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Abstract
This paper examines the impact of encoder
architecture and input features on dialogue
act classification, an important task in dia-
logue systems. We conduct several experi-
ments comparing the performance of different
recurrent neural network encoders. These in-
clude a GRU encoder initialized with BERT
weights that considers only the previous ut-
terance as context, and the same model with
speaker-level embeddings. We also compare
two variants of a bi-directional LSTM encoder
for dialogue act classification: one that takes
multi-utterance conversations of BERT pooled
outputs with and without speaker-level embed-
dings, and another that averages the LSTM
layer outputs. Our findings indicate that incor-
porating a bi-directional LSTM encoder with
BERT’s pooled representation improves clas-
sification performance significantly.

1 Introduction

Accurately identifying the dialogue act in a con-
versation is crucial for building effective and
reliable conversational agents such as chatbots,
virtual assistants, and voice assistants like Siri,
Alexa, and Google Home. These agents are de-
signed to interact with users using natural lan-
guage, and dialogue act classification is essential
to understand the intention behind the user’s input
and generate an appropriate response (Colombo
et al., 2021b; Jalalzai* et al., 2020; Colombo*
et al., 2019). It has been widely studied and ap-
plied in various NLP applications, including cus-
tomer service, personal assistants, education, and
healthcare. The ability to accurately classify dia-
logue acts not only enhances the user experience
but also improves the efficiency and effectiveness
of these systems.

In recent years, extensive research has been
conducted to develop efficient models for DA la-
beling. These models can be classified into two

categories: single-sentence and contextual mod-
els. Single-sentence models predict the corre-
sponding DA label of a single utterance, while
contextual models require historical or contextual
information, such as previous dialogue utterances,
previously predicted DA labels, or a change in
speaker, to predict the DA label of each utter-
ance. Incorporating contextual information has
been shown to improve performance compared
to single-sentence models (Lee and Dernoncourt,
2016; Liu and Lane, 2017; Chandrakant Bothe and
Wermter, 2018; Colombo et al., 2021a; Chapuis*
et al., 2020). Moreover, various approaches falling
within the same category have utilized speaker in-
formation, resulting in a significant enhancement
of performance. (Shang et al., 2020; Bothe et al.,
2018; He et al., 2021; Colombo et al., 2020)

In this paper, we aim to investigate the impact
of encoder architecture and input features on di-
alogue act classification. We compare two RNN
encoders, a GRU (Cho et al., 2014) encoder ini-
tialized with BERT (Devlin et al., 2019) weights
that considers only the previous utterance as a con-
text, and the same model incorporating speaker-
level embeddings. Furthermore, we evaluate two
variations of a bi-directional LSTM (Graves et al.,
2005) encoder that leverage BERT outputs: one
that takes the pooled representation and another
that takes an average of the last LSTM layer.
We also examine the impact of speaker-level em-
beddings on the performance of the bi-directional
LSTM encoder for the first variation.

The source code for this research has been made
publicly available on github: 1.

1https://github.com/ib-proj/
intent-classification/

https://github.com/ib-proj/intent-classification/
https://github.com/ib-proj/intent-classification/


2 Problem Framing

The Problem can be formally defined as follows.
At the highest level, we have a set D of N con-
versations, each consisting of a sequence of ut-
terances Ci = (ui,1, ui,2, . . . , ui,|Ci|) and a cor-
responding set of dialogue act labels Yi.

At a lower level, each utterance ui,j is associ-
ated with a unique label Yi,j .

We also consider the corresponding sequence of
speaker turns Si,j ∈ 0, 1 for the j-th utterance in
the i-th conversation.

Our initial goal is to consider only the previous
utterance as context and incorporate the speakers
turn in a later stage. Next, we intend to combine
the utterances at the conversation level before in-
cluding the respective speakers in the Bi-LSTM
variants.

3 Models

3.1 GRU Encoder

This model utilizes transfer learning through the
BERT model to obtain a representation for each
utterance in a conversation, which has been shown
to be effective in downstream tasks such as Di-
alogue Act Classification (Noble and Maraev,
2021). In order to further enhance the contex-
tual awareness of each utterance, we compute a
representation for the previous utterance within
the same conversation using BERT. This approach
is inspired by (Chandrakant Bothe and Wermter,
2018), who demonstrated that considering the
most recent preceding utterances can significantly
improve classification accuracy for short utter-
ances.

To capture long-term dependencies between the
utterance and its context, we merge the two repre-
sentations and input them into a GRU model. In
order to optimize the model, we perform context
computation during the pre-processing phase in-
stead of the forward pass for each utterance.

3.1.1 Speaker Modeling
To incorporate speaker information, the model uti-
lizes the previous speaker turn st−1 and the current
speaker turn st to derive the corresponding speaker
embeddings et−1 and et.

Specifically, the context vector ct−1 is first en-
coded with BERT and then combined with the pre-
vious speaker embedding et−1 to obtain the final
output. Similarly, the current utterance represen-

tation is passed through BERT and then combined
with the current speaker embedding et.

Finally, the resulting representations are passed
through the GRU layer in a similar manner to the
first model.

