane. In our work, we modified the swiss
rolls of their extrinsic equivariance setting by adding a hyperparameter p, to denote how much of
the data on top spirals are randomly chosen to be flipped to the bottom spiral.

All experiments were trained with the Adam optimizer with learning rate 3e-4, batch size 100, and
for 150 epochs. The model is a 3-layer 67k-parameter MLP for the original classification task and
for the detection task; for the task-dependent metrics, a C2-equivariant network with 3k parameters
is used to canonicalize, composed with a 4-layer 13k-parameter MLP to perform the final prediction.
The dataset consists of 1, 000 examples, split randomly as 60%/20%/20% train/validation/test.

C.3.2 LOSS CURVES

See Figure 18 and Figure 19.
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Figure 18: Accuracy over the course of training for the swiss roll classification task, in different
augmentation settings (“TF” = augmentation for training, no augmentation for testing, etc). Dashed
lines indicates test losses, while normal lines indicate train losses.
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Figure 19: Accuracy over the course of training for the task-independent detection metric on the
swiss roll dataset, at different levels of task-correlatedness (p). Dashed lines indicates test losses,
while normal lines indicate train losses.
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C.4 QM9

The test accuracy for the task-independent metric was 97.60%, indicating a high degree of canoni-
calization in the QM9 dataset. We now describe setup details, as well as further experiments on (1)
the symmetry-breaking of local motifs and (2) interpreting the learned classifier.

C.4.1 DATASET, MODELS, AND TRAINING DETAILS

We obtain the QM9 dataset (Ramakrishnan et al., 2014) from https://doi.org/10.
6084/m9.figshare.c.978904.v5. The original dataset has 133885 molecules, 3054
of which are uncharacterized, as found in https://springernature.figshare.com/
ndownloader/files/3195404. The uncharacterized molecules are removed during prepro-
cessing. We follow (Anderson et al., 2019) and split the dataset into training/validation/test partitions
consisting of 100k, 18k, and 13k molecule examples.

For the task-independent metric, we train a generic transformer architecture with 812k parameters
for 20 epochs and the Adam optimizer at learning rate 1e-5 and batch size 128. For the task-
dependent metrics, we used a 3-layer, 28.5k parameter e3nn canonicalization network, using Gram-
Schmidt orthogonalization to turn the 2x1e outputs into a proper rotation matrix, and a basic 4-
layer, 13.8k parameter MLP for the final task-dependent predictions. We used the Adam optimizer
with learning rate 3e-4, 50 epochs, and batch size 128.

For the regression tasks, as we are studying the need for data augmentation, the principal model used
should be non-equivariant/non-invariant. We note that many of the recent top performing models
on QM9 are equivariant or invariant, so we use a slightly older Graphormer Shi et al. (2022); Ying
et al. (2021) architecture from 2021. We include an embedding depending on the position of each
atom (not solely the relative position) so the model is not invariant. Each node in the graph thus
has a scalar feature (the atom number) and a 3D position associated with it. We use an embedding
dimension dembed = 128 for both the atom positions (embedded with a learnable linear layer) and
for the atom types. The edges between atoms are encoded using a set of learned Gaussian radial
basis functions. We adopt the following parameters of the Graphormer base architecture: 4 blocks,
8 layers, 32 attention heads, a feedforward dimension of 128, and 32 Gaussian kernels for distance
encoding. Regularization uses a dropout rate of 0.1 for both attention and final layer dropout, with
no input or activation dropout. We train a separate model for each property with different data
augmentation settings (TT = train/test augmented, FF = none, TF = train-only, FT = test-only). For
training Graphormer, we use the Adam optimizer with a learning rate of 3e− 5.

For QM9 property regression, we compare to a simple equivariant convolutional neural network ar-
chitecture using e3nn(Geiger et al., 2022; Kleinhenz & Daigavane), as by equivariance, predictions
should not change whether train/test are augmented or not. The network uses a learnable embedding
(embedding dimension = 32) for atomic species and lifts the atom embeddings into a mixed repre-
sentation irreps hidden = 64x0e + 16x1o. Edge features are computed through relative
between atoms within a cutoff radius (max radius = 5.0). These features are then projected
to spherical harmonics transforming as irreps sh = 1x0e + 1x1o, capturing the angular de-
pendence. Radial dependence is captured via Gaussian radial basis functions applied to interatomic
distances. We then use 3 layers of equivariant convolutions with gated non-linearities and linear
self-interactions. The final layer pools over nodes and uses an equivariant MLP to return the final
output as irreps out = 1x0e (a scalar for example for predicting one of the QM9 properties).
The E3ConvNet model is trained with the Adam optimizer and a learning rate of 1e − 4. For an
apples to apples comparison, we implement a stochastic group-averaged variant of Graphormer, in
which n = 5 random rotations of the input are sampled from SO(3) at each forward pass, and the
corresponding outputs are averaged to produce the final prediction. While neither of these archi-
tectures are near state-of-the art for QM9, for our studies it suffices to use smaller models (each
with approximately 800k parameters) to understand how augmenting impacts results. For both the
e3nn model and the Graphormer model with augmentation settings for each property , we train each
model for 150-200 epochs (depending on property) on a NVIDIA RTX A5000, which takes 2-3
hours. Minimum test MAE values and test MAE curves are reported in Table 5 and Figure 20.
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Table 5: MAE on the QM9 dataset for Graphormer under different data augmentation settings (TT =
train/test augmented, FF = none, TF = train-only, FT = test-only). We include an e3nn convolutional
neural network model with a similar number of parameters for comparison. The best-performing
model is in bold, and the best performing-model within the augmentation settings is underlined.

