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ABSTRACT

Fine-tuning large language models (LLMs) with high-quality knowledge has been
shown to enhance their performance effectively. However, there is a paucity of re-
search on the depth of domain-specific knowledge comprehension by LLMs and
the application of targeted active learning to improve their expertise. To address
this gap, we introduce the Knowledge-Aware Active Learning (KA2L) frame-
work. This framework assesses LLMs’ mastery of specific knowledge points to
aid in constructing unanswerable or unknowable questions through latent space
analysis. This active learning strategy enhances training efficiency by focusing
on knowledge the model has yet to master, thereby minimizing redundancy in
learning already acquired information. This study innovatively employs a knowl-
edge distribution probing technique to examine the hidden states of specific Trans-
former layers and identify the distribution of known and unknown knowledge
within the LLM. Additionally, a hidden-state decoding method is proposed to gen-
erate numerous unknown questions in natural language from the latent knowledge
space. In our experiments, we selected nine open-source LLMs to validate the ef-
fectiveness of the proposed framework. Results indicate that KA2L not only sig-
nificantly reduces 50% annotation and computation costs across two open-domain
and one vertical-domain dataset but also achieves better performance, offering
valuable insights into active learning strategies for LLMs. The code is available at
https://anonymous.4open.science/r/KA2L-F15C.

1 INTRODUCTION

Large Language Models (LLMs) such as GPT-4 and Llama-3 have demonstrated remarkable capa-
bilities across a wide range of NLP tasks (Zhao et al., 2025), and there is a growing demand for
applying them to specific domains. Enhancing the domain-specific knowledge of LLMs primarily
relies on techniques such as Supervised Fine-Tuning (SFT) (Zhao et al., 2025) and Retrieval Aug-
mented Generation (RAG) (Gao et al., 2024). These methods typically require substantial amounts
of high-quality annotated data or external knowledge bases. However, in practical applications, two
significant challenges arise: (1) The knowledge mastered by LLMs is often invisible, making it
necessary to train on the entire domain knowledge during each SFT process, leading to significant
resource waste. (2) Without visibility into the model’s knowledge, it is difficult to explicitly ascer-
tain the new knowledge required by the LLM. This results in a “black-box” learning process, where
incremental learning of new knowledge is prone to noise due to the typically low proportion of new
knowledge in the overall training set, ultimately affecting the model’s learning efficiency. Therefore,
this paper proposes a novel active learning framework that focuses on detecting the distribution of
known and unknown knowledge within LLMs. By directing training toward under-learned or un-
known knowledge, the framework avoids redundant annotation and repetitive learning on already-
acquired concepts, enabling more efficient and targeted knowledge acquisition.

Traditional active learning (AL) aims to identify a small subset of high-value samples from a large
data pool, allowing a model to approximate the performance attainable with full-dataset training.
Prominent strategies include uncertainty-based, diversity-based, and gradient-based approaches. For
instance, diversity-based methods like Coreset (Sener & Savarese, 2018) select samples that are
maximally different from one another to enhance model generalization. Hybrid approaches such as
BADGE (Ash et al., 2020) leverage gradients on models like ResNet (He et al., 2016), embodying
the core principle of selecting samples based on a combination of uncertainty and diversity. How-
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ever, directly applying these methods to modern LLMs is challenging due to prohibitive computa-
tional costs and a paradigm mismatch, as they were primarily designed for classification rather than
generative tasks. Consequently, current AL research for LLM has largely shifted toward distillation-
based (e.g. FreeAL (Xiao et al., 2023)) or in-context learning optimization methods (Margatina
et al., 2023). A key limitation is that they do not assess the model’s mastery of learned and to-be-
learned content nor analyze the correlation between the model’s latent space distribution and the
semantic features of upcoming knowledge. This hinders the controllable training of LLMs and the
incremental expansion of its unmastered knowledge.

To address these issues, this paper introduces the Knowledge-Aware Active Learning (KA2L) frame-
work, which pioneers a new paradigm based on semantic consistency. Within this paradigm, we op-
erationally define an LLM’s “unknown knowledge” as its inability to stably generate semantically
consistent answers to a factual question. This phenomenon is quantified by high Semantic Entropy
(SE) (Farquhar et al., 2024; Kuhn et al., 2023), a metric at the heart of our approach. The core
objective of this framework is thus to accurately assess this knowledge boundary, thereby efficiently
guiding the construction of SFT datasets. Specifically, the KA2L framework employs a Knowledge
Distribution Probing mechanism that utilizes hidden states from specific Transformer layers. It per-
forms clustering based on semantic entailment and uses SE to unsupervisedly train a Multi-Layer
Perceptron (MLP) as a classifier, which categorizes the question set into “Known” and “Unknown”
parts. Furthermore, the KA2L framework utilizes a “hidden-state decoding” technique to “reverse
engineer” a large volume of natural-sounding questions from the hidden-space representations cor-
responding to knowledge points identified within the “Unknown” regions. By incorporating these
questions into the training data, the KA2L framework establishes an active learning closed loop,
enabling the model to concentrate on learning knowledge it has not yet mastered and thereby mini-
mizing repetitive learning and annotation redundancy.

The main contributions of this paper can be summarized as follows:

1. We propose a novel Knowledge-Aware Active Learning framework (KA2L) that can ac-
curately assess an LLM’s degree of knowledge mastery and, by integrating hidden state
decoding techniques, actively mine the model’s unknown knowledge to guide efficient in-
cremental learning.

2. We innovatively integrate the problem of LLM knowledge distribution probing with the
concepts of hallucination detection, proposing methods for probing and decoding based
on hidden states, thereby offering new avenues for understanding and shaping the internal
knowledge representations of LLMs.

3. Through extensive experiments on nine open-source LLMs and three datasets, we demon-
strate that KA2L not only achieves performance comparable to fine-tuning on the full
dataset while reducing annotation and computational costs by approximately 50%, but also
significantly outperforms adapted classic active learning methods, including Coreset and
BADGE, providing a novel and cost-effective solution for fine-tuning LLMs.

2 RELATED WORK

Active Learning for LLMs. Active learning is a well-established field for reducing data annotation
costs, with classic strategies primarily pivoting on principles of uncertainty, diversity, or a hybrid of
both. Prominent methods include uncertainty sampling (e.g., using prediction entropy), diversity-
based approaches like Coreset (Sener & Savarese, 2018) which selects a representative subset of
data, and hybrid methods such as BADGE (Ash et al., 2020) that unify both principles via gradient
embeddings. However, transplanting these methods, originally designed for models like CNNs, to
modern generative LLMs presents significant challenges. For instance, gradient-based methods like
BADGE or Fisher information-based methods like BAIT (Ash et al., 2021) become computationally
prohibitive due to the immense scale of LLM parameters, and their core logic does not straightfor-
wardly apply to generative tasks. To our knowledge, systematic adaptation and evaluation of these
classic methods for LLM fine-tuning has been limited. In our work, we implement practical adap-
tations of these strategies to compare with our methods. Parallel to this, other LLM-specific active
learning research has focused on alternative goals, such as collaborative learning without human su-
pervision (Xiao et al., 2023) or optimizing demonstrations for in-context learning (Margatina et al.,
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2023). In contrast to these approaches, our work introduces a fundamentally different selection sig-
nal, semantic entropy, derived from the semantic consistency across multiple model generations.
This allows us to directly probe the model’s knowledge stability, bypassing the computational hur-
dles of classic methods while offering a more direct proxy for knowledge gaps in generative tasks.
See Appendix B for additional related work.

3 METHOD

3.1 PROBLEM FORMULATION

Given the abstract nature of knowledge, this study considers “questions” as external manifestations
of knowledge; i.e., a model’s ability to correctly answer a question signifies its possession of the
knowledge represented by that question. Given an LLM, denoted as M , and a set of questions
Q = {q1, q2, . . . , qn}, the knowledge distribution of model M over Q, denoted KM,Q, is defined
as a partition of Q into (Qk, Qunk). Here, Qk represents the set of questions the model can answer
correctly with high confidence, while Qunk represents the set of questions for which the model’s
answers are uncertain. Qunk will guide knowledge mining, as well as dataset annotation and model
fine-tuning in downstream tasks.

To mitigate the risk that Qunk may be too small to effectively support downstream fine-tuning,
this study further investigates a question augmentation strategy grounded in the model’s internal
representations. For any question qi ∈ Qunk, its internal hidden states generated by model M
during processing are utilized. A new set of questions {q(1)i , q

(2)
i , . . . , q

(ki)
i } (ki ≥ 0), similar in

domains and knowledge points, is then generated through hidden state decoding techniques. The
augmented set of unknown questions is represented as Qaug =

⋃
qi∈Qunk

({qi}∪{q(1)i , . . . , q
(ki)
i }).

Downstream tasks include SFT dataset construction and model fine-tuning. Dataset construction
can be defined as creating Dunk = {⟨qi, ai⟩|qi ∈ Qaug}, where ai is the ground-truth answer to qi.
The objective of model fine-tuning is formulated as follows:

θft = argmin
θ

1

N

∑
(qi,ai)∈Dunk

Loss(M(qi; θ), ai) (1)

where θft are the fine-tuned model parameters, θ are the parameters to be optimized during fine-
tuning, N is the size of the dataset Dunk, Loss is the loss function, and M is the model. Downstream
tasks are not the primary focus of this study.

3.2 KNOWLEDGE DISTRIBUTION PROBING

The objective of knowledge distribution probing is to identify the intrinsic distribution of “known”
and “unknown” questions for an LLM M over a specific question set Q. This task is highly cor-
related with the goal of LLM hallucination detection. As illustrated in Figure 1 (a), our probing
framework utilizes semantic entropy (Farquhar et al., 2024; Kuhn et al., 2023) as a metric for quan-
tifying uncertainty in model outputs and employs a Multi-Layer Perceptron (MLP) as the classifier
to distinguish whether the knowledge corresponding to the hidden state is mastered by the model.
The main workflow includes hidden state and model output sampling, semantic entropy calculation
and label construction, classifier training, and inference.

3.2.1 HIDDEN STATE AND MODEL OUTPUT SAMPLING

As shown in Figure 1 (a), for each question qi in the question set Q, the hidden states Hi = {hl
i}Ll=1

of the last token across all L layers are obtained from LLM M at a low temperature (e.g.,
temperature=0.1). Subsequently, for the same question qi, multiple independent samples are drawn
at a higher decoding temperature, yielding a set of output sentences Si = {s(1)i , s

(2)
i , . . . , s

(k)
i }. This

process constructs the dataset S = {⟨qi, Hi, Si⟩}qi∈Q for subsequent classifier training.

3
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Figure 1: KA2L Workflow: (a) Knowledge Distribution Probing: Training Phase: For each question in
the sampled question set, sample its hidden state once and its textual outputs multiple times. Perform semantic
clustering on the textual outputs to calculate Semantic Entropy (SE). The SE is then binarized using a dynamic
threshold to serve as labels for the classifier. An MLP classifier is trained using these hidden states and the
binarized SE (BiSE). Inference Phase: For a new set of questions, sample their l-th layer hidden states. These
are then classified by the MLP classifier, representing the knowledge distribution as “Known” and “Unknown”
knowledge. (b) Unknown Question Augmentation: Sample the hidden states (hunk) of questions identified
as “Unknown” from the knowledge distribution. These are then transformed and decoded into multiple similar
questions. (c) Downstream Tasks: This knowledge distribution guides dataset construction and model fine-
tuning. Many existing methods can be applied, such as LoRA (Hu et al., 2022) and P-tuning (Liu et al., 2022).

