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Abstract

Conditional random field (CRFs) is a popu-
lar and effective approach to structured pre-
diction. When the underlying structure does
not have a small tree-width, maximum like-
lihood estimation (MLE) is in general com-
putationally hard. Discriminative methods
such as Perceptron or Max-Margin Markov
Networks circumvent this problem by requir-
ing the MAP assignment only, which is of-
ten more tractable, either exactly or approx-
imately with linear programming (LP) relax-
ations. In this paper, we propose an approxi-
mate learning method for MLE of CRFs. We
leverage LP relaxations to find multiple di-
verse MAP solutions and use them to approx-
imate the intractable partition function. The
proposed approach is easy to parallelize, and
yields competitive performance in test accu-
racies on several structured prediction tasks.

1. Introduction

We study the problem of parameter estimation for
structured prediction models. In this setting, we want
to predict a complex label x given an observation o.
For example, in semantic parsing of images, pixels
values are observations and pixels’ visual categories
(sky, water, or boat) are labels. We construct a
graphical model on x for each (instantiated) value of
o to encode the interdependencies of these labels. The
maximum a posteriori (MAP) assignment of the con-
ditional model x∗ = arg max p(x|o) is then used as
the prediction. For training such models, two popular
frameworks have been developed: conditional random

fields (CRFs) which maximizes the conditional likeli-
hood p(x|o) of the training data, and perceptron/max-
margin Markov networks (M3N) which minimizes the
discriminative loss when the MAP assignment x∗ is
different from the ground-truth labeling of o (Taskar
et al., 2003; Collins, 2002).

Both these learning problems are hard for mod-
els defined on general graphs (Koller & Friedman,
2009). However, training methods such as perceptron
and M3N requires computing the MAP assignment
only, whereas CRF training also requires calculating
marginals and partition functions. For MAP inference,
recent works (e.g., Globerson & Jaakkola, 2007; Son-
tag et al., 2010) have provided efficient approximation
procedures that yield optimality certificates and often
work well in practice. Plugging these into the learn-
ing scheme results in tractable and scalable learning
algorithms that work well in practice. However, in the
CRF case, it is not immediately clear how to leverage
these algorithms for learning.

The above motivated us to develop a learning algo-
rithm for CRFs that employs approximate MAP in-
ference methods. Our key idea is to use them to find
the main modes of p(x|o) and then use those modes to
approximate the marginals of the distribution. Con-
cretely, we seek to identify a set of K assignments that
are representative of the distribution, in particular,
have higher probabilities “locally”.

While in theory such assignments can be found
through sampling the distribution, we leverage approx-
imate MAP inference to provide a deterministic proce-
dure in identifying them. Our key observation is that
those assignments not only should have high probabil-
ities but also should be sufficiently different from each
other — a set of very similar assignments would result
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in a poor qualitative description of p(x|o) (unless the
distribution happens to be unimodal). This intuition
is strongly supported by our empirical studies, where
we show that either using the MAP (corresponding to
K = 1) or using the assignments without encouraging
being distinct result in worse prediction accuracies on
models trained for structured prediction tasks such as
OCR and image segmentation.

The proposed deterministic procedure for identifying
such diverse assignments, which are termed as div p-
map , has several appealing properties. It is com-
putationally tractable and easily parallelizable. This
is in contrast to other approaches for inferring mul-
tiple MAPs which compute them serially (Fromer &
Globerson, 2009; Batra et al., 2012).

2. Background

We focus on parameter learning for structure predic-
tion models. We start by describing the problem set-
ting and introducing the necessary notations, followed
by a brief discussion on two common techniques for
estimating parameters for such models.