Target Unit TT FF TF FT E3NN GroupAve
µ D 0.263 0.291 0.262 0.412 0.139 0.216
α a30 0.523 0.516 0.519 0.793 0.382 0.410
HOMO eV 0.100 0.116 0.101 0.153 0.102 0.094
LUMO eV 0.133 0.139 0.133 0.188 0.105 0.114
∆ϵ eV 0.183 0.195 0.183 0.260 0.153 0.170
R2 a20 5.763 5.253 5.707 9.624 4.908 3.049
ZPVE eV 0.012 0.012 0.013 0.013 0.012 0.009
U0 eV 10.214 8.951 10.178 12.798 13.992 3.996
U eV 9.764 9.274 9.477 12.583 11.403 5.796
H eV 10.705 8.244 10.699 11.561 12.648 5.642
G eV 8.784 8.461 8.268 12.132 14.666 5.599
cv cal/mol K 0.157 0.158 0.154 0.207 0.119 0.128
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Figure 20: Test MAE per epoch for QM9 predicted properties using the Graphormer-like architec-
ture. We show the augmentation types train/test aug=TT, train aug only=TF, test aug only=FT, no
aug=FF. We also show an E3NN network with a similar number of parameters and a group-averaged
graph transformer.

C.4.2 VALIDATION OF TASK-INDEPENDENT METRIC AND P-VALUES

As noted briefly in the main text, it is possible to obtain p-values from our method in the same way
as Chiu & Bloem-Reddy (2023).

Figure 22 demonstrates the values used in our computation of the p-values for each method (on
a row) and different levels of augmentation in the detection dataset (column). The p-value plots
were computed using 20 samples (for each histogram) of size 1k, trained for 20 epochs (in the
case of the classifier metric). All methods exhibit the expected behavior: as the augmented fraction
increases —i.e. as the distribution becomes more similar to the reference, perfectly symmetrized
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Figure 21: Distance metrics for different methods, and at different levels of augmentation for ben-
zene (i.e. different levels of underlying distributional similarity).

distribution—the distance decreases. It is important to note that the classifier distance does not
match ?? due to the difference in batch size: the classifier was trained on a much smaller dataset,
and as shown in the loss plot in Figure 25, training did not converge in this time. This time constraint
was necessary to facilitate the number of runs necessary to compute a p-value. However, conversely,
the baseline methods cannot scale to the entire datset, whereas the classifier method can. Moreover,
even without the convergence, the histograms corresponding to the classifier metric in Figure 22 are
still sufficiently well-separated to provide reasonable p-values on our synthetic experiment. See also
Figure 24 for the p-values; note that all methods agree at the level of p-value on the original dataset.

C.4.3 MOMENTS OF INERTIA

As a first attempt to understand what kind of distributional symmetry-breaking is present in QM0,
we plot the distribution of the principal moments of inertia, hypothesizing that they may exhibit a
non-random pattern. As QM9 contains different molecules (with different masses), we normalize
the inertia tensor for each molecule by its total mass. This is shown in Figure 26. We note that I1 is
more sharply peaked, while I2 and I3 are quite similar. This suggests there are two directions that
are rotationally equivalent for many molecules (e.g. in-plane symmetry such as in a benzene ring)
and that there may be one consistent direction that molecules are aligned with.

C.4.4 INTERPRETABILITY OF CLASSIFIER FOR DISTRIBUTIONAL SYMMETRY BREAKING

A primary motivator for using the classifier distance for distributional asymmetry detection is be-
cause of the opportunity to explore and interpret the trained classifier. As a first step, we focus on
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Figure 22: Distance metrics for different methods, and at different levels of augmentation (i.e. dif-
ferent levels of underlying distributional similarity).
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Figure 23: Different distance metrics from a perfectly symmetrized distribution, as a function of
the degree of synthetic augmentation of the QM9 dataset. (Higher augmented fraction indicates a
greater similarity to the symmetrized distribution.)

the task-independent classifier trained on the QM9 dataset with Anderson splits as outlined in the
previous section. To probe the decision boundary, we evaluate the classifier predictions on the test
set with no augmented rotations (e.g. all have label 0 and are from the original dataset). It is thus
easy to interpret which molecules are “hard” for the classifier to distinguish as being from the orig-
inal dataset. We apply PCA to the learned embeddings (i.e., the layer immediately preceding the
final output layer) and visualize them in Figure 27, revealing that the misclassified examples tend to
cluster together in PCA space.
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Figure 24: p-values for different methods, and at different levels of augmentation (i.e. different
levels of underlying distributional similarity).
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Figure 25: Left: the loss curve from one of the 20 training runs used to compute the classifier
distance in the p-value computation, on 1k examples. Right: the loss curve from a training run used
to compute the classifier distance over the full dataset. As shown, the loss converged much faster
for the full dataset, whereas with only 1k examples (one one-hundredth of the size), convergence is
much slower.
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Figure 26: Principal moments of inertia distribution normalized by molecular mass for QM9.