3.2.2 SEMANTIC ENTROPY CALCULATION AND LABEL CONSTRUCTION

The calculation of semantic entropy (SE) follows the methodology proposed in Farquhar et al.
(2024); Kuhn et al. (2023). It involves performing semantic clustering on the multiple sampled
outputs Si for the same question qi and quantifying the consistency of the output content based on
the clustering results. A lower SE value indicates higher semantic consistency across multiple out-
puts; conversely, a higher value suggests greater semantic divergence, indicating that the model has
not mastered the knowledge associated with the question. Semantic clustering employs a pre-trained
Natural Language Inference (NLI) model (e.g., DeBERTa (He et al., 2021)) to determine semantic
equivalence between sentences: if sentence A entails sentence B and sentence B entails sentence A,
they are considered semantically equivalent.

For the output set Si of question qi, let the set of semantic equivalence classes be Cqi =
{c1, c2, . . . , c|Cqi

|}, where ck is an equivalence class, |ck| is the number of sentences in that class,
and N =

∑
k |ck| = |Si| is the total number of samples. The semantic entropy SE(Si) can be

estimated as:

SE(Si) ≈ −
|Cqi

|∑
k=1

|ck|
N

ln
|ck|
N

(2)

To obtain binary labels (known/unknown) for classifier training, a dynamic thresholding method is
applied to binarize the calculated SE(Si). Specifically, let T = {τ1, τ2, . . . , τK} be K candidate
thresholds selected within the range of all sample SE values [min({SEi}|Q|

i=1),max({SEi}|Q|
i=1)]. For

any candidate threshold τ ∈ T , each sample’s SEi is binarized, and the mean-square error (MSE)
between its binarized result and the original continuous semantic entropy is calculated:

MSE(τ) =
1

|Q|

|Q|∑
i=1

(SEi − I(SEi ≥ τ))2 (3)

where I(·) is the indicator function, which is 1 if the condition is true and 0 otherwise. Subsequently,
the optimal threshold γ∗ is computed, and SEi is binarized to obtain BiSEi. (See Appendix F.6 for a
detailed robustness analysis demonstrating the effectiveness of this dynamic thresholding method).

4
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γ∗ = argmin
τ∈T

SE(τ) (4)

BiSEi =

{
0 if SEi < γ∗ (representing known)
1 if SEi ≥ γ∗ (representing unknown)

(5)

Finally, the classifier training dataset Dclf = {⟨Hi,BiSEi⟩}qi∈Q is constructed.

3.2.3 CLASSIFIER TRAINING AND INFERENCE

The dataset Dclf is partitioned into training, validation, and test sets in a 7:2:1 ratio. To effectively
discriminate the knowledge states of the LLM, we design a Multi-Layer Perceptron (MLP) as the
hidden state classifier. The architectural design of this MLP is informed by efficient MLP compo-
nents found in modern large language models, such as Llama3, comprising 4 linear layers and 1
SiLU activation function. Considering the high dimensionality and potentially complex non-linear
features of LLM hidden states, we opted for an MLP structure, aiming for stronger representation
learning and pattern recognition capabilities compared to traditional linear classifiers (e.g., logistic
regression). The classifier’s input dimension matches the hidden state dimension hl

i of the LLM M
under test, the output dimension is 2, and the intermediate layer dimension is set to 14336. Training
utilizes the standard CrossEntropyLoss function and Adam optimizer (Kingma & Ba, 2017), with
a learning rate of 1.0e − 5 for 20 epochs. For all L hidden layers of each LLM M , L independent
classifiers are trained. The best-performing classifier C and its corresponding hidden layer number
l are selected based on their performance on the test set.

For each question in a new question set Qnew, we extract the hidden state of the last token at
the selected layer l. This hidden state is then fed into the trained classifier C for classification,
yielding a determination of whether the question is “known” or “unknown,” ultimately constructing
the knowledge distribution over Qnew. The classifier C is characterized by its fast operational
speed and high parallelizability, rendering its performance overhead on the overall active learning
framework negligible. Questions identified as falling within the “Unknown” region of the knowledge
distribution are collected and subsequently directed to the hidden state decoding process.

3.3 UNKNOWN QUESTION AUGMENTATION VIA HIDDEN STATE DECODING

To augment the “Unknown” question set, we employ a latent space decoding technique from
LLM interpretability research. This approach transcends surface-level paraphrasing by decoding
the model’s rich, abstract hidden states (Morris et al., 2024; Geva et al., 2021) into new, diverse
questions. These generated questions probe the same knowledge points from different perspec-
tives, thereby more comprehensively identifying the model’s knowledge deficiencies. We adapt the
“vec2text” method (Morris et al., 2024) by training a dedicated decoder to translate hidden states
into natural language text, as detailed in Appendix E.1.

4 EXPERIMENTAL SETUP

To rigorously evaluate the effectiveness and efficiency of our proposed KA2L framework, we con-
ducted a series of experiments.

4.1 MODELS, DATASETS, AND EVALUATION METRICS

The experiments selected nine open-source large language models, including Llama (Touvron et al.,
2023), Mistral (Jiang et al., 2023), Phi (Abdin et al., 2024), Qwen (Qwen et al., 2025), and GLM
(GLM et al., 2024), covering different model architectures and parameter scales. To ensure the
breadth of the evaluation, the experiments utilized 2 open-domain question-answering datasets, Triv-
iaQA (Joshi et al., 2017) and NQ Open (Lee et al., 2019), and 1 medical domain dataset, MedMCQA
(Pal et al., 2022). These datasets cover different knowledge domains and question types.

Evaluation metrics including BLEU (Papineni et al., 2002), ROUGE (Lin, 2004), METEOR (Lavie
& Agarwal, 2007), and BERTScore (Zhang* et al., 2020), were adopted to comprehensively assess
the fluency, accuracy, and semantic similarity of the generated answers.
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It is important to note that all our experiments are conducted in a closed-book setting. This means
the models rely solely on their internal, parametric knowledge to answer questions, without access
to any external information retrieval system during inference. This setup is crucial for our goal,
which is to evaluate the effectiveness of directly injecting knowledge into the model’s parameters
through targeted fine-tuning.

4.2 VALIDATING KA2L’S EFFICACY

The core of our experimental design is to validate the efficacy of KA2L through three central re-
search questions (RQs). The process begins by training a knowledge distribution probe for each
LLM-dataset pair on a held-out data sample. This trained probe then partitions a separate, larger
data pool to construct our primary fine-tuning datasets:

Dunk Contains questions identified by the probe as “unknown”. This set represents the high-value
data actively selected by our KA2L framework.

Dk Contains questions identified as “known”, serving as a baseline to evaluate the utility of data
already mastered by the model.

Dcombine A balanced mix of samples from Dunk and Dk, simulating a standard, unfiltered dataset
collected without an active learning strategy.

For each model-dataset pair, the trained probe is used to select 10, 000 “unknown” and 5, 000
“known” samples from the larger data pool, forming the basis for our experimental sets. The probe
extracts hidden states from the layer which yield the highest classification accuracy (see Appendix
F.4 for analysis and Table 4 for final layer selections). Specifically, the 10k Unknown dataset con-
sists of all 10, 000 selected unknown samples. The 5k Unknown dataset is a random 5, 000-sample
subset of this 10k set. The 10k Combine dataset is constructed by mixing 5, 000 of the unknown
samples with the 5, 000 selected known samples.

We fine-tune each model using LoRA with standard configurations (see Appendix E.2 for a compre-
hensive list of all fine-tuning hyperparameters).

RQ1: Cost-Efficiency. Can KA2L achieve comparable performance to a full, unfiltered dataset
while using only a fraction (e.g., 50%) of the annotation and computational budget? To answer this,
we compare fine-tuning on 5k Unknown data (a 5, 000-sample subset of Dunk) against 10k Combine
data (from Dcombine). This tests if our method can match a larger dataset’s performance with half the
budget.

RQ2: Selection Effectiveness. Given an identical data budget, does KA2L’s strategy of selecting
“unknown” data yield superior performance compared to a naive, unfiltered approach? Here, we
compare fine-tuning on 10k Unknown data against the same 10k Combine baseline. This directly
isolates the benefit of focusing on knowledge gaps versus indiscriminate training.

RQ3: Augmentation Utility. In scenarios with a limited pool of original “unknown” data, can our
hidden-state decoding method effectively augment the training set to further boost performance?
To investigate this, we create a 10k Augmented dataset by generating 5, 000 new questions from
the hidden states of the 5k Unknown set. We then compare the fine-tuning performance of this
augmented set against the original 5k Unknown set (to measure the uplift from augmentation) and
the 10k Unknown set (to gauge how closely synthetic data can approximate additional original data).

4.3 SUPPLEMENTARY ANALYSES

To provide deeper insights into our framework and validate its components, we conducted several
supplementary analyses. Detailed methodologies and results are presented in the Appendix.

Comparison with Traditional AL. We compared KA2L against adapted traditional active learn-
ing methods to assess its effectiveness. The detailed setup and full results are discussed in §5.3,
Appendix E.3 and F.2.

Component Validation. We assessed the performance of our Knowledge Distribution Probe (§5.2,
Appendix F.3) and investigated the robustness of our Dynamic Thresholding method (Appendix F.6).

6
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Table 1: Active learning performance on MedMCQA. KA2L-selected data (Unknown) is compared against
Known data and a mixed Combine setting. Full results for other datasets are in the Appendix F.1.
Model SFT Dataset BLEU ROUGE-L METEOR BS(%) SFT Dataset BLEU ROUGE-L METEOR BS(%)

DeepSeek-R1-
Distill-Qwen-7B

None 0.02 0.52 1.31 76.29 10k Combine 2.44 12.55 7.92 83.70
5k Known 1.85 10.41 6.50 83.19 10k Unknown 2.85 14.53 9.20 84.00
5k Unknown 1.91 11.99 7.54 83.62 10k Augmented 2.62 13.55 8.91 84.00

glm4-9b-chat
None 0.08 1.71 4.21 78.48 10k Combine 6.90 28.27 19.67 86.80
5k Known 4.17 20.62 13.86 85.17 10k Unknown 9.82 36.02 25.50 88.30
5k Unknown 6.61 28.44 19.87 86.73 10k Augmented 8.48 29.92 21.67 87.13

Llama-2-7b-
chat-hf

None 0.06 0.99 2.54 77.33 10k Combine 5.37 23.76 15.80 85.90
5k Known 3.34 16.13 10.45 84.35 10k Unknown 7.99 29.78 20.14 87.15
5k Unknown 5.91 23.25 15.54 85.79 10k Augmented 5.56 23.77 16.06 85.92

Llama-3.1-8B-
Instruct

None 0.10 2.34 5.01 78.58 10k Combine 8.21 30.17 21.11 87.14
5k Known 5.72 23.29 16.18 85.71 10k Unknown 10.82 36.55 25.97 88.49
5k Unknown 8.49 29.96 20.84 87.20 10k Augmented 8.81 30.54 21.36 87.31

Mistral-7B-
Instruct-v0.1

None 0.12 3.17 6.29 79.60 10k Combine 7.06 27.86 19.16 86.70
5k Known 3.35 18.09 12.03 84.74 10k Unknown 9.71 36.11 25.20 88.37
5k Unknown 6.97 27.33 18.82 86.65 10k Augmented 7.43 28.85 20.29 86.92

Mistral-7B-
Instruct-v0.3

None 0.11 2.10 5.19 79.22 10k Combine 6.88 27.55 19.29 86.76
5k Known 4.32 19.17 13.11 85.03 10k Unknown 9.58 35.28 25.08 88.30
5k Unknown 6.71 27.02 18.79 86.63 10k Augmented 8.24 28.94 20.86 87.07

Phi-3.5-mini-
instruct

None 0.09 1.59 4.10 78.44 10k Combine 7.42 27.70 18.57 86.74
5k Known 6.63 25.40 16.90 86.30 10k Unknown 8.05 29.69 19.95 87.21
5k Unknown 7.61 27.85 18.59 86.81 10k Augmented 8.30 29.18 20.05 87.07

Qwen1.5-7B-
Chat

None 0.08 1.64 4.03 78.63 10k Combine 4.60 19.65 13.12 85.00
5k Known 3.11 15.09 9.95 84.10 10k Unknown 5.46 23.72 15.78 85.84
5k Unknown 4.13 19.34 12.86 84.90 10k Augmented 4.85 21.55 14.84 85.40

Qwen2.5-7B-
Instruct

None 0.09 1.80 4.34 78.35 10k Combine 6.30 24.13 16.80 85.93
5k Known 4.67 20.30 13.85 85.06 10k Unknown 6.63 27.16 18.79 86.54
5k Unknown 6.80 24.07 16.58 85.95 10k Augmented 5.92 24.65 17.73 86.14

Layer-wise Analysis. We examined how knowledge uncertainty is distributed across different trans-
former layers for each model (Appendix F.4).

