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ABSTRACT

A general method for designing proteins with high conformational specificity is
desirable for a variety of applications, including enzyme design and drug target re-
design. To assess the ability of algorithms to design for conformational specificity,
we introduce MotifDiv, a benchmark dataset of 200 conformational specificity de-
sign challenges. We also introduce CSDesign, an algorithm for designing proteins
with high preference for a target conformation over an alternate conformation. On
the MotifDiv benchmark, CSDesign designs protein sequences that are predicted
to prefer the target conformation. We apply this method in vitro to redesign hu-
man MAP kinase ERK2, an enzyme with active and inactive conformations. Out
of two designs for the active conformation, one increased activity sufficiently to
retain activity in the absence of activating phosphorylations, a property not present
in the wild type protein.

1 INTRODUCTION

1.1 INVERSE FOLDING

Inverse folding (protein sequence design for a given structure) has advanced rapidly with both
physics-based and deep learning methods. Traditional approaches like Rosetta fix a backbone and
search for low-energy sequences using rotamer packing algorithms (Alford et al., 2017). More
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recently, deep learning methods have achieved remarkable performance in inverse folding. Pro-
teinMPNN is a graph-neural-network model that generates sequences conditioned on the 3D coor-
dinates of a protein backbone. It significantly outperforms Rosetta in sequence recovery (52% vs
33% on native structures) and designs sequences that fold experimentally. Another approach uses
AlphaFold2’s structure prediction network for design. By inverting AlphaFold – e.g. via gradient
descent or MCMC on input sequences – researchers can optimize sequences to fold into a target
structure (Goverde et al., 2023).

1.2 CONFORMATIONAL SPECIFICITY AS A DESIGN OBJECTIVE

Designing a protein not just to fold stably, but to prefer one specific conformation or functional state
over alternatives, is a key goal in many applications:

Enzyme design and constitutive activity: Many enzymes have active and inactive conformations
(e.g., due to regulatory domains or flexible loops). Designing a constitutively active enzyme often
means stabilizing the active state so it no longer requires its natural trigger. For instance, Dowling
et al. (2023) computationally designed mutants of cyclic GMP-AMP synthase (cGAS) that adopt
the active conformation without DNA binding. Using a two-state design strategy, they biased the
sequence energy landscape toward the active state and away from the inactive form. This illustrates
how multi-state design can stabilize one conformation (active) at the expense of another (inactive)
to achieve continuous activity.

Drug targeting and allosteric states: Many drug targets (ion channels, kinases, GPCRs) undergo
conformational changes between “open” and “closed” or active/inactive states. Protein variants that
maintain one conformation with high specificity make it possible to screen and identify drug hits
against a specific conformation, making it possible to tactically target specific protein functions.

Conformational specificity as an ML design objective: Conformational specificity is increasingly
a consideration in machine learning-based protein design. This commonly takes the form of post-hoc
filtering generated sequences. For example, a design framework might use AlphaFold2 as a referee:
for a candidate sequence design, if AlphaFold confidently predicts the target structure and not alter-
native folds, the sequence is kept. This approach was successful for ProteinMPNN; sequences that
did so were far more likely to fold experimentally Goverde et al. (2024). Another ML approach,
which we investigate here, is direct generative modeling of sequences specific to one conformation
over another.

1.3 THIS WORK

The contributions of this work are as follows:

• We introduce MotifDiv, a dataset of 200 conformational specificity design challenges
within the Protein Data Bank (PDB).

• We introduce CSDesign, an inference-time adaptation of ProteinMPNN for designing pro-
teins with conformational specificity.

• We show that CSDesign successfully designs proteins to prefer target conformations on the
MotifDiv dataset.

• We use CSDesign to redesign human ERK2 kinase to prefer its active conformation, and
successfully convert the natively-inactive wild type into a constitutively active enzyme.