Figure 27: PCA of learned embeddings for the task-independent classifer for QM9 applied to the
test dataset with no rotations. The misclassified examples thus are shown in red.

We evaluate the sigmoid of the classifiers logits on a discrete grid of 3D rotations (representing the
probability that the given sample has label 0 or is from the original dataset rather than the augmented
version). In order to visualize the probabilities over SO(3), rotations with non-negligible probabil-
ity are plotted as dots using a Mollweide projection (Murphy et al., 2022; Klee et al., 2023), with
rotations orthogonal to the sphere encoded as colors and the size of the dot representing the magni-
tude of the probability. We explore correctly classified molecules, incorrectly classified molecules,
and samples that are close to the decision boundary and show examples of each. We also investigate
the stability and robustness of the classifier’s decision boundary by identifying rotations of a given
sample that lead to a change in its predicted label. To probe the stability of the classifier, we identify
pairs of rotations that are close together yet lead to large changes in the classifier’s output logits.
Given two rotations represented by quaternions p, q, the distance between rotations is

θ = 2arccos | < p, q > | (57)

Example Correctly Classified with High Probability. We select a sample classified correctly
with high probability as being from the original dataset and investigate the classifier outputs per
rotation angle, as shown in Figure 28.
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Probabilities per rotation angle for a sample that is classified correctly. The colors correspond to
rotations orthogonal to the sphere and the size of the dots corresponds to the probability value. The
original molecule in the dataset is shown on the upper left. The lower left shows rotations that cause
prob(original) to be zero. The right shows rotations that cause prob(original) to be
high.

Instability in the decision boundary (left): two nearby rotations cause a large change in predicted
probability. Histogram (right): certain examples exhibit such instabilities more frequently.

Figure 28: Visualizations of classifier outputs for an example classified incorrectly.
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Example Incorrectly Classified. We select a sample classified incorrectly with low probability
as being from the original dataset and investigate the classifier outputs per rotation angle, as shown
in Figure 29.

Probabilities per rotation angle for a sample that is classified incorrectly. The colors correspond to
rotations orthogonal to the sphere and the size of the dots corresponds to the probability value. The
original molecule in the dataset is shown on the upper left. The lower left shows rotations that cause
prob(original) to be zero. The right shows rotations that cause prob(original) to be
high, with arrows pointing to corresponding (starred) points on the Mollweide projection plot.

Instability in the decision boundary (left): two nearby rotations cause a large change in predicted
probability. Histogram (right): certain examples exhibit such instabilities more frequently.

Figure 29: Visualizations of classifier outputs for an example classified incorrectly.

Example Close to the Decision Boundary. We select also select an example from the non-
augmented test set that the model assigns a 50% probability of belonging to the true dataset (cor-
rectly classified but close to the decision boundary).

It is interesting to note that for each example, we find instabilities in the decision boundary (rota-
tions that are very close together but correspond to very large changes in the classifier output). This
demonstrates that our method could perhaps be used to probe the instabilities of a given canonical-
ization – we know that each canonicalization has such instabilities (Dym et al., 2024), although we
cannot guarantee that the instabilities in the model’s predictions arise for this reason (and not e.g.
due to a failure to learn). Nonetheless, the models probed achieved very high test accuracy, lending
confidence that the identified example instabilities are genuine.
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Probabilities per rotation angle for a sample on the decision boundary. The colors correspond to
rotations orthogonal to the sphere and the size of the dots corresponds to the probability value. The
original molecule in the dataset is shown on the upper left. The lower left shows rotations that cause
prob(original) to be zero. The right shows rotations that cause prob(original) to be
high, with arrows pointing to corresponding (starred) points on the Mollweide projection plot.

Instability in the decision boundary (left): two nearby rotations cause a large change in predicted
probability. Histogram (right): certain examples exhibit such instabilities more frequently.

Figure 30: Visualizations of classifier outputs for an example close to the decision boundary.
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C.5 ABLATION ON ARCHITECTURE

As shown in Table 6, the task-independent metric on QM9 is robust to the choice of architecture.

Table 6: The classifier network is a transformer architecture, in which we vary the depth, number of
heads, and hidden dimension. The task-independent metric is robust with respect to the architecture
size.

Setting Depth Heads Hidden Dimension Test Accuracy Parameters

tiny 2 2 64 98.3 110,000
small hidden 4 4 64 98.6 210,000
large hidden 4 4 256 98.4 3.2e6
many heads 4 8 128 98.5 810,000
shallow 2 4 128 98.3 420,000
micro 2 2 32 98.0 27,000
few heads 4 2 128 98.7 810,000
deep 8 4 128 98.7 1.6e6
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C.6 LOCAL QM9

We have shown that the QM9 dataset is highly canonicalized, yet data augmentation and equivariant
methods both perform well even on the original, canonicalized test set. This behavior is distinct from
ModelNet40, where train-time augmentation impedes performance on the (also canonicalized) test
set. This poses a question: why are equivariant methods so helpful for QM9, even though it’s already
canonicalized? We explore the hypothesis that locality is an important factor impacting performance
(which would be captured by equivariant methods, but not canonicalization). In particular, we seek
to understand whether local graph motifs in QM9 are less canonicalized — i.e. more likely to
appear in a variety of rotations — than the full molecules. If true, then augmentation and equivariant
architectures might both benefit from exposing the network to full group orbits of local motifs.