Data Scaling Effect. We explored the impact of varying the quantity of “unknown” data on fine-
tuning performance (Appendix F.5).

Qualitative Analysis. To provide an intuitive validation for our framework’s core premise, we
present a qualitative case study. This analysis visually demonstrates the strong correlation between
a model’s output consistency and its underlying knowledge state, thereby supporting our operational
definition of “unknown knowledge” as an LLM’s inability to stably generate semantically consistent
answers to a factual question (Appendix F.7).

5 RESULTS AND ANALYSIS

5.1 KA2L-GUIDED FINE-TUNING ACHIEVES SUPERIOR COST-EFFICIENCY AND
EFFECTIVENESS

Our primary experiments, summarized in Table 1 for the MedMCQA dataset, demonstrate the sub-
stantial advantages of the KA2L framework across a diverse set of nine LLMs. These findings
are consistently replicated on the open-domain TriviaQA and NQ Open datasets, as detailed in Ap-
pendix F.1. The results provide clear and consistent answers to our core research questions regarding
cost-efficiency (RQ1), selection effectiveness (RQ2), and augmentation utility (RQ3).

Cost-Efficiency (RQ1). A central finding is that fine-tuning with 5k Unknown samples, actively
selected by KA2L, achieves performance comparable to the 10k Combine setting while using only
half the data. For instance, on the challenging MedMCQA dataset, Llama-3.1-8B-Instruct
trained on 5k Unknown data reaches a ROUGE-L score of 29.96, nearly identical to the 30.17
achieved with the full 10k Combine set. This pattern holds across most models, such as
glm4-9b-chat (5k Unknown: 28.44 vs. 10k Combine: 28.27). This directly validates that our
framework can cut annotation and computational costs by approximately 50% while maintaining
high performance, confirming the cost-efficiency of focusing on unmastered knowledge.
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Table 2: Performance comparison of knowledge distribution probes (AUROC) on TriviaQA dataset. Our
method achieves the highest score. Similar trends are observed on MedMCQA and NQ Open (Appendix F.3)

Models Ours SE Probe Accuracy
Probe

Log-Likeli
hood

Regular
Entropy

P(True) Semantic
Entropy

DeepSeek-R1-Distill-
Qwen-7B

0.89 0.85 0.81 0.61 0.84 0.83 0.86

glm4-9b-chat 0.83 0.81 0.72 0.56 0.76 0.82 0.80
Llama-2-7b-chat-hf 0.85 0.78 0.70 0.55 0.73 0.71 0.77
Llama-3.1-8B-Instruct 0.89 0.85 0.73 0.57 0.75 0.79 0.79
Mistral-7B-Instruct-v0.1 0.88 0.83 0.76 0.62 0.75 0.78 0.81
Mistral-7B-Instruct-v0.3 0.90 0.86 0.78 0.68 0.73 0.84 0.78
Phi-3.5-mini-instruct 0.91 0.88 0.81 0.77 0.82 0.79 0.84
Qwen1.5-7B-Chat 0.81 0.78 0.74 0.46 0.77 0.78 0.81
Qwen2.5-7B-Instruct 0.86 0.82 0.75 0.54 0.79 0.86 0.80

Effectiveness of Selection (RQ2). When comparing datasets of the same size, the superiority of
KA2L becomes even more apparent. The 10k Unknown setting consistently and significantly outper-
forms the 10k Combine across all models and metrics. For example, Llama-3.1-8B-Instruct
achieves a ROUGE-L of 36.55 with 10k Unknown data, a remarkable 6.38-point improvement over
the 30.17 from the 10k Combine set. Similar substantial gains are observed for all other models,
such as Mistral-7B-Instruct-v0.3 (35.28 vs. 27.55). This result powerfully illustrates that
given a fixed budget, intelligently selecting the model’s unknown data is far more effective than an
unfiltered training approach. It also highlights that fine-tuning on “known” data, as is done in 10k
Combine setting, offers limited benefits and can be considered redundant.

Utility of Data Augmentation (RQ3). Our experiments with the 10k Augmented set reveal its
practical utility in data-scarce scenarios. As expected, the performance of augmented data generally
does not reach the ceiling set by an equivalent amount of original 10k Unknown data, since original
samples contain the most novel information. However, the augmented set consistently provides a
significant performance boost over the 5k Unknown set. For instance, with Phi-3.5-mini, the
10k Augmented set (ROUGE-L 29.18) notably improves upon the 5k Unknown set (27.85) and even
slightly outperforms the unfiltered 10k Combine set (27.70). This result highlights that when acquir-
ing more original “unknown” data is costly or infeasible, our hidden-state decoding method offers a
practical and effective way to enrich the training data and further improve model performance.

5.2 VALIDATING THE KNOWLEDGE DISTRIBUTION PROBE

The efficacy of our entire KA2L framework hinges on the performance of its core component: the
knowledge distribution probe. To validate its ability to accurately identify a model’s knowledge
gaps, we evaluate it on the task of classifying questions as “known” or “unknown”. We benchmark
our MLP-based probe against a suite of strong baselines from hallucination detection and uncertainty
quantification literature, using AUROC as the primary metric.

As demonstrated in Table 2, our probe consistently achieves state-of-the-art performance across
all nine evaluated LLMs on the TriviaQA dataset. Notably, it attains an AUROC of up to 0.91
(on Phi-3.5-mini-instruct), establishing a new performance benchmark for this task. It
significantly outperforms SE Probe, the most conceptually similar baseline, which also leverages
hidden states but relies on a simpler logistic regression classifier. This underscores the effectiveness
of our MLP architecture in capturing the complex, non-linear uncertainty signals encoded within the
transformer’s internal representations.

Furthermore, compared to methods that operate on model outputs, our approach shows a distinct
advantage. It surpasses both surface-feature-based methods like Semantic Entropy (SE) and logit-
based methods such as Log-Likelihood and Regular Entropy. This suggests that the internal hidden
states provide a more reliable and direct signal of a model’s epistemic uncertainty than its final out-
put distribution or lexical variations. Crucially, this high accuracy is achieved with a lightweight
MLP classifier, ensuring that the probe introduces negligible computational overhead during infer-
ence. The probe’s superior and efficient performance provides a robust foundation for the KA2L
framework, ensuring that the data selected for active learning is of the highest value.
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Table 3: Performance comparison of active learning methods on the NQ Open dataset. Our method,
KA2L (5k Unknown), significantly outperforms all adapted traditional AL method, approaching the perfor-
mance of the Full Dataset (10k) with only half the data budget. Results are reported as mean ± std over 4 runs.

Method BLEU ROUGE-L METEOR BertScore(%)

Traditional Methods (5k samples selected from 10k pool)
Random 21.75 ± 0.03 38.53 ± 0.02 29.65 ± 0.02 90.01 ± 0.01
Entropy 19.59 ± 1.15 37.91 ± 0.10 29.38 ± 0.07 89.91 ± 0.01
Coreset 22.04 ± 0.07 38.69 ± 0.05 29.81 ± 0.03 90.16 ± 0.01
BADGE (adapted) 19.64 ± 0.15 38.70 ± 0.05 29.73 ± 0.05 90.06 ± 0.01

Our Method (5k samples)
KA2L 5k Known 16.68 ± 0.09 32.58 ± 0.03 24.68 ± 0.03 89.07 ± 0.01
KA2L 5k Unknown 22.29 ± 0.08 44.96 ± 0.04 35.01 ± 0.04 91.08 ± 0.01

Upper Bound
Full Dataset (10k) 24.51 ± 0.04 45.18 ± 0.04 35.35 ± 0.04 91.09 ± 0.01

5.3 COMPAIRSON WITH ADAPTED TRADITIONAL ACTIVE LEARNING METHODS

To situate KA2L in the broader research context, we performed a comparative analysis against sev-
eral traditional active learning methods. Since methods such as Entropy (Wang & Shang, 2014),
Coreset (Sener & Savarese, 2018), and BADGE (Ash et al., 2020) were not originally designed for
generative LLMs, it is necessary to develop practical adaptations for them, primarily by using pre-
diction entropy as a proxy for uncertainty and final-layer hidden states as embeddings for diversity.
Our full adaptation methodology for these strategies is detailed in Appendix E.3. This compara-
tive study, conducted on the LLaMA-3.1-8B-Instruct model, investigates how KA2L’s LLM-
native selection signal performs relative to these adapted strategies. As shown in Table 3, the results
highlight a significant performance gap.

On the NQ Open dataset, fine-tuning on the 5k Unknown set selected by KA2L achieves a ROUGE-
L score of 44.96 ± 0.04. This not only significantly surpasses all traditional AL methods but is also
remarkably close to the performance of the Full Dataset (45.18 ± 0.04), which uses twice the amount
of data. Full results on all three datasets, presented in Appendix F.2 (Tables 8 and 9), consistently
corroborate this finding, demonstrating that KA2L’s semantic-uncertainty-based approach is more
effective at identifying informative samples for knowledge-intensive tasks than strategies based on
general uncertainty, diversity, or adapted gradients.

6 CONCLUSION

In this paper, we introduced the Knowledge-Aware Active Learning (KA2L) framework, a novel
approach for efficiently fine-tuning Large Language Models. By probing the model’s internal hid-
den states to identify “unknown” knowledge, KA2L guides a more targeted and cost-effective data
selection process. Our extensive experiments demonstrate that fine-tuning with KA2L-selected data
not only reduces annotation and computation costs by approximately 50% but also achieves superior
performance compared to both unfiltered datasets and classic active learning methods like Coreset
and BADGE. The core of our framework, a highly accurate knowledge probe, effectively pinpoints a
model’s knowledge boundaries, while our hidden-state decoding offers a practical solution for data
augmentation in low-resource scenarios. Ultimately, KA2L presents a practical and robust solution
for targeted LLM enhancement, highlighting the significant value of leveraging a model’s internal
knowledge distribution for more efficient learning. The limitations of our current framework and
promising future directions are detailed in Appendix C and D.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, our full source code is publicly available in an anonymous repository at
https://anonymous.4open.science/r/KA2L-F15C. The Appendix provides compre-
hensive implementation details, including all hyperparameters (Appendix E) and additional results
(Appendix F), to facilitate the complete replication of our findings.
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improve the efficiency of knowledge acquisition in LLMs, a fundamentally positive scientific goal.
We have reviewed the ICLR Code of Ethics and, to the best of our knowledge, our methodology
does not raise any direct negative societal impacts or ethical concerns.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko,
Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dong-
dong Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang
Dai, Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit
Garg, Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao,
Russell J. Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin
Jin, Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim,
Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden,
Xihui Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong
Luo, Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro
Mendes, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-
Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo
de Rosa, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim,
Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla,
Xia Song, Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua
Wang, Lijuan Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp
Witte, Haiping Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Ji-
long Xue, Sonali Yadav, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu, Lu Yuan,
Chenruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan
Zhang, and Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your
phone, 2024. URL https://arxiv.org/abs/2404.14219.

Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep
batch active learning by diverse, uncertain gradient lower bounds. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
ryghZJBKPS.

Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Sham M. Kakade. Gone fishing: Neural
active learning with fisher embeddings. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL https://
openreview.net/forum?id=DHnThtAyoPj.

Amos Azaria and Tom Mitchell. The internal state of an LLM knows when it‘s lying. In Houda
Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pp. 967–976, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-emnlp.68. URL https://aclanthology.
org/2023.findings-emnlp.68/.

Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney, Stella
Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the tuned
lens, 2023. URL https://arxiv.org/abs/2303.08112.

Haozhe Chen, Carl Vondrick, and Chengzhi Mao. SelfIE: Self-interpretation of large language
model embeddings. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=gjgRKbdYR7.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In Inter-
national Conference on Learning Representations (ICLR), 2024.

10

https://arxiv.org/abs/2404.14219
https://openreview.net/forum?id=ryghZJBKPS
https://openreview.net/forum?id=ryghZJBKPS
https://openreview.net/forum?id=DHnThtAyoPj
https://openreview.net/forum?id=DHnThtAyoPj
https://aclanthology.org/2023.findings-emnlp.68/
https://aclanthology.org/2023.findings-emnlp.68/
https://arxiv.org/abs/2303.08112
https://openreview.net/forum?id=gjgRKbdYR7


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in
large language models using semantic entropy. Nature, 630(8017):625–630, Jun 2024. ISSN
1476-4687. doi: 10.1038/s41586-024-07421-0. URL https://doi.org/10.1038/
s41586-024-07421-0.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng
Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey,
2024. URL https://arxiv.org/abs/2312.10997.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers
are key-value memories. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott
Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 5484–5495, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446. URL
https://aclanthology.org/2021.emnlp-main.446/.

Asma Ghandeharioun, Avi Caciularu, Adam Pearce, Lucas Dixon, and Mor Geva. Patchscopes:
A unifying framework for inspecting hidden representations of language models. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/
forum?id=5uwBzcn885.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng,
Jiayi Gui, Jie Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu,
Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao,
Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu,
Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan
Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang,
Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm: A family of large language
models from glm-130b to glm-4 all tools, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention, 2021. URL https://arxiv.org/abs/2006.03654.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan
(eds.), Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1601–1611, Vancouver, Canada, July 2017. Association for Com-
putational Linguistics. doi: 10.18653/v1/P17-1147. URL https://aclanthology.org/
P17-1147/.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Jannik Kossen, Jiatong Han, Muhammed Razzak, Lisa Schut, Shreshth Malik, and Yarin Gal. Se-
mantic entropy probes: Robust and cheap hallucination detection in llms, 2024. URL https:
//arxiv.org/abs/2406.15927.

11

https://doi.org/10.1038/s41586-024-07421-0
https://doi.org/10.1038/s41586-024-07421-0
https://arxiv.org/abs/2312.10997
https://aclanthology.org/2021.emnlp-main.446/
https://openreview.net/forum?id=5uwBzcn885
https://openreview.net/forum?id=5uwBzcn885
https://arxiv.org/abs/2006.03654
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://aclanthology.org/P17-1147/
https://aclanthology.org/P17-1147/
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2406.15927
https://arxiv.org/abs/2406.15927


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances
for uncertainty estimation in natural language generation. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
VD-AYtP0dve.

Alon Lavie and Abhaya Agarwal. METEOR: An automatic metric for MT evaluation with high lev-
els of correlation with human judgments. In Chris Callison-Burch, Philipp Koehn, Cameron Shaw
Fordyce, and Christof Monz (eds.), Proceedings of the Second Workshop on Statistical Machine
Translation, pp. 228–231, Prague, Czech Republic, June 2007. Association for Computational
Linguistics. URL https://aclanthology.org/W07-0734/.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval for weakly supervised
open domain question answering. In Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 6086–6096, Florence, Italy, July 2019. Association for
Computational Linguistics. doi: 10.18653/v1/P19-1612. URL https://www.aclweb.org/
anthology/P19-1612.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
intervention: Eliciting truthful answers from a language model. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=aLLuYpn83y.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-
tics. URL https://aclanthology.org/W04-1013/.

Charles X. Ling, Jin Huang, and Harry Zhang. Auc: a statistically consistent and more discriminat-
ing measure than accuracy. In Proceedings of the 18th International Joint Conference on Artificial
Intelligence, IJCAI’03, pp. 519–524, San Francisco, CA, USA, 2003. Morgan Kaufmann Publish-
ers Inc.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In Smaranda Muresan,
Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pp. 61–68, Dublin, Ireland,
May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-short.8. URL
https://aclanthology.org/2022.acl-short.8/.

Bo Lv, Chen Tang, Yanan Zhang, Xin Liu, Yue Yu, and Ping Luo. Specfuse: Ensembling large
language models via next-segment prediction. arXiv preprint arXiv:2412.07380, 2024.

Potsawee Manakul, Adian Liusie, and Mark Gales. SelfcheckGPT: Zero-resource black-box hal-
lucination detection for generative large language models. In The 2023 Conference on Empir-
ical Methods in Natural Language Processing, 2023. URL https://openreview.net/
forum?id=RwzFNbJ3Ez.

Katerina Margatina, Timo Schick, Nikolaos Aletras, and Jane Dwivedi-Yu. Active learning prin-
ciples for in-context learning with large language models. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP
2023, pp. 5011–5034, Singapore, December 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.findings-emnlp.334. URL https://aclanthology.org/2023.
findings-emnlp.334/.

John Xavier Morris, Volodymyr Kuleshov, Vitaly Shmatikov, and Alexander M Rush. Text em-
beddings reveal (almost) as much as text. In The 2023 Conference on Empirical Methods
in Natural Language Processing, 2023. URL https://openreview.net/forum?id=
EDuKP7DqCk.

John Xavier Morris, Wenting Zhao, Justin T Chiu, Vitaly Shmatikov, and Alexander M Rush. Lan-
guage model inversion. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=t9dWHpGkPj.

12

https://openreview.net/forum?id=VD-AYtP0dve
https://openreview.net/forum?id=VD-AYtP0dve
https://aclanthology.org/W07-0734/
https://www.aclweb.org/anthology/P19-1612
https://www.aclweb.org/anthology/P19-1612
https://openreview.net/forum?id=aLLuYpn83y
https://openreview.net/forum?id=aLLuYpn83y
https://aclanthology.org/W04-1013/
https://aclanthology.org/2022.acl-short.8/
https://openreview.net/forum?id=RwzFNbJ3Ez
https://openreview.net/forum?id=RwzFNbJ3Ez
https://aclanthology.org/2023.findings-emnlp.334/
https://aclanthology.org/2023.findings-emnlp.334/
https://openreview.net/forum?id=EDuKP7DqCk
https://openreview.net/forum?id=EDuKP7DqCk
https://openreview.net/forum?id=t9dWHpGkPj


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

nostalgebraist. Interpreting gpt: The logit lens. [Online], 08 2020.
URL https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/
interpreting-gpt-the-logit-lens.

Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa: A large-scale
multi-subject multi-choice dataset for medical domain question answering. In Gerardo Flores,
George H Chen, Tom Pollard, Joyce C Ho, and Tristan Naumann (eds.), Proceedings of the Con-
ference on Health, Inference, and Learning, volume 174 of Proceedings of Machine Learning Re-
search, pp. 248–260. PMLR, 07–08 Apr 2022. URL https://proceedings.mlr.press/
v174/pal22a.html.

Koyena Pal, Jiuding Sun, Andrew Yuan, Byron Wallace, and David Bau. Future lens: Antici-
pating subsequent tokens from a single hidden state. In Jing Jiang, David Reitter, and Shumin
Deng (eds.), Proceedings of the 27th Conference on Computational Natural Language Learn-
ing (CoNLL), pp. 548–560, Singapore, December 2023. Association for Computational Lin-
guistics. doi: 10.18653/v1/2023.conll-1.37. URL https://aclanthology.org/2023.
conll-1.37/.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin (eds.),
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp.
311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguis-
tics. doi: 10.3115/1073083.1073135. URL https://aclanthology.org/P02-1040/.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL http:
//jmlr.org/papers/v21/20-074.html.

Mansi Sakarvadia, Arham Khan, Aswathy Ajith, Daniel Grzenda, Nathaniel Hudson, André Bauer,
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A LLM USAGE STATEMENT

During the preparation of this manuscript, we utilized LLMs for assistance with language translation
and polishing to improve grammatical clarity. All core research ideas, experimental design, data
analysis, and the final conclusions were conceived and formulated exclusively by the authors. The
authors take full responsibility for all content presented in the paper.

B ADDITIONAL RELATED WORK

LLM Hallucination Detection. Given that hallucinations (Shuster et al., 2021) are a direct man-
ifestation of an LLM’s unknown knowledge, we define the problem of identifying LLM knowl-
edge distribution as a hallucination detection task, also termed output uncertainty quantification (Li
et al., 2023). Current methods fall into two main categories. Output-based methods assess uncer-
tainty from surface features like text or logits. Examples include sampling-based consistency checks
(Manakul et al., 2023) and Semantic Entropy (SE) (Farquhar et al., 2024; Kuhn et al., 2023), which
quantifies semantic similarity across multiple outputs to handle linguistic variations. However, these
methods often incur high computational costs due to repeated sampling (Kossen et al., 2024). In
contrast, probing methods leverage internal hidden states, training a classifier to predict output un-
certainty (Azaria & Mitchell, 2023; Li et al., 2023). Azaria & Mitchell (2023) demonstrated that
hidden states contain veracity signals, enabling efficient detection. More recently, Semantic Entropy
Probes (SEP) (Kossen et al., 2024) were proposed, training a classifier to predict SE values directly
from hidden states. By using SE as an unsupervised learning target, SEP achieves performance
comparable to surface SE methods but with significantly lower computational cost and improved
generalization.

LLM Hidden State Decoding. One of the core ideas of this research is to leverage LLM hid-
den state decoding techniques to mine potential related knowledge from the internal representations
generated when the model processes specific questions (particularly those in the “Unknown” re-
gion)(Lv et al., 2024; Tang et al., 2025). This allows for the generation of new questions that are
diverse in form yet related in terms of knowledge points, effectively augmenting the set of unknown
questions. To elucidate the foundation and existing advancements of the techniques adopted in this
study, this section will review relevant hidden state decoding methods. nostalgebraist (2020); Sakar-
vadia et al. (2023); Belrose et al. (2023); Pal et al. (2023), based on “lens” methods, proposed an
approach for directly decoding hidden states by applying minor transformations and utilizing the
model’s pre-trained unembedding module to convert hidden states directly into logits. The Patch-
scope (Ghandeharioun et al., 2024) and SelfIE (Chen et al., 2024) methods patch hidden states into
another model, whose output serves as the decoded result, offering higher readability than lens meth-
ods. Morris et al. (2023; 2024) introduced the Vec2Text method, which trains a T5 (Raffel et al.,
2020) model as a decoder to transform hidden state vectors into natural language text. Experiments
demonstrated high accuracy and readability when decoding later-layer hidden state vectors from the
LLaMA2 model.

