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Abstract. We present a novel Federated Learning framework, FedT4T,
that systematically evaluates utility-driven client strategies under resource
constraints. Recognizing the significant challenges in practical distributed
learning environments, such as limited resources and non-cooperative be-
haviors, we model client interactions using the Iterated Prisoner’s Dilemma.
Our framework enables clients to adapt their decision rules based on prior
interactions and available resources, optimizing both individual utility and
collective contribution to solve a global learning task. We apply FedT4T
to a Federated Learning benchmark classification task and explore the dy-
namics of cooperation between clients driven by common strategies from
cooperation theory under the impact of varying resource availability. The
code is publicly available at https://github.com/cairo-thws/FedT4T.

1 Introduction

In the idealized vision of Federated Learning (FL) introduced by McMahan [,
each client within a decentralized network functions as a collaborative partici-
pant, utilizing its private data to train local models and subsequently transmit
updated model parameters to contribute to a shared global model. This collab-
orative approach promises to leverage the potential of distributed data in a way
that respects privacy and facilitates shared learning across a range of devices.
This ideal presumes both uniform willingness and resource availability among
clients, a condition seldom met in practical FL scenarios. In reality, resource
limitations, communication overhead, and strategic client behaviors undermine
the foundational assumptions of cooperative, resource-rich participation [2].

To address the complexities of client cooperation and resource allocation in
FL environments, we draw upon the conceptual framework of the Iterated Pris-
oner’s Dilemma (IPD). The IPD, a well-established model in cooperation the-
ory [3], provides a foundation for analyzing strategic interactions in which partic-
ipants choose between cooperative and non-cooperative behaviors over repeated
encounters. In the context of FL, the IPD framework allows us to interpret client
interactions as a series of strategic decisions regarding resource allocation and
model contribution. Clients in an FL setting must decide whether to cooperate
— expending scarce resources to contribute to the global model — or to defect,
potentially conserving resources but providing less support for the distributed
learning task. In this work, we systematically evaluate various IPD strategies
within FL environments in a simulated round-robin tournament to understand
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Fig. 1: Overview of FedT4T: A round of FL managed by a central tournament server.

their impact on distributed model performance as outlined in Fig. [ Specifi-
cally, we investigate how different strategic choices by FL clients influence their
ability to contribute to the shared learning objective under conditions of varying
resource availability. Using a payoff scoring scheme, we quantify the outcomes
of these interactions, assigning scores to clients based on their strategies and
levels of cooperation. This approach enables the identification of the trade-offs
between cooperation and resource conservation across a range of scenarios involv-
ing client-specific resource utilization. By comparing FL client behaviors across
varying levels of resource availability, we aim to identify strategies that optimize
both individual client performance and collective model quality. Our analysis
highlights the effectiveness of certain IPD strategies for balancing resource con-
straints with the goal of sustaining effective FL. Through this paper, we provide
a novel perspective on client strategy optimization in resource-limited FL envi-
ronments, offering insights into the role of cooperative behaviors in distributed
learning systems. Recent works have addressed game-theoretical approaches
within distributed learning settings [4, [5]. However, these approaches establish
central instances that compete against clients in IPD games directly and they
do not consider the important impact of client-side resource availability on the
participation policy.

The main contributions of this work are threefold. First, we conceptualize the
FL environment as an infinite IPD (see Fig. [1} top), where the FL tournament
server is responsible for recording client decisions and facilitating encounters be-
tween client pairs in each FL round. Second, we propose a novel approach where
clients locally perform a single turn of the PD against a projected surrogate op-
ponent(see Fig. [l bottom), adapting their utility-driven strategy based on prior
interaction. Finally, clients determine their participation decisions by incorpo-
rating their available resources—a unique feature that enables an assessment of
FL training dynamics under more realistic, resource-constrained conditions.
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2 Methodology

2.1 Setup and Prerequisites

We conceptualize a round of FL as a series of randomly sampled interactions
between two FL clients, structured within a round-robin tournament. Each client
has the option to either cooperate (C) by training on its locally available data and
submitting updated model weights for aggregation, or defect (D) by conserving
resources and skipping the local training process. As illustrated in Fig. |1} the
tournament server is responsible for matchmaking and, when available, providing
each client with the outcome of its most recent encounter against a selected
surrogate opponent (memory). Additionally, the server manages the collection
and aggregation of model weights, as well as the resolution and bookkeeping of
scores derived from the PD results. Each client’s payoff is determined by both its
own decision and that of its surrogate opponent, following the 2x2 payoff matrix
in Fig. [1| (bottom right). Here, R (Reward) represents the payoff when both
clients cooperate, T' (Temptation) benefits a defecting client when the opponent
cooperates, S (Sucker’s payoff) applies to a cooperating client when the opponent
defects, and P (Punishment) is assigned when both clients defect. The payoffs
adhere to the conditions "> R > P > S and 2R > T + S, ensuring that mutual
cooperation leads to a more favorable collective outcome compared to mutual
defection or unilateral cooperation. As detailed in Sec. and without loss of
generality, this paper focuses exclusively on FL clients that adopt memory-one
(M1) strategies [3]. Accordingly, let p1, p2, p3, and py denote the probabilities
of a client choosing to cooperate, conditioned on the joint action pairs from the
previous round: (CC), (CD), (DC), and (DD), respectively. These probabilities
reflect a utility-driven decision-making process — the stochastic decision rule
vector for client ¢ in FL round ¢ is thus given by p! = [p1, p2, p3, p4] € R‘[LOJ] where

[1,1,1,1] represents the standard FL strategy of unconditional cooperation [6].