Concretely, our question is: do the local motifs present in QM9 graphs experience distributional
symmetry breaking? To address this, we create a new dataset from the original QM9 dataset by
randomly selecting three nodes from each molecule, and creating a new molecule fragment out of
only each node and its neighborhood (as determined by its edges/bonds). As shown in Figure 31,
this often includes repeated neighborhoods. This creates a dataset of size 392k. We first simply
apply the task-independent detection metric, asking a network to distinguish between rotated and
unrotated motifs. (All experimental and model details are preserved from the ordinary QM9 setting).
As shown in Table 7, the local dataset has lower accuracy than the QM9 dataset. However, this does
not provide a maximally fine-grained distinction between different kinds of distributional symmetry
breaking. For example, suppose a molecule always appears in one of two possible canonicalizations.
With an infinite group like SO(3), this detection problem is still likely to be perfectly solvable, as
two orientations are still only a measure zero set of SO(3). Yet, this case is distinct from the
perfectly canonicalized case.

To assess whether a dataset is truly canonicalized, we train a network to predict g from gx, where g is
drawn randomly from the Haar measure. Solving this task to high accuracy is only possible when
the distribution is truly canonicalized (only one element per orbit appears). We use the same
transformer architecture to output 9 values as the entries of a rotation matrix, and trained it accord-
ing to the MSE. (Neither backpropagating through a Gram-Schmidt procedure to make it a proper
rotation matrix, nor training an equivariant architecture, nor backpropagating through the angle of
rotation error instead of the MSE, were as effective as this simple method, which also circumvents
the symmetry-breaking that would be required to output a group element on symmetric inputs (Smidt
et al., 2021).) As shown in Table 8, there is a discrepancy between the best test accuracy achieved
on the original QM9 dataset, and that achieved on the local neighborhood version. Therefore, it ap-
pears that the original QM9 dataset is more canonicalized, whereas the local motifs presented
in the QM9 dataset can appear in several orientations (although still far from uniform over
SO(3)). This provides some evidence for the hypothesis that methods which involve equivariance
to local motifs – including data augmentation and equivariance, but not canonicalization – may be
providing an additional advantage on QM9.

As shown in Figure 32, it also took much longer to train these models (500 epochs took 6 hours
on the original QM9 dataset, and nearly 15 hours on the local QM9 dataset, likely due to slower
dataloading), which contrasts with the efficient convergence (around 30 minutes) of our main task-
independent detection metric.

m(pX) Local QM9 Global QM9

Original 67.6% 98.5%
Rotated 49.9% 49.5%
Canonicalized 99.8% 99.8%

Table 7: Distinguishing the distribution from its randomly rotated version, as well as sanity checks
with artificially rotated and canonicalized datasets.
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Figure 31: Local QM9 dataset visualization.

QM9 Local QM9
Test Error (degrees) 13.5 53.7

Table 8: Predicting g from gx.
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Figure 32: QM9 and local QM9 dataset training curves for predicting g from gx.
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C.7 QM7B

C.7.1 DATASET DETAILS

In (Yang et al., 2019), density functional theory (DFT) and linear-response coupled-cluster theory in-
cluding single and double excitations (LR-CCSD) is used to compute vector and tensorial molecular
response properties for the 7,211 molecules in the QM7b database (Blum & Reymond, 2009; Mon-
tavon et al., 2013). LR-CCSD is generally more computationally expensive (scaling O(N6

e ) with
the number of electrons Ne) yet more accurate than DFT, which scales as O(N3

e ). As the QM7b
dataset is composed of small molecules, computing material response properties with LR-CCSD is
feasible. Quantities computed include the dipole vector µ⃗, polarizability α, and quadrupole moment
Q. The molecular dipole polarizability α describes the tendency of a molecule to form an induced
dipole moment in the presence of an external electric field (Yang et al., 2019). It can be computed
by taking the second derivative of the electronic energy U with respect to an applied electric field
E⃗:

αij =
∂2U

∂Ei∂Ej
. (58)

Scalar polarizability response quantities are the isotropic polarizability αiso and the anistropic polar-
izability αaniso

αiso =
1

3
(αxx + αyy + αzz) (59)

αaniso = 1√
2

[
(αxx − αyy)

2
+ (αyy − αzz)

2

+(αzz − αxx)
2
+ 6(α2

xy + α2
xz + α2

yz)
]1/2 (60)

The dipole moment is the first derivative:

µ⃗ =
∂U

∂E⃗
. (61)

The quadrupole moment Q is a rank-2 tensor that characterizes the second-order spatial distribu-
tion of the molecular charge density, capturing deviations from spherical symmetry and providing
information about the shape and anisotropy of the electron cloud beyond the dipole approximation:

Qij =
∑
α

qα
(
3rαirαj − δijr

2
α

)
. (62)

qα is the charge of particle α, r̂αi is its i-th coordinate operator relative to the molecular center of
mass, and δij is the Kronecker delta.