2 METHODS

2.1 BOLTZMANN CONFORMATIONAL SPECIFICITY OBJECTIVE

We adopt the Boltzmann-motivated probabilistic definition of conformational specificity introduced
by (Stern et al., 2023), which quantifies the preference of a sequence for a target conformation
relative to an alternate folded state:
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Figure 1: CSDesign is an inference-time sequence decoding algorithm for designing protein se-
quences with strong conformational preference. Given two reference structures, the model uses the
ratio of sequence probabilities to design sequences that prefer one conformation or the other.

pconf =
p(structure = x|seq = s)

p(structure = y|seq = s)

When optimizing this objective, applying Bayes’ Theorem simplifies the objective to a tractable
probability ratio for an inverse folding model (see section A.1.1):

argmax
s∈S

pconf =
p(structure = x|seq = s)

p(structure = y|seq = s)
= argmax

s∈S

p(seq = s|structure = X)

p(seq = s|structure = Y )

We employ ProteinMPNN Dauparas et al. (2022) as a model for p(seq = s|structure = X), using a
decoding algorithm detailed in section A.1.2.

We study the effect of inverse folding with a conformational specificity objective 1) in silico on the
MotifDiv benchmark and 2) in vitro for a human Extracellular Signal-Regulated Kinase 2 (ERK2),
which changes conformation upon phosphate binding.

2.2 EVALUATION OF DESIGNS in silico

To evaluate the ability of the model to design proteins with high conformational specificity, we
filtered the PDB to create a subset of design challenges. The MotifDiv dataset is a selection of PDB
pairs with high structural homology except for significant divergence within a 10-residue motif. The
creation of the MotifDiv dataset is detailed in section A.2. The result is 200 single-chain domain
pairs (400 total domains).

In in silico studies, we redesign the sequence of each instance within each pair for a total of 400
designs per tested model. We then use ESMFold (Lin et al., 2023) to predict the structure of each
designed sequence and compute the scaffold-aligned motif RMSD between the predicted and the
target structure, as well as between the predicted and the alternate structure. The results are shown
in Table 1 and Figure 3.

2.3 EVALUATION OF DESIGNS in vitro

MAP kinases require a dual phosphorylation on a tyrosine and serine/threonine in their 'activation
loop'. This phosphorylation is carried out by an upstream kinase (MAP kinase kinase; MAPKK).
The attached phosphate groups engage intramolecular interactions with the core of the kinase, re-
sulting in a specific stable structuring of the activation loop and overall active kinase conformation.
The activation loop then can serve as a basis for substrates.
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Figure 2: Selected examples from the MotifDiv dataset. Matches were selected such that they
contained high structural homology in the scaffold region (brown and blue), but conformational
divergence within a small motif region (green and red).

Statistic Effect
Size (Å)

t-
statistic

p-
value

RMSDdiff csd 2.01 6.42 3.8e-10

RMSDdiff mpnn 1.77 5.10 1.0e-07

RMSDdiff comp 0.245 1.35 0.17

RMSDsum comp 0.503 1.48 0.14

Table 1: The first two metrics assess the ability
of the models to design with a preference for the
target conformation. The second two metrics
assess the ability of one model to outperform
the other. Experiments are described in detail
in section 3.1. Figure 3: Figure showing the MotifDiv pair

with lowest summed-motif RMSD for CSDe-
sign. Dark green represents one target motif,
dark red represents the other target motif. Light
green and light red represent the predicted struc-
tures of the sequences designed to prefer these
motifs, respectively.

We design 4 variants of human MAP kinase ERK2: 2 variants preferring the active conformation
(PDB 2ERK) (Canagarajah et al., 1997) and 2 variants preferring the inactive conformation (PDB
4GSB). Residues 169-186 exhibit greatest structural variation between the two conformations, so
we redesign residues in this region. For each conformation we use two strategies - 1) redesigning
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only residues in a linear region consisting of residues 169-186, and 2) redesigning all residues which
fall within an 8Å spatial radius of these residues.

Protein designs are commercially synthesized, recombinantly expressed in E. coli, and purified using
standard procedures (see A.3.2). Catalytic activity of the purified proteins is assessed in vitro using
the ADP-Glo kinase assay.