3.2 Baseline LSTM Encoder

We employed an LSTM model on utterance-level
representations provided by a BERT model. This
straightforward approach was implemented to in-
vestigate whether capturing the interdependencies
among utterances is sufficient for accurate classi-
fication.

3.3 Bi-LSTM Encoder

In this part, we propose an extension to the pre-
vious encoders that takes into account the entire
conversation as the input context.

For this, we use a combination of BERT to
model the temporal dependencies in a sequence of
text inputs as well as a bi-directional LSTM (bi-
LSTM) as they are the most widely used architec-
ture (Kumar et al., 2017).

3.3.1 Context Modeling
We use two different techniques to encode multi-
utterance conversations.

The first technique (i) involves leveraging the
powerful representations obtained from BERT.
Following the approach of (He et al., 2021), we
extract the embeddings of the [CLS] token from
each input sequence ut for each conversation in
the batch. This token represents the entire ut-
terance in BERT. We then pass the resulting em-
beddings through a bi-directional LSTM layer to
capture inter-utterance dependencies. We refer to
this model as BI − LSTMcls.The second tech-
nique (ii) involves using the resulting embeddings
of the entire utterances and passing them to a bi-
directional LSTM layer. However, in this case,
the LSTM output is averaged across the sequence
length to obtain a single feature vector for each ut-
terance, denoted as v = 1

n

∑n
i=1 hi. We refer to

this model as BI − LSTMavg.
Finally, we pass the pooled output from either

BI−LSTMcls or BI−LSTMavg through a lin-
ear layer to obtain logits for dialogue act classifi-
cation.

3.3.2 Speaker turn Modeling
in the second stage, we introduce a layer of
speaker embeddings to the input context in the



BI − LSTMcls model. This modification aims
to investigate whether incorporating speaker turns
can enhance the model’s ability to capture tempo-
ral dependencies and speaker turns in the conver-
sation.

Specifically, the model incorporates speaker
embeddings to take into account the speaker turns
when predicting the dialogue act, where Si,j ∈
0, 1 is the speaker for the j-th utterance in the
i-th conversation.The input embeddings for the
bi-directional LSTM are formed by adding the
BERT output embeddings ei and speaker embed-
dings si element-wise. This is denoted as H =
h1,h2, ...,hn, where hi = ei + si. This approach
was inspired by the positional encoding technique
used in Transformers (Vaswani et al., 2017) and
the work of (He et al., 2021).

The Bi-LSTM is then used to capture all the
contextual dependencies within the sequence:

−→
h i =

−−−−→
LSTM(hi,

−→
h i−1)

←−
h i =

←−−−−
LSTM(hi,

←−
h i+1)

hi = [
−→
h i;
←−
h i]

where
−→
h i and

←−
h i are the forward and backward

LSTM outputs for the i-th utterance, respectively.
Finally, a linear layer is used to produce the pre-

dicted label logits in a similar fashion to the first
stage.

4 Experiments Protocol

4.1 Data Pre-processing
We employed the Switchboard Dialogue Act
Corpus (SwDa) (Jurafsky et al., 1997), a dataset
of transcribed telephone conversations between
strangers, annotated with dialogue act labels such
as statements, questions, and backchannels, us-
ing the Dialog Act Marking in Several Languages
(DAMSL) annotation scheme with 43 labels (Core
and Allen, 1997), to train our models for dialogue
act classification. The data have already been par-
titioned into train, validation, and test sets.

Although several alternative exists (Li et al.,
2017; Leech and Weisser, 2003; Busso et al.,
2008; Passonneau and Sachar., 2014; Thompson
et al., 1993; Poria et al., 2018; Mckeown et al.,
2013), we choose SwDa as it is the largest avail-
able dataset.

Before training our models on the dataset, we
performed several pre-processing steps. Firstly,
we cleaned the text by removing unnecessary

punctuation, non-alphanumeric characters, and
converting the text to lowercase. Next, we mapped
each speaker to a binary value of 0 or 1. After
mapping the speakers, we tokenized the utterances
into a sequence of tokens.

For bi-LSTM models, we grouped 30 utter-
ances of length 128 each into conversations so
that the model can accept multi-utterance conver-
sations as input. We then encoded and padded se-
quences using the BERT model to obtain a fixed-
size representation for each utterance.

4.2 Training

In this section, we provide a comprehensive
overview of the training procedures used to train
our proposed models.

To accomplish this, we use cross-entropy as
our loss function for all models. This function is
widely used in classification tasks and measures
the dissimilarity between the predicted probabil-
ity distribution and the ground truth label for each
training instance. We then apply backpropagation
and stochastic gradient descent to minimize the
cross-entropy loss and update the model param-
eters during training.

To further optimize the training process, we
leverage the Adam optimizer proposed by Kingma
and Ba (2014). Specifically, we set the learning
rate to 0.001 for the GRU encoders and LSTM
models, while for the bi-directional LSTMs, we
set it to 0.0001.

All models have been implemented in PyTorch
and trained with a patience of 5 epochs to a max-
imum number of 10 epochs on a single NVIDIA
P100.