Conditional random fields (CRFs) A conditional
random field (CRF) defines the distribution of a set of
random variables x, conditioned on an observation o

p(x|o,λ) = 1

Z(o)
exp (λTF (x,o)) (1)

where F (x,o) is a feature vector, computed on the
underlying graph G(V,E) of the CRF. In the graph,
the vertices V correspond to the random variables in
x (and the observation o). The edges in E encode the
interdependencies among those variables. We consider
the case where x are discrete. λ denotes the param-
eters of the model. They are to be learned from a
training data set D = {(xn,on)}Nn=1.

The optimal λ can be estimated via gradient ascend
on the conditional log-likelihood of the training data.
Concretely, the gradient is the sum of gradients of each
observed training example,

∂ logD
∂λ

=
∑
n

∂ log p(xn|on,λ)
∂λ

=
∑
n

F (xn,on)− Ep(x|on,λ)[F (x,on)]
(2)

where the first term is the empirical evaluation of the
feature vector on the training data and the second term
the feature vector’s expectation with respect to the
model’s distribution.

At the t-th iteration, the gradient ascent improves the

log-likelihood by updating the parameter according to

λt = λt−1 + η
∂ logD
∂λ

(3)

where η is the learning rate (ie., step size). The batch
update eq. (3) requires aggregating all training sam-
ples’ contribution to the gradient. Alternatively, an-
other popular approach is to use stochastic gradient
ascend to maximize the likelihood. Specifically, let
(xt,ot) be a random sample selected from the train-
ing data at the t-th iteration. The stochastic gradient
update gives rise to

λt = λt−1 + η
∂ log p(xt|ot,λ)

∂λ
(4)

Compared to the batch version, stochastic gradient
updates often result in significant improvement in a
smaller number of iterations as they permit exploring
the parameter space faster.

Perceptron The perceptron algorithm introduced in
(Collins, 2002) can be viewed as a form of stochastic
gradient update except that the “gradients” used by
the perceptron are further approximated.

At the t-th iteration, the perceptron algorithm com-
putes the MAP assignment x∗ corresponding to a ran-
domly chosen training instance (xt,ot),

x∗ = arg max
x

log p(x|ot,λ)

The update to the parameter λ is given by the differ-
ence between the empirical evaluation of the feature
vector and an approximate to its expectation,

λt = λt−1 + F (xt,ot)− F (x∗,ot) (5)

Note that, when the optimal “decoding” x∗ is the same
as the ground-truth xt, the parameter is not updated.

Contrasting the perceptron update eq. (5) to the
stochastic gradient update eq. (4), it is easy to see
that the perceptron learning approximates the condi-
tional distribution p(x|ot,λ) by putting all probability
mass on the MAP assignment x∗. Our approach ex-
ploits this observation further, aiming to approximate
the distribution better by using several assignments.

Note that, while the perceptron update minimizes the
following discriminative loss

min
λ

∑
n

maxλTF (x,on)− λTF (xn,on) (6)

the Max-margin Markov Nework (M3N) approach
analogously minimizes the structured hinge loss

min
λ

∑
n

[maxλTF (x,on) + `(x,xn)− λTF (xn,on)]+

(7)
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where the loss `(x,xn) counts the difference between
an assignment and the ground-truth. Since the decom-
posable loss function depends on the (loss-augmented)
MAP assignment only too, M3N requires only the
MAP inference be tractable.

3. Learning with multiple MAPs

Recent works (e.g., Globerson & Jaakkola, 2007; Son-
tag et al., 2010) have provided efficient approxima-
tion procedures for computing the MAP assignment,
which are well suited for learning parameters with per-
ceptron and M3N algorithms. However, for maximum
likelihood estimation used in CRFs, those procedures
are not immediately applicable as a single MAP as-
signment is inadequate in capturing the whole shape
of the conditional distribution p(x|o), which is needed
for computing expectations of the feature vector.

