
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FEDSMU: COMMUNICATION-EFFICIENT AND
GENERALIZATION-ENHANCED FEDERATED LEARNING
THROUGH SYMBOLIC MODEL UPDATES

Anonymous authors
Paper under double-blind review

ABSTRACT

The significant communication overhead and client data heterogeneity have
posed important challenges to current federated learning (FL) paradigm. Most
compression-based and optimization-based FL algorithms typically focus on ad-
dressing either the model compression challenge or the data heterogeneity issue
individually, rather than tackling both of them. In this paper, we observe that
by symbolizing the client model updates to be uploaded (i.e., normalizing the
magnitude for each model parameter at local clients), the model heterogeneity can
be mitigated that is essentially stemmed from data heterogeneity, thereby helping
improve the overall generalization performance of the globally aggregated model
at the server. Inspired with this observation, and further motivated by the success of
Lion optimizer in achieving the optimal performance on most tasks in centralized
learning, we propose a new FL algorithm, called FedSMU, which simultaneously
reduces the communication overhead and alleviates the data heterogeneity issue.
Specifically, FedSMU splits the standard Lion optimizer into the local updates
and global execution, where only the symbol of client model updates commutes
between the client and server. We theoretically prove the convergence of FedSMU
for the general non-convex settings. Through extensive experimental evaluations
on several benchmark datasets, we demonstrate that our FedSMU algorithm not
only reduces the communication overhead, but also achieves a better generalization
performance than the other compression-based and optimization-based baselines.

1 INTRODUCTION

Federated learning (FL) is a large-scale machine learning paradigm wherein a multitude of clients,
under the orchestration of a central server, collaboratively learn a model without the need of sharing
or exchanging any raw client data (McMahan et al., 2017). This paradigm is commonly adopted
in data-constrained or data-sensitive environments, such as Internet of things (IoT), healthcare, and
finance (Khan et al., 2021; Rieke et al., 2020; Yang et al., 2019). In essence, FL is distinguished
from the traditional distributed learning in the following three major challenges.

• High communication cost. During each communication round of training, the clients are
required to transmit their local model parameters (or updates) to the central server for the
global aggregation. When the number of model parameters becomes significantly large, this
transmission process may result in a huge bandwidth consumption.

• Data heterogeneity. Due to the inherently private and personalized nature of federated
clients, the datasets across these clients tend to exhibit distinct statistical distributions. Such
a data heterogeneity may introduce significant biases into the globally learned model, which,
in turn, can diminish the global model’s generalization capability.

• Partial client participation. In practical scenarios, clients may join or leave the FL system
at random time intervals. This highly dynamic behavior results in only a small subset of
clients being active for training during each communication round.

To address these challenges, extensive exploration has been conducted in the FL community, but
from different perspectives. On one hand, compression-based federated algorithms aim to reduce the
amount of data required for model parameter (or update) transmission, including both the unbiased

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

compression and biased compression. For instance, unbiased compression, such as SignSGD
(Bernstein et al., 2018a;b), QSGD (Alistarh et al., 2017) and FedPAQ (Reisizadeh et al., 2020),
quantize the gradient values into lower-precision integers, thereby reducing the number of transmitted
bits. While the common biased compression approach is to sparsify the gradient vector by setting
some of its elements to zero or very small values, with the aim of reducing the data transmission cost
(Wangni et al., 2018; Aji & Heafield, 2017; Lin et al., 2017). However, the direct use of compression
methods will lose a certain amount of information, resulting in the problem of decrease in the
accuracy (Yu et al., 2022) and slower convergence or even divergence (Beznosikov et al., 2023).
Some methods, such as Error Feedback (Richtárik et al., 2021), have been designed to mitigate these
issues by incorporating error feedback into the optimization process.

Several optimization-based federated algorithms, on the other hand, have been proposed to address
the data heterogeneity issue. For example, SCAFFOLD (Karimireddy et al., 2020) aims to mitigate
the client variance by designing and iteratively updating the control variates. Though theoretically
effective, it incurs doubling the communication overhead. FedGen (Venkateswaran et al., 2023)
regulates the local training by transmitting additional generators. Most of these optimization-based FL
algorithms, which mainly aim at mitigating data heterogeneity, may incur additional communication
overhead of information exchange for performance improvement. Additionally, it remains unknown
whether these optimization-based algorithms are compatible with the current compression techniques.

In this paper, we aim to design an algorithm capable of simultaneously addressing the communication
bottleneck and data heterogeneity, without being constrained by the partial client participation issue.
To achieve this goal, we first revisit the typical FedAvg algorithm and identify that heterogeneous
magnitudes of model updates may result in certain clients’ updates being overlooked, thus leading
to an unstable and sub-optimal aggregation of the global model. Building upon this observation,
we then introduce the concept of “Magnitude Uniformity” index, which quantifies the clients’
contribution to the global model’s update. We empirically validate that this magnitude uniformity
index is influenced by the degree of data heterogeneity in federated learning, indicating that a more
heterogeneous data distribution leads to a greater heterogeneity in the magnitudes of client model
updates. Furthermore, heterogeneous client updates may contribute to a decline in the global model’s
generalization performance. To address this issue and further reduce the communication overhead,
we are motivated to symbolize the model updates as an immediate solution, and propose the FedSMU
algorithm. Our contributions can be summarized as follows.

• We develop a compression-based FL algorithm called FedSMU. It uses the sign operation to
achieve a 1-bit compression and thus greatly saves the communication cost. Simultaneously,
we leverage the design of Lion optimizer(Chen et al., 2024) to enhance the generalization
performance while maintaining the benefits of compression.

• We conduct a convergence analysis of FedSMU under the general non-convex settings, and
find its convergence rate as O(1√

T
), where T is the total number of communication rounds.

This theoretical result matches with the convergence rates of existing FL algorithms.
• We conduct a series of experiments to demonstrate the superiority of FedSMU. By comparing

FedSMU with the other compression-based and optimization-based federated algorithms,
we show that our FedSMU algorithm achieves a higher generalization performance while
greatly saving the communication overhead at most cases.

2 RELATED WORKS

Compression-Efficient FL. Extensive studies have been dedicated to reducing the amount of data
required for gradient transmission and thus improving the communication efficiency. Using the
method called unbiased compression, QSGD (Alistarh et al., 2017), FedPAQ (Reisizadeh et al., 2020),
ZipML (Zhang et al., 2017) and ECQ-SGD (Wu et al., 2018) compress the gradients uploaded to the
server while keeping the original data integrity and expectation unchanged to save the communication
cost. By leveraging the sign operation, signSGD (Bernstein et al., 2018a;b) and TernGrad (Wen
et al., 2017) can compress the gradients up to 1 bit. While the sparsification-based method like
TopK (Stich et al., 2018; Alistarh et al., 2018), which only keeps the largest K gradients, is another
communication-efficiently biased compression method. Some other methods, like FedEF (Li & Li,
2023), FedZip (Malekijoo et al., 2021) and Qsparse-local-SGD (Basu et al., 2019), incorporate both
the quantization and sparification. While a direct application of biased compression on gradient into

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

federated learning, such as Top-k, can lead to a performance degradation and lower convergence speed
due to bias accumulation (Beznosikov et al., 2023). To address this, some studies have introduced
optimization techniques to mitigate the negative effects of bias. For example, EF21 (Richtárik et al.,
2021) employs the error feedback, while MARINA (Gorbunov et al., 2021) and DIANA (Mishchenko
et al., 2024) leverage the compression of gradient differences, both of which further enhance the
model performance and convergence speed. In this work, we adopt the sign operation to achieve the
communication efficiency, which also helps enhance the generalization capability of the globally
aggregated model as shown by Chen et al. (2024; 2021); Foret et al. (2020).

Generalization-Enhanced FL. In the advancement of FL algorithms, various techniques have
emerged to improve the generalization performance. By using momentum in FL, one can track the
historical information of gradients, suppress the noise and reduce the instability of model updates.
Benefiting from this, methods such as MV-sto-signSGD-SIM (Sun et al., 2023) and FedAdam (Reddi
et al., 2020) apply momentum instead of directly updating with gradients, while PR-SGD-Momentum
(Yu et al., 2019) first updates the momentum and then combines the new gradient with a weight of
the momentum. These methods enhance model generalization and accelerate convergence in FL. In
this work, we employ two sliding average functions to update momentum after calculating the new
gradient, a technique demonstrated by Lion (Chen et al., 2024) to effectively store more historical
gradient data. Also, since weight decay regularization has been shown to outperform ℓ2 regularization
in preventing overfitting and enhancing generalization (Loshchilov, 2017), we leverage a weight decay
strategy to mitigate the impact of data heterogeneity and further improve generalization performance.
Distributed Lion (Liu et al., 2024) is a distributed learning algorithm that leverages the Lion optimizer
(Chen et al., 2024) focusing on reducing communication overhead. It extends the Lion optimizer to
the distributed setting with full client participation and IID data. However, it lacks exploration of
partial participation and non-IID data scenarios, which are the major challenges in FL.

3 PROPOSED METHOD

3.1 NOTATIONS AND PRELIMINARIES

Table 1: Summary of notations.

T , t number, index of communication rounds
K, k number, index of local update step
η, γ1 local, global learning rate
yit,k client i’s model at round t and step k
xt aggregated server model after round t
M,m set of clients with cardinality m
Nt, n set of sampled active clients with cardinality n

The general optimization problem of fed-
erated learning (FL) can be formulated as:

min
x∈Rd

f(x) :=
1

m

m∑
i=1

Fi(x), (1)

where Fi(x)
∆
=Eξ∼Di [Fi(x, ξ)] repre-

sents the local loss function of the i-th
client with the data sample ξ drawn from
distribution Di. Under the FL settings,
data is typically heterogeneous, implying
that for different clients i and j, the distributions Di and Dj can be extremely different. Moreover,
the FL systems often operate under a limited bandwidth, which renders the communication overhead
associated with the exchange of model parameters a significant bottleneck.

Current approaches in FL often prioritize either mitigating data heterogeneity to enhance generaliza-
tion or compressing model updates to alleviate communication, rather than addressing both challenges
concurrently. Specifically, most compression-based FL algorithms (Bernstein et al., 2018a;b; Li & Li,
2023; Wen et al., 2017) significantly reduce communication costs, with generalization performance
typically comparable to or slightly lower than that of standard FedAvg (McMahan et al., 2017). On the
other hand, most optimization-based FL strategies (Karimireddy et al., 2020), which involve exchange
of full-precision model updates, and even additional control variables or informative representations,
aim to mitigate the data heterogeneity issue, but at the cost of a huge communication overhead.

The recently proposed SCALLION algorithm (Huang et al., 2023) integrates the control variable-
based SCAFFOLD framework with incremental variable compression methods, achieving a compa-
rable performance with SCAFFOLD while substantially reducing the upload communication cost.
Nonetheless, SCALLION additionally requires to double the download communication overhead
for the transmission of control variables. This observation then imposes a critical question for the
field of compression-efficient FL: can we design an approach that effectively mitigates both the
communication bottleneck and data heterogeneity simultaneously?

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 SYMBOLIZING CLIENT UPDATES

160

180

200
M

U

0.25 0.6 0.8 iid
Data Heterogeneity (Dirichlet)

45

50

55

60

M
U

FedAvg
FedSMU

(a) MU index vs. heterogeneity

0.25 0.6 0.8 iid
data heterogeneity (Dirichlet)

42
44
46
48
50
52
54
56

ac
cu

ra
cy FedAvg

FedSMU

(b) Accuracy vs. heterogeneity

160

180

200

M
U

1 2 3 4 5 6 7 8
Communication Round (Diricheet (0.25))

45

50

55

60

M
U

FedAvg
FedSMU

(c) MU vs. communication round
Figure 1: Magnitude uniformity (MU) index and top validation accuracy of FedAvg and FedSMU
(ours) on CIFAR-100 with small CNN network.
Before answering this question, we revisit the standard FL framework, i.e., FedAvg (McMahan et al.,
2017). With FedAvg, clients perform local training using their own datasets that are distributed over
clients and non-iid in nature. The server then aggregates these locally trained models to update the
global model, which subsequently serves as the initial model for the next round of training. However,
due to data heterogeneity, clients’ model updates often differ in both direction and magnitude.
Consequently, when model updates from different clients with large deviations are averaged, some
updates with relatively small magnitudes may be overlooked. For instance, we consider three clients,
i1, i2 and i3, whose model updates along one dimension are +10, −1, and −1, respectively. In this
case, the updates have opposite directions, while the magnitude of client i1’s update is much larger
than those of clients i2 and i3. After averaging at the server (i.e., the global model’s update becoming
+8/3), the contribution of clients i2 and i3 to the global model’s update will be ignored, since the
update direction is now only dominantly determined by client i1. Therefore, a direct averaging may
neglect contributions from the smaller updates and potentially compromise the fairness among clients.

To address this issue, and motivated by the Jain’s fairness index (Jain et al., 1984), we propose a new
metric called the Magnitude Uniformity index to reflect the clients’ contribution to the global model
update. Through empirical analysis, we explore the relationship between this Magnitude Uniformity
index and the local data heterogeneity, which in turn impacts the generalization performance of the
globally aggregated model.
Definition 3.1. (Magnitude Uniformity). We define the magnitude uniformity across m clients at
the communication round t as:

Φt ≜
d∑

j=1

(∑
i∈M ĝi,jt

)2
∥M∥

∑
i∈M

(
ĝi,jt

)2 , ĝi,jt = ∥yi,jt,K − yi,jt,0∥, (2)

where yi,jt,K denotes the j-th dimension of client i’s model at round t and local step K, and ĝi,jt denotes
the magnitude of client i’s model update in this dimension j at round t. Similar to the Jain’s fairness
index, a higher value of the magnitude uniformity Φt indicates a more uniform contribution from
the clients, thus suggesting a more balanced representation of the clients’ data in the global model.
Theoretically, such a uniformity may lead to a global model that better captures the information
from all the local clients. Consequently, one might raise the following question: does this magnitude
uniformity index get affected by the data heterogeneity across locally distributed clients, and does it
further influence the global model’s generalization performance?