Data can be downloaded from https://archive.materialscloud.org/record/
2019.0002/v3. For our studies, we use the most accurate level of theory available in the
dataset—linear-response coupled cluster with single and double excitations (LR-CCSD)—in com-
bination with the d-aug-cc-pVDZ (daDZ) basis set, to reduce basis set incompleteness error (Yang
et al., 2019) (specifically, the file CCSD daDZ.tar.gz available at the link above). The data is then
converted from XYZ format into a torch geometric dataset.

C.7.2 MODEL AND TRAINING DETAILS

For the task-independent metric, we use the same generic transformer used for QM9 to find that the
dataset is canonicalized. We train for 100 epochs with a batch size of 128 and a learning rate of 1e-5
with the Adam optimizer. From (Yang et al., 2019), this is expected as the molecules were reordered
using a kernel-based similarity measure from (Bartók et al., 2013). For the task-dependent metric,
we use c untrained, as we found that using c trained allowed the network to learn the dipole vector
itself. We use the same parameters as for the task-dependent metric for QM9.

For the regression tasks, we use the same graph transformer architecture as described in Ap-
pendix C.4 and compare to the same E(3)-equivariant neural network (now with a vector or ℓ = 2
output rather than a scalar as in QM9)/group-averaged network with 5 sampled rotations. We train
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each for 500 epochs with a batch size of 128 on a single NVIDIA RTX A5000. The E3ConvNet
model is trained with a learning rate of 1e-4 and the Graphormer model is trained with a learning rate
of 3e-5, both with the Adam optimizer. As anticipated, the E(3)-equivariant model achieves better
performance than the Graphormer in predicting dipole moments, owing to its physically consistent
treatment of vector-valued (non-scalar) quantities.

C.7.3 TASK-RELEVANT CANONICALIZATION

To investigate the impacts of a task-relevant canonicalization, we run further experiments on the
QM7b dataset. Consider aligning molecules such that their dipole moments coincide with the z-
axis, filtering for molecules with non-zero dipole moments. This canonicalization clearly makes it
easier for a non-equivariant model to solve the task, whereas an equivariant model will be unable
to use this information. We test different data augmentation settings to illustrate the impacts of the
task-useful canonicalization (train/test aug=TT, train aug only=TF, test aug only=FT, no aug=FF).
Values reported in the table below are the MAE across the dipole vector components in atomic units
(a.u). For the task-useful canonicalization, the FF setting (train/test fully canonicalized by dipole, no
augmentation) outperforms the equivariant model (shown in bold). In the original dataset without
canonicalizing based on the dipole, FF does not outperform the equivariant model. These results
provide an interesting avenue for future work/for testing the task-dependent metric.

Table 9: Comparison of different augmentation types and models for dipole prediction. Lower
values are better.

Aug. Type / Model TT FF TF FT e3nn Group Ave 5 rot Group Ave 10 rot

Dipole Canon 0.057 0.034 0.055 0.16 0.043 0.044 0.042
Orig Dataset 0.055 0.104 0.054 0.16 0.043 0.044 0.042

C.7.4 LOSS CURVES

Figure 33: (left) Test MAE per epoch for predicting the dipole moment QM7b (with the e3nn
model/group averaged shown for reference). (right) Test MAE per epoch for predicting the isotropic
component of the α tensor.
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C.8 RMD17

We use the revised MD17 dataset Christensen & von Lilienfeld (2020), as the original MD17 dataset
has a high level of numerical noise (Chmiela et al., 2017). The revised MD17 dataset was cal-
culated with a more accurate DFT functional/convergence criteria than the original MD17. For
this dataset, we currently have explored the task-independent metric. We use the provided five
train/test splits from https://figshare.com/articles/dataset/Revised_MD17_
dataset_rMD17_/12672038 and train a separate model for each molecule. Note it is not
recommended to train a model on more than 1,000 samples from rMD17 Christensen & von Lilien-
feld (2020), even though the dataset has 100,000 conformers for each trajectory. We train a generic
transformer with 812k parameters for 50 epochs on the train/test splits provided with the Adam
optimizer at learning rate 1e-5 and batch size 128.

As seen in Figure 34, all molecules are canonicalized. However, the task-independent metric of
test accuracy yields significantly different values per molecules. For example, aspirin has a test
accuracy of 97.869%, but ethanol yields 79.834 %. In Figure 34, ethanol and malohaldehyde have
a noticeably lower degree of canonicalization. As a physical sanity check for our distributional
symmetry breaking metric, we plot the distributions for the principal moments of inertia for each
molecule. Examples of more canonicalized and less canonicalized molecules as determined by our
metric are shown in Figure 35.

For a discrete system of point masses, the inertia tensor I is given by:

I =
∑
i

mi

[
∥ri∥2I− rir

T
i

]
The eigenvalues of the inertia tensor are the principal moments and represent the resistances to
rotation around the body’s principal axes (which are the eigenvectors). Intuitively, if a molecule is
more canonicalized over the MD trajectory, we would expect it to stay in one orientatation and for
the distributions of the principal axes over time to remain distinct. If it is less canonicalized, there
may be more overlap between the distributions.
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Figure 34: Test accuracy vs. augmented fraction for all molecules in rMD17. Note the difference
between the 8 more canonicalized molecules and ethanol/malonaldehyde.