2.2 Client Memory Depth and Cooperation through Repetition

When modeling FL interactions, we opt to represent the game as an infinitely
repeated PD rather than a finite version. In finite repeated games, backward in-
duction implies that defection becomes the dominant strategy in the final rounds,
as both players anticipate the end of their interactions. This discourages coop-
eration, as FL clients would have an incentive to defect once they recognize
the game has a predefined endpoint. In contrast, an infinitely repeated setting
eliminates a fixed terminal payoff, allowing client payoffs to be defined based
on average or discounted rewards. This framework aligns naturally with the FL
environment, where the total number of rounds remains undisclosed to clients
and is influenced by random client sub-sampling in each training round to pre-
vent pattern exploitation. As a result, clients cannot predict a finite number of
interactions, maintaining the conditions necessary for strategies that promote
sustained cooperation and reciprocity.

For efficient decision-making, our framework focuses specifically on M1 strate-
gies, where each client’s next action depends solely on the outcome of the most
recent round: Press and Dyson’s findings in [7] demonstrate that, in repeated
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games, long-memory strategies provide no advantage over short-memory ones, as
players can achieve favorable outcomes by considering only the previous interac-
tion. This approach not only minimizes computational complexity but also aligns
with the resource constraints of FL environments, where lightweight decision-
making is essential. Therefore, we exclude long-memory agents, such as those
utilizing LSTM-based reinforcement learning, as well as adaptive decision rules
that evolve over time. Instead, we prioritize simpler, more efficient strategies
that are better suited to the immediate-response requirements of FL trainings.

2.3 Resource-Aware Decision-Making for Federated Learning Clients

In practical FL deployments, clients often have varying resource constraints,
such as limited battery life, computational capacity, or network bandwidth. To
address these variations, we incorporate resource awareness into the client par-
ticipation strategy by adapting concepts from the IPD. An advantage of inte-
grating resource-aware scaling into M1 strategies in FL is that it prevents clients
from unilaterally controlling or manipulating the game mechanics through zero-
determinant (ZD) strategies [7]. By individually adjusting cooperation proba-
bilities based on resource availability, the precise linear relationships required for
7D strategies are disrupted, eliminating the possibility for any client to enforce
unilateral payoff control.

To roll-out resource awareness to FL clients, we introduce a resource scal-
ing function for adjusting the overall cooperation probability P(foop of client ¢
in round ¢ (omitted in the following for better readability), effectively blending
resource considerations into the decision-making process: Let us first denote the
current resource availability of client ¢ by E;, E; € [0, Erax], where Eppax repre-
sents the maximum possible resource level. We subsequently normalize E; using
E; = FE;/Ezax and define a resource scaling function f,..s(E;) that consumes and
adapts the normalized resource level. To ensure robust probability of participa-

Synergy Threshold Function
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Fig. 2: Synergy Threshold Function with hyper-parameter v = {4,8,12} and distinct
zones for low, moderate, high and full resource levels.

tion in regimes with higher resource availability, we propose a Synergy Threshold
Function for scaling, illustrated in details in Fig. [2] defined as

fres(Ei) = % (1 + tanh (v(Ei - Elow))) , (1)

where v > 0 controls the steepness around the critical low-resource thresh-
old FEp.w, offering a smooth and adjustable transition in cooperation prob-
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ability based on resource levels and encouraging clients to participate even
when resources are low. To subsequently obtain the adjusted overall cooper-
ation probabilities, each client updates its utility-driven cooperation probabil-
ity Peoop using the result of the deployed resource scaling function defined as

Péoop = frcs(Ei) X Peoop. Applied to the stochastic decision rules of our frame-

work described in Sec. the resource-aware adjustment can be expressed as

Pc/00p = fres(Ei) X Pout

where pcc = p1, pcp = P2, PpC = P3, PDD = P4

(2)

and out referring to the outcome of the last encounter. Each FL client will
decide to cooperate or defect based on P, which now factors in both utility-
driven choices obtained from M1 strategies and current resource availability. The
modified decision rule vector governs whether client ¢ participates in training or
not by evaluating U(0,1) < F/,,,, where U(0,1) represents a random value
sampled from a uniform distribution.