Seeking for the answer to this question, we empirically examine the correlation between this Mag-
nitude Uniformity index and the global model’s generalization performance under varying data
heterogeneity with the CIFAR-100 dataset. The experiment involves 100 clients with a participation
rate of 10%. As observed from Figures 1(a) and 1(b), for FedAvg, an increase in data heterogeneity
leads to a decrease in the Magnitude Uniformity index, accompanied by a deterioration in the gen-
eralization performance. This suggests that with FedAvg, data heterogeneity leads to a significant
difference in the magnitude of model updates across clients, resulting in an unstable global aggrega-
tion and poorer generalization performance. Additionally, as shown in Figure 1(c), the Magnitude
Uniformity index tends to rise during the FedAvg training, suggesting that the early stage of an FL
system forces a gradual narrowing on the magnitude difference of model updates across clients.

A straightforward approach to enhance the Magnitude Uniformity index for FL is to apply a sign
operation to the local clients’ updates, ensuring that model updates have the uniform magnitude

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

from all the clients. Specifically, after this sign operation, the local model updates for the three
clients i1, i2 and i3 in the previous example would become +1, −1, and −1, respectively. This
process guarantees that each client’s model update contributes equally to the globally aggregated
model, thereby reducing the impact of model heterogeneity and promoting fairness. By converting
the magnitudes of model updates into their respective signs, we actually emphasize the directions of
their updates rather than their magnitudes, which could help balance the contributions from different
clients’ model updates and lead to a more representative and informative global model. Moreover, by
symbolizing the updates we can reduce the communication cost to 1 bit per dimension, offering a
potential solution to enhancing generalization while also saving the communication.

In fact, numerous sign-based compression methods (Bernstein et al., 2018a;b; Wen et al., 2017)
have been applied in federated learning. While theoretically performant, their empirical results
often show only marginal improvements or comparable performance to FedAvg. Thus, effectively
leveraging the sign operation to simultaneously mitigate the communication overhead and enhance
generalization in federated learning remains a challenging and unresolved issue. On the other hand,
many optimization techniques have been proposed to improve generalization for the centralized
learning, such as momentum, Adam, and weight decay. A brute force approach could be directly
incorporating the sign operations with these optimization strategies in FL, formulating the algorithm
design as a program search to identify federated optimization algorithms that can incorporate sign
compression. However, this approach is computationally expensive.

Fortunately, in the context of centralized learning, Lion (EvoLved Sign Momentum) optimizer (Chen
et al., 2024) employs the sign operation to compute the updates while tracking momentum. This
approach has demonstrated an overall outstanding performance across a variety of models and tasks.
Compared to the simple SignSGD (Bernstein et al., 2018a;b), Lion leverages the dual momentum
tracking and weight decay, significantly improving the generalization ability of the trained models.
Inspired with our observation on the impact of Magnitude Uniformity index on the FL algorithm’s
generalization performance, and further motivated by the success of Lion in centralized learning, we
thus propose a new federated optimization algorithm aiming at both reducing the communication
overhead and enhancing generalization performance, through symbolizing the client model updates.

3.3 PROPOSED FEDSMU
To leverage the structured design of Lion optimizer and minimize the communication overhead, we
propose our FedSMU algorithm for federated learning, which splits the Lion optimizer’s framework
of momentum tracking and weight decay to be carried out independently at the server and each client,
respectively, as summarized in Algorithm 1.

Specifically, at each communication round t, FedSMU implements the following steps:

1. Participating clients initialize their local models, denoted as yit,1, based on the current global
model xt.

2. Each client conducts K steps of local stochastic gradient descent (SGD) to compute the
model update git.

3. Each client symbolically represents its model updates using momentum and sign operations.
4. The server receives and aggregates these symbolic updates, denoted as ui

t, to update the
global model xt+1 by incorporating the weight decay.

Such a design offers two significant advantages for our FedSMU algorithm. First, it fully leverages
the structure of the Lion optimizer, thereby enhancing the generalization performance of the global
model. It is also worth noting that in scenarios where the number of local update steps is set to
K = 1, our optimizer essentially reverts to the standard Lion. Second, by transmitting only 1-bit
update for each dimension of the model parameters between the clients and server, we substantially
reduce the communication overhead in the FL systems.

We also notice that inspired by the advantages of the Lion optimizer in centralized learning, there has
been other works (e.g., FedLion (Tang & Chang, 2024)) incorporating Lion into the local updates of
federated learning. However, FedLion simply uses the vanilla Lion algorithm for the local updates
instead of SGD, resulting in a communication cost that is even significantly higher than those of
FedAvg, as the extra momentum terms need to be transmitted. Compared with FedLion, our FedSMU
out-stands in the following two advantages. 1) Effective utilization of the Lion framework. Our

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: Federated learning through Symbolic Model Updates (FedSMU) algorithm.
1 Server Initialization: x0;
2 Client Initialization: m0(i) = 0;
3 for each round t = 1, 2, ...T do
4 sample clients Nt ⊆ M
5 for each client i ∈ Nt in parallel do
6 receive and initialize local model yit,0 = xt

7 for each local step k = 1, 2, . . . ,K do
8 yit,k = yit,k−1 − η∇Fi(y

i
t,k−1, ξ

i
t,k−1)

9 end
10 git = yit,K − yit,0
11 ui

t = sign(β1m
i
t−1 + (1− β1)g

i
t)

12 mi
t = β2m

i
t−1 + (1− β2)g

i
t (for i /∈ Nt, mi

t = mi
t−1)

13 send ui
t to server

14 end
15 // at server:
16 xt+1 = xt + γ1(

1
n

∑n
i=1 u

i
t − γ2xt)

17 broadcast xt+1

18 end

FedSMU divides the execution of Lion optimizer between the clients and server. Specifically, when
the number of local update steps and the number of clients are set to K = 1 and m = 1, respectively,
the entire federated learning process reduces to the standard Lion algorithm. In contrast, FedLion
merely executes the Lion algorithm locally in parallel as a local optimization strategy, failing to
exploit the complete structure of Lion. 2) Communication overhead saving. In addition to the model
updates, FedLion requires the additional transmission of the full-precision momentum terms, resulting
in a significantly higher communication cost compared to our FedSMU that only necessitates a 1-bit
communication for each dimension of the model updates. This substantial reduction in communication
overhead is another key advantage of our FedSMU.

4 THEORETICAL RESULTS ON CONVERGENCE

We now present the convergence analysis of our proposed FedSMU for the general non-convex
functions. In general, our analysis is based on the following three standard assumptions, which are
commonly satisfied by a range of non-convex objective functions.
Assumption 4.1. (Lipschitz Gradient). For all i ∈ M, the function Fi is L-smooth: ||∇Fi(x) −
∇Fi(y)|| ≤ L||x− y|| for all x,y ∈ Rd.
Assumption 4.2. (Bounded Variance). For all i ∈ M, the function Fi have local-bounded variance
σ2
l : E[||∇Fi(x, ξ)−∇Fi(x)||]2 ≤ σ2

l for all x ∈ Rd.
Assumption 4.3. (Bounded Gradients). For all i ∈ M, the function Fi(x, ξ) have G-bounded
gradient: ||∇Fi(x, ξ)|| ≤ G for all x ∈ Rd.

For the non-convex optimization problem, Assumptions 4.1 and 4.2 are standard and widely adopted
in various literature of FL (Reddi et al., 2020; Bottou et al., 2018; Reddi et al., 2016; Ghadimi & Lan,
2013; Li & Orabona, 2019). Assumption 4.3 is commonly used in convergence analysis of sign-based
method like distributed signSGD (Sun et al., 2023; Jin et al., 2020a).
Theorem 4.4. Under Assumptions 4.1, 4.2, and 4.3, when 0 < η ≤ 1

4LK , γ1 = O(1
L
√
T
) and

1− β1 = O(1√
T
), we have:

Ψ ≤ L(f(x0)−minf)√
T

+
3
√
dGϕ

nT (1− β2)
+

6dτmax

(1− β2)
√
T

+
3
√
dGη(1 + β2)

(1− β2)L
√
T

(3)

+
3
√
dG

(1− β2)
√
T

+
6
√
dη√
T

√
1− β2

1 + β2
(2σ2

l + 4Kσ2
l + 4KG2) +

6dG

L
√
T

+
2d√
T
,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where Ψ = 1
T

∑T
t=1 E[||∇f(xt)||1], ϕ =

∑m
i=1 ∥

1
G∇Fi(x0)∥, d denotes the dimensions of param-

eters, τmax = max{τ i}1≤i≤m,1≤t≤T and τ i denotes cilent i’s participation interval. Note that in
cases of non-uniform random participation or varying participation rates across rounds, E(τmax)
may not equal to m

n .

Proof. See Appendix D for the detailed proof.

Remark 4.5. The convergence rate of our FedSMU is O(1√
T
) when T is sufficiently large, matching

with the convergence rates of existing FL algorithms, such as FedAvg and FedPAQ (Reisizadeh
et al., 2020). Note that τmax represents the maximum participation interval among all the clients,
indicating that larger participation intervals result in a slower convergence. Note that d represents
the model dimension and directly influences the rate of convergence, i.e., a larger model dimension
results in slower convergence. In this analysis, we use a 1-bit quantization compression method. If a
higher-bit compression (e.g., α-bit) is used, the additional coefficient α will further slow down the
overall convergence rate.
Remark 4.6. In addition, the original work of Lion does not include the convergence analysis. Our
theoretical analysis also provides the relevant convergence rate for the Lion optimizer. Specifically,
by setting n = 1, τmax = 1 and K = 1, the convergence rate of the our FedSMU will reduce to that
of the Lion optimizer.

5 EXPERIMENTS

We conduct comprehensive comparative experiments to validate the superior performance of FedSMU
in scenarios involving different partial participation rates and data heterogeneity degrees. Further, a
series of ablation experiments are designed to corroborate the effectiveness and necessity of FedSMU.
The code is available at https://anonymous.4open.science/r/fedsmu-400D.

5.1 EXPERIMENTAL SETUP

Models and Dataset. We evaluate FedSMU and the other baseline algorithms on three real-world
visual and language datasets: CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and neural machine
translation on Shakespeare, with the same train/test splits as in (Acar et al., 2021). Each client is
assigned an uncertain number of classes, and the data within each class varies widely, with the labels
of client samples generated according to the Dirichlet distribution. For instance, using Dirichlet-0.25
on CIFAR-10, there are approximately 80% of each client’s samples belonging to around three or
four different classes. We employ CNN and RNN models similar to previous studies (McMahan
et al., 2017). Furthermore, to demonstrate the applicability of our approach to other models, we also
evaluate the performance of our algorithms using a larger network, ResNet18. For additional details
on the experimental setup, please refer to Appendix A.

Comparison Algorithms. We compare the validation (test) performance of our FedSMU with several
other baselines, including the optimization-based FL algorithms such as FedAvg (McMahan et al.,
2017), FedLion (Tang & Chang, 2024), and SCAFFOLD (Karimireddy et al., 2020), as well as the
compression-based FL algorithms such as FedEF-SGD-hv-sign (Li & Li, 2023), FedEF-SGD-topk
(Li & Li, 2023), FedEF-SGD-sign (Li & Li, 2023), and SCALLION (Huang et al., 2023). It is
worth noting that FedLion (Tang & Chang, 2024) involves a parallel execution of the Lion optimizer
on the local clients, requiring the upload of full-precision momentum updates in addition to the
compressed model updates. Consequently, the communication overhead of FedLion is higher than
FedAvg, even when the model updates are compressed. Additionally, SCAFFOLD needs twice of the
communication cost compared to FedAvg. Though SCALLION uploads the compressed incremental
updates, it still results in doubling the communication overhead during the download phase.

Implementation. We evaluate the performance of the global model after 4000 communication rounds
on the CIFAR-10 and CIFAR-100 datasets, utilizing 100 clients with high (H) and low (L) client
participation rates of 10% and 3%, respectively. For the ResNet18 (with 10 clients) and RNN (with
100 clients), we adopt the client participation rate of 30% and 10%, respectively. Clients are uniformly
sampled at random without replacement at each round. The learning rates and hyperparameters for all
approaches are individually tuned via a grid search. For additional details on hyperparameter settings,
please refer to Appendix A.

7

https://anonymous.4open.science/r/fedsmu-400D

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Performance comparison under various settings, where a smaller Dirichlet parameter indi-
cates a higher data heterogeneity, and L and H indicate low and high participation rates, respectively.
For CIFAR-10 and CIFAR-100, a small CNN network is used, and for Shakespeare, an RNN network
is employed. Bold numbers indicate the best performance.

Top-1 Test Accuracy (%).