Figure 37 demonstrates the values used in our computation of the p-values for each method (on a
row) and different levels of augmentation in the detection dataset (column) for one of the molecules
in rMD17 (benzene). The p-value plots were computed using 20 samples (for each histogram) of
size 1k corresponding to the given train/test splits, trained for 20 epochs (in the case of the clas-
sifier metric). As shown, all methods separate the calibration distances from the actual distances,
resulting in identical, statistically significant p-values. As the tests are asked to distinguish between
increasingly similar datasets (moving from left to right), the histograms gradually move closer to-
gether, until they overlap. For ease of visualization, Figure 36 plots the mean distance computed
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Figure 35: Comparisons of the principal components of the inertia tensor for more canonicalized
(top row) and less canonicalized (bottom row) molecules.

from each histogram for benzene (excluding the calibration distances). We also plot the p-value
vs. the augmented fraction Figure 38. The Chamfer and Hausdorff kernels exhibit similar trends to
the classifier, and the naive mean/covar kernel exhibits less reasonable behavior. This illustrates the
importance of choosing a good kernel and provides a relative advantage of our method. All other
molecules in rMD17 exhibted similar trends for the p-values.
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Figure 36: Different distance metrics from a perfectly symmetrized distribution, as a function of the
degree of synthetic augmentation of the rMD17 dataset for benezene. (Higher augmented fraction
indicates a greater similarity to the symmetrized distribution).

51



2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

0.005 0.010 0.015 0.020
MMD Chamfer

0

1

2

3

4

5
Fr

eq
ue

nc
y

Augmented Fraction: 0.0

Actual
Calibration

0.00500.00750.01000.0125
MMD Chamfer

0

1

2

3

4

5

Fr
eq

ue
nc

y

Augmented Fraction: 0.25

0.004 0.006 0.008
MMD Chamfer

0

2

4

6

Fr
eq

ue
nc

y

Augmented Fraction: 0.5

0.0040 0.0045 0.0050
MMD Chamfer

0

1

2

3

4

Fr
eq

ue
nc

y

Augmented Fraction: 0.75

0.00400 0.00405
MMD Chamfer

0

2

4

6

8

Fr
eq

ue
nc

y

Augmented Fraction: 1.0

0.00500.00750.0100
MMD Hausdorff

0

1

2

3

4

Fr
eq

ue
nc

y

Augmented Fraction: 0.0

0.004 0.006 0.008
MMD Hausdorff

0

1

2

3

4

Fr
eq

ue
nc

y
Augmented Fraction: 0.25

0.004 0.005 0.006
MMD Hausdorff

0

1

2

3

4

Fr
eq

ue
nc

y

Augmented Fraction: 0.5

0.00400.00420.00440.0046
MMD Hausdorff

0

1

2

3

4

5

Fr
eq

ue
nc

y

Augmented Fraction: 0.75

0.00400 0.00402
MMD Hausdorff

0

1

2

3

4

5

Fr
eq

ue
nc

y

Augmented Fraction: 1.0

0.0040 0.0042 0.0044
MMD Mean/Covar

0

2

4

6

Fr
eq

ue
nc

y

Augmented Fraction: 0.0

0.00400.00410.00420.0043
MMD Mean/Covar

0

2

4

6

8

Fr
eq

ue
nc

y

Augmented Fraction: 0.25

0.0040 0.0041 0.0042
MMD Mean/Covar

0

2

4

6

Fr
eq

ue
nc

y

Augmented Fraction: 0.5

0.004000.004050.00410
MMD Mean/Covar

0

2

4

6

8

Fr
eq

ue
nc

y

Augmented Fraction: 0.75

0.0039750.0040000.0040250.004050
MMD Mean/Covar

0

2

4

6

Fr
eq

ue
nc

y

Augmented Fraction: 1.0

60 80 100
Classifier

0

2

4

6

Fr
eq

ue
nc

y

Augmented Fraction: 0.0

40 60 80
Classifier

0

2

4

6

Fr
eq

ue
nc

y

Augmented Fraction: 0.25

60 80
Classifier

0

1

2

3

4

Fr
eq

ue
nc

y

Augmented Fraction: 0.5

50 60
Classifier

0

1

2

3

4

5

Fr
eq

ue
nc

y

Augmented Fraction: 0.75

40 45 50 55
Classifier

0

1

2

3

4

5

Fr
eq

ue
nc

y

Augmented Fraction: 1.0

Actual Calibration

Figure 37: Distance metrics for different methods, and at different levels of augmentation for ben-
zene (i.e. different levels of underlying distributional similarity).
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Figure 38: p-value vs augmented fraction for benzene rMD17.
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C.9 OPEN CATALYST PROJECT 2020 (OC20)