C LIMITATIONS

While our KA2L framework effectively identifies questions representing unmastered knowledge to
guide SFT dataset construction, its current functionality has several limitations. Firstly, the frame-
work’s scope is confined to question classification and prioritization; it does not extend to the au-
tomatic generation of complete question-answer pairs for the identified unknown questions, a step
that still necessitates external mechanisms or human annotation. Secondly, as a white-box approach,
KA2L requires access to the model’s internal hidden states, rendering it incompatible with commer-
cial, closed-source models accessible only via APIs. Lastly, the initiation of the KA2L framework
is contingent upon a pre-existing, domain-specific question set to probe the LLM’s knowledge dis-
tribution. The collection and curation of this initial, comprehensive corpus can pose a significant
practical challenge, particularly in niche or emerging domains where such resources are scarce,
thereby potentially limiting the immediate applicability or bootstrapping of our method in these
scenarios.
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Table 4: Model-specific layer index choices.

Model Hidden-State Layer Index
TriviaQA Mix NQ-Open Mix MedMCQA Mix

DeepSeek-R1-Distill-Qwen-7B 28 28 28
glm4-9b-chat 38 38 24
Llama-2-7b-chat-hf 31 30 30
Llama-3.1-8B-Instruct 31 32 31
Mistral-7B-Instruct-v0.1 31 31 30
Mistral-7B-Instruct-v0.3 31 31 31
Phi-3.5-mini-instruct 32 32 32
Qwen1.5-7B-Chat 32 26 19
Qwen2.5-7B-Instruct 22 19 28

D FUTURE WORKS

Our work leads to two main future research directions. A key challenge that warrants further in-
vestigation is the inherent difficulty for semantic consistency-based methods, including Semantic
Entropy, to fully disambiguate between genuine knowledge gaps (i.e., the model truly does not
know) and responses to questions with intrinsic ambiguity or controversy. Although our current
study mitigates this issue by focusing on factual question-answering datasets, addressing this dis-
tinction in more general and open-ended scenarios remains a significant open problem. Another
promising direction involves moving beyond the empirical selection of the optimal layer for uncer-
tainty quantification. Future work could delve into the information flow mechanisms within diverse
LLM architectures to develop a more principled understanding of why specific layers are more sen-
sitive to representing knowledge uncertainty. This line of inquiry not only promises to enhance the
robustness and theoretical grounding of our framework but also contributes valuable insights to the
broader field of model interpretability.

E EXPERIMENTAL DETAILS

E.1 HIDDEN-STATE DECODER TRAINING DETAILS

Dataset: This paper used 250k data entries for training. Among these, 200k entries are fixed,
sampled from one-million-instructions (Morris et al., 2024), to ensure its capability in decoding
fundamental questions. An additional 50k entries originate from the TriviaQA (Joshi et al., 2017),
NQ Open (Lee et al., 2019), and MedMCQA (Pal et al., 2022) datasets used in the experiments of
this paper. This subset of data was not used in any other experiments and was solely dedicated to
training the decoder for each model on its corresponding dataset.

Training Parameters: All experiments utilized a fully fine-tuned t5-base1 (Raffel et al., 2020)
model as the decoder. The training involved 40 epochs, a learning rate of 2.0e − 4, and 100, 000
warmup steps. The dataset for training the decoder was selected based on the model being decoded
and the specific dataset context. The layer numbers for hidden state extraction, presented in Table 4,
were not chosen arbitrarily. Instead, they were empirically determined for each model-dataset pair
by selecting the layer that yielded the highest classifier performance (AUROC) in our comprehensive
layer-wise analysis (see Appendix F.4).

Decoding Process: The decoding process leverages the trained t5-base to generate new questions.
Specifically, a hidden state hunk from the “Unknown” region is first transformed into the t5’s latent
space via two linear layers and a GeLU activation function, with Gaussian noise added to promote
diversity. The resulting vector is then fed into the trained t5-base model, which generates the new
question in natural language.

1https://hf-mirror.com/google-t5/t5-base
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Table 5: SFT training parameters for different models.

Model Learning Rate Template Batch Size Gradient Accumu-
lation Steps

DeepSeek-R1-Distill-Qwen-7B 5.0e-5 qwen 4 4
glm4-9b-chat 1.0e-4 glm4 2 8
Llama-2-7b-chat-hf 1.0e-4 llama2 4 2
Llama-3.1-8B-Instruct 1.0e-4 llama3 4 2
Mistral-7B-Instruct-v0.1 1.0e-4 mistral 4 4
Mistral-7B-Instruct-v0.3 1.0e-4 mistral 4 4
Phi-3.5-mini-instruct 1.0e-4 phi 4 8
Qwen1.5-7B-Chat 5.0e-5 qwen 4 4
Qwen2.5-7B-Instruct 5.0e-5 qwen 4 4

E.2 FINE-TUNING PARAMETERS

This paper employed the LLaMA-Factory framework (Zheng et al., 2024) to fine-tune all models.
The fine-tuning parameters adopted recommended values to simulate real-world fine-tuning scenar-
ios. A total of 9 models were fine-tuned 5 times each across 3 datasets, resulting in 135 fine-tuning
runs. For a given model, the only parameter difference when fine-tuning on different datasets was
the dataset itself; all other parameters remained consistent.

All fine-tuning was performed using LoRA (Hu et al., 2022), with lora target set to “all” for all
modules. FlashAttention-2 (Dao, 2024), fast tokenizer, and bf16 were used to accelerate the fine-
tuning process. The number of epochs was set to 3 for all runs. Other parameters are detailed in
Table 5 below.

For generating outputs from the fine-tuned models during the evaluation phase, a consistent decoding
strategy was employed. We used a low temperature of 0.1 for sampling. This encourages the model
to produce more factual and deterministic outputs by reducing randomness, which is appropriate for
the question-answering tasks in our evaluation. Other decoding parameters, such as top-p and top-k,
were kept at their default values.

E.3 EXPERIMENTAL DETAILS FOR TRADITIONAL ACTIVE LEARNING METHODS

To provide a comparative context for our KA2L framework, we implemented adaptations of several
traditional active learning methods. The original design of these methods for classification tasks
makes their direct application to generative LLMs computationally intractable or conceptually mis-
matched. Therefore, our goal was to create practical and faithful adaptations that could serve as
meaningful points of comparison. This comparative experiment was performed on the LLaMA-
3.1-8B-Instruct model across all three datasets, where each method was tasked with selecting a
5, 000-sample subset from the 10k Combine set.

Our adaptation strategy centers on a single, efficient pass over the unlabeled data pool to pre-
calculate two key metrics for each prompt: an uncertainty score and a diversity embedding. This
pre-computation, while resource-intensive, is performed only once, and its results are reused across
all comparative methods, ensuring both efficiency and a fair comparison.

Uncertainty Score. Traditional gradient-based uncertainty metrics are infeasible for LLMs. We
instead use prediction entropy as a computationally efficient and effective proxy. Specifically, for
each prompt, we perform a standard forward pass (temperature=1.0) to obtain the next-token logits
and calculate the entropy of the resulting probability distribution, H(p) = −

∑
i pi log pi. This

captures the model’s intrinsic confidence and serves as the uncertainty score.

Diversity Embedding. To measure diversity, we leverage the semantic representation of each
prompt from the LLM itself. Instead of computationally prohibitive gradient embeddings (as in the
original BADGE), we extract the hidden-state representation of the final prompt token from a deep
model layer (see Table 4). This high-dimensional vector captures the prompt’s semantic essence,
enabling a meaningful measure of diversity.

Using these two pre-computed metrics, we implement the comparative strategies as follows:
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Random Sampling: Uniformly samples a subset of data from the pool.

Uncertainty Sampling: Selects samples with the highest prediction entropy scores.

Coreset Sampling: This diversity-focused method is implemented using a standard k-Center-
Greedy algorithm on the hidden-state embeddings, iteratively selecting the data point furthest from
its nearest neighbor in the already selected set.

BADGE (Adapted): Our adaptation preserves BADGE’s hybrid principle by using a weighted k-
MEANS++ seeding procedure. The probability of selecting a new sample is proportional to its
squared distance to the nearest selected center, multiplied by its uncertainty score (entropy), balanc-
ing diversity and uncertainty.

E.4 COMPUTATIONAL REQUIREMENTS

All experiments in this paper were conducted on Nvidia A100 40G GPUs. All GPU hours mentioned
below are based on the usage of this GPU model.

To provide a practical perspective for practitioners, we first outline the cost for a single model-dataset
pair. The process includes:

• Probe Training and Inference: Training the knowledge distribution probe on 10, 000
samples and performing inference requires approximately 5 A100-GPU hours. The infer-
ence time of the trained probe is negligible.

• Decoder Training: Training the T5-based hidden-state decoder on roughly 250k samples
takes about 20 A100-GPU hours. Its inference is also highly efficient and parallelizable.

It is crucial to interpret these figures as a one-time, upfront investment for a given use case. This
initial cost yields a significant return by saving approximately 50% in subsequent annotation and
fine-tuning costs, which are often the most expensive and time-consuming parts of the LLM devel-
opment cycle. This demonstrates the overall cost-effectiveness of our framework.

The total computational budget for the experiments in this paper was approximately 900 GPU hours.
This figure reflects the cost of a comprehensive validation process designed to test our framework’s
robustness and generalizability, rather than the cost of a single, practical application. This large-scale
effort, spanning 9 LLMs and 3 datasets, can be broken down as follows:

• A total of 351 GPU hours were dedicated to evaluating the active learning process. This
involved training 27 distinct knowledge probes, followed by 135 fine-tuning runs and 162
evaluation runs to compare different data selection strategies.

• A total of 540 GPU hours were allocated to validate the data augmentation component.
The majority of this time was spent training the 27 hidden-state decoders required for our
analysis.

F ADDITIONAL EXPERIMENT RESULTS

F.1 FINE-TUNING PROCESS WITHIN THE ACTIVE LEARNING FRAMEWORK

The experimental results on the open-domain NQ Open (Table 6) and TriviaQA (Table 7) datasets
consistently reinforce the primary findings observed on the MedMCQA dataset. Across all models,
every fine-tuning strategy yields substantial improvements over the base models (“None”), con-
firming the universal benefit of supervised fine-tuning for domain adaptation. The analysis below
examines these results through the lens of our core research questions.