3 Experiment and Discussion

In our experimental evaluation of cooperative behavior within the FedT4T frame-
work, we observe a set of clients solving a benchmark FL classification task
conducted under non-IID data distribution setting [8]. We implement the tour-
nament server and the IPD clients as outlined in Fig. |1 using Flower [9], provide
the utility strategies from the Axelrod library [10], integrate resource-awareness
as described in Sec. 2| and employ the Synergy Threshold function (y = 8) as
proposed in Eq. . We provide cooperation statistics of eight distinct resource-
aware FL client strategies, driven by basic M1 decision rules over 250 FL rounds
and report the results in Table We supportively present plots of the cu-

Table 1: FedTAT evaluation results of resource-aware FL clients, driven by distinct M1
decision rules with nice properties [3], sorted by average payoff.

IPD Strategy Name N{f:::geg :e l;ra‘;tjflf ﬁ;’:;:ée Defections Cooperations C?{lezr?,;:;m
Grim (GRIM) 1,0, 0, 0] 658 2.64 101 148 59.44
Tit for Tat (TFT) 1,0, 1, 0] 622 2.50 94 155 62.25
FedT4T Custom (Contributor) [.9, .5, .5, .9] 615 2.47 121 128 48.59
Generous TFT (GTFT) [1,.33, 1, .33* 605 243 84 165 66.26
Firm But Fair (FirmButFair) [1, 0,1, .66] 605 2.43 71 178 71.49
Win Stay-Lose Shift (WSLS) [1,0,0,1] 602 2.42 79 170 68.27
Forgiving TFT (FTFT) [1,.75,1,.75] 593 2.38 54 195 78.31
Cooperator (Cu) 1,1,1,1] 571 2.29 44 205 82.33

B T-R R-P T-R R-—P
(1, min(1 — F=8, F=F), 1, min(1 - =8, £=5)

mulative client cooperations, tracked over all server rounds, in Fig. |3l Resource
availability declines stepwise below Efjgr, in round 50, Enoderate in round 100 and
FErow in round 150, respectively, simulating an environment with progressively
constrained computational and communication capacities: In the full-resource
phase, FL clients exhibit high levels of cooperation, reflecting Pareto-efficient
outcomes where all clients benefit mutually. However, as resources degrade,
cooperative dynamics shift towards Nash equilibria, where self-interest drives
decision-making and defections increase [3]. The experiment unveils another in-
teresting finding: while the standard FL strategy Cu achieves high cooperation
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Fig. 3: Cumulative cooperation scores of FedT4T clients under stepwise resource reduc-
tion, with focus area on the threshold to the low-resource sector. Best viewed in color.

rates (Fig, its inability to adapt to resource constraints results in poor payoff
maximization (Tab. . This highlights its unsuitability for resource-aware envi-
ronments, where dynamic and conditional strategies prove to be more effective.

4 Conclusion

In this work, we introduced a novel perspective on FL by formulating the dis-
tributed training process as an IPD tournament, where client decisions are driven
by their utility policy and local resource availability. First experimental results
showed that FedT4T is a powerful tool for the application of cooperation theory
in the analysis of FL trainings. Future work includes the application of incen-
tive mechanisms on FL clients based on IPD metrics, the study of the impact of
their cooperation behavior on the convergence of the global FL model, and the
evaluation of a broader range of resource scaling functions.

References

[1] B. McMahan et al. Communication-efficient learning of deep networks from decentralized
data. In Proc. 20th AISTAT, volume 54, pages 1273-1282, April 2017.

[2] M. Réder et al. Crossing Domain Borders with Federated Few-Shot Adaptation. In Proc.
13th ICPRAM, pages 511-521, 2024.

[3] R. Axelrod et al. The evolution of cooperation. Basic Books, New York, NY, 2006.
[4] A. Akbay et al. Distributed Learning with Strategic Users: A Repeated Game Approach.
AAAI 36(6):5976-5983, June 2022.
[6] X. Zhang et al. A game-theoretic framework for privacy-preserving federated learning.
ACM Trans. Intell. Syst. Technol., 15(3), May 2024.
[6] S. Kuhn. Prisoner’s Dilemma. In The Stanford Encyclopedia of Philosophy. Metaphysics
Research Lab, Stanford University, Winter 2024 edition, 2024.
[7] W. Press et al. Iterated Prisoner’s Dilemma contains strategies that dominate any evo-
lutionary opponent. Proc. Natl. Acad. Sci. U.S.A., 109(26):10409-10413, June 2012.
Q. Li et al. Federated learning on non-iid data silos: An experimental study. 2022 IEEE
38th International Conference on Data Engineering (ICDE), pages 965-978, 2021.
[9] D. Beutel et al. Flower: A friendly federated learning research framework. arXiv preprint
arXiv:2007.14390, 2020.
[10] V. Knight et al. An open reproducible framework for the study of the iterated prisoner’s
dilemma. Journal of Open Research Software, 4, 04 2016.

8

572



	AllPapares and back
	AllPapers
	Friday
	ES2025-149-2