Dataset Setting FedAvg SCAFFOLD SCALLION FedEF-HS FedEF-TopK FedEF-Sign FedLion FedSMU

CIFAR-
100

Dir (0.25)-L 41.44 41.28 42.68 38.31 44.29 37.79 45.09 49.8
Dir (0.6)-L 41.36 45.04 43.28 38.63 44.41 40.34 47.19 51.65

Dir (0.25)-H 42.29 50.49 45.24 37.03 42.69 36.12 48.33 51.79
Dir (0.6)-H 43.44 50.02 45.84 36.09 42.72 38.99 48.85 53.49

CIFAR-
10

Dir (0.25)-L 80.95 81.6 80.91 78.35 80.11 77.87 79.04 79.66
Dir (0.6)-L 82.42 82.36 81.18 79.29 81.73 79.68 80.94 81.96

Dir (0.25)-H 80.6 83.31 81.42 78.17 79.92 78.34 81.61 80.67
Dir (0.6)-H 81.43 84.12 81.75 78.75 81.42 79.38 83.15 82.66

Shakespeare noniid-H 47.58 51.28 47.86 45.79 46.21 45 47.11 47.81

0.06 0.6 1.2 1.8 2.4 3.0 3.6
conmmunication bits (Gb)

10
20
30
40
50
60
70
80

ac
cu

ra
cy

 (%
)

FedEF-HS
FedEF-TopK
FedEF-Sign
FedLion
FedSMU
FedAvg
SCAFFOLD
SCALLION

(a) Dirichlet0.25-CIFAR10

0.06 0.6 1.2 1.8 2.4 3.0 3.6
conmmunication bits (Gb)

0
5

10
15
20
25
30
35
40
45
50

ac
cu

ra
cy

 (%
)

FedEF-HS
FedEF-TopK
FedEF-Sign
FedLion
FedSMU
FedAvg
SCAFFOLD
SCALLION

(b) Dirichlet0.25-CIFAR100

1 15 25 35 45 55 65 75
conmmunication bits (Mb)

20

25

30

35

40

45

ac
cu

ra
cy

 (%
)

FedEF-HS
FedEF-TopK
FedEF-Sign
FedLion
FedSMU
FedAvg
SCAFFOLD
SCALLION

(c) Noniid-Shakespeare

Figure 2: Convergence performance vs. number of communication bits on CIFAR-10, CIFAR-100
and Shakespeare, with 100 clients and 10% participation for different algorithms. For CIFAR-10 and
CIFAR-100, a small CNN network is used, and for Shakespeare, an RNN network is employed.

5.2 EXPERIMENTAL RESULTS

5.2.1 PERFORMANCE EVALUATION

Experimental results for all the comparison methods under three datasets are shown in Table 2 and
Figure 2. In most cases, our FedSMU demonstrates a superior performance compared to the other
baselines (especially compression-based) with varying data distributions and client participation rates.
The results effectively demonstrate that our algorithm performs well on both image classification
and text prediction tasks. We attribute this improvement to our design, which mimics the Lion
optimizer and incorporates symbolic updates, momentum tracking, and weight decay. In contrast,
other compression methods, such as TopK and group sign employed by FedEF-TopK and FedEF-Sign,
compress the communication traffic but consistently exhibit a poorer generalization performance.

Note that our FedSMU generally presents a more significant performance gain on CIFAR-100 for
image classification. For CIFAR-10, though our FedSMU outperforms the compression-based FL
algorithms, it is still less effective than the optimization-based algorithms, such as FedAvg and
SCAFFOLD. Here, we discuss about the possible reason for this slight degradation on CIFAR-10.
In a federated heterogeneous scenario involving CIFAR-100, which comprises 100 categories as
compared to 10 categories for CIFAR-10, each client typically handles a subset of 13-16 (or 20-25)
categories when setting Dir = 0.25 (or Dir = 0.6). Consequently, with such a high degree of
heterogeneity incurred in CIFAR-100, the model updates from clients are more deviated, allowing our
FedSMU to be more effective and demonstrate a more significant improvement than on CIFAR-10.

To confirm that our algorithm can maintain a good performance in larger network models, we also
conduct comparative experiments on the ResNet18. The experimental results are shown in Table 3.
The results indicate that FedSMU demonstrates strong performance on ResNet18 for both CIFAR-10
and CIFAR-100, outperforming most baseline methods, though it remains slightly below SCAFFOLD
on the CIFAR-10 dataset.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Performance comparison under various settings with the ResNet18 network model. Bold
numbers indicate the best performance.

Top-1 Test Accuracy (%).

Dataset Setting FedAvg SCAFFOLD SCALLION FedEF-HS FedEF-TopK FedLion FedSMU

CIFAR-10 Dir (0.25) 81.74 85.62 83.75 80.43 82.54 82.44 83.28

CIFAR-100 Di r(0.25) 47.41 48.76 48.15 47.24 48.07 43.75 49.00

5.2.2 GENERALIZATION VS. PARTICIPATION RATE

Table 4: Top validation accuracy (%) under different par-
ticipation rate with Dirichlet-0.25 on CIFAR-100 dataset
and small CNN network, where NTC indicates the num-
ber of total clients, and PR indicates the participation
rate. Bold numbers indicate the best performance.

NTC / PR (%) 50 / 0.2 100 / 0.1 150 / 0.066 200 / 0.05

FedSMU 51.65 51.79 50.78 49.68

FedAvg 46.62 42.29 40.93 39.44

FedEF-TopK 47.25 42.69 40.23 37.41

FedEF-Sign 42.68 36.12 33.94 31.04

FedLion 48.41 48.33 47.81 48.74

SCAFFOLD 52.52 50.92 39.39 37.31

SCALLION 48.07 45.24 36.54 35.49

We then evaluate the effect of different par-
ticipation rates on all the algorithms, while
keeping the number of participating clients
consistent at each communication round. Re-
sults in Table 4 indicate that FedSMU achieves
the highest accuracy on most cases. Specifi-
cally, when the number of participating clients
is maintained at 10, and when the participa-
tion rate decreases from 0.2 to 0.05, FedAvg
(McMahan et al., 2017), FedEF-SGD-TopK,
FedEF-SGD-sign (Li & Li, 2023), SCAF-
FOLD (Karimireddy et al., 2020), and SCAL-
LION (Huang et al., 2023) would experience
a severe performance deterioration of 7.18%,
9.84%, 11.64%, 15.21%, and 12.58%, respec-
tively. In contrast, FedSMU maintains a more
stable and superior performance, with only a
1.97% deterioration. These results indicate
that our algorithm is minimally impacted by client participation rates and demonstrates greater stability under
partial client participation.We would like to attribute this to the use of symbolic operations for client updates,
which effectively leverages each client’s update even at very low participation rates. Specifically, when the
client participation rate is low, data heterogeneity may cause the update of certain clients to dominate due to
larger magnitudes. Symbolic operations can mitigate this by normalizing the update amplitudes, ensuring that
the contributions of all clients are fully considered. However, whether other structures of the Lion optimizer
also play a significant role in mitigating the influence of data heterogeneity remains an open question and an
interesting direction for future research.

5.2.3 GENERALIZATION VS. DATA HETEROGENEITY

We further study the influence of data heterogeneity on the generalization performance of our FedSMU vs.
FedAvg and SCAFFOLD. From resutls shown in Table 5, it is evident that the generalization of FedSMU
surpasses FedAvg. By computing the top accuracy difference between the iid and Dirichlet-0.25 settings in
Table 5, we observe a degradation of 4.13%, 6.61% and 4.29% in the top accuracy for FedSMU, FedAvg
and SCAFFOLD, respectively. Consequently, FedSMU is affected less significantly by the degree of data
heterogeneity.

Table 5: Top validation accuracy (%) under different
data heterogeneity with 100 clients and 10% partic-
ipation rate on CIFAR-100 dataset and small CNN
network, where Dirichlet-0.25 indicates the highest
heterogeneity and iid indicates the lowest heterogene-
ity.

Algorithm Dirichlet-0.25 Dirichlet-0.6 Dirichlet-0.8 iid

FedSMU 51.79 53.49 54.21 55.92

FedAvg 41.44 43.44 44.21 48.05

SCAFFOLD 50.49 50.02 53.89 54.78

Table 6: Top accuracy (%) comparison be-
tween ablation experiments with 100 clients
and 10% participation, Dirichlet-0.25 on
CIFAR-100 dataset and small CNN net-
work, where NTC indicates the number of
total clients, and PR indicates the participa-
tion rate.

NTC / PR(%) FedSMU FedSMUMC FedSMUM

100 / 0.1 51.79 52.0 51.65

100 / 0.03 49.8 51.2 51.67

Besides, when horizontally comparing FedSMU and FedAvg, the improvement of FedSMU over FedAvg is
10.35%, 10.05%, 10.00%, and 7.87% for Dirichlet-0.25, Dirichlet-0.6, Dirichlet-0.8, and iid distributions,
respectively. This indicates that FedSMU achieves a higher performance gain with the increasing degree of
data heterogeneity. These results also validate that in highly heterogeneous data scenarios, where the difference

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

between clients’ model updates becomes greater, our FedSMU can alleviate the local model heterogeneity
through symbolic updates. This promotes the aggregation stability and improves generalization performance of
the global model.

5.2.4 MEASURE OF GENERALIZATION

In the above experimental results, generalization refers to an algorithm’s ability to achieve top test accuracy,
where the test dataset is different from the training dataset. Furthermore, we consider an additional perspective
on generalization to further evaluate the performance of our FedSMU algorithm. Here, generalization refers to a
model’s ability to achieve test performance at similar training error levels. Based on this definition, we compare
the validation performance at similar training accuracy levels. The results in Table 7 show that on the CIFAR-10
and CIFAR-100 datasets with small CNN network, the FedSMU algorithm achieves the highest test accuracy
and demonstrates the best generalization performance.

Table 7: Generalization performance comparison under various datasets with the small CNN network.
Each table entry gives the average test accuracy on different training accuracy levels. “/” means it
cannot reach the training accuracy. Bold numbers indicate the best performance.

Top-1 Test Accuracy (%).

Dataset Training Accuracy FedAvg SCAFFOLD SCALLION FedEF-HS FedEF-TopK FedEF-Sign FedLion FedSMU

CIFAR-
10

83-84 75.14 77.49 75.9 75.63 75.48 75.7 77.22 77.1
85-86 76.17 76.37 76.87 76.83 76.83 77.4 78.3 78.39
87-88 78.56 79.24 77.79 77.85 77.74 / 79.23 79.78

CIFAR-
100

66-67 40.08 45.76 40.56 / 41.28 / 45.55 49.03
68-69 40.6 46.16 40.88 / 41.81 / 46.15 50.04
70-71 40.9 46.76 41.23 / 42.34 / 46.56 50.85

5.2.5 ABLATION STUDIES

Indeed, while our convergence analysis and experimental results demonstrate that FedSMU’s performance is less
affected by the client participation rate, the momentum of clients may still be extremely stale due to the partial
participation in FL. In light of this, we design the two other variants, named FedSMUMC and FedSMUM, to
examine the impact of this momentum staleness on the generalization performance. For FedSMUMC, clients
upload 1-bit model updates along with extra momentum in the full precision. The server then aggregates that
momentum to update the global momentum and broadcasts it at the next round as the initial momentum for the
participating clients. For FedSMUM, every client, including the inactive clients, receives the updated global
model. However, only the participating clients execute local training and upload model updates, while the other
clients utilize the received global model to compute the momentum for the current round. See Appendix H for
the detail of these two algorithms. Results in Table 6 indicate that by appropriately completing the momentum,
we can marginally enhance the model performance, but it necessitates additional transmission of momentum
with the full precision. Consequently in this sense, the local momentum staleness has a minimum impact on the
global model’s performance.

5.2.6 LIMITATION

Though our FedSMU effectively enhances the generalization performance while reducing the communication
overhead, it may still have some limitations. First, our compression relies on the fixed symbol quantization, which
might not be optimal for the adaptive scenarios. Exploring adaptive bit quantization further in our future research
is promising to address this limitation. Second, our FedSMU necessitates additional caching of two sets of
momentum, potentially resulting in a slightly increment of storage overhead. Last, from a theoretical perspective,
though the generalization properties (Venkateswaran et al., 2023) of FedAvg under various assumptions have
been extensively examined, such guarantees for the compression-based FL approaches remain an open problem.

6 CONCLUSION

In this paper, we have proposed the FedSMU algorithm that could effectively alleviate both the communication
cost and data heterogeneity issues of federated learning. The key design was the symbolization of local client
updates which were introduced to balance the contribution of each client and avoid the dominance by some
relatively large update values. We carried out theoretical convergence analysis, and empirically showed that
FedSMU converged faster to a higher top accuracy under the same communication cost. Under the condition of
a very small partial client participation rate and relatively high data heterogeneity, FedSMU still demonstrated a
better performance.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N Whatmough, and Venkatesh
Saligrama. Federated learning based on dynamic regularization. arXiv preprint arXiv:2111.04263, 2021.

Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent. arXiv preprint
arXiv:1704.05021, 2017.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd: Communication-efficient
sgd via gradient quantization and encoding. Advances in neural information processing systems, 30, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric Renggli. The
convergence of sparsified gradient methods. Advances in Neural Information Processing Systems, 31, 2018.

Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. Qsparse-local-sgd: Distributed sgd with
quantization, sparsification and local computations. Advances in Neural Information Processing Systems, 32,
2019.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd: Com-
pressed optimisation for non-convex problems. In International Conference on Machine Learning, pp.
560–569. PMLR, 2018a.

Jeremy Bernstein, Jiawei Zhao, Kamyar Azizzadenesheli, and Anima Anandkumar. signsgd with majority vote
is communication efficient and fault tolerant. arXiv preprint arXiv:1810.05291, 2018b.

Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased compression for
distributed learning. Journal of Machine Learning Research, 24(276):1–50, 2023.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning. SIAM
review, 60(2):223–311, 2018.