3 RESULTS

3.1 In silico EVALUATION ON THE MOTIFDIV DATASET

We found that both CSDesign and ProteinMPNN preferred their target conformations with statis-
tical significance (see Figure 1). We performed a one-sample t-test on the statistic RMSDdiff =

RMSD(pred, pro)−RMSD(pred, alt). CSDesign averaged 2.30 Å, with a p-value of 1.99e-11,
showing preference for the target conformation across the dataset. Similarly, ProteinMPNN aver-
aged 1.77 Å with a p-value of 1.0e-7, likewise succeeding in designing to the target conformation.

Next, we compared CSDesign to ProteinMPNN with a one-sample t-test on the statistic
RMSDdiff comp = RMSDdiff mpnn − RMSDdiff csd to evaluate whether the improvement
in specificity of CSDesign over ProteinMPNN was statistically significant, and found that it was
not.

Finally, we compared CSDesign to ProteinMPNN on paired conformers. We performed a one-
sample t-test on the statistic RMSDsum comp = RMSDsummed mpnn − RMSDsummed csd

where RMSDsummed = RMSD(predconf1 , conf1) + RMSD(predconf2 , conf2) and
(predconf1 , predconf2) are separate predictions for each conformer in a pair (conf1, conf2). In
this comparison, we again found no statistically meaningful improvement of CSDesign over Pro-
teinMPNN.

3.2 In vitro EVALUATION ON ERK2 REDESIGN

Proteins CSD101 and CSD102 were designed to prefer the inactive conformation, corresponding to
PDB 4GSB. CSD101 did not demonstrate measurable activity above a baseline in the ADP-GLO
assay, and CSD102 was not expressed successfully. The wild type variant also had no measurable
activity over the control, as expected.

Proteins CSD103 and CSD104 were designed to prefer the active conformation corresponding to
PDB 2ERK. CSD103 did not demonstrate detectable activity; however, CSD104 illuminated, even
in the absence of ERK2 phosphorylation (see Table 2). This signals success in designing an ERK2
variant that prefers the active conformation.

In silico metrics also indicated that CSD101 and CSD102 adhered more to the inactive conformation
and CSD103 and CSD104 adhered more closely to the active conformation, as shown in table S3
and figure S7.

Table 2: in vitro screening of design variants in the ADP-GLO assay identifies a constitutively active
ERK2 variant

Sequence
ID

CSDesign
preferred
conformation

Edit distance
to WT100 Expression

ADP-Glo %
Activity w/o
PO3

Control - - - 1.65 ±0.33
WT100 - 0 Yes 1.48 ±0.24
CSD101 Inactive 20 Yes 2.23 ±0.03
CSD102 Inactive 55 No -
CSD103 Active 12 Yes 2.92 ±0.34
CSD104 Active 23 Yes 46.22 ±9.03
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4 CONCLUSION

This work introduces the first benchmarking dataset for conformation-oriented protein design, in-
troduces a new algorithm for conformation-specific sequence design, and pioneers its use in engi-
neering a constitutively active kinase.

In this work, we redesign the sequence of the same region in which we want to modulate the con-
formation. A promising frontier is ”allosteric design”, in which the design region differs from the
target conformation region. This could make it possible to alter the conformation of the target re-
gion without sacrificing the functional properties of its amino acid sequence. Allosterically related
residues could be selected by a method like Kannan et al. (2024), which demonstrated an unsuper-
vised method of identifying allosteric relationships from attention maps.

We also note that the MotifDiv dataset is not limited to assessing conformation-specific design. It
could also be used to assess performance for a complementary problem, multi-state protein design
Sauer et al. (2020).

This work lays the groundwork for future progress in conformation-specific protein design, with
applications in drug discovery and enzyme engineering.