For our study, we use the 200K subset from the structure to energy and forces (S2EF)
task, available at https://fair-chem.github.io/core/datasets/oc20.html#
structure-to-energy-and-forces-s2ef-task. For this dataset, we have explored
the task-dependent metric. It would be interesting in the future to explore other tasks (e.g. Ini-
tial Structure to Relaxed Structure) and larger dataset sizes, as the OC20 dataset training set alone
has 20 million structures. We use the preprocessing pipeline provided at https://fair-chem.
github.io/core/datasets/oc20.html. Positions for each catalyst+adsorbate are tagged
with 0: catalyst surface, 1: catalyst sub-surface, and 2: adsorbate. The unit cell for the catalyst
is repeated twice in the x direction, twice in the y direction, and once in the z direction, leading
to the slab’s alignment with the xy plane. This alignment most likely trivially causes our metric
to report distributional symmetry breaking. We also expect the adsorbate alone to be slightly less
canonicalized than the combined catalyst surface–adsorbate system (as the adsorbate alone is not a
periodically repeating slab). This is supported by the test accuracy, which is 96.529% for the adsor-
bate alone compared to 99.280% for the surface plus adsorbate system. It would thus be interesting
in future work to consider how to treat periodic crystalline systems. The p-value plots were com-
puted using 20 samples (for each histogram) of size 50k, trained for 20 epochs (in the case of the
classifier metric). The p-values follow the expected trends as was the case for the other datasets.
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Figure 39: Different distance metrics from a perfectly symmetrized distribution, as a function of
the degree of synthetic augmentation of the OC20 dataset. (Higher augmented fraction indicates a
greater similarity to the symmetrized distribution).
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Figure 40: Distance metrics for different methods, and at different levels of augmentation for OC20
(i.e. different levels of underlying distributional similarity).
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C.10 COMPUTATION OF P-VALUES

Algorithm 2 outlines the process for computing p-values.

We sample n1 training and test sets from the original dataset, apply a random rotation to each data
point, and compute the distance between the two sets. This gives us a distribution of distances under
the null hypothesis that the dataset is. We then sample n2 training and test sets from the original
dataset, apply a random rotation to a subset of the data, and compute the distance between the two
sets. The mean of these distances is our test statistic. The p-value is then computed as the fraction
of calibration distances that are greater than the test statistic.

Algorithm 2 P-value Computation

1: Input: Training set Dtrain, test set Dtest, calibration distances sample size n1, actual distances
sample size n2, distance function Distance(·, ·).

2: Output: p-value
3: actual dists← []
4: calibration dists← []

▷ Compute calibration distances under null hypothesis
5: for i = 1 to n1 do
6: Sample training set D̃train and test set D̃test from Dtrain and Dtest.
7: Apply rotation transformation to all data
8: dc ← Distance(D̃train, D̃test)
9: calibration dists.append(dc)

10: end for
▷ Compute actual distances

11: for i = 1 to n2 do
12: Sample training set D̃′

train and test set D̃′
test from Dtrain and Dtest.

13: Apply rotation transformation to subset of data
14: da ← Distance(D̃′

train, D̃′
test)

15: actual dists.append(da)
16: end for
17: d̄a ← 1

n2

∑n2

i=1 actual dists[i] ▷ Compute mean of actual distances
18: count← |{dc ∈ calibration dists : dc > d̄a}|
19: p-value← 1+count

1+n1

return p-value

C.11 MAXIMUM MEAN DISCREPANCY (MMD) FOR POINT CLOUDS

C.11.1 MAXIMUM MEAN DISCREPANCY (MMD)

MMD is a statistical distance metric that measures the discrepancy between two probability distribu-
tions p0, p1. Unlike many other distance metrics, MMD does not require any assumptions about the
distributions or explicit density estimation. Thus, MMD is useful for high-dimensional or complex
distributions. The definition of MMD is:

MMD2(p0, p1) = Ex0,x′
0∼p0

[k(x0, x
′
0)] + Ex1,x′

1∼p1
[k(x1, x

′
1)]− 2Ex0∼p0,x1∼p1 [k(x0, x1)] ,

Where k(·, ·) is the kernel function. To compute the MMD, we can use the empirical MMD, which
is an unbiased estimator of the true MMD and only needs a set of samples from each distribution.
Algorithm C.11.1 provides pseudocode for the implementation of empirical MMD.

To compute the MMD, we need to choose a kernel function that is positive definite and characteristic.
The choice of kernel can have a significant impact on the MMD value. Based on natural distance
measures between point clouds, we implement three different kernels for our experiments: the naive
kernelMean/Covar, the Chamfer distance kernel, and the Hausdorff distance kernel.
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Algorithm 3 Compute Maximum Mean Discrepancy (MMD)

Require: x, y (input samples), mask x,mask y (optional masks), kernel func (kernel function)
1: nx ← length of x, ny ← length of y ▷ Compute XX pairwise similarities
2: xx indices← upper triangular indices of (nx, nx)
3: if mask x is not None then

xx distances← kernel func(x[xx indices0], x[xx indices1],
mask x[xx indices0],mask x[xx indices1])

4: xx diag ← kernel func(x, x,mask x,mask x)
5: else
6: xx distances← kernel func(x[xx indices0], x[xx indices1])
7: xx diag ← kernel func(x, x)
8: end if
9: xx mean← 2

∑
xx distances+

∑
xx diag

nx·nx

▷ Compute YY pairwise similarities
10: yy indices← upper triangular indices of (ny, ny)
11: if mask y is not None then

yy distances← kernel func(y[yy indices0], y[yy indices1],
mask y[yy indices0],mask y[yy indices1])