Lizhang Chen, Bo Liu, Kaizhao Liang, and Qiang Liu. Lion secretly solves constrained optimization: As
lyapunov predicts. arXiv preprint arXiv:2310.05898, 2023.

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets without
pre-training or strong data augmentations. arXiv preprint arXiv:2106.01548, 2021.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong, Thang
Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms. Advances in neural
information processing systems, 36, 2024.

Xiangyi Chen, Tiancong Chen, Haoran Sun, Steven Z Wu, and Mingyi Hong. Distributed training with
heterogeneous data: Bridging median-and mean-based algorithms. Advances in Neural Information Processing
Systems, 33:21616–21626, 2020.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for
efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic program-
ming. SIAM journal on optimization, 23(4):2341–2368, 2013.

Eduard Gorbunov, Konstantin P Burlachenko, Zhize Li, and Peter Richtárik. Marina: Faster non-convex
distributed learning with compression. In International Conference on Machine Learning, pp. 3788–3798.
PMLR, 2021.

Xinmeng Huang, Ping Li, and Xiaoyun Li. Stochastic controlled averaging for federated learning with commu-
nication compression. arXiv preprint arXiv:2308.08165, 2023.

Rajendra K Jain, Dah-Ming W Chiu, William R Hawe, et al. A quantitative measure of fairness and discrimination.
Eastern Research Laboratory, Digital Equipment Corporation, Hudson, MA, 21:1, 1984.

Richeng Jin, Yufan Huang, Xiaofan He, Huaiyu Dai, and Tianfu Wu. Stochastic-sign sgd for federated learning
with theoretical guarantees. arXiv preprint arXiv:2002.10940, 2020a.

Richeng Jin, Yufan Huang, Xiaofan He, Huaiyu Dai, and Tianfu Wu. Stochastic-sign sgd for federated learning
with theoretical guarantees. arXiv preprint arXiv:2002.10940, 2020b.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and Ananda Theertha
Suresh. Scaffold: Stochastic controlled averaging for federated learning. In International conference on
machine learning, pp. 5132–5143. PMLR, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Latif U Khan, Walid Saad, Zhu Han, Ekram Hossain, and Choong Seon Hong. Federated learning for internet of
things: Recent advances, taxonomy, and open challenges. IEEE Communications Surveys & Tutorials, 23(3):
1759–1799, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adaptive stepsizes.
In The 22nd international conference on artificial intelligence and statistics, pp. 983–992. PMLR, 2019.

Xiaoyun Li and Ping Li. Analysis of error feedback in federated non-convex optimization with biased com-
pression: Fast convergence and partial participation. In International Conference on Machine Learning, pp.
19638–19688. PMLR, 2023.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient compression: Reducing the
communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887, 2017.

Bo Liu, Lemeng Wu, Lizhang Chen, Kaizhao Liang, Jiaxu Zhu, Chen Liang, Raghuraman Krishnamoor-
thi, and Qiang Liu. Communication efficient distributed training with distributed lion. arXiv preprint
arXiv:2404.00438, 2024.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Amirhossein Malekijoo, Mohammad Javad Fadaeieslam, Hanieh Malekijou, Morteza Homayounfar, Farshid
Alizadeh-Shabdiz, and Reza Rawassizadeh. Fedzip: A compression framework for communication-efficient
federated learning. arXiv preprint arXiv:2102.01593, 2021.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, pp.
1273–1282. PMLR, 2017.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning with
compressed gradient differences. Optimization Methods and Software, pp. 1–16, 2024.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ, Sanjiv Kumar,
and H Brendan McMahan. Adaptive federated optimization. arXiv preprint arXiv:2003.00295, 2020.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic variance reduction
for nonconvex optimization. In International conference on machine learning, pp. 314–323. PMLR, 2016.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani. Fedpaq: A
communication-efficient federated learning method with periodic averaging and quantization. In International
conference on artificial intelligence and statistics, pp. 2021–2031. PMLR, 2020.

Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. Ef21: A new, simpler, theoretically better, and practically
faster error feedback. Advances in Neural Information Processing Systems, 34:4384–4396, 2021.

Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger R Roth, Shadi Albarqouni, Spyridon Bakas,
Mathieu N Galtier, Bennett A Landman, Klaus Maier-Hein, et al. The future of digital health with federated
learning. NPJ digital medicine, 3(1):1–7, 2020.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. Advances in neural
information processing systems, 31, 2018.

Tao Sun, Qingsong Wang, Dongsheng Li, and Bao Wang. Momentum ensures convergence of signsgd under
weaker assumptions. In International Conference on Machine Learning, pp. 33077–33099. PMLR, 2023.

Zhiwei Tang and Tsung-Hui Chang. Fedlion: Faster adaptive federated optimization with fewer communication.
In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 13316–13320. IEEE, 2024.

Praveen Venkateswaran, Vatche Isahagian, Vinod Muthusamy, and Nalini Venkatasubramanian. Fedgen:
Generalizable federated learning for sequential data. In 2023 IEEE 16th International Conference on Cloud
Computing (CLOUD), pp. 308–318. IEEE, 2023.

Yujia Wang, Lu Lin, and Jinghui Chen. Communication-efficient adaptive federated learning. In International
Conference on Machine Learning, pp. 22802–22838. PMLR, 2022.

Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for communication-efficient
distributed optimization. Advances in Neural Information Processing Systems, 31, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad: Ternary
gradients to reduce communication in distributed deep learning. Advances in neural information processing
systems, 30, 2017.

Jiaxiang Wu, Weidong Huang, Junzhou Huang, and Tong Zhang. Error compensated quantized sgd and its
applications to large-scale distributed optimization. In International conference on machine learning, pp.
5325–5333. PMLR, 2018.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept and applications.
ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19, 2019.

Enda Yu, Dezun Dong, Yemao Xu, Shuo Ouyang, and Xiangke Liao. Cp-sgd: Distributed stochastic gradient
descent with compression and periodic compensation. Journal of Parallel and Distributed Computing, 169:
42–57, 2022.

Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication efficient momentum sgd
for distributed non-convex optimization. In International Conference on Machine Learning, pp. 7184–7193.
PMLR, 2019.

Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, and Ce Zhang. Zipml: Training linear models with
end-to-end low precision, and a little bit of deep learning. In International Conference on Machine Learning,
pp. 4035–4043. PMLR, 2017.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DETAILED EXPERIMENT SETUP

We utilize the visual datasets including CIFAR-10 and CIFAR-100. CIFAR-10 and CIFAR-100 are two classic
image classification datasets created by the Canadian Institute for Advanced Research (CIFAR). The CIFAR-10
dataset consists of 10 classes of images, with each class containing 6000 32x32-pixel color images. The
CIFAR-100 dataset is an extension of CIFAR-10, containing 100 classes of images. These 100 classes are
divided into 20 superclasses, each containing 5 subclasses. Each subclass contains 600 32x32-pixel color images.
Both them comprise 50,000 images for training and 10,000 images for testing.

For CIFAR-10 and CIFAR-100, we employ a CNN model comprising two convolutional layers with sixty four
5× 5 filters, two 2 × 2 max pooling layers, two fully connected layers with 384 and 192 neurons, and a softmax
layer. We also used a larger network, ResNet18, to confirm that our algorithm still performs well in a larger
network. ResNet18 contains 16 convolutional layers. These convolutional layers are distributed across several
residual blocks, each containing two 3× 3 convolutional layers. Additionally, there is a 7× 7 convolutional
layer at the beginning of the network. At the end of the network, there is a fully connected layer for output.

For Shakespeare dataset, we employ a RNN model. RNN consists of Input Layer (Receives the input at the
current timestep), Hidden Layer (Receives the hidden state from the previous timestep along with the input at
the current timestep to compute the new hidden state) and Output Layer (Outputs a result based on the current
state of the hidden layer).

All approaches are implemented in PyTorch 1.4.0 and CUDA 9.2, with GEFORCE GTX 1080 Ti throughout our
experiments.

In most federated learning scenarios, the total number of clients is set to 100 with the participation rate of 0.1,
which is a classical experimental setting, like what FedLion (Tang & Chang, 2024) and FedAvg(McMahan et al.,
2017) do. Therefore, with the simple CNN network, we set 100 clients with participation rates of 0.1 and 0.03 to
verify the performance of our algorithm.

However, our computing resources (i.e., GEFORCE GTX 1080 Ti) are insufficient to support us to set 100
clients on the ResNet18 network, we thus can only select 10 clients and set the participation rate to 0.3.

We tune the hyper-parameter over a grid to compare the performance of different methods. For local update in
all methods, we tune the local learning rate over {1, 0.1, 0.01, 0.001} and set up 5 epochs of local updates with
the minibatch B = 50.

For our proposed method FedSMU, we tune the parameter β1 and β2 over {0.9, 0.99, 0.999}, respectively, and
set them both to 0.9 for CIFAR-10 and CIFAR-100 and 0.95 for Shakespeare. We tune the parameter γ1 and
γ2 over {1, 0.1, 0.02, 0.018, 0.015, 0.013, 0.01, 0.005, 0.001}, respectively, since they are so sensitive, and set
them to 0.015, 0.01 for CIFAR-10, 0.018, 0.01 for CIFAR-100 and 0.03, 0.1 for Shakespeare.

For FedLion (Tang & Chang, 2024), we tune the parameter β1 and β2 over {0.9, 0.99, 0.999}, respectively,
and set β1 to 0.9 and β2 to 0.99 for CIFAR-10, CIFAR-100 and Shakespeare. We tune the parameter γ1 over
{1, 0.1, 0.01, 0.001, 0.0001} and set it to 0.001 for CIFAR-10, CIFAR-100 and Shakespeare.

For FedEF-SGD (Li & Li, 2023), we tune the parameter ηg over {1, 0.1, 0.01} and set it to 1 for CIFAR-
10,CIFAR-100 and Shakespeare.

For LocalLion and GlobalLion, we tune the parameter β1 and β2 over {0.9, 0.99, 0.999}, respectively, and set
them to 0.9 and 0.99 for CIFAR-100. We tune the parameter γ1 and γ2 over {1, 0.1, 0.01, 0.001}, respectively,
and set them to 0.001, 0.01 for CIFAR-100. We tune the parameter ηg in LocalLion over {1, 0.1, 0.01, 0.001}
and set them to 1 for CIFAR-100.

For FedSMUM, we tune the parameter β1 and β2 over {0.9, 0.99, 0.999}, respectively, and set them to 0.9 and
0.99 for CIFAR-100. We tune the parameter γ1 and γ2 over {1, 0.1, 0.01, 0.001}, respectively, and set them to
0.01, 0.001 for CIFAR-100.

For FedSMUMC, we tune the parameter β1 and β2 over {0.9, 0.99, 0.999}, respectively, and set them both to
0.9 for CIFAR-100. We tune the parameter γ1 and γ2 over {1, 0.1, 0.01, 0.001}, respectively, and set them both
to 0.01 for CIFAR-100.

B FURTHER EXPLANATION OF ALGORITHM 1

B.1 DISCUSSION ON MOMENTUM

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Our FedSMU algorithm requires each client to maintain and track its momentum state. In some extreme cases,
where each client participates in the training only once during the entire training process, our algorithm may fail.

We do analyze this limitation from two perspectives. First, we test our algorithm at a lower client participation
rate (i.e., where the momentum state of the clients is more stale). The results in Table 4 show that FedSMU
still achieves a good accuracy in most cases. Additionally, we introduce a variant algorithm, FedSMUMC,
which additionally store and communicate the complete momentum at the server at the cost of communication
overhead. The results in Table 6 demonstrate that appropriately completing the momentum can marginally
improve the model performance. Overall, the experimental results indicate that, in most cases, our FedSMU
algorithm remains effective and does not fail due to the stale momentum.

Additionally, FedSMU only requires uploading the 1-bit model update after symbolization for each client and
does not need to store the momentum terms on the server side. In contrast, FedLion (Tang & Chang, 2024)
requires to aggregate and store momentum on the server side. Consequently, FedLion (Tang & Chang, 2024)
necessitates the additional transmission of the full-precision momentum terms, along with the model update
after quantization.

B.2 DISCUSSION ON SIGN OPERATION

The “sign operation” refers to 1 bit per dimension, not a total of 1 bit for the entire model. In practice, the
weights or gradients of each dimension in a model are typically stored as 32-bit floating-point values (float32).
This means that each dimension requires 32 bits to upload. However, when applying the sign operation, each
dimension only requires 1 bit to represent the sign, thus significantly reducing the communication overhead
compared to using 32 bits per dimension.

In terms of the physical data transfer, the actual number of bits transmitted to the server can be calculated as:
Total bits transferred = (bits per dimension× the number of dimensions× the number of participating clients)
+ the header size. For example, using a small CNN model with n = 10 clients, FedSMU would transfer
approximately 0.95MB.

Though the service information for communication includes plenty of headers, for instance: the Ethernet header
has 14 bytes for the header; IPv4 has 20 bytes header; TCP has header 20 header. Given the large volume of
transmitted data, the header size of 54 bytes is negligible in comparison.

B.3 DISCUSSION ON THE α-BIT

First, we would like to acknowledge that for the general quantization-based compression algorithms, a higher
precision quantization may often lead to a faster convergence. However, this may not hold for our FedSMU.
This conclusion is based on the Lion optimizer (Chen et al., 2024) and our analysis, as follows.

1) The original Lion manuscript demonstrated that 1-bit quantization (via the sign operation) in centralized
learning enhances the algorithm’s convergence and generalization compared to other optimization techniques.
That is, the authors analyzed that the sign operation introduces noise into the updates, which serves as a form of
regularization, thereby improving both convergence and generalization.