DATA AND CODE AVAILABILITY

Code for the CSDesign algorithm is available at https://github.com/dellacortelab/
cs_design. The MotifDiv dataset is available at https://github.com/
dellacortelab/motif_div. Experimental data is available from the corresponding
author upon request.
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A APPENDIX

A.1 CSDESIGN METHODS

A.1.1 OBJECTIVE DERIVATION

Stern et al. (2023) introduces a Boltzmann-motivated definition of conformational specificity of a
protein sequence s:

pconf =
p(structure = X|seq = s)

p(structure = C|seq = s)

=
e−G(X)/kT∑

C∈C e
−G(C)/kT

Where X is the macrostate corresponding to the folded conformation of interest and C is the
macrostate subsuming all alternate folded conformations. If there is one known alternate confor-
mation Y which dominates the denominator, then this definition simplifies to:

=
e−G(X)/kT

e−G(Y )/kT

=
p(structure = X|seq = s)

p(structure = Y |seq = s)

By applying Bayes’ rule to this objective and maximizing over sequence, the objective reduces to a
probability ratio that is tractable for an unmodified inverse folding model:

pconf =
p(structure = X|seq = s)

p(structure = Y |seq = s)

=
p(seq = s|structure = X)p(structure = X)

p(seq = s|structure = Y )p(structure = Y )

argmax
s∈S

pconf = argmax
s∈S

p(seq = s|structure = X)p(structure = X)

p(seq = s|structure = Y )p(structure = Y )

= argmax
s∈S

p(seq = s|structure = X)

p(seq = s|structure = Y )

This objective is similar to Stern et al. (2023)1, but requires only one model, an inverse folding
model of the form p(seq|structure = X) 2. We use ProteinMPNN (Dauparas et al., 2022), and the
decoding algorithm is described in SI section A.2.1. We also observe that this algorithm has the
same limitation described in Stern et al. (2023) - namely, that it relies on the argmax operator and
thus requires some form of a greedy decoding scheme, making it unsuitable for sampling schemes
commonly used in autoregressive models.

This derivation can similarly be applied to the motif/scaffold case, as is used in this paper:

argmax
s′∈S

p(T ′
a|sa, Ta, s

′)

p(T ′
b|sb, Tb, s′)

= argmax
s′∈S

p(s′|sa, Ta, T
′
a)p(T

′
a|sa, Ta)

p(s′|sb, Tb, T ′
b)p(T

′
b|sb, Tb)

= argmax
s′∈S

p(s′|sa, Ta, T
′
a)

p(s′|sb, Tb, T ′
b)

where subscripts a and b refer to conformations a and b, T ′
x refers to the motif structure, s′ refers to

the designed motif sequence, and Tx and sx refer to the fixed scaffold structure and sequence.

1This can be seen as a special case of the objective given in Stern et al. (2023), argmax
s∈S

p(seq=s|structure=X)
p(seq=s)

in which p(seq = s) can be factorized as
∑

Y ∈Y p(seq = s|structure = Y )p(structure = Y ). If p(structure =
Z) = 1, this integral collapses to a single term.

2This circumvents a limitation of Stern et al. (2023), removing the need for a p(seq) model which matches
the marginal distribution corresponding to p(seq|structure).
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A.1.2 DECODING

We can factorize the joint probability of a sequence as the product of conditional probabilities using
the chain rule of probability. This reduces to a ratio of probabilities for each position in the sequence,
where at each position the probability ratio gives a score for each amino acid, written as follows:

argmax
s∈S

p(seq|structurea)
p(seq|structureb)

= argmax
(st1 ,...,stn )∈S

∏n
j=1 p(sti |st0:ti−1

, structurea)∏n
j=1 p(sti |st0:ti−1

, structureb)

= argmax
(st1 ,...,stn )∈S

n∏
j=1

p(sti |st0:ti−1 , structurea)
p(sti |st0:ti−1 , structureb)

where {ti} is a decoding order and is a choice of the user. We can also hold any position in the
sequence fixed, where si is assigned, p(si) passes out of the argmax operator, and the subsequent
tokens are conditioned on si

A.2 MOTIFDIV DATASET METHODS

The dataset was generated by filtering domains from the PDB. The general objective was to identify
pairs of structures with high structural homology in a ”scaffold” region and high structural diversity
in a 10-residue ”motif” region. We used the CATH protein domain classification clusters Sillitoe
et al. (2021) to narrow our search for matches within similar clusters.