3.1. Main idea

Our idea is to explore multiple assignments to rep-
resent the conditional distribution, instead of putting
all the probability mass on a single configuration x∗.
Suppose we have a set of such assignments X =
(x(1),x(2), · · · ,x(K)), where we have used x(1) to de-
note the MAP configuration x∗. We will approximate
the expectation in eq. (2) with a weighted average,

∂ log p(x|o,λ)
∂λ

≈ F (x,o)−
K∑
k=1

wkF (x
(k),o) (8)

where the nonnegative weight wk is proportional to
the likelihood of the k-th configuration x(k)

wk =
eλ

TF (x(k),o)∑K
j=1 e

λTF (x(j),o)
(9)

Note that since wk is always less than 1, the approx-
imation is less biased towards the MAP configuration
x(1) than the perceptron algorithm. Our empirical
studies will show that the approximation leads to mod-
els with very much improved performance on the test-
ing data.

How to choose the K assignments in X? We address
this question in the following section.

3.2. Multiple MAPs: best and diverse

To approximate p(x|o) well with K discrete items, we
would want those assignments which correspond to the
modes of the distribution. We discuss several options.

k-best map Intuitively, p(x(k)|o) would be “local

maxima” at x(k). Thus, we choose them in serial

x(k) = arg max
x6=xj ,j=1,2,...,k−1

p(x|o) (10)

Such assignments, which are termed k-best map, can
be found efficiently for tree structured graphs, and
approximated for general graphs (Yanover & Weiss,
2004; Fromer & Globerson, 2009; Batra, 2012). How-
ever, these assignments tend to be very similar to each
other, tightly clustering around the most dominant
mode x(1). For example, any assignment x that is
different from x(1) by just one vertex’s value could be
a viable candidate for x(2). Unless the conditional dis-
tribution p(x|o) happens to be unimodal, X would not
be a good approximation to the distribution.

k-div map To avoid collecting very similar assign-
ments in X , Batra et al. (2012) proposed to identify K
assignments that are distinct from each other — they
are at least D vertices different

x(k) = arg max∑|V |
v=1 I(xv 6=xj

v)≥D,j=1,2,...,k−1
p(x|o) (11)

where I(·) is the indicator function, comparing the v-
th vertex of the two assignments — one is to be found
and the other is a assignment from the previously com-
puted (k − 1) assignments.

Batra et al. (2012) showed how the inference in
eq. (11) can be solved efficiently. The key observation
there is that the constraints enforcing distinctiveness
among assignments are decomposable on the vertices
and thus are easily incorporated into the framework
of dual decomposition for the MAP inference prob-
lem eq. (2) (Sontag et al., 2010).

Both ways of finding multiple MAPs are serial in na-
ture — one has to know all (k− 1) MAPs before com-
puting the k-th MAP assignment. Thus, computing
them on large problems like image segmentation would
be quite time-consuming.

To this end, we introduce a different formulation of
computing diverse MAP assignments that enables us
to parallelize the estimation of the other (K−1) MAP
assignments after the first MAP x(1) has been found.

Diverse Parallel MAP (div p-map ) The K best
or diverse assignments as defined above need to be cal-
culated in serial. Here we explore an alternative defi-
nition that is more amenable to parallelization. Given
the MAP x(1), we define x(k) to be the best assignment
that is between (k− 1)D and kD away from x(1) (for
some parameter D). By considering the top assign-
ments of this kind, we are effectively representing the
best assignments at different distances from the MAP.
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Formally our k-th MAP requires solving

x(k) = arg max p(x|o)

s.t (k − 1)D ≤
|V |∑
v=1

I(xv 6= x(1)
v ) ≤ kD

(12)

where the lower and upper bound constraints are ex-
pressed in terms of k for k = 2, . . . ,K and parameter
D. Thus, the computation of the k-th MAP only de-
pends on x(1) and the value of k and is entirely inde-
pendent of all other diverse MAPs. As a result each of
the optimization problems will be optimizing for the k-
th MAP in its own interval, allowing for a distributed
computation of all x(k). The parameter D defines the
size of the interval in which each x(k) is optimized.