Cost-Efficiency (RQ1). The cost-efficiency of KA2L is clearly demonstrated, as fine-tuning on 5k
Unknown data consistently achieves performance comparable to the 10k Combine baseline while
using only half the data. For instance, on NQ Open, glm4-9b-chat trained on 5k Unknown data
achieves a ROUGE-L of 45.91, nearly identical to the 45.94 from the 10k Combine set. Similarly,
for Qwen2.5-7B-Instruct, the 5k Unknown set (29.91) performs on par with the 10k Combine
set (29.57). This pattern validates that KA2L can effectively halve the annotation and computational
budget with negligible performance trade-offs by focusing on the most valuable “unknown” data.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 6: Active learning performance on the NQ Open dataset. “None” indicates the base model. “5k
Known” and “5k Unknown” denote fine-tuning with 5,000 samples from “Known” and KA2L-selected “Un-
known” regions, respectively. “10k Combine” is a 5k “Known” + 5k “Unknown” mix, and “10k Unknown” uses
10k KA2L-selected “Unknown” samples. “10k Augmented” involves augmenting “5k Unknown” to 10,000
samples via hidden state decoding, followed by distillation using GPT-4o.
Model SFT Dataset BLEU ROUGE-L METEOR BS(%) SFT Dataset BLEU ROUGE-L METEOR BS(%)

DeepSeek-R1-
Distill-Qwen-7B

None 0.02 0.46 1.26 76.39 10k Combine 6.10 13.17 9.68 86.45
5k Known 4.69 11.15 7.87 86.19 10k Unknown 7.48 16.05 11.84 86.98
5k Unknown 4.05 12.19 8.78 86.37 10k Augmented 2.85 13.56 10.04 86.49

glm4-9b-chat
None 0.22 3.68 8.63 79.94 10k Combine 28.78 45.94 36.50 91.33
5k Known 19.55 35.78 27.67 89.62 10k Unknown 39.54 57.89 46.91 93.27
5k Unknown 28.61 45.91 36.47 91.31 10k Augmented 22.49 46.00 36.62 91.34

Llama-2-7b-
chat-hf

None 0.12 1.92 4.70 78.66 10k Combine 21.29 39.10 31.04 90.25
5k Known 12.23 25.65 19.71 88.06 10k Unknown 33.56 52.14 41.94 92.45
5k Unknown 23.47 39.25 31.15 90.23 10k Augmented 17.78 38.69 30.72 90.24

Llama-3.1-8B-
Instruct

None 0.15 3.49 7.93 79.12 10k Combine 24.46 45.15 35.35 91.09
5k Known 16.57 32.56 24.69 89.07 10k Unknown 38.91 58.84 46.97 93.35
5k Unknown 22.32 44.94 35.04 91.08 10k Augmented 21.90 44.29 34.53 91.03

Mistral-7B-
Instruct-v0.1

None 0.31 5.44 10.85 80.48 10k Combine 21.21 35.27 27.16 89.76
5k Known 13.35 26.88 20.29 88.39 10k Unknown 38.70 58.51 46.23 93.49
5k Unknown 20.44 34.59 26.69 89.56 10k Augmented 14.05 35.07 27.20 89.70

Mistral-7B-
Instruct-v0.3

None 0.28 3.26 8.21 79.99 10k Combine 28.64 46.53 36.27 91.37
5k Known 16.17 33.89 25.37 89.31 10k Unknown 39.45 59.72 47.23 93.65
5k Unknown 28.30 46.28 35.99 91.44 10k Augmented 24.32 46.99 36.72 91.51

Phi-3.5-mini-
instruct

None 0.15 2.11 5.42 79.18 10k Combine 14.30 27.85 20.88 88.52
5k Known 12.83 24.73 18.19 88.03 10k Unknown 20.01 34.98 26.71 89.66
5k Unknown 14.28 27.83 20.87 88.55 10k Augmented 12.57 28.59 21.55 88.57

Qwen1.5-7B-
Chat

None 0.20 2.72 6.51 79.55 10k Combine 14.97 31.62 24.45 88.89
5k Known 10.12 22.56 16.98 87.31 10k Unknown 23.39 39.90 31.31 90.21
5k Unknown 17.05 30.86 23.66 88.78 10k Augmented 12.98 33.72 26.53 89.28

Qwen2.5-7B-
Instruct

None 0.21 3.43 7.99 79.73 10k Combine 16.23 29.57 23.12 88.34
5k Known 9.81 24.26 18.68 87.51 10k Unknown 17.42 34.76 27.37 89.25
5k Unknown 15.90 29.91 23.32 88.41 10k Augmented 12.79 31.67 25.10 88.70

Table 7: Active learning performance on the TriviaQA dataset.
Model SFT Dataset BLEU ROUGE-L METEOR BS(%) SFT Dataset BLEU ROUGE-L METEOR BS(%)

DeepSeek-R1-
Distill-Qwen-7B

None 0.02 0.49 1.24 76.13 10k Combine 9.98 23.65 16.38 87.05
5k Known 7.79 18.77 12.82 86.32 10k Unknown 14.20 27.00 18.86 87.56
5k Unknown 9.41 22.22 15.39 86.85 10k Augmented 6.68 24.46 17.11 87.16

glm4-9b-chat
None 0.15 3.62 8.16 79.13 10k Combine 21.51 41.26 30.71 88.18
5k Known 14.68 31.65 23.03 86.34 10k Unknown 11.68 55.80 42.43 91.00
5k Unknown 19.62 40.28 29.85 87.97 10k Augmented 15.21 40.47 30.07 88.09

Llama-2-7b-
chat-hf

None 0.09 2.30 5.24 78.23 10k Combine 26.36 49.16 36.84 89.37
5k Known 19.67 41.86 31.33 88.06 10k Unknown 33.25 58.91 44.77 91.58
5k Unknown 24.57 48.90 36.69 89.33 10k Augmented 21.97 47.57 35.75 89.14

Llama-3.1-8B-
Instruct

None 0.12 5.67 11.11 79.26 10k Combine 23.59 49.78 36.37 89.65
5k Known 14.81 43.14 31.54 88.50 10k Unknown 30.84 63.38 47.05 92.39
5k Unknown 18.96 49.23 35.95 89.61 10k Augmented 22.05 49.56 36.23 90.12

Mistral-7B-
Instruct-v0.1

None 0.32 15.73 17.64 81.85 10k Combine 18.41 46.51 33.61 89.08
5k Known 13.20 39.35 28.41 87.88 10k Unknown 32.77 63.64 47.43 92.42
5k Unknown 15.93 45.52 32.98 88.92 10k Augmented 15.67 45.86 33.21 89.01

Mistral-7B-
Instruct-v0.3

None 0.16 3.14 7.11 79.07 10k Combine 22.75 47.65 34.81 89.12
5k Known 16.87 40.87 29.36 87.94 10k Unknown 36.84 62.41 46.66 92.21
5k Unknown 21.21 47.21 34.42 89.02 10k Augmented 16.63 47.13 34.27 88.99

Phi-3.5-mini-
instruct

None 0.11 2.41 5.85 78.86 10k Combine 22.93 43.39 31.60 89.01
5k Known 18.13 39.10 28.31 88.29 10k Unknown 25.72 47.15 34.19 89.73
5k Unknown 23.26 42.94 31.24 88.98 10k Augmented 19.26 42.98 31.27 88.99

Qwen1.5-7B-
Chat

None 0.14 3.84 8.18 79.28 10k Combine 20.78 38.85 28.16 88.39
5k Known 20.04 39.05 28.53 88.40 10k Unknown 25.91 48.38 35.80 90.03
5k Unknown 19.89 39.02 28.54 88.40 10k Augmented 13.85 38.06 27.56 88.24

Qwen2.5-7B-
Instruct

None 0.15 4.07 8.79 78.92 10k Combine 11.37 32.52 24.36 85.65
5k Known 11.72 32.24 24.18 85.63 10k Unknown 14.49 35.88 27.07 86.49
5k Unknown 11.72 32.30 24.20 85.63 10k Augmented 5.82 31.99 24.24 85.80
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Table 8: Performance comparison of active learning methods on the TriviaQA dataset. Our method,
KA2L (5k Unknown), significantly outperforms all traditional methods. Results are reported as mean ± std
over 4 runs. The best result among 5k-sample methods is in bold.

Method BLEU ROUGE-L METEOR BertScore(%)
Traditional Methods (5k samples selected from 10k pool)
Random 12.33± 0.14 45.25± 0.01 32.96± 0.02 88.95± 0.01
Entropy 22.34 ± 0.08 46.25± 0.09 33.91± 0.06 89.10± 0.01
Coreset 20.37± 1.80 45.64± 0.07 33.31± 0.04 89.02± 0.00
BADGE (adapted) 20.58± 0.22 45.50± 0.06 33.15± 0.03 88.98± 0.01

Our Method (5k samples)
KA2L 5k Known 15.88± 1.65 43.19± 0.05 31.55± 0.03 88.51± 0.01
KA2L 5k Unknown 18.92± 0.41 49.21 ± 0.03 35.93 ± 0.02 89.61 ± 0.00
Upper Bound
Full Dataset (10k) 23.50± 0.35 49.76± 0.06 36.33± 0.05 89.65± 0.01

Table 9: Performance comparison of active learning methods on the MedMCQA dataset.
Method BLEU ROUGE-L METEOR BertScore(%)
Traditional Methods (5k samples selected from 10k pool)
Random 7.19± 0.22 26.67± 0.05 18.55± 0.05 86.44± 0.02
Entropy 6.85± 0.09 26.66± 0.07 18.46± 0.05 86.40± 0.01
Coreset 8.11± 0.11 28.48± 0.08 19.86± 0.03 86.83± 0.01
BADGE (adapted) 6.68± 0.12 26.76± 0.06 18.64± 0.07 86.41± 0.01

Our Method (5k samples)
KA2L 5k Known 5.67± 0.06 23.35± 0.05 16.23± 0.03 85.73± 0.01
KA2L 5k Unknown 8.47 ± 0.14 29.96 ± 0.02 20.84 ± 0.01 87.19 ± 0.01
Upper Bound
Full Dataset (10k) 8.17± 0.04 30.14± 0.03 21.08± 0.02 87.13± 0.01

Effectiveness of Targeted Selection (RQ2). The superiority of KA2L’s selection strategy is un-
equivocally confirmed when comparing datasets of the same size. The 10k Unknown setting consis-
tently and significantly outperforms the 10k Combine baseline across nearly all models and metrics.
On NQ Open, for example, Qwen2.5-7B-Instruct achieves a ROUGE-L of 34.76 with 10k
Unknown data, a substantial 5.19-point improvement over the 29.57 from the 10k Combine set. On
TriviaQA, DeepSeek-R1-Distill-Qwen-7B shows a similar leap, from 23.65 (10k Combine)
to 27.00 (10k Unknown). These results provide strong evidence that, for a fixed budget, intelligently
selecting data that addresses a model’s knowledge gaps is far more effective than an unfiltered, naive
training approach.

Utility of Data Augmentation (RQ3). The 10k Augmented strategy shows practical utility, though
its effectiveness varies compared to the main experiment on MedMCQA. As expected, augmented
data generally improves performance over the initial 5k Unknown set but does not reach the ceil-
ing set by the 10k Unknown set. For example, with DeepSeek-R1-Distill-Qwen-7B on
NQ Open, the ROUGE-L score improves from 12.19 (5k Unknown) to 13.56 (10k Augmented),
but falls short of the 16.05 achieved by 10k Unknown. This outcome suggests that for broad,
open-domain datasets, the diversity of original data is paramount. While our hidden-state decod-
ing method provides a clear benefit, the augmented samples may not introduce the same breadth of
novel knowledge as genuinely new “unknown” samples, in contrast to the more focused knowledge
space of a specialized domain like MedMCQA. This highlights a potential area for future research
in adapting augmentation techniques for open-domain contexts.

F.2 FULL RESULTS FOR TRADITIONAL ACTIVE LEARNING METHODS COMPARISON

This section provides the complete results of our comparison against traditional active learning meth-
ods on the TriviaQA and MedMCQA datasets, supplementing the primary analysis on NQ Open pre-
sented in the main paper. The experiments were conducted on the LLaMA-3.1-8B-Instruct
model, with each method selecting 5,000 samples from a 10k data pool. The results are detailed in
Table 8 and Table 9.
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Table 10: Performance comparison of knowledge distribution probes (AUROC) on the NQ Open
dataset.