2) Both experimentally (Figure 1) and intuitively, the symbolic operation (i.e., 1-bit quantization) helps alleviate
the heterogeneity of model updates, as all updates have uniform magnitude across all dimensions for each client.
Furthermore, reducing model heterogeneity should also intuitively contribute to improving model performance
in heterogeneous federated settings.

3) However, such sign operation (e.g., QSGD) alone does not directly improve generalization in experiments.
Inspired by Lion optimizer (Chen et al., 2024) that incorporates the sign operation and then enhances the
convergence and generalization to learn in central learning, we introduce Lion’s structure into federated learning
and verify that this combination can indeed improve model generalization.

Consequently, we conclude that in our optimized structure, 1-bit quantization outperforms higher-bit or even
full-bit quantization, since multi-bit compression does not guarantee that the update amplitude of each client is
consistent. Experimental results in Table 8 further validate that for our designed optimization algorithm, using a
higher-bit compression does not enhance the algorithm’s convergence or generalization.

B.4 DISCUSSION ON SERVER-TO-CLIENT COMPRESSION

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 8: Number of communication rounds to achieve a preset target test accuracy with Dirichlet-0.25
on CIFAR-10 dataset and small CNN network. ”/” means it caanot reach the test accuracy and bold
numbers indicate the smallest rounds.

Number of rounds needed for achieving a target test accuracy.

Test Accuracy(%) 1-bit (FedSMU) 3-bit 8-bit

40 26 65 54
45 33 91 68
50 50 168 119
55 65 285 185
60 118 456 224
65 288 833 342

67.5 399 1260 401
69 507 1967 456

72.3 642 / 643
75 1142 / 1040

77.5 1746 / 1979

Due to the partial participation characteristic of federated learning, the server must broadcast the new global
model, rather than a simple global model update, to initialize newly participating clients. This limitation prevents
the direct application of uploaded model update compression techniques in our FedSMU to the downloaded
global model.

We will consider some model lightweight techniques, such as mixed-precision model compression, as a promising
future research direction to compress the server-to-client communication in our FedSMU algorithm.

C FURTHER EXPLANATION OF ASSUMPTION 4.1 TO ASSUMPTION 4.3

Assumption 4.1 is a standard assumption in the convergence analysis of optimization algorithms. Similar
assumptions can be found in MARINA (Gorbunov et al., 2021) (“Assumption 1.1”) and EF21 (Richtárik et al.,
2021) (“Assumption 1”).

For Assumption 4.2, it is fundamental for SGD-based optimization algorithms. In SGD, model updates are
computed using mini-batch sampling rather than full-batch, under the assumption that the sampling process is
unbiased and accounts for the variance introduced. However, MARINA(Gorbunov et al., 2021) bypasses this
assumption by employing the Gradient Descent (GD) instead of Stochastic Gradient Descent (SGD), eliminating
the variance caused by mini-batch sampling. EF21(Richtárik et al., 2021) discuss this stochastic gradient
explicitly in Section “F: Dealing with Stochastic Gradients (Details for Section 3.6)”.

For Assumption 4.3, we acknowledge that this is a stronger assumption, ensuring that both the compressed
targets and the momentum term (the moving averages of gradients) in our theoretical analysis are bounded.
Moreover, this assumption has been adopted in other federated optimization and sign-based compression studies
(Sun et al., 2023; Reddi et al., 2020). Specifically, in (Sun et al., 2023), the authors demonstrate the convergence
of distributed SIGNSGD with momentum under Assumption 4, which is also the bounded gradient assumption.

Regarding y = x2

2
over R, it is true that the gradient does not have an upper bound for the domain R. However,

in neural networks, the input domain is typically bounded, ensuring the gradient is also bounded. For instance,
gradient clipping is a commonly used technique to control the gradient’s upper bound and prevent gradient
explosion.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D A PROOF OF THEOREM 4.4

Proof. Set ∆t =
1
n

∑n
i=1 u

i
t =

1
n

∑n
i=1 sign[β1m

i
t−1 + (1− β1)g

i
t] and ||∆t||2 =

∑d
j=1 |∆

j
t |2,where d is

the dimensions of parameters.

Since γ2 is adjustable, so for each coordinate j, we can assume |γ2xjt | ≤ 1. (∥γ2x∥∞ ≤ 1)

It has been demonstrated in (Chen et al., 2023) (Equation 5 on Page 3). (Chen et al., 2023) clarifies in Abstract
that “Lion is a theoretically novel and principled approach for minimizing a general loss function f(x) while
enforcing a bound constraint ||x||∞ ≤ 1

γ2
.” Here γ2 is the weight decay coefficient and xt is the model. Such

an assumption has also been used in another algorithm (Liu et al., 2024) based on Lion optimizer (Equation 7 on
Page 4).

And thus |∆j
t − γ2x

j
t | ≤ |∆j

t |+ |γ2xjt | ≤ 2. Then ||∆t||2 ≤ d and ||∆t − γ2xt||2 ≤ 4d.

With Assumption 4.1, we have

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
L

2
||xt+1 − xt||2

= f(xt) + ⟨∇f(xt), γ1∆t − γ1γ2xt⟩+
L

2
||γ1∆t − γ1γ2xt||2

= f(xt)− ⟨∇f(xt), γ1sign(∇f(xt))⟩+ ⟨∇f(xt), γ1∆t − γ1γ2xt + γ1sign(∇f(xt))⟩

+
L

2
||γ1∆t − γ1γ2xt||2

= f(xt)− γ1||∇f(xt)||1 + γ1 ⟨∇f(xt),∆t − γ2xt + sign(∇f(xt))⟩︸ ︷︷ ︸
A

+2Lγ2
1d.

(4)

Considering the calculation of A:

A = ⟨∇f(xt),∆t − γ2xt + sign(∇f(xt))⟩

= ⟨∇f(xt),
1

n

n∑
i=1

ui
t − γ2xt + sign(∇f(xt))⟩,

(5)

For any dimension j , assume |γ2xjt | < 1, and then we have ∇f(xjt)(1
n

∑n
i=1 u

i,j
t −γ2xjt +sign(∇f(x

j
t))) ≤

3|∇f(xjt)| = 3G| 1
G
∇f(xjt)| < 3G| 1

G
∇f(xjt) + γ1sign(∇f(xjt))|.

So,

A < 3G|| 1
G
∇f(xt) + γ1sign(∇f(xt))||1

≤ 3
√
dG|| 1

G
∇f(xt) + sign(∇f(xt))||.

(6)

Substitute Eq. (6) into Eq. (4), we further have

f(xt+1)− f(xt) ≤ −γ1||∇f(xt)||1 + γ1 ⟨∇f(xt),∆t − γ2xt + sign(∇f(xt))⟩︸ ︷︷ ︸
A

+2Lγ2
1d

≤ −γ1||∇f(xt)||1 + γ13
√
dG || 1

G
∇f(xt) + γ2

1sign(∇f(xt))||︸ ︷︷ ︸
B

+2Lγ2
1d.

(7)

Taking the expectation of B, with Assumption 4.3 we have

E(B) ≤ E(|| 1
G
∇f(xt) +

γ1
nKG

n∑
i=1

vit︸ ︷︷ ︸
ϵt

||) + E(||γ1sign(∇f(xt))−
γ1

nKG

n∑
i=1

vit||)

≤ E(||ϵt||) + E(γ1

√√√√ d∑
j=1

|sign(∇f(xjt))−
1

n

n∑
i=1

1

KG
vi,jt |2)

≤ E(||ϵt||) + 2γ1
√
d.

(8)

Taking the expectation of Eq. (8), we have

E(f(xt+1))− E(f(xt)) ≤ −γ1E(||∇f(xt)||1) + 3
√
dγ1GE(||ϵt||) + 6dγ2

1G+ 2Lγ2
1d. (9)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

ϵt =
1

G
∇f(xt) +

γ1
nKG

n∑
i=1

vit

=
1

Gn

n∑
i=1

∇Fi(xt) +
γ1

nKG

n∑
i=1

vit

=
1

n

n∑
i=1

(
1

G
∇Fi(xt) +

γ1
KG

vit)

=
1

n

n∑
i=1

ϵit

(10)

Further define hi
t = − 1

KG

∑K
k=1 ∇Fi(y

i
t,k; ξ

i
t,k), δ

i
t = hi

t +
1
G
∇Fi(xt).

Referring to Algorithm 1, we have vit = β2v
i
t−τi + (β1 − β2)g

i
t−τi + (1− β1)g

i
t.

For each client i, we have
γ1
KG

vit =
γ1
KG

β2v
i
t−τi + γ1η(β1 − β2)h

i
t−τi + γ1η(1− β1)h

i
t

= β2(ϵ
i
t−τi −

1

G
∇Fi(xt−τi)) + γ1η(β1 − β2)(δ

i
t−τi −

1

G
∇Fi(xt−τi))

+ γ1η(1− β1)(δ
i
t −

1

G
∇Fi(xt)).

(11)

Converting the form of Eq. (11), we have

ϵit = β2ϵ
i
t−τi + γ1η(β1 − β2)δ

i
t−τi + γ1η(1− β1)δ

i
t +

1

G
[∇Fi(xt)−∇Fi(xt−τi)]︸ ︷︷ ︸

+ [
−γ1η + γ1ηβ1

G
∇Fi(xt)−

β2 − 1 + γ1η(β1 − β2)

G
∇Fi(xt−τi)]︸ ︷︷ ︸

sit

.
(12)

Taking the ℓ2 norm of sit and assuming β1 ≤ β2, with Assumption 4.1 and Assumption 4.3, we have

||sit|| =
1

G
||∇Fi(xt)−∇Fi(xt−τi)||

+ ||−γ1η + γ1ηβ1
G

∇Fi(xt)||+ ||β2 − 1 + γ1η(β1 − β2)

G
∇Fi(xt−τi)||

=
1

G
||∇Fi(xt)−∇Fi(xt−τi)||

+
γ1η(1− β1)

G
||∇Fi(xt)||+

1− β2 + γ1η(β2 − β1)

G
||∇Fi(xt−τi)||

≤ 1

G
||∇Fi(xt)−∇Fi(xt−τi)||

+
γ1η(1− β1)

G
||∇Fi(xt)||+

1− β1 + γ1η(β2 − β1)

G
||∇Fi(xt−τi)||

≤ L

G
||xt − xt−τi ||+ γ1η(1− β1) + 1− β1 + γ1η(β2 − β1)

≤ 2γ1L
√
dτ i

G
+ γ1η(1 + β2) + 1− β1.

(13)

Taking the expectation of ||δit||2 and using the Lemma D.1, we have

E(||δit||2) = E(|| − 1

KG

K∑
k=1

∇Fi(y
i
t,k; ξ

i
t,k) +

1

G
∇Fi(xt)||2)

≤
∑K

k=1E||∇Fi(y
i
t,k; ξ

i
t,k)−∇Fi(xt)||2)

K2G2

≤
L2 ∑K

k=1E||yit,k − xt||2

K2G2

≤ L2(8Kη2σ2
l + 16K2η2σ2

l + 16K2η2G2)

KG2
.

(14)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Taking the ℓ2 norm of Eq. (12) and using Eq. (13), let τ i0 = 0, τ i1 = τ i,
∑c

j=0 τ
i
j = τci ,max{τ ij}1≤j≤c+1 =

τ imax, τci > t− 1, c = ci ≤ t− 1 and we have

||ϵit|| ≤ ||β2ϵit−τi ||+ ||sit||+ ||γ1(β1 − β2)δ
i
t−τi ||+ ||γ1(1− β1)δ

i
t||

= ||βci+1
2 ϵi0||+ ||

ci∑
j=0

βj
2s

i
t−τj ||+ ||γ1(β1 − β2)

ci∑
j=0

βj
2δ

i
t−τj+1

||

+ ||γ1(1− β1)

ci∑
j=0

βj
2δ

i
t−τj ||

≤ βci+1
2 ||ϵi0||+ (

2γ1L
√
dτ imax

G
+ γ1η(1 + β2) + 1− β1)

ci∑
j=0

βj
2

+ γ1(β1 − β2)||
ci∑

j=0

βj
2δ

i
t−τj+1

||+ γ1(1− β1)||
ci∑

j=0

βj
2δ

i
t−τj ||

≤ βci+1
2 ||ϵi0||+

2γ1L
√
dτ imax

G(1− β2)
+
γ1η(1 + β2) + 1− β1

1− β2
+ γ1(β1 − β2)||

ci∑
j=0

βj
2δ

i
t−τj+1

||

+ γ1(1− β1)||
ci∑

j=0

βj
2δ

i
t−τj ||.

(15)

Notice that the random variables
(
δit
)
1≤t≤T

are independent, so E
〈
δit1, δ

i
t2

〉
= 0. Take the expectation of

||
∑ci

j=0 β
j
2δ

i
t−τj ||, ||

∑ci

j=0 β
j
2δ

i
t−τj+1

|| and use the Eq. (14) , we have

E||
ci∑

j=0

βj
2δ

i
t−τj || = E||

ci∑
j=0

βj
2δ

i
t−τj+1

|| ≤

√√√√E(||
ci∑

j=0

βj
2δ

i
t−τj

||2)

=

√√√√E(

ci∑
j=0

β2j
2 ||δit−τj

||2)

≤

√
1

1− β2
2

L2(8Kη2σ2
l + 16K2η2σ2

l + 16K2η2G2)

KG2
.