We derive the algorithm in detail in the appendix.

4. Experiments

We conduct extensive experiments on two struc-
ture prediction tasks, handwritten digits recognition
(OCR) and multi-class image segmentation, to vali-
date the effectiveness of our approach of using diverse
MAP solutions to learn parameters of CRFs.

There are two parameters to set in our approach div
p-map : D defines the distances from the first MAP
assignments eq (12), and η which is the learning rate
of the stochastic gradient ascent eq. (4). In all our
experiments, we fix η = 0.1 and D to 0.1 ∗ |V | for the
OCR task and to 0.2 ∗ |V | for the segmentation tasks,
where |V | is the number of vertices in the CRF.

4.1. OCR Task

We use the data provided in (Taskar et al., 2003). We
model a word as a sequential CRF, where the vertices
represent the letters that can take 26 different states.
The observations are binary images in the size of 16×
8. The unary potentials are defined as weighted sums
of the pixel values in the binary images, resulting a
total 16× 8× 26 number of parameters. The pairwise
potentials are the 26 × 26 transition matrix between
the states. All these parameters are learned from the
data. We used randomly selected 600 words as training
samples and 100 words as test samples. Our evaluation
metric is the classification accuracy measured in the
number of correctly labeled letters in the test words.

Figure 1 contrasts the performance of several ways
of learning the model parameters: (i) exact: the
forward-backward procedure for computing the gra-
dients exactly; (ii) perceptron: the single MAP as-
signment x(1)) is used to approximate the gradient;
(iii) k-best map: use multiple MAP assignments that

are not required to be significantly distinct from each
other to approximate the gradient; (iv) div p-map :
our proposed approach that uses multiple but distinct
MAP assignments to approximate the gradient. The
approximate gradient is then used in the stochastic
gradient ascent eq. (4) to learn parameters. The fig-
ure displays the training curves — how accuracies on
training and testing words are changed following each
sweep through the training samples.

The results clearly demonstrate the advantage of us-
ing multiple MAP assignments over the single one (as
in perceptron) in learning the models. Specifically,
both training and test accuracies are improved.

The results also support strongly our hypothesis that
approximating gradients with multiple but distinct
MAP assignments is superior to methods that do not
require distinctiveness among those assignments. Note
that while the training accuracies are not improved,
the testing accuracies are significantly improved by re-
quiring diversity in MAP assignments.

Finally, note that a larger K leads to better test ac-
curacies in general and also to a bigger improvement
between diverse MAPs and regular MAPs.

4.2. Image Segmentation

For this task, we use a pairwise grid-structured CRF.
We use the MSRC-21 image dataset (Shotton et al.,
2007) and extracted 822-dimensional texton, color,
HOG and location feature vectors on every grid point
(pixel), following (Ladicky et al., 2009). We define
the unary potential to be the weighted sum of the
extracted feature vector, one for each state (i.e., the
number of classes). For foreground/background seg-
mentation, the number of states is 2 and for multi-class
segmentation, the number of states is 21, correspond-
ing to the 21 object classes. The pairwise potential is
used for smoothing segmentation, ie., to prefer neigh-
boring pixels to have the same class. To this end, we
use Potts like potentials which are defined by either
2× 2 or 21× 21 numbers. Our goal is to learn all the
parameters defining both types of potentials.

For computing k-best map assignments, neither
(Fromer & Globerson, 2009) nor (Batra, 2012) is scal-
able to large problems. Thus, we reduced the com-
putational cost by subsampling the images and study
binary foreground/background segmentation, allowing
extensive experimentation on k-best map.