Selection process 1:

• For each domain, we randomly selected 20 other domains from its CATH cluster.

• For each comparison domain, we retained it if it had over 90% full-sequence identity and
100% identity within at least one 10-residue region.

• We then stored the 10-residue, 100% sequence identity region with highest motif-aligned
motif RMSD.

• We discarded all matches for that domain except the match with the highest motif RMSD.

We further filtered this selection to remove matches where:

• The total length was >650 residues.

• The motif of protein A sterically clashed with the scaffold of protein B or vice versa (under
a scaffold alignment).

• The motif region was within 15 sequence positions of the N- or C-terminus.

• The motif region was within 10 sequence positions of a missing (disordered) residue.

• There were fewer than 20 scaffold residues.

• The domains were from the same protein.

We then de-duplicated on PDB id such that no PDB id occurs more than once in the dataset.

Finally, we sorted on motif RMSD and selected the 200 pairs with largest motif RMSD.

A.3 ERK2 STUDY

A.3.1 METHODS EXTENDED

Protein cloning, expression and purification: All four constructs were cloned by TWIST bio-
science Ltd. in a pJEx411c vector with kanamycin antibiotic resistance. These plasmids were then
transformed into E. coli BL21(DE3) competent cells and grown at 37◦C in LB medium containing
50 µg/ml kanamycin until the cell density reached an absorbance at 600 nm of 0.6 to 0.8, protein ex-
pression was induced with 0.25 mM IPTG for 16 h at 18◦C. Cells were then harvested, centrifuged,
and the cell pellet was resuspended in lysis buffer (50 mM Tris HCl pH 8.0, 500 mM NaCl, 10

10
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mM imidazole, 2 mM Bme), 0.1% triton, a tablet of protease inhibitor, and benzonase. Cell sus-
pensions were lysed using a sonicator on icy water bath and then centrifuged at 89,000 g for 30
mins to remove cell debris. The protein was purified from supernatant using a 5 ml HisTrap column
(GE Healthcare). The proteins were eluted using 500 mM imidazole. Then all the proteins were
passed through size exclusion chromatography column, Superdex 200 Increase 10/300 (GE Health-
care), equilibrated with the buffer containing 20 mM HEPES, pH 7.5, 200 mM NaCl, and 2 mM
DTT. Proteins were concentrated using ultrafiltration membrane (Merck Millipore) with 30 kD MW
cut-off for experiments and stored at −80◦C.

A.3.2 ACTIVITY ASSAY

To measure the kinase activity of these computationally generated ERK sequences, we first set up
a kinase reaction with commercial Myline Basic Protein (MBP), a known substrate for ERK1/2
(Seger, 2010). The kinase reaction was performed in kinase buffer (200 mM Tris-HCl pH 8, 100
mM MgCl2, 250 µM DTT, 0.5 mg/ml BSA) 10 µM ATP, 2 µM MBP, and 500 nM of the ERK. We
Set the reaction without ERK considered as blank. We also used wild type ERK protein (inactive)
purified in our lab as control. The reaction was performed at room temperature for 2 hours.

After the incubation we performed the ADP-Glo Kinase Assay to measure the ADP formed from
the kinase reaction (Zegzouti et al., 2009). ADP-Glo is a bioluminescent assay, where it depends on
luminescence generation upon ADP conversion to ATP correlating how much light produced to the
kinase activity of the protein, as shown in figures S4a, S4b, and S4c. The luminescence of kinase
reactions were measured on an infinite M1000Pro plate reader (TECAN). All the reactions were
performed in triplicates.