Models Ours SE Probe
Accuracy

Probe
Log-Likeli

hood
Regular
Entropy

P(True)
Semantic
Entropy

DeepSeek-R1-Distill-
Qwen-7B 0.88 0.84 0.70 0.63 0.72 0.81 0.80

glm4-9b-chat 0.83 0.83 0.70 0.56 0.72 0.79 0.76
Llama-2-7b-chat-hf 0.82 0.76 0.68 0.55 0.70 0.74 0.73
Llama-3.1-8B-Instruct 0.83 0.81 0.72 0.58 0.71 0.77 0.77
Mistral-7B-Instruct-v0.1 0.88 0.84 0.75 0.64 0.70 0.77 0.78
Mistral-7B-Instruct-v0.3 0.85 0.81 0.70 0.65 0.72 0.77 0.77
Phi-3.5-mini-instruct 0.91 0.87 0.76 0.76 0.80 0.83 0.84
Qwen1.5-7B-Chat 0.84 0.78 0.71 0.46 0.66 0.79 0.71
Qwen2.5-7B-Instruct 0.86 0.83 0.72 0.55 0.76 0.80 0.80

Table 11: Performance comparison of knowledge distribution probes (AUROC) on the MedMCQA
dataset.

Models Ours SE Probe
Accuracy

Probe
Log-Likeli

hood
Regular
Entropy

P(True)
Semantic
Entropy

DeepSeek-R1-Distill-
Qwen-7B 0.81 0.77 0.73 0.62 0.77 0.80 0.79

glm4-9b-chat 0.81 0.81 0.71 0.53 0.65 0.73 0.70
Llama-2-7b-chat-hf 0.81 0.76 0.70 0.54 0.67 0.67 0.69
Llama-3.1-8B-Instruct 0.84 0.70 0.78 0.57 0.69 0.79 0.74
Mistral-7B-Instruct-v0.1 0.85 0.81 0.73 0.59 0.68 0.70 0.72
Mistral-7B-Instruct-v0.3 0.85 0.80 0.73 0.61 0.68 0.75 0.72
Phi-3.5-mini-instruct 0.80 0.78 0.70 0.64 0.70 0.73 0.73
Qwen1.5-7B-Chat 0.79 0.72 0.68 0.48 0.65 0.76 0.66
Qwen2.5-7B-Instruct 0.76 0.70 0.71 0.55 0.71 0.78 0.75

The results on both TriviaQA and MedMCQA robustly corroborate the findings presented in the
main text. On TriviaQA (Table 8), fine-tuning on the 5k Unknown set selected by KA2L achieves
a ROUGE-L of 49.21, decisively outperforming the strongest traditional method (Entropy, 46.25)
by nearly 3 points. Similarly, on the specialized MedMCQA dataset (Table 9), KA2L’s selection
yields a ROUGE-L of 29.96, a significant 1.5-point gain over the best-performing method, Coreset
(28.48).

Crucially, this superior performance is achieved with remarkable cost-efficiency. On both datasets,
the 5k Unknown set approaches the performance of the Full Dataset (10k), which uses double the
data. For MedMCQA, the performance is nearly identical (29.96 vs. 30.14 ROUGE-L). Further-
more, the consistently poor performance of the 5k Known set, which often scores below random
sampling, strongly validates KA2L’s ability to effectively partition data into mastered and unmas-
tered knowledge, thereby filtering out redundant samples. These comprehensive results across di-
verse domains confirm that KA2L’s knowledge-centric selection strategy is a more effective and
efficient approach for LLM fine-tuning compared to traditional AL methods.

F.3 KNOWLEDGE DISTRIBUTION PROBE PERFORMANCE EVALUATION

The experimental results presented in Table 10 for the NQ Open dataset highlight the efficacy of
our proposed knowledge distribution probe. Our method consistently achieves the highest Area
Under the ROC Curve (AUROC) (Ling et al., 2003) across nearly all evaluated models, signify-
ing superior accuracy in distinguishing between known and unknown information. For example,
our probe attains an AUROC of 0.91 for the Phi-3.5-mini-instruct model and 0.88 for
both DeepSeek-R1-Distill-Qwen-7B and Mistral-7B-Instruct-v0.1. This repre-
sents a consistent improvement over the SE Probe; for instance, with Llama-2-7b-chat-hf,
our method scores 0.82 compared to SE Probe’s 0.76, and for Qwen1.5-7B-Chat, the
scores are 0.84 versus 0.78.Furthermore, our approach demonstrates substantial gains over tra-
ditional uncertainty metrics such as Log-Likelihood and Regular Entropy. Compared to P(True)
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Figure 2: Classifier AUROC score across different hidden layers (embedding layer excluded) on the
Trivia QA dataset.

and Semantic Entropy, our probe generally exhibits higher AUROC values; for example, with
Llama-3.1-8B-Instruct, our method achieves 0.83, while P(True) and Semantic Entropy
score 0.77.

Similar performance advantages for our proposed probe are evident on the MedMCQA dataset, as
detailed in Table 11. Our method again achieves the top AUROC scores for the majority of mod-
els, such as 0.85 for Mistral-7B-Instruct-v0.1 and Mistral-7B-Instruct-v0.3,
and 0.84 for Llama-3.1-8B-Instruct. It is worth noting that AUROC values across all
methods are often slightly lower on MedMCQA compared to NQ Open, potentially reflecting
the distinct characteristics or increased complexity of this specialized medical domain for knowl-
edge probing. The improvement of our method over SE Probe remains consistent, with a partic-
ularly notable margin for Llama-3.1-8B-Instruct (0.84 for ours vs. 0.70 for SE Probe)
and Qwen1.5-7B-Chat (0.79 vs. 0.72). As with the NQ Open dataset, our probe signif-
icantly outperforms Log-Likelihood and Regular Entropy across all models. When compared
against P(True) and Semantic Entropy, our method generally maintains a performance lead. For
example, on DeepSeek-R1-Distill-Qwen-7B, our probe scores 0.81, whereas P(True)
and Semantic Entropy achieve 0.80 and 0.79, respectively. A single exception is noted for
Qwen2.5-7B-Instruct, where P(True) (0.78) marginally surpasses our method (0.76). Over-
all, these results underscore the robust and superior classification capability of our improved MLP-
based probe across different datasets and a diverse set of language models.

F.4 KNOWLEDGE DISTRIBUTION PROBE LAYER-WISE ANALYSIS

To identify the most effective source of representations for our knowledge distribution probe, we
conducted a comprehensive analysis of classifier performance across the hidden layers of various
LLMs. The optimal hidden layer identified for each LLM served as a crucial basis for selecting the
input for the probe and decoder in our main experiments. This analysis also reveals insights into
how uncertainty-related information is encoded throughout these models.
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Figure 3: Classifier AUROC score across different hidden layers (embedding layer excluded) on the
NQ Open dataset.

We evaluated the performance of classifiers trained on different hidden layer representations (exclud-
ing the embedding layer) for nine distinct models across three datasets. The results are presented
in Figure 2 (TriviaQA), Figure 3 (NQ Open), and Figure 4 (MedMCQA). A consistent, overarching
trend observed across all datasets and most models is that classifier performance, measured by AU-
ROC, generally improves with increasing layer depth. This suggests that in short-answer QA tasks
like TriviaQA, deeper hidden layers may contain more features pertinent to output uncertainty.

Beyond this general trend, we identified distinct, architecture-specific patterns that are remarkably
consistent across datasets. A notable example is the behavior of DeepSeek-R1-Distill-Qwen-7B and
Qwen2.5-7B-Instruct, which both display a complex pattern: after an initial rise, their performance
shows a discernible dip in the final few layers. This shared characteristic, observed on all three
datasets, suggests a common architectural trait. In contrast, Phi-3.5-mini-instruct demonstrates rapid
performance gains in earlier layers, with its AUROC tending to plateau in the deeper layers. These
consistent, model-specific signatures reinforce the hypothesis that the encoding of uncertainty is
closely tied to model architecture.

To further disentangle the influence of model architecture from that of the dataset, we analyzed the
performance of a single model, Llama-3.1-8B-Instruct, across all three datasets (Figure 5). The
results show that the layer-wise AUROC curve maintains a very similar shape regardless of the
dataset. This finding suggests that the variation in detection accuracy across layers is less influenced
by the specific knowledge domain of the dataset and is more fundamentally correlated with the
intrinsic properties of the model’s architecture. The precise mechanisms governing these layer-wise
patterns warrant further investigation.

F.5 IMPACT OF UNKNOWN DATA VOLUME ON FINE-TUNING PERFORMANCE

To further validate our active learning strategy, we investigated the impact of data volume on model
performance. We fine-tuned the Llama-3.1-8B-Instruct model on the MedMCQA dataset using
incrementally larger subsets of “unknown” data identified by KA2L, with results shown in Figure 6.
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Figure 4: Classifier AUROC score across different hidden layers (embedding layer excluded) on the
MedMCQA dataset.

Figure 5: Llama3.1 classifier AUROC score across hidden layers on TriviaQA, NQ Open, and MedMCQA
datasets

The analysis reveals a strong, positive correlation between the quantity of “unknown” data and the
model’s performance across all metrics. This trend confirms that the data selected by our frame-
work is consistently informative, and performance scales effectively with the amount of high-value
knowledge selected. A key observation is the high marginal utility of the initial data samples. For in-
stance, on the ROUGE-L metric, the first 5, 000 samples contribute a substantial portion (over 80%)
of the total performance gain achieved with 10, 000 samples. This finding informed our choice of
the 5k sample size in our main experiments as an effective point to demonstrate a favorable trade-off
between performance and cost-efficiency.

Unlike traditional active learning on closed-set classification tasks, where performance often sat-
urates quickly, our results exhibit a more sustained, near-linear growth. This characteristic is at-
tributable to the open-ended nature of the knowledge-intensive QA task and the vast capacity of
large language models. The continuous performance improvement suggests that our KA2L frame-
work is highly effective at persistently identifying non-redundant, novel knowledge points from a
large pool, a desirable property for any active learning system designed for continual knowledge ac-
quisition. The consistent gains across different data volumes underscore the robustness and efficacy
of our semantic entropy-based selection method.
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Figure 6: Fine-tuning performance of Llama-3.1-8B-Instruct on the MedMCQA dataset with vary-
ing amounts of KA2L-selected “unknown” data. The x-axis represents the number of training sam-
ples, while the “base” point indicates the model’s performance without fine-tuning.

Table 12: AUROC scores of the knowledge distribution probe under perturbed binarization thresh-
olds for LLaMA-3.1-8B-Instruct (Layer 31). The optimal threshold γ∗ is determined by
minimizing MSE. The highest score in each row is highlighted in bold.

Dataset γ∗ − 0.20 γ∗ − 0.10 γ∗ − 0.05 γ∗ γ∗ + 0.05 γ∗ + 0.10 γ∗ + 0.20

TriviaQA 0.8543 0.8602 0.8623 0.8853 0.8847 0.8784 0.8721
NQ Open 0.8232 0.8290 0.8277 0.8307 0.8265 0.8248 0.8247
MedMCQA 0.8281 0.8267 0.8323 0.8345 0.8285 0.8238 0.8333

F.6 ROBUSTNESS ANALYSIS OF THE DYNAMIC THRESHOLD

To assess the robustness of our dynamic thresholding method for binarizing Semantic Entropy, we
conducted a perturbation analysis. The method’s objective is to adaptively find an optimal threshold,
γ∗, by minimizing the MSE between continuous SE values and their binarized counterparts, as
detailed in Section 3 (Equation 4).