12: yy diag ← kernel func(y, y,mask y,mask y)
13: else
14: yy distances← kernel func(y[yy indices0], y[yy indices1])
15: yy diag ← kernel func(y, y)
16: end if
17: yy mean← 2

∑
yy distances+

∑
yy diag

ny·ny

▷ Compute XY cross similarities
18: if mask x is not None and mask y is not None then

xy distances← kernel func(x[:, None], y[None, :],
mask x[:, None],mask y[None, :])

19: else
20: xy distances← kernel func(x[:, None], y[None, :])
21: end if
22: xy mean← mean of xy distances

▷ Compute final MMD value
23: mmd← xx mean+ yy mean− 2 · xy mean

return mmd
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C.11.2 NAIVE KERNEL (MEAN/COVAR)

The most naive way to compute the distance between point clouds is to compute the distance be-
tween their respective means and covariances. We call this method “MMD Mean/Covar”, as well
as the naive kernel. Since the naive kernel only uses the means and covariances of the point clouds,
it lacks the ability to capture the local information of the point clouds. AlgorithmC.11.2 gives an
implementation of the Naive kernel:

Algorithm 4 Naive Kernel Computation

Require: x, y (input tensors), mask x,mask y (optional masks, related to the variable numbers of
nodes across input molecules), σ (scaling parameter)

▷ Compute mean and covariance with or without masks
if mask x is not None and mask y is not None then

2: meanx ←
∑

x∑
mask x

meany ←
∑

y∑
mask y

4: covx ←
∑

xxT∑
mask x

covy ←
∑

yyT∑
mask y

6: else
meanx ← mean of x, meany ← mean of y

8: covx ←
∑

xxT

|x|

covy ←
∑

yyT

|y|
10: end if

▷ Compute embeddings
embeddingx ← concatenate(meanx,flatten(covx))

12: embeddingy ← concatenate(meany,flatten(covy))

▷ Compute pairwise distance and apply Gaussian kernel
14: dist← ||embeddingx − embeddingy||

kernel val← exp(−dist2/σ)
return kernel val

C.11.3 CHAMFER DISTANCE KERNEL

The Chamfer distance is a commonly used distance metric, measuring the similarity between two
point clouds. It is defined as the sum of the average of squared Euclidean distances from each point
in one set to its nearest neighbor in the other set. Formally, the Chamfer distance is defined as:

CD(X,Y ) =
1

|X|
∑
x∈X

min
y∈Y
||x− y||2 + 1

|Y |
∑
y∈Y

min
x∈X
||x− y||2,

where X and Y are two point clouds, x and y are points in the point clouds, and ||x − y|| is the
Euclidean distance between points x and y.

Since the Chamfer distance kernel uses the minimum distance between points, it mainly captures
local information, and always ignores global structure (such as the overall shape distribution and
point cloud density). AlgorithmC.11.3 gives an implementation of Chamfer distance kernel.

C.11.4 HAUSDORFF DISTANCE KERNEL

The Hausdorff distance is also a distance metric that measures the distance between two sets of
points. By replacing the average operation in Chamfer distance with the maximum operation, we
obtain the Hausdorff distance as:
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Algorithm 5 Chamfer Kernel Computation

Require: x, y (input tensors), mask x,mask y (optional masks), σ (scaling parameter)
▷ Compute Chamfer distances

1: dist1 ← minimum pairwise Euclidean distance from x to y
2: dist2 ← minimum pairwise Euclidean distance from y to x

▷ Handle masks if provided
3: if mask x is not None and mask y is not None then
4: masked min dist1 ← dist1 ·mask x
5: masked min dist2 ← dist2 ·mask y

6: chamfer dist← 1
2

(∑
masked min dist1∑

mask x +
∑

masked min dist2∑
mask y

)
7: else
8: chamfer dist← 1

2 (mean(dist1) + mean(dist2))
9: end if

▷ Apply Gaussian kernel transformation
10: kernel val← exp

(
− chamfer dist

2σ2

)
return kernel val

HD(X,Y ) = max

(
max
x∈X

min
y∈Y
||x− y||,max

y∈Y
min
x∈X
||x− y||

)
.

Because the Hausdorff distance kernel uses the maximum distance between points, it is more sen-
sitive to outliers than Chamfer distance. AlgorithmC.11.4 gives an implementation of Hausdorff
distance kernel.

Algorithm 6 Hausdorff Kernel Computation

Require: x, y (input tensors), mask x,mask y (optional masks), σ (scaling parameter)
▷ Compute pairwise minimum distances

1: dist1 ← minimum pairwise Euclidean distance from x to y
2: dist2 ← minimum pairwise Euclidean distance from y to x

▷ Handle masks if provided
3: if mask x is not None and mask y is not None then
4: masked dist1 ← dist1 ·mask x
5: masked dist2 ← dist2 ·mask y
6: hausdorff dist← max (max(masked dist1),max(masked dist2))
7: else
8: hausdorff dist← max (max(dist1),max(dist2))
9: end if

▷ Apply Gaussian kernel transformation
10: kernel val← exp

(
−hausdorff dist

2σ2

)
return kernel val
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