A.4 ADDITIONAL ERK2 RESULTS

2ERK 4GSB
2ERK 0 7.102
4GSB 7.102 0
WT AF3 1.787 7.392
CSD101 AF3 9.593 8.151
CSD102 AF3 14.196 11.092
CSD103 AF3 2.046 7.549
CSD104 AF3 3.115 6.831
MPNN101 AF3 6.330 8.155
MPNN102 AF3 6.067 7.535
MPNN103 AF3 3.535 8.297
MPNN104 AF3 3.746 8.506

Table 3: RMSD of the design region (residues 169-188) between designs and the reference struc-
tures. Reference structure 4GSB is the target conformation for CSD101, CSD102, MPNN101, and
MPNN102 and 2ERK is the target conformation for CSD103, CSD104, MPNN103, and MPNN104.
CSD101 and CSD102 show preference for 4GSB over 2ERK, and CSD103 and CSD104 show pref-
erence for 2ERK over 4GSB. All ProteinMPNN sequences show preference for 2ERK over 4GSB.

A.5 MOTIFDIV EXTENDED RESULTS
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(a) In normal ERK2-catalyzed phosphorylation, the reaction requires activation of ERK2 by an upstream kinase,
MEK1.
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(b) With a constitutively active variant of ERK2, the open conformation is already achieved and catalysis can
occur without activation by upstream MEK1.
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(c) The ADP-GLO assay measures ERK2 activity. Luminescence is only detected if successful phosphorylation
occurs.
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Figure 5: SDS-PAGE representing the fractions collected from the SEC experiments (A) CSD101,
(B) CSD103, and (C) CSD104.

(a)

Figure 6: ADP-Glo kinase assay linearity and implementation of the assay for computationally
designed ERK constructs. left: ADP to ATP standard conversion curve for 10 µM ATP kinase
reaction, right: ADP-Glo kinase assay for different ERK constructs showing percentage to ATP
consumed in the each reaction. All the reactions were performed in triplicates. CSD104 exhibited
significant luminescent activity even in the absence of upstream phosphorylation.
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Table 4: Sequences of proteins included in the ERK2 in vitro assay

Sequence
ID

Sequence

WT100 AGPEMVRGQVFDVGPRYTNLSYIGEGAYGMVCSAYDNLNKVRVAIKKISPFEHQTYCQRTL
REIKILLRFRHENIIGINDIIRAPTIEQMKDVYIVQDLMETDLYKLLKTQHLSNDHICYFL
YQILRGLKYIHSANVLHRDLKPSNLLLNTTCDLKICDFGLARVADPDHDHTGFLTEYVATR
WYRAPEIMLNSKGYTKSIDIWSVGCILAEMLSNRPIFPGKHYLDQLNHILGILGSPSQEDL
NCIINLKARNYLLSLPHKNKVPWNRLFPNADSKALDLLDKMLTFNPHKRIEVEQALAHPYL
EQYYDPSDEPIAEAPFKFDMELDDLPKEKLKELIFEETARFQPGYRS

CSD101 AGPEMVRGQVFDVGPRYTNLSYIGEGAYGMVCSAYDNLNKVRVAIKKISPFEHQTYCQRTL
REIKILLRFRHENIIGINDIIRAPTIEQMKDVYIVQDLMETDLYKLLKTQHLSNDHICYFL
YQILRGLKYIHSANVLHRDLKPSNLLLNTTCDLKICDFGLTDDGLARTMNPENDEVPYATR
WYRAPEIMLNSKGYTKSIDIWSVGCILAEMLSNRPIFPGKHYLDQLNHILGILGSPSQEDL
NCIINLKARNYLLSLPHKNKVPWNRLFPNADSKALDLLDKMLTFNPHKRIEVEQALAHPYL
EQYYDPSDEPIAEAPFKFDMELDDLPKEKLKELIFEETARFQPGY

CSD102 AGPEMVRGQVFDVGPRYTNLSYIGEGAYGMVCSAYDNLNKVRVAIKKISPFEHQTYCQRTL
EGLKRELRYLHENIIGIEVIIRAPTIEQMKDVYIVQDLMETDLYKLLKTQHLSNDHICYFL
YQILRGLKYIHSANVLHNIVHRDNLLLNILCDLKICDFKITDWGLAVTLDPKNDKVPYNHR
WYGAPEIMLNSKLCYSKGLKASVGCILAEMLSNRPIFPGKHYLDQLNHILGILGSPSQEDL
NCIINLKARNYPCSLPHKNKVPWNRLFPNADSKALDLLDKMLTFNPHKRIEVEQALAHPYL
EQYYDPSDEPIAEAPFKFDMIKYEEPKEKLKELIFEETARFQPGY