For this analysis, we focused on the LLaMA-3.1-8B-Instructmodel, using hidden states from
its optimal 31st layer. We performed experiments on the TriviaQA, NQ Open, and MedMCQA
datasets. The optimal thresholds γ∗ identified by our method were 0.954, 1.326, and 1.419 for
TriviaQA, NQ Open, and MedMCQA, respectively. We then perturbed this optimal threshold by
increments of ±0.05,±0.10, and ±0.20, re-trained the knowledge distribution probe with the newly
binarized labels, and evaluated its performance (AUROC) on the test set.

The results, presented in Table 12, show that the classifier consistently achieves the highest AUROC
score precisely at the optimal threshold γ∗ across all three datasets. This empirically validates
that our MSE-based method is effective at identifying an optimal cut-off point. Furthermore, the
performance degrades gracefully as the threshold deviates from the optimum. Even with a significant
perturbation, the performance does not collapse, indicating that our framework is not overly sensitive
to the exact threshold value and demonstrates practical robustness.

F.7 QUALITATIVE ANALYSIS

To supplement our quantitative findings and provide a more intuitive validation of our core mech-
anism, we present a qualitative case study. The central premise of the KA2L framework is that
an LLM’s mastery of a knowledge point can be effectively proxied by the semantic consistency of
its generated answers. This section aims to visually substantiate this premise by examining model
outputs across different Semantic Entropy (SE) ranges.

Low Entropy as an Indicator of “Known” Knowledge. As demonstrated in Table 13, questions
with low SE (≈ 0) consistently elicit answers that are not only correct but also exhibit high semantic
stability. For instance, when asked about the number of keys on a standard keyboard, the model
reliably generates “104” across all ten samples. Minor lexical variations, such as between “John
Lennon” and “john lennon”, do not alter the core semantic meaning, resulting in a tight cluster of
answers and consequently, a low SE score. This pattern vividly illustrates that low semantic entropy
is a strong signal of mastered, stable knowledge. It underscores the validity of our operational
definition and justifies KA2L’s strategy of identifying these samples as “known” to avoid redundant
and inefficient fine-tuning.
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High Entropy as an Indicator of “Unknown” Knowledge. In stark contrast, Table 15 showcases
the behavior for high-entropy (≈ 2.3) questions. When faced with a query it has not mastered,
such as “who holds the record for most knockouts in boxing”, the model’s outputs become chaotic
and semantically divergent. The generated answers span a wide range of incorrect names (“Rocky
Marciano,” “Muhammad Ali,” “George Foreman”) and even nonsensical phrases, indicating a clear
lack of confident knowledge. This high degree of semantic inconsistency directly translates to a
high SE score. This observation provides strong qualitative evidence that high semantic entropy is
a reliable indicator of “unknown” knowledge, thereby validating KA2L’s core principle of actively
selecting these high-value samples for targeted fine-tuning.

The Knowledge Boundary. The intermediate cases, shown in Table 14, are equally revealing. For
questions with medium SE scores, the model’s outputs are a mixture of correct, partially correct, and
incorrect answers. For example, when asked about the origin of Häagen-Dazs, the model generates
the correct answer “United States” but also plausible yet incorrect alternatives like “Poland” and
“Scandinavia.” This instability reflects a state of epistemic uncertainty—the model is at the “knowl-
edge boundary” where it may have encountered the information but has not fully assimilated it.
These cases highlight that SE effectively captures the continuous spectrum of knowledge mastery,
from confidently known to completely unknown, making it a robust signal for guiding the active
learning process.

Table 13: Case Study: Low Entropy Samples (SE ≈ 0)

# Question Ground Truth Generated Answers (10 Samples)

1 what is the size of the angles of an
equilateral triangle 60°

60
60
60
60
60
60 degrees
60
60
60
60 degrees

2 who played willy wonka in the
original movie Gene Wilder

Gene Wilder
Gene Wilder
gene wilder
Gene Wilder
Gene Wilder
Gene Wilder
Gene Wilder
Gene Wilder
Gene Wilder
Gene wilder

3 how many keys are on microsoft
windows standard keyboard 104

104
104
104
104
104
104
104
104
104
104
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Table 13: (Continued) Case Study: Low Entropy Samples (SE ≈ 0)

# Question Ground Truth Generated Answers (10 Samples)

4 who wrote the lyrics to all you
need is love John Lennon

John Lennon
John Lennon
john lennon
John Lennon
John Lennon
John Lennon
john lennon
Lennon
John Lennon
John Lennon

5 what was the robot maids name
on the jetsons Rosie

Rosie
Rosie
Rosie
Rosie
Rosie
Rosie
Rosie
Rosie
Rosie
Rosie

6 when did wrath of the lich king
release

November 13,
2008

November 13, 2008
November 13, 2008
November 13, 2008
November 13, 2008
November 13, 2008
November 13, 2008
November 13, 2008
November 13, 2008
November 13, 2008
November 13, 2008

7 what does the zip in zip code
stand for

Zone
Improvement Plan

Zone Improvement Plan
Zone Improvement Plan
Zone Improvement Plan
Zone Improvement Plan
zone improvement plan
zone improvement plan
Zoning Improvement Plan
Zone Improvement Plan
Zone Improvement Plan
zone improvement plan

8 movie with will smith and tommy
lee jones Men in Black

men in black
Men in Black
Men in Black
Men in Black
men in black
Men in Black
Men in Black
Men in Black
men in black
Men in Black
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1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
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Table 13: (Continued) Case Study: Low Entropy Samples (SE ≈ 0)

# Question Ground Truth Generated Answers (10 Samples)

9 how many original harry potter
books are there 7

Seven
7
7
7
Seven
7
7
seven
7
7

10 what is the city in italy that is
under water Venice

Venice
venice
venice
Venice
Venice
Venice
venice
Venice
Venice
venice

Table 14: Case Study: Medium Entropy Samples (SE ≈ 1.3 - 1.7)

# Question Ground Truth Generated Answers (10 Samples)

1 who wins americas next top model
season 18 Sophie Sumner

Sophie Sumner
Sophie Sumner
Sophie Sumner
Sophie Sumner
Erica Ash
Laura James
Sophia L?Hommerieux
Laura James
Lisa DAmato
Sophie Sumner

2 star left at the core of a planetary
nebula white dwarf

exhausted carbon...
Carbon core
Other
white dwarf
dead star
a white dwarf
White Dwarf
dead star
white dwarf
white dwarf

3 who has the most wins ever in nascar Richard Petty

Richard Petty (200)...
Richard Petty
Richard Petty
dale earnhardt with (76)"
jeff gordon
jeff gordon
Richard Petty
stylsmilian roger penske
jeff gordon
jeff gordon
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1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
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Table 14: (Continued) Case Study: Medium Entropy Samples (SE ≈ 1.3 - 1.7)

# Question Ground Truth Generated Answers (10 Samples)

4 who said what’s done is done
in macbeth Lady Macbeth

Macduff
Macbeth
Macduff
Donalbain
lady macbeth
lady macbeth
The dagger on...
Macduff
Lady Macbeth
Lady Macbeth

5 where does the pulmonary artery
take blood to the lungs

right ventricle
the pulmonary capillaries
the left atrium
The left atrium
...oxygen-rich blood...
the left atrium
lungs
the lungs
The lungs
Lung

6 the haagen-dazs brand of ice
cream originated in which country United States

United States
Poland
United States
Scandinavia
Poland
Poland
scandinavian
Belgium
Poland
Jamaica

7 who has the most superbowl wins
in nfl history

Pittsburgh
Steelers

Tom Brady
pittsburgh steelers.
Six -type is not...
Pittsburgh Steelers
pittsburgh steelers have 6
Pittsburgh Steelers
...Green Bay Packers...
Pittsburgh Steelers with six
Tom Brady
Pittsburgh Steelers

8 when did the toronto blue jays
win the world series 1993

There is no correct answer
1992
They have won none
1992
None, they have not...
there has been no...
yes
1992 and 1993
None, they have not
1992
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1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
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Table 14: (Continued) Case Study: Medium Entropy Samples (SE ≈ 1.3 - 1.7)

# Question Ground Truth Generated Answers (10 Samples)

9 what are the main components of
earth’s atmosphere nitrogen

Nitrogen, Oxygen, and Argon
nitrogen, oxygen, and...
Nitrogen Oxygen Carbon...
Nitrogen, Oxygen, Argon...
nitrogen oxygen argon...
Nitrogen, oxygen and argon
Nitrogen, Oxygen, Argon
Nitrogen, oxygen and argon
nitrogen, oxygen & trace...
Nitrogen, Oxygen, Argon...

10 where do purple martins go in
the winter time South America

Brazil, Peru, Argentina...
Brazil & Argentina
Mexico
South America
South America
Brazil
South America
Brazil and Argentina
South america
Brazil

Table 15: Case Study: High Entropy Samples (SE ≈ 2.3)

# Question Ground Truth Generated Answers (10 Samples)

1 when did tonight’s going to be a
good night come out June 23, 2009

June 14, 2013
September 2, 2016
January 1, 2010
October 1, 2012
2009
March 22, 2017
9 january 2016
March 27, 2013
2018
2017

2 where did they film the cowboys
with john wayne New Mexico

california
boston texas
Sedona Arizona
Monument Valley, Arizona
Arizona & California
texas
Arizona and Utah
Bakersfield, California...
Arizona
Monument Valley

3 who is the actual president of the
supreme court of justice John G. Roberts

Joy Bivoni
kennedy library
Justice enrique...
Marı́a Adelina Dı́az...
Silvia Bercioux
Juan Cueto
Enrique Iglesias
Problem unknown
Manuel Marı́n Perales
an acting president is...
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1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
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Table 15: (Continued) Case Study: High Entropy Samples (SE ≈ 2.3)

# Question Ground Truth Generated Answers (10 Samples)

4 when was the dung beetle
introduced to australia 1965

1895
November 2002
...in the 18th century
1887
the early 1970s
1933
1930
May 1, 2020
Not before 1769...
1959

5 who holds the record for most
knockouts in boxing Archie Moore

Rocky Marciano &...
Chris Byrd doesn’t
Muhammad Ali
Jabbar Ali
Tyson
Joe Louis
Joe Louis *482*...
Partinello Wolf
George Foreman
Yvon Neptune

6 who was killed in i know what you
did last summer a pedestrian

Brendan?Fraser
ray bronson
Benny
angelo brandt
David Egan Schwimmer
Julie James
Cue
Davey
Billy and Ray Bronson
Joe White

7 what is the average salary of a
working american $59,039

Per computronics 71,301
$47,940
$58,715
$54,000
$55,292
$48,232.42
$74841 USD
$50,708 in May 2021
$64,968
$46,641

8 who wrote another somebody done
somebody wrong song

Larry Butler and
Chips Moman

Hee Haw Lee Hayes
song writers
Bo Diddley
Ronn Gibbs
Gordon Lightfoot.
Baileys
Carl Nugent
Suspicious People...
wedding planner
George Jones
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1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
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Table 15: (Continued) Case Study: High Entropy Samples (SE ≈ 2.3)

# Question Ground Truth Generated Answers (10 Samples)

9 who played molly ringwalds father
in pretty in pink

Harry Dean
Stanton

Annie Potts was...
Moody other son...
Harry Dean Stanton
alfie wise
timothy busfield
Rob Lowe
...Duckie, played by...
Annie Potts and...
moody
Harry Dean Stanton...

10 whats the clown’s name in house of
1000 corpses Captain Spaulding

Otis
Otis B Draught
Blanky
Bill and Colleen
Traumatone
dr listen
Otto and Juno
Ursula, also played...
Stanton Duckworth...
Mother Superior
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