(16)

Taking the expectation of Eq. (15) and substituting Eq. (16) in it, we further have

E||ϵit|| ≤ βci+1
2 ||ϵi0||+

2γ1L
√
dτ imax

G(1− β2)
+
γ1η(1 + β2) + 1− β1

1− β2

+ γ1(1− β2)

√
1

1− β2
2

L2(8Kη2σ2
l + 16K2η2σ2

l + 16K2η2G2)

KG2
.

(17)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Recursively iterating it from t = 0 to t = T and substituting Eq. (17) into Eq. (10), we have

1

T

T∑
t=1

E(||∇f(xt)||1) ≤
f(x0)−minf

γ1T
+ 3

√
dGE(||ϵt||) + 6dγ1G+ 2Lγ1d

≤ f(x0)−minf

γ1T
+ 3

√
dG

∑T
t=1

∑n
i=1E||ϵit||
nT

+ 6dγ1G+ 2Lγ1d

≤ f(x0)−minf

γ1T
+ 3

√
dG

∑T
t=1

∑n
i=1 β

ci+1
2 ||ϵi0||

nT
+

3
√
dG2γ1L

√
dτmax

G(1− β2)

+
3
√
dGγ1η(1 + β2) + 3

√
dG(1− β1)

1− β2

+ 3
√
dGγ1(1− β2)

√
1

1− β2
2

L2(8Kη2σ2
l + 16K2η2σ2

l + 16K2η2G2)

KG2

+ 6dγ1G+ 2Lγ1d

≤ f(x0)−minf

γ1T
+

3
√
dGϕ

nT (1− β2)
+

6dLτmaxγ1
1− β2

+
3
√
dGγ1η(1 + β2) + 3

√
dG(1− β1)

1− β2

+ 6
√
dLηγ1

√
1− β2
1 + β2

(2σ2
l + 4Kσ2

l + 4KG2)

+ 6dγ1G+ 2Lγ1d.

(18)

where τmax = max{τ imax}1≤i≤m, ϕ =
∑m

i=1 ||ϵ
i
0|| when 1 ≤ t ≤ T .

Finally, when γ1 = 1

L
√
T

and 1− β1 = 1√
T

, we complete the proof that

1

T

T∑
t=1

E(||∇f(xt)||1) ≤
L(f(x0)−minf)√

T
+

3
√
dGϕ

nT (1− β2)
+

6dτmax

(1− β2)
√
T

+
3
√
dGη(1 + β2)

(1− β2)L
√
T

+
3
√
dG

(1− β2)
√
T

+
6
√
dη√
T

√
1− β2
1 + β2

(2σ2
l + 4Kσ2

l + 4KG2)

+
6dG

L
√
T

+
2d√
T
.

(19)

Lemma D.1. Let Assumption 4.1, Assumption 4.2 and Assumption 4.3 hold for ξit and ∇Fi(·; ·). Assume node i
performs local SGD as

yit,k = yit,k−1 − η∇Fi(y
i
t,k−1, ξ

i
t,k−1)

with yit,0 = xt. Like the lemma proved in (Sun et al., 2023), since 0 < η ≤ 1
4LK

, it holds

E
∥∥∥yit,k − xt

∥∥∥2

≤ 8Kη2σ2
l + 16K2η2σ2

l + 16K2η2G2

Proof.
Following the proof in (Sun et al., 2023), note that for any k ∈ {1, . . . ,K}, in node i, (20)

E
∥∥∥yit,k − xt

∥∥∥2

= E
∥∥∥yit,k−1 − η∇Fi(y

i
t,k−1, ξ

i
t,k−1)− xt

∥∥∥2

≤ E∥yit,k−1 − xt − η
(
∇Fi

(
yit,k−1; ξ

i
t,k−1

)
−∇Fi

(
yit,k−1

)
+∇Fi

(
yit,k−1

)
−∇Fi (xt) +∇Fi (xt)

)
∥2.

(21)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

By using the Cauchy’s inequality

E∥a+ b∥2 ≤
(
1 +

1

ψ

)
E∥a∥2 + (1 + ψ)E∥b∥2

with a = yit,k−1 − xt − η
(
∇Fi

(
yit,k−1; ξ

i
t,k−1

)
−∇Fi

(
yit,k−1

))
, b =

η
(
∇Fi

(
yit,k−1

)
−∇Fi (xt) +∇Fi (xt)

)
and ψ = 2K − 1.

Denote that ℜ :=
(
1 + 1

2K−1

)
E∥yit,k−1 − xt − η

(
∇Fi

(
yit,k−1; ξ

i
t,k−1

)
−∇Fi

(
yit,k−1

))
∥2. and ℑ :=

2Kη2E∥∇Fi

(
yit,k−1

)
−∇Fi (xt) +∇Fi (xt) ∥2. The unbiased expectation property of ∇Fi

(
yit,k−1; ξ

i
t,k

)
gives us

ℜ =

(
1 +

1

2K − 1

)(
E
∥∥∥yit,k−1 − xt

∥∥∥2

+ η2E
∥∥∥∇Fi

(
yit,k−1; ξ

i
t,k−1

)
−∇Fi

(
yit,k−1

)∥∥∥2
)

≤
(
1 +

1

2K − 1

)(
E
∥∥∥yit,k−1 − xt

∥∥∥2

+ η2σ2
l

)
On the other hand, we have the following bound

ℑ ≤ 4Kη2E
∥∥∥∇Fi

(
yit,k−1

)
−∇Fi (xt)

∥∥∥2

+ 4Kη2E ∥∇Fi (xt)∥2

≤ 4L2Kη2E
∥∥∥yit,k−1 − xt

∥∥∥2

+ 4Kη2G2

When 0 < η ≤ 1
4LK

,

1 +
1

2K − 1
+ 4L2Kη2 ≤ 1 +

1

K − 1

and we can obtain

E
∥∥∥yit,k − xt

∥∥∥2

≤
(
1 +

1

2K − 1
+ 4L2Kη2

)
E
∥∥∥yit,k−1 − xt

∥∥∥2

+ 2η2σ2
l + 4Kη2σ2

l + 4Kη2G2

≤
(
1 +

1

K − 1

)
E
∥∥∥yit,k−1 − xt

∥∥∥2

+ 2η2σ2
l + 4Kη2σ2

l + 4Kη2G2

The recursion from j = 0 to K yields

E
∥∥∥yit,k − xt

∥∥∥2

≤
K−1∑
j=0

(
1 +

1

K − 1

)j [
2η2σ2

l + 4Kη2σ2
l + 4Kη2G2]

≤ (K − 1)

[(
1 +

1

K − 1

)K

− 1

]
×

[
2η2σ2

l + 4Kη2σ2
l + 4Kη2G2]

≤ 8Kη2σ2
l + 16K2η2σ2

l + 16K2η2G2

where we used the inequality
(
1 + 1

K−1

)K

≤ 5 holds for any K ≥ 1.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

E FURTHER EXPLORATION OF THEOREM 4.4

E.1 DISCUSSION ON THE L1 FORM

The convergence rate in terms of L1 norm with a dependency of d is common in sign-based method, like
Theorem 4 in (Sun et al., 2023), p.6, Theorem 1 in (Chen et al., 2020), P.6, and Equation 35 in (Jin et al., 2020b),
P.19. Their form of expression is similar to Theory 4.4. However, it is worth noting that the value of the learning
rate γ1 may be critical. In (Chen et al., 2020) and (Jin et al., 2020b), the authors use γ1 = 1√

Td
to reduce the

power of d. In that way, if we take γ1 = 1

L
√
Td

, Theorem 4.4 can only depend on
√
d.

E.2 COMPARISON WITH FEDLION (TANG & CHANG, 2024)

In this section, we highlight some key differences between our algorithm and FedLion. Specifically, while
FedLion (Tang & Chang, 2024) does not rely on the Assumption 4.3, it also introduces an additional stronger
assumption (A.4 in the original manuscript of FedLion(Tang & Chang, 2024)):“ There exists a constant α ≤ 1

3
,

such that ∥∇f(x)−∇fi(x)∥1 ≤ α∥∇f(x)∥1, ∀i, x.”

Additionally, FedLion (Tang & Chang, 2024) cannot be reduced to a standard Lion optimizer, because it merely
parallelizes the execution of the Lion optimizer on the client side and incorporates multi-precision quantization
for communication compression. Therefore, even when K = 1 and m = 1, it does not degrade to a standard
Lion optimizer, and its convergence rate cannot be directly applied to the Lion optimizer.

In contrast, when K = 1 and m = 1 in our algorithm, it degenerates to the standard Lion optimizer, and its
convergence rate can be applied to the Lion optimizer.

E.3 DETERMINANTS OF THE CONVERGENCE BOUND

In the theoretical analysis of FedSMU, τmax and K control the client participation rate and the number of local
updates, respectively. The convergence rate in Theorem 4.4 demonstrates that increasing the client participation
rate and reducing the number of local updates can tighten the convergence bound.

It is intuitive that a increased participation rate can improve the model’s convergence rate. A higher client
participation ratio helps the global model gather more information from the clients, which reduces the overfitting
and mitigates the impact of local data heterogeneity, thereby improving the convergence bound. This conclusion
is also supported by Table 1 in (McMahan et al., 2017).

On the other hand, in the convergence upper bound of Theorem 4.4, the term 4Kσ2
l +4KG2 indicates that more

local updates amplify both the local sampling variance σl and the gradients accumulationG, resulting in a slower
convergence. This aligns with our intuition. For the SGD-based local updates, as the number of local updates
increases, the cumulative sampling variance σl and gradients G grows, also further leading to more divergent
update directions caused by data heterogeneity. This negative effect is also experimentally demonstrated in
Page 7 of (McMahan et al., 2017), where Figure 3 strongly states that “for very large numbers of local epochs,
FedAvg can plateau or diverge.”

E.4 FACTORS INFLUENCING CONVERGENCE SPEED

Theoretically, a lower client participation rate (i.e., a larger τmax) leads to a slower algorithm convergence.
Similarly, a higher model dimension d also results in a slower algorithm convergence. To validate this, we have
conducted the following experiments.

All of these experiments are done on CIFAR-10 dataset with Dirichlet-0.25. To illustrate the relationship
between the model dimension and convergence rate, we use two different CNN models (d1 = 797248 and
d2 = 1723648) to study the impact of model dimension. Note that here we modify the size of the convolutional
layers, keeping the model depth constant. The number of clients is 100 with the participation ratio of 0.1.
To illustrate the relationship between participation rate and convergence rate, We use the CNN network with
d1 = 797248 and set the number of clients as 100 with different participation ratio (n

m
= 0.03 and n

m
= 0.1,

represented in the Table 9 by L and H) to demonstrate the influence of client participation rate.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

The experimental results in Table 9 show that when the participation rate is higher (i.e., the τmax is smaller)
and the dimension is smaller, the convergence speed can be faster, which matches with the Theorem 4.4 and is
intuitional.

Table 9: Number of communication rounds to achieve a preset target test accuracy with Dirichlet-0.25
on CIFAR-10 dataset and different CNN network. d1 and d2 indicate small and large dimension
while L and H indicate low and high participation rates. Bold numbers indicate the smallest rounds.

Number of rounds needed for achieving a target test accuracy.

Test Accuracy(%) d1, H d2, H d1, L

40 26 30 46
45 33 35 112
50 50 43 193
55 65 65 226
60 118 111 384
65 288 275 899

67.5 399 409 949
69 507 507 1025

72.3 642 769 1752
75 1142 1185 2221

77.5 1746 1745 2878

F FURTHER EXPLORATION OF CONVERGENCE SPEED

F.1 CONVERGENCE PERFORMANCE VS. COMMUNICATION ROUNDS

In Figure 3, we show the convergence performance in terms of communication rounds. Also, we compare the
convergence rate using the number of communication rounds required to achieve the target accuracy and the
results are presented in the Table 10.

For CIFAR-100 and Shakespeare, our algorithm does not require more communication rounds compared to
most algorithms. However, for CIFAR-10, it slightly exceeds the number of rounds needed by other algorithms.
This may be attributed to the simplicity of the CIFAR-10 dataset, which has a lower degree of heterogeneity.
In this case, our algorithm’s strengths are not fully utilized, as the initial training process is already close to
convergence.

1 500 1000 1500 2000 2500 3000
conmmunication round

10
20
30
40
50
60
70
80

ac
cu

ra
cy

 (%
)

FedEF-HS
FedEF-TopK
FedEF-Sign
FedLion
FedSMU
FedAvg
SCAFFOLD
SCALLION

(a) Dirichlet0.25-CIFAR10

1 500 1000 1500 2000 2500 3000 3500
conmmunication round

0
5

10
15
20
25
30
35
40
45
50

ac
cu

ra
cy

 (%
)

FedEF-HS
FedEF-TopK
FedEF-Sign
FedLion
FedSMU
FedAvg
SCAFFOLD
SCALLION

(b) Dirichlet0.25-CIFAR100

Figure 3: Convergence performance vs. number of communication rounds on CIFAR-10 and CIFAR-
100, with 100 clients and 10% participation, using small CNN network for different algorithms.

F.2 CONVERGENCE PERFORMANCE VS. WALL-CLOCK

We test the wall-clock time needed for each baseline to execute one communication round. Take CIFAR-100
and participation rate n

m
= 0.1 as an example, the average wall-clock time required to execute a round is

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 10: Number of communication rounds to achieve a preset target accuracy with 100 clients and
10% participation. CIFAR-10 and CIFAR-100 use the small CNN network and Shakespeare uses
the RNN network. “/” means it cannot reach the training accuracy. Bold numbers indicate the best
performance.