CSD103 AGPEMVRGQVFDVGPRYTNLSYIGEGAYGMVCSAYDNLNKVRVAIKKISPFEHQTYCQRTL
REIKILLRFRHENIIGINDIIRAPTIEQMKDVYIVQDLMETDLYKLLKTQHLSNDHICYFL
YQILRGLKYIHSANVLHRDLKPSNLLLNTTCDLKICDFGLAIVLDPSEDWSGKLCFWGATR
WYRAPEIMLNSKGYTKSIDIWSVGCILAEMLSNRPIFPGKHYLDQLNHILGILGSPSQEDL
NCIINLKARNYLLSLPHKNKVPWNRLFPNADSKALDLLDKMLTFNPHKRIEVEQALAHPYL
EQYYDPSDEPIAEAPFKFDMELDDLPKEKLKELIFEETARFQPGYRS

CSD104 AGPEMVRGQVFDVGPRYTNLSYIGEGAYGMVCSAYDNLNKVRVAIKKISPFEHQTYCQQTL
LEIKILLRFRHENIIGINDIIRAPTIEQMKDVYIVQDLMETDLYKLLKTQHLSNDHICYFL
YQILRGLKYIHSANVVHADLKPSNLLLNTTCDLKICDFGAAFVVDPSLDWCGKLTEYGAIR
WYRAPEIMVNSKPKCYSIDIWSVGCILAEMLSNRPIFPGKHYLDQLNHILGILGSPSQEDL
NCIINLKARNYLLSLPHKNKVPWNRLFPNADSKALDLLDKMLTFNPHKRIEVEQALAHPYL
EQYYDPSDEPIAEAPFKFGAEDTDLPKEKLKELIFEETARFQPGYRS
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Figure 7: CSD103 (motif shown in blue) showed preference for the active conformation (green) of
ERK2 over the inactive conformation (red).
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Model Motif sequence
WT NVAYTTGKLS
CSDesign (conf1) GENIELVGEL
CSDesign (conf2) HPWETCGEIG
ProteinMPNN (conf1) DVDITTEGEP
ProteinMPNN (conf2) HPYETTDAIP

(a) Case where CSDesign most outperforms Protein-
MPNN. Motif conformer 1 (from PDB: 4C8R-F) is
shown in dark green. Motif conformer 2 (from PDB:
4BGK-A) is shown in dark red. CSDesign designs
for conformer 1 and conformer 2 are shown in blue
and light blue, respectively. ProteinMPNN designs
for conformer 1 and for conformer 2 are shown in
yellow and light yellow, respectively.

Model Motif sequence
WT CVGESWPQDQ
CSDesign (conf1) IFTPCERNAN
CSDesign (conf2) WICEPWPLNR
ProteinMPNN (conf1) FLGPEDPTAN
ProteinMPNN (conf2) WIGEPWPLGR

(b) Case where ProteinMPNN most outperforms CS-
Design. Motif conformer 1 (from PDB: 3A77-C) is
shown in dark green. Motif conformer 2 (from PDB:
5JEJ-A) is shown in dark red. CSDesign designs for
conformer 1 and conformer 2 are shown in blue and
light blue, respectively. ProteinMPNN designs for
conformer 1 and for conformer 2 are shown in yel-
low and light yellow, respectively.

Figure 8: Cases where CSDesign most outperforms ProteinMPNN (left) and Protein-
MPNN most outperforms CSDesign (right). ”Most outperforms” considers the quan-
tity (RMSDcsd(pred1, conf1) + RSMDcsd(pred2, conf2)) − (RMSDpmpnn(pred1, conf1) +
RSMDpmpnn(pred2, conf2)). When this number is positive, it means that CSDesign best recovers
both conformers. When this number is negative, it means that ProteinMPNN best recovers both
conformers.
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