Forground/background segmentation We define
object classes water,grass,sky and road as back-
ground and all other classes to be foreground. We
randomly select 20 images for training and 10 images
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Figure 1. OCR Task. (left) Learning curves on the training data (left) and on the testing data (middle). On the rightmost,
accuracies after 100 sweeps for different values for K by different methods. Our proposed approach div p-map clearly
outperforms perceptron and k-best mapwhich does not consider diversity in multiple MAP assignments
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Figure 2. Forground/background segmentation. (left) Learning curves on the training data (left) and on the testing data
(middle). Inlets show the details in the last 25 sweeps of training. On the rightmost, accuracies after 100 sweeps for
different values for K by different methods. Our approach div p-map improves slightly over other methods.

for testing. Initial parameters are randomly selected.

Figure 2 displays the learning curves of accuracies —
percentage of correctly labeled pixels, averaged over 3
random trials. Using multiple MAPs (either k-best
mapor div p-map ) leads to a slightly improved accu-
racy on the testing data than the perceptron algo-
rithm. Varying the number of multiple MAPs assign-
ments does not seem to have a major effect.

Multi-class segmentation Fig. 3 displays the re-
sults on the full 21-class segmentation. In this setting,
our approach is clearly advantageous to other com-
peting ones. Note that the training accuracy by our
method is often lower, suggesting that our method is
effective in controlling overfitting.

5. Conclusion

We have presented an approximate learning algorithm
for CRFs which utilizes multiple diverse MAP assign-
ments to approximate the gradient. We evaluate the

method on several tasks in structured prediction and
demonstrate its advantage over competing methods.
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Figure 3. Multi-class segmentation results. Solids curves for training and dashed for testing. Red-colored is for div p-map
, while black-colored and green-colored are for perceptron and k-best map, respectively. Our method clearly dominates.
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A. Derivation of div p-map

We illustrate the key steps using pairwise CRFs. The
log-linear model is given by the sum of the unary and
pairwise potentials, defined on vertices and edges re-
spectively,

log p(x|o,λ) ∝
∑
i∈V

θi(xi) +
∑

(i,j)∈E

θij(xi, xj)

Our approach works as follows. We compute the first
MAP solution x(1) with existing approaches (Sontag
et al., 2010). For other assignments defined in eq. (12),
we combine the dual decomposition and additional
subgradient descent steps to update the dual vari-
ables corresponding to the lower and upper bound con-
straints. For pairwise CRFs, we compute x(k) as

x(k) = arg max
x

∑
i∈V

θi(xi) +
∑

(i,j)∈E

θi,j(xi, xj)

s.t. L ≤
∑
i∈V

I(xi = x
(1)
i ) ≤ U

(13)

where L = (k − 1)D and U = kD. The Lagrangian of
this optimization problem is given by,

L(α, β,x) =
∑
i∈V

(θi(xi) + (α− β)I(xi 6= x
(1)
i ))

+
∑

(i,j)∈E

θi,j(xi, xj)− αL+ β U

where α and β are the dual variables for the con-
straints. The framework of dual decomposition gives
rise to the following dual problem

min
α,β≥0,δ

J(δ, α, β) = min
δ,α,β≥0

max
x,xf
L(δ, α, β,x,xf )

where we have created a duplicate for each variable
xi in each of the pairwise factors, collectively referred
to them as xf , and δ is the vector of dual variables,
one for each consistency constraint between a dupli-
cate and its original. For details, see (Sontag et al.,
2010).

Note that the difference I(xi 6= x
(1)
i ) can be directly

absorbed in θi(xi). Thus, the maximization of the La-
grangian is no different from the standard dual de-
composition approach. Then we use max product lin-
ear programming (MPLP) to minimize J(δ, α, β) with
respect to δ, while holding α and β fixed. Then we
minimize over α and β while holding δ fixed.

Specifically, let x̂i be the solution to the maximization.
We use the subgradient descent to update α and β

αt+1 = [αt − η(
∑
i∈V

I(x̂i 6= x
(1)
i )− L)]+

βt+1 = [βt − η(U −
∑
i∈V

I(x̂i 6= x
(1)
i ))]+

where η is the step size and []+ is the Heaviside step
function.