Number of communication rounds to achieve a preset target accuracy.

Dataset Training Accurac (%) FedAvg SCAFFOLD SCALLION FedEF-HS FedEF-TopK FedEF-Sign FedLion FedSMU

CIFAR-10
(Dir0.25)

55 26 29 23 41 37 50 21 65
60 43 43 29 62 57 81 33 118
65 57 62 48 108 96 111 50 288

CIFAR-100
(Dir0.25)

35 193 86 286 690 355 794 100 832
40 629 142 730 / 882 / 225 1218
45 / 270 3703 / / / 632 1811

Shakespeare
(noniid)

25 17 12 13 30 20 57 10 11
30 32 19 20 45 36 78 17 20
35 61 27 27 85 68 177 28 48

as follows: FedSMU (10.43 seconds), FedAvg (10.15 seconds), FedEF-HS (10.46 seconds), FedLion (10.63
seconds), SCAFFOLD (10.38 seconds). Experiments demonstrate that in a single communication round, our
algorithm introduces no significantly additional time overhead compared to other algorithms. Therefore, the
results using wall-clock time as a metric are similar to those measured by communication rounds. We will not
include a separate plot here and please refer to Figure 3 and Table 10.

G COMPARISON WITH MORE ALGORITHMS

G.1 COMPARISON WITH OTHER ABLATION ALGORITHMS

To verify the effectiveness of different FL algorithms built upon the Lion optimizer in terms of the generalization
and compression performance, we design additional variants of FL incorporated with Lion, namely Fed-
LocalLion and Fed-GlobalLion. Specifically, Fed-LocalLion executes the Lion optimizer locally in parallel at
clients, with the server performing model and momentum aggregation via a weighted summation. On the other
hand, Fed-GlobalLion conducts the vanilla SGD locally, treats model aggregation as a pseudo-gradient on the
server side, and updates the global model through the Lion optimizer. See Appendix H for the detail of these
two algorithms.

Our FedSMU consistently outperforms the other variants, as illustrated in Figure 4. It is worth noting that
FedSMU also integrates additional model compression, whereas these variants require even more communication
overhead than FedAvg. This suggests that our FedSMU design effectively harnesses the benefits of Lion,
enhancing the generalization while compressing the communication load.

0 20 40 60 80 100 120 140
conmmunication bits (Mb)

0
5

10
15
20
25
30
35
40
45
50

ac
cu

ra
cy

 (%
)

Fed-LocalLion
Fed-GlobalLion
FedSMU

Figure 4: Convergence performance vs. number of communication bits on CIFAR-100 dataset and
small CNN network, with 100 clients and 10% participation rates, Dirichlet-0.25 for different ablation
algorithms and FedSMU.

G.2 COMPARISON WITH SCAFFOLD (KARIMIREDDY ET AL., 2020)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

SCAFFOLD (Karimireddy et al., 2020) aims to mitigate the client variance by designing and iteratively updating
the control variates, which refers to the variance between the uploaded client updates. And thus it shows superior
performance in most datasets.

Due to the performance gap between FedSMU and SCAFFOLD(Karimireddy et al., 2020) on CIFAR-10,
we have considered whether FedSMU can outperform SCAFFOLD at the cost of increased communication
overhead.

We conduct the experiment by increasing the number of rounds to 6000 and comparing FedSMUMC with SCAF-
FOLD on CIFAR-10 dataset, using a total of 100 clients with a partial participation ratio of 0.03 (represented in
the Table 11 by L).

The experimental results are shown in the Table 11. It can be found that on the CIFAR-10 dataset with Dir (0.6)-L,
FedSMU achieves a slightly higher accuracy compared SCAFFOLD when the number of communication rounds
reaches 6000. We also find that when FedSMUMC is used at additional overhead of storing and communicating
the momentum, it can perform better than SCAFFOLD over the same 4000 rounds.

However, it should be noted that there is a trade-off between the training time and test accuracy. A larger
number of communication rounds leads to a slight performance improvement. For example, with FedSMU on
CIFAR-10 with Dir (0.6)-L, an accuracy of 81.96% is achieved after 4000 rounds in the original manuscript,
and an improvement of 0.52% is obtained with 2000 more rounds (6000 rounds in total), which exceeds that
of SCAFFOLD. Therefore, we currently set 4000 rounds as the maximum communication round for all the
algorithms considering the training efficiency.

Table 11: Performance comparison under different settings on CIFAR-10 dataset and small CNN
network. Bold numbers indicate the best performance.

Top-1 Test Accuracy (%).

Dataset Setting Round SCAFFOLD FedSMU FedSMUMC

CIFAR-10
Dir(0.25)-L 4000 81.6 79.66 80.47

6000 81.6 80.12 81.1

Dir(0.6)-L 4000 82.36 81.96 82.67
6000 82.36 82.48 83.23

Besides, we have compared our FedSMU with SCAFFOLD on new MNIST dataset. Additionaly, we also
conducted another performance comparison scenario (Dir = 0.6) on CIFAR-100 using ResNet-18. The
experimental results in Table 12 show that FedSMU outperforms SCAFFOLD on CIFAR-100. However, for the
simpler MNIST dataset, FedSMU performs slightly worse than SCAFFOLD. This slight degradation on MNIST
is likely due to the lower degree of heterogeneity in the dataset.

In a federated heterogeneous scenario with CIFAR-100, which consists of 100 categories compared to MNIST’s
10 categories, each client typically handles a subset of 13-16 or 20-25 categories whenDir = 0.25 orDir = 0.6,
respectively. This high degree of heterogeneity in CIFAR-100 leads to greater deviations in model updates
among clients, enabling FedSMU to achieve more significant improvements compared to MNIST. To further
assess performance, we plan to explore a more complex dataset, Tiny ImageNet, for additional comparisons in
future work.

Table 12: Performance comparison under different datasets, where L and H indicate low and high
participation rates.

Top-1 Test Accuracy (%) .

Dataset (Model) Setting SCAFFOLD FedSMU

MNIST on LeNet Dir (0.6)-L 98.4 97.37
Dir (0.6)-H 98.2 97.47

CIFAR100 on Resnet18 Dir (0.6)-H 53.90 54.25

G.3 COMPARISON WITH DISTRIBUTED LION (LIU ET AL., 2024)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Here, we clarify the differences and advantages of our FedSMU compared to the D-Lion (Liu et al., 2024), as
follows.

1) Motivation. Our FedSMU can simultaneously mitigate data heterogeneity and reduce communication
compression through the symbolic operations. The analysis was carried out and verified by experiments (Figure
1). While D-Lion only consider to compress the communication.

2) Scope of application. Our FedSMU can deal with scenarios involving the partial client participation and
multiple local updates, whereas D-Lion can not. Performing multiple local updates, in the federated settings, can
effectively reduce the communication frequency and thus the overall traffic. Experimental results in Table 13
and Table 14 demonstrate that D-Lion fails in such scenarios with low client participation rates and multiple
local updates, whereas FedSMU remains robust and performs well under these conditions.

3) Algorithms design. While both algorithms are based on the Lion optimizer, FedSMU fully leverages the
structural advantages of the Lion optimizer, including weight decay in the global aggregation. In contrast,
D-Lion primarily incorporates the momentum sliding averaging and symbolic operations at local update. This
comprehensive utilization of the Lion optimizer structure may explain why the experimental performance of our
FedSMU surpasses that of D-Lion.

4) Compatibility with majority vote. We have further extended FedSMU with majority vote, as FedSMU-MV.
Experimental results show that FedSMU-MV achieves an accuracy of 47.66% on CIFAR-100, slightly lower
than FedSMU’s 51.79% under the same settings (number of clients = 100, fraction = 0.1, Dirichlet = 0.25).
This indicates that majority vote is compatible with our algorithm. The slight accuracy drop may result from
FedSMU’s symbolic model updates. Applying majority vote to the 1-bit results could further suppress some
clients’ model update information due to the dominant update direction.

Below, we provide the details of the hyperparameters used in our experiments.

• To ensure a fair comparison, both algorithms are evaluated on the ClFAR-10 dataset, using non-llD
data (Dirichlet distribution with a parameter of 0.25), with a total of 10 clients anda batch size of 50.

• For FedSMU and FedAvg, we adopt the same parameter settings as outlined in Appendix A.

• For D-Lion, we performed a grid search. The learning rate (ϵ) is selected from {0.00005, 0.0005,
0.005, 0.015} , the weight decay (λ) is chosen from {0.0005, 0.005, 0.001, 0.01} and β1 β2 are
selected from {0.9,0.99}. For Table 13, the selected values are ϵ = 0.0005, λ = 0.001, β1 = 0.9,
β2 = 0.99. For Table 14, the selected values are ϵ = 0.015, λ = 0.01, β1 = 0.9, β2 = 0.9.

Table 13: Performance comparison on CIFAR-10 dataset with small CNN network, where F and P
indicate full and partial participation rates, and K is the number of local updates.

Top-1 Test Accuracy (%) .

Setting Algorithm K = 1 with F K = 1 with P K = 5 with F K = 5 with P

Dir-0.25
FedSMU 32.47 38.35 77.97 75.14
D-Lion 34.03 24.58 77.62 34.48
FedAvg 79.64 / / /

iid
FedSMU 81.84 77.99 82.37 81.71
D-Lion 82 29.06 82.36 44.05
FedAvg 79.53 / / /

Table 14: Performance comparison on CIFAR-10 dataset with small CNN, where F and P indicate
full and partial participation rates, and K is the number of local updates.

Top-1 Test Accuracy (%) .

Setting Algorithm K = 100 (K ′ = 1 epoch) with F K = 500 (K ′ = 5 epochs) with F K = 500 (K ′ = 5 epochs) with P

Dir-0.25 FedSMU 82.24 82.0 82.08
D-Lion 82.19 81.6 51.23

Specifically, from the result in Table 13 and Table 14, we have following observations.

• With full participation and one local update (i.e., K = 1 with F), FedSMU performs slightly worse
than D-Lion. However, in scenarios with a partial participation, FedSMU consistently outperforms

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

D-Lion. This is intuitive, as D-Lion does not maintain a complete global model at the server and only
aggregates the global model updates. Thus in the partial participation settings, asynchronous clients
can only save a stale global model. As a result, these clients may receive the global model updates,
which, however, cannot be leveraged to recover the exact global model of the current round.

• With multiple local updates (i.e., K > 1), FedSMU consistently outperforms D-Lion. This perfor-
mance improvement can be attributed to the different approaches to weight decay. Specifically, the
hyperparameter γ2 (denoted as λ in D-Lion) controls the weight decay (or L2 penalty) coefficient.
In FedSMU, the regularization is applied to the global model xt, potentially mitigating overfitting
and thus enhancing generalization. In contrast, D-Lion applies this regularization to the local model
xit−1. As a result, when the local updates occur multiple times, D-Lion’s regularization primarily
affects the local model, and does not directly improve the generalization capability of the global model.
Consequently, when finally evaluating the generalization performance of the global model, FedSMU
demonstrates a significant advantage over D-Lion.

• In heterogeneous scenarios, the performance of both FedSMU and D-Lion is poorer than that of
FedAvg, especially when k is small. This is an interesting and somewhat unexpected finding, which
we speculate is due to the data heterogeneity. In the heterogeneous settings, each client samples a
mini-batch of data for training and performs only a single time of update, followed by the application
of the sign operation to the model update. Since the local update occurs only once, it introduces a
substantial sampling variance and inter-client variance. The sign operation, which normalizes the
magnitude of updates, may inadvertently amplify this variance between clients, leading to an unstable
or even divergent global model aggregation.

G.4 COMPARISON WITH EF21 (RICHTÁRIK ET AL., 2021)

We further explore Error Feedback 2021 (Richtárik et al., 2021) algorithm as a state-of-the-art method for Top-K
compression and make a comparison with it.

Experiments on CIFAR-10 and CIFAR-100 are conducted. We set a total of 100 clients with different participation
rate (0.03% and 0.1%, represented in Table 15 by L and H) and use Dirichlet-0.25. The experimental results are
shown in Table 15.

On CIFAR-100, FedSMU still shows a high performance. While on CIFAR-10, the accuracy of FedSMU can be
higher than EF21 with a lower participation. These results strongly demonstrate the superiority of FedSMU in
complex image classification tasks, especially under a low client participation rate, which may result from the
sign operation promoting the fair contribution of clients effectively to the global model update.

Table 15: Performance comparison under different datasets with small CNN network, where L and H
indicate low and high participation rates. Bold numbers indicate the best performance.

Top-1 Test Accuracy (%).

Dataset Setting FedSMU EF21

CIFAR-10 Dir(0.25)-L 79.66 74.43

Dir(0.25)-H 80.67 81.51

CIFAR-100 Dir(0.25)-H 51.79 50.07

G.5 COMPARISON WITH ADAPTIVE ALGORITHMS

We compare with two adaptive algorithms in (Wang et al., 2022): the optimization-based FedAMS and the
compression-based FedCAMS. FedAMS is designed to accelerate the convergence using momentum, while
FedCAMS extends FedAMS by further compressing the upload communication. Experiments are conducted on
CIFAR-10 and CIFAR-100 datasets. We use a total of 100 clients with a partial participation ratio of 0.1 and
employ a Dirichlet distribution with a concentration parameter of 0.25. The experimental results are presented in
the Table 16.