5 Results

Model Without Speaker With Speaker

GRU Encoder 63.0 61.3
LSTMBase 65.9 -
BI − LSTMavg 74.6 -
BI − LSTMcls 88.6 85.5

Table 1: Test accuracies of all models.
Table 1 shows that the BI − LSTMcls model
outperforms its variants in terms of accuracy.

Furthermore, there is only a small difference in
the accuracies of the GRU encoders.



Model Precision Recall F1 Score

GRU Without speaker 63.1 63.0 59.3
GRU With speaker 63.8 61.2 58.3
LSTM Base Encoder 65.1 66.0 63.7
BI − LSTMavg 75.7 74.6 71.6
BI − LSTMcls without speaker 89 88.6 87.9
BI − LSTMcls with speaker 85.1 85.5 83.9

Table 2: Models Weighted Metrics Comparison
Table 2 shows the precision, recall, and F1 score for various models evaluated in the study, including

GRU models with and without speaker-level embeddings, a base LSTM encoder, and different
variations of a bi-directional LSTM encoder that leverages the ’cls’ representation or an average of the

LSTM layer.

(a) BI-LSTM cls test Metrics

(b) BI-LSTM avg test Metrics

Figure 1: BI-LSTM avg and BI-LSTM cls Visual
comparaison

Figure 1 shows a visual comparison of the
BI-LSTM-avg and BI-LSTM-cls models in terms

of loss and accuracy metrics.

6 Discussion

6.1 GRU Encoders
During our experimentation with the GRU model,
we observed a case of underfitting, as depicted in
Figure 10. Despite this challenge, we were able
to achieve a reasonably high accuracy of 63.0 on
the test set, as shown in Figure 3 in the appendix.
However, due to computational constraints, we
were unable to conduct an extensive hyperparame-

ter search, which could have further optimized the
model’s performance.

Moreover, our results indicate that such infor-
mation did not significantly improve the model’s
performance, thereby suggesting that knowledge
of the speaker in the previous context is not help-
ful.

6.2 LSTM Encoder
The LSTM model outperformed the GRU model,
even though it exhibited slight underfitting due
to computational and time constraints (figure 8).
This model captures dependencies between utter-
ances without considering the conversation level.
It achieved an accuracy of 65.6 on the test set (fig-
ure 4 appendix).

6.3 Bi-LSTM Encoders
Our study shows that incorporating conversation
context, including previous and next utterances,
results in significant improvement in classification
performance compared to previous models.

Specifically, our results indicate that the bi-
directional LSTM encoder that leverages the
pooled output of the [CLS] token, denoted as
BI − LSTMcls, outperformed other models, in-
cluding BI − LSTMavg that averages the out-
put of the LSTM layer. The reason for the su-
perior performance of BI − LSTMcls compared
to BI − LSTMavg can be attributed to the fact
that the [CLS] token captures more information
about the input sentence compared to the output
of the LSTM layer. The [CLS] token is specifi-
cally trained in BERT to represent the whole sen-
tence and can provide a stronger representation of
the input utterance.

Furthermore, we noted that the training of BI−



LSTMcls had to be terminated at the seventh
epoch due to overfitting. This behavior might be
due to the relatively small number of utterances
per conversation, which was limited to 30 in our
study.

Interestingly, we found that incorporating
speaker turns, contrary to previous literature, did
not improve classification accuracy.

7 Conclusion

In conclusion, our study suggests that incorporat-
ing conversation context, including previous and
next utterances, can result in significant improve-
ment in classification performance compared to
models that do not consider context. Our ex-
periments indicate that the bi-directional LSTM
encoder that leverages the pooled output of the
[CLS] token, BI − LSTMcls, outperformed
other models, achieving an accuracy score of 88.6

On the other hand, our experiments with GRU
and LSTM encoders revealed underfitting due to
computational and time constraints, resulting in
lower accuracy scores of 63.0% and 65.6%, re-
spectively.

We also found that incorporating speaker turns
did not significantly improve classification accu-
racy.

Future research in the area of dialogue act clas-
sification will focus on ensuring fairness in the
models developed for this task. It is important to
ensure that the models are not biased towards cer-
tain groups of people and do not perpetuate dis-
criminatory practices (Colombo et al., 2022; Pich-
ler et al., 2022). This requires careful consid-
eration of the data used to train the models and
the evaluation metrics used to assess their perfor-
mance. Additionally, research will explore the use
of alternative approaches to training models, such
as adversarial training and data augmentation, to
improve the overall fairness of the models.
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A Training accuracy of models

Figure 2: Training and validation accuracy with
epochs: GRU encoder

Figure 3: Training and validation accuracy with
epochs: GRU encoder with speaker

Figure 4: Training and validation accuracy with
epochs: LSTM encoder

B Trainig loss of models

Figure 5: Training and validation loss with epochs:
GRU encoder

Figure 6: Training and validation loss with epochs:
speaker-level GRU encoder

Figure 7: Training and validation loss with epochs:
model with LSTM encoder



Figure 8: Training and validation loss with epochs: bi-
LSTM avg encoder

Figure 9: Training and validation loss with epochs: bi-
LSTM cls encoder

Figure 10: Training and validation loss with epochs:
speaker aware bi-LSTM cls encoder