The experimental results demonstrate that on the CIFAR-10 dataset, FedSMU also outperforms FedCAMS
but is slightly inferior to FedAMS, while FedSMU exhibits a superior performance compared to FedAMS and
FedCAMS on the CIFAR-100 dataset. The results strongly demonstrate the superiority of FedSMU in complex
image classification tasks, even comparable to the uncompressed federated adaptive algorithm, which may result
from promoting the fair contribution of clients effectively to the global model update.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 16: Performance comparison under different datasets with 100 clients and 10% participation
rates, Dirichlet-0.25, small CNN network. Bold numbers indicate the best performance.

Top-1 Test Accuracy (%) .

Dataset FedSMU FedAMS FedCAMS

CIFAR-10 80.67 82.47 80.15
CIFAR-100 51.79 47.97 48.3

G.6 MAGNITUDE UNIFORMITY INDEX OF MORE ALGORITHMS

We provide Figure 5, Tables 17 and Table 18 showing the correlation between Magnitude Uniformity (MU),
data heterogeneity, and accuracy of three different algorithms.

The results indicate that with FedAvg, data heterogeneity significantly amplifies the differences in the magnitude
of model updates across clients, leading to unstable global aggregation and poorer generalization performance.
While SCAFFOLD reduces variance to address these differences, FedSMU directly ensures consistency across
all model updates through symbolic operations. Those two approaches enhances Magnitude Uniformity among
clients, ultimately improving accuracy.

160

180

200

M
U

0.25 0.6 0.8 iid
Data Heterogeneity (Dirichlet)

60

80

100

M
U FedAvg

FedSMU
Scaffold

(a) MU index vs. heterogeneity

0.25 0.6 0.8 iid
data heterogeneity (Dirichlet)

42
44
46
48
50
52
54
56

ac
cu

ra
cy

FedAvg
FedSMU
SCAFFOLD

(b) Accuracy vs. heterogeneity

160

180

200

M
U

1 2 3 4 5 6 7 8
Communication Round (Diricheet (0.25))

50

60

70

M
U

FedAvg
FedSMU
Scaffold

(c) MU vs. communication round
Figure 5: Magnitude uniformity (MU) index and top validation accuracy of FedAvg and FedSMU
(ours) on CIFAR-100 with small CNN network.

Table 17: Accuracy (%) vs. data heterogeneity on CIFAR-100 with small CNN network, involving
100 clients with a participation rate of 10%.

Algorithm Dirichlet-0.25 Dirichlet-0.6 Dirichlet-0.8 iid
FedSMU 51.79 53.49 54.21 55.92

FedAvg 41.44 43.44 44.21 48.05

SCAFFOLD 50.49 50.02 53.89 54.78

Table 18: MU vs. data heterogeneity on CIFAR-100 with small CNN network, involving 100 clients
with a participation rate of 10%.

Algorithm Dirichlet-0.25 Dirichlet-0.6 Dirichlet-0.8 iid

FedSMU 192.00 192.00 192.00 192.00

FedAvg 46.98 48.00 48.32 55.46

SCAFFOLD 84.25 87.41 90.15 90.86

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

H OTHER ALGORITHMS

Algorithm 2: FedAvg
1 Input: x0, η

t
L

2 for each round t = 1, 2, . . . , T do
3 sample clients Pt ⊆ M
4 for each client i ∈ Pt in parallel do
5 receive and initialize local model xt

i,0 = xt−1

6 for each local step k = 1, 2, . . . ,K do
7 xi

t,k = xi
t,k−1 − ηtL(∇Fi(x

i
t,k−1, ξ

i
t,k−1))

8 end
9 ∆xi

t = xi
t,K − xi

t,0 and send ∆xi
t to server

10 end
11 for each client i /∈ Pt in parallel do
12 ∆xi

t = ∆xi
t−1, xi

t = xi
t−1

13 end
14 // at server:
15 xt = xt−1 +

1
p

∑
i∈Pt

∆xi
t =

1
p

∑
i∈Pt

xi
t

16 x̃t =
1
m

∑
i∈M xi

t

17 end

FedEF is shown in Algorithm 3. At each round t ∈ [T], a subset of clients Nt ⊆ M are active, and the server
transmits its current model xt to these clients. Each active client then performs local SGD (Line 8), sends the
compressed model difference ∆i

t back to the server (Lien 11) and updates the local error accumulator eit (Line
12). In Line 15, C denotes a compressor (e.g., TopK and Sign are two choices of compressors that correspond
to FedEF-TopK and FedEF-Sign, respectively. The server aggregates the compressed model difference ∆i

t to
update xt+1 (Line 15).

Algorithm 3: FedEF-SGD
1 Server Initialization: x0;
2 Client Initialization: ei0 = 0;
3 for each round t = 1, 2, ...T do
4 sample clients Nt ⊆ M
5 for each client i ∈ Nt in parallel do
6 receive and initialize local model yit,0 = xt

7 for each local step k = 1, 2, . . . ,K do
8 yit,k = yit,k−1 − η∇Fi(y

i
t,k−1, ξ

i
t,k−1)

9 end
10 git = yit,K − yit,0
11 send ∆i

t = C(git + eit) to server
12 eit = eit + git −∆i

t

13 end
14 // at server:
15 xt+1 = xt + ηg(

1
n

∑n
i=1 ∆

i
t)

16 broadcast xt+1

17 end

FedLion is shown in Algorithm 4. At each round t ∈ [T], a subset of clients Nt ⊆ M are active, and the server
transmits its current model and momentum, xt,Mt to these clients. Each active client then performs local SGD
to calculate the gratitude git,k (Line 8) and uses the Lion optimizer to update local model. Inter-valued model
difference 1

γ1
∆i

t is sent to the server alone with the local momentum (Lines 13 and 14).

GlobalLion, as a variant evaluated in the ablation study of our FedSMU, is shown in Algorithm 5. At each round
t ∈ [T], a subset of clients Nt ⊆ M are active, and the server transmits its current model xt to these clients.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Algorithm 4: FedLion
1 Server Initialization: x0,M1 = 0;
2 for each round t = 1, 2, ...T do
3 sample clients Nt ⊆ M
4 for each client i ∈ Nt in parallel do
5 receive and initialize local model and momentum yit,0 = xt,m

i
t,0 = Mt

6 for each local step k = 1, 2, . . . ,K do
7 git,k = ∇Fi(y

i
t,k−1, ξ

i
t,k−1)

8 ut,k = sign(β1m
i
t,k−1 + (1− β1)g

i
t,k)

9 mi
t,k = β2m

i
t,k−1 + (1− β2)g

i
t,k

10 yit,k = yit,k−1 − γ1u
i
t,k

11 end

12 ∆i
t =

yi
t,K−yi

t,0

γ1

13 send ∆i
t,m

i
t,K to server

14 end
15 // at server:
16 Mt+1 = 1

n

∑n
i=1 m

i
t

17 xt+1 = xt + γ1(
1
n

∑n
i=1 ∆

i
t)

18 broadcast xt+1 and Mt+1

19 end

Each active client then updates the local model (Line 8) and sends the model difference git to server. The server
aggregates the git as the global model difference Gt (Line 14) and uses the Lion optimizer to update.

Algorithm 5: Fed-GlobalLion
1 Server Initialization: x0,M0 = 0;
2 for each round t = 1, 2, ...T do
3 sample clients Nt ⊆ M
4 for each client i ∈ Nt in parallel do
5 receive and initialize local model yit,0 = xt

6 for each local step k = 1, 2, . . . ,K do
7 yit,k = yit,k−1 − η∇Fi(y

i
t,k−1, ξ

i
t,k−1)

8 end
9 git = yit,K − yit,0

10 send git to server
11 end
12 // at server:
13 Gt =

1
n

∑n
i=1 g

i
t

14 Ut = sign(β1Mt−1 + (1− β1)Gt)
15 Mt = β2Mt−1 + (1− β2)Gt

16 xt+1 = xt + γ1(Ut − γ2xt)
17 broadcast xt+1

18 end

LocalLion, as a variant evaluated in the ablation study of our FedSMU, is shown in Algorithm 6. At each round
t ∈ [T], a subset of clients Nt ⊆ M are active, and the server transmits its current model xt to these clients.
Each active client then performs SGD (Line 8) and uses the Lion optimizer to further update model. The server
aggregates the local model difference ∆i

t to compute xt+1.

FedSMUM, as a variant evaluated in the ablation study of our FedSMU, is shown in Algorithm 7. At each round
t ∈ [T], the server transmits its current model, xt to all clients. A subset of clients Nt ⊆ M are active, and they
perform as FedSMU. Stale clients do not update their models, but calculate the model difference to approximate
gjt (Line 17) and update momentum mj

t (Line 18) without transmission.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Algorithm 6: Fed-LocalLion
1 Server Initialization: x0;
2 Client Initialization: mi

0 = 0;
3 for each round t = 1, 2, ...T do
4 sample clients Nt ⊆ M
5 for each client i ∈ Nt in parallel do
6 receive and initialize local model yit,0 = xt

7 for each local step k = 1, 2, . . . ,K do
8 yit,k = yit,k−1 − η∇Fi(y

i
t,k−1, ξ

i
t,k−1)

9 end
10 git = yit,K − yit,0
11 ui

t = sign(β1m
i
t−1 + (1− β1)g

i
t)

12 mi
t = β2m

i
t−1 + (1− β2)g

i
t (for i /∈ Nt, mi

t = mi
t−1)

13 yit = yit,K + γ1(u
i
t − γ2y

i
t,K)

14 ∆i
t = yit − yit,0

15 send ∆i
t to server

16 end
17 // at server:
18 xt+1 = xt + ηg(

1
n

∑n
i=1 ∆

i
t)

19 broadcast xt+1

20 end

Algorithm 7: FedSMUM
1 Server Initialization: x0;
2 Client Initialization: mi

0 = 0;
3 for each round t = 1, 2, ...T do
4 sample clients Nt ⊆ M
5 for each client i ∈ Nt in parallel do
6 receive and initialize local model yit,0 = xt

7 for each local step k = 1, 2, . . . ,K do
8 yit,k = yit,k−1 − η∇Fi(y

i
t,k−1, ξ

i
t,k−1)

9 end
10 git = yit,K − yit,0
11 ui

t = sign(β1m
i
t−1 + (1− β1)g

i
t)

12 mi
t = β2m

i
t−1 + (1− β2)g

i
t

13 send ui
t to server

14 end
15 for each client j /∈ Nt in parallel do
16 receive and initialize local model yjt,K = xt

17 gjt = yjt,K − (1− γ1γ2)y
j
t−1,K

18 mj
t = β2m

j
t−1 + (1− β2)γ1g

j
t

19 end
20 // at server:
21 xt+1 = xt + γ1(

1
n

∑n
i=1 u

i
t − γ2xt)

22 broadcast xt+1

23 end

FedSMUMC, as a variant evaluated in the ablation study of our FedSMU, is shown in Algorithm 8. The basic
procedure is equivalent to FedSMU. At each round t ∈ [T], a subset of clients Nt ⊆ M are active, and the
server transmits its current model xt and global momentum Mt to these clients. Local clients also additionally
transfer mi

t back to the server (Line 13) and average them to update the momentum for the next round (Line 16).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Algorithm 8: FedSMUMC
1 Server Initialization: x0,M0;
2 Client Initialization: mi

0 = 0;
3 for each round t = 1, 2, ...T do
4 sample clients Nt ⊆ M
5 for each client i ∈ Nt in parallel do
6 receive and initialize local model yit,0 = xt

7 for each local step k = 1, 2, . . . ,K do
8 yit,k = yit,k−1 − η∇Fi(y

i
t,k−1, ξ

i
t,k−1)

9 end
10 git = yit,K − yit,0
11 ui

t = sign(β1Mt + (1− β1)g
i
t)

12 mi
t = β2Mt + (1− β2)g

i
t

13 send ui
t,m

i
t to server

14 end
15 // at server:
16 Mt+1 = 1

n

∑n
i=1 m

i
t

17 xt+1 = xt + γ1(
1
n

∑n
i=1 u

i
t − γ2xt)

18 broadcast xt+1,Mt+1

19 end

Algorithm 9: Lion algorithm.
1 Initialization: x0,m0;
2 for each round t = 1, 2, ...T do
3 gt = ∇f(xt, ξt)
4 vt = β1mt + (1− β1)gt
5 mt = β2mt + (1− β2)gt
6 xt+1 = xt + γ1(sign(vt)− γ2xt)
7 end

32

	Introduction
	Related Works
	Proposed Method
	Notations and Preliminaries
	Symbolizing Client Updates
	Proposed FedSMU

	Theoretical Results on Convergence
	Experiments
	Experimental Setup
	Experimental Results
	Performance Evaluation
	Generalization vs. Participation Rate
	Generalization vs. Data Heterogeneity
	Measure Of Generalization
	Ablation Studies
	Limitation

	Conclusion
	Detailed Experiment Setup
	Further Explanation Of Algorithm 1
	Discussion On Momentum
	Discussion on sign operation
	Discussion On The -bit
	Discussion On Server-to-client Compression

	Further Explanation Of Assumption 4.1 to Assumption 4.3
	A PROOF OF THEOREM 4.4
	Further Exploration Of Theorem 4.4
	Discussion On The L1 Form
	Comparison with FedLion ref23
	Determinants Of The Convergence Bound
	Factors influencing convergence speed

	Further exploration of convergence speed
	Convergence Performance vs. Communication Rounds
	Convergence Performance vs. wall-clock

	Comparison With More Algorithms
	Comparison with Other ablation algorithms
	Comparison with SCAFFOLD ref26
	Comparison with Distributed Lion ref61
	Comparison with EF21 ref58
	Comparison With Adaptive Algorithms
	Magnitude Uniformity Index Of More Algorithms

	OTHER ALGORITHMS

