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ABSTRACT

We introduce SciPro (Scientific Process) Arena, a benchmark that measures how
well frontier Al systems analyze spectral scientific data. While current bench-
marks test knowledge recall and reasoning, few evaluate how models extract pat-
terns from noisy experimental datasets. Using simulated condensed matter physics
data, we prompt models to identify structures from 2D intensity arrays in the face
of noise and limited instrumental resolution, scoring them such that a score of 1
indicates complete accuracy, while 0.5 denotes deviation by an extent equivalent
to typical experimental error. We test recent reasoning models. The best models
score only 0.13 out of 1 averaged across all questions, rising to 0.20 for questions
without noise. This pales in comparison to human—written code, which score 0.37
(averaged) and 0.55 (noiseless). Clear failure modes were identified: models can
find simple features, but struggle to trace continuous patterns or compute derived
quantities. Performance predictably degrades with increased data resolution and
noise levels. These results show current frontier models cannot reliably perform
scientific data analysis, highlighting a significant gap between current capabilities
and practical uses in reinforcement learning—based agents for scientific discovery.

1 INTRODUCTION

Frontier Al systems are approaching human performance on many benchmarks, but we lack good
tests for practical scientific reasoning. Most benchmarks test knowledge recall or text comprehen-
sion, not whether models can extract patterns from noisy experimental data: a core skill for scientific
reasoning and autonomous agents. SciPro (Scientific Process) Arena fills this gap by testing models
on real spectral analysis tasks. While training data includes published scientific figures, it rarely
includes the analysis process that created those figures. This process—extracting meaningful infor-
mation from messy data—is what scientists and future reinforcement learning agents must do.

We focus on condensed matter physics, broadly acknowledged as the largest subfield of physics,
specifically Angle—Resolved Photoemission Spectroscopy (ARPES) (Damascelli et al.| 2003} [Sob-
ota et al.,|2021), a technique that measures electronic structure in materials, revealing how electrons
behave. We choose ARPES for three reasons. (1) Condensed matter shares with Al the common
thrust (Xiao et al., 2025)) of studying extremely complex systems (on the order of Avogadro’s con-
stant, ~ 10%%). However, it lacks the large number of analyzable features afforded to LLMs (viz.
Golden Gate Claude (Templeton et al., 2024)) because these features are accessed only if an exper-
imental technique is physically feasible. Of the relatively limited number of techniques available,
ARPES stands out for its relatively rich and less severely collapsed feature space, and closeness to
the ground truth (more direct linkage to theoretical models), requiring less theoretical scaffolding for
its interpretation. (2) Domain—specific foundation models elsewhere in science (Nguyen et al., 2024
Kim et al., 2021} (Chithrananda et al., 2020) have emphasized the importance of learning the ‘do-
main language’ in which scientific data is naturally represented (Zhang et al., [2025). In condensed
matter, embodying an understanding of electronic structure (grokking ARPES data)—its ‘domain
language’—is a necessary condition for learning an informative representation of material systems.
(3) The core challenge of ARPES—finding patterns in noisy, multi-dimensional datasets—recurs
across many subfields in physics where frontier Al systems will need to operate, and is thus a
good proxy for other experimental techniques, particularly where spectra and images are analyzed.
ARPES datasets are large enough to challenge context window limits of current models, while not
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being excessively high—dimensional where even rudimentary tasks would far exceed LLM limits,
such as calorimetric data in high—energy physics (Baldi et al., [2016).

In SciPro Arena, models extract patterns from examples rather than apply explicitly stated rules,
and return numerical predictions scored by deviation from ground truth. We use high—resolution
datasets that push context length limits, generated by a high—fidelity ARPES spectrum simulator to
avoid training contamination. We test recent reasoning models and find that only frontier systems
released after December 2024 show meaningful progress. While there is a trend that newer models
perform better, even the best models (OpenAl’s 03 and Google’s Gemini 2.5 Pro) achieve only
0.13 and 0.11 out of 1 on average (Fig. [T} red bars), rising to 0.20 when questions with noise were
excluded (blue bars). Within the latest slew of open—weight models, Qwen3 was by far the best,
scoring 0.09 (averaged) and 0.18 (noiseless). On the same benchmark, 400 lines of basic code
written by a graduate student over three days (Appendix D and supplementary code) already achieve
0.37 (averaged) and 0.55 (noiseless) — a significant gap in performance. Three capability tiers are
revealed: models can extract simple features but fail at tracing continuous patterns or computing
derived quantities, the latter constituting core reasoning skills needed for real scientific analysis.
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Figure 1: Frontier Al leaderboard for SciPro Arena, sorted by scores averaged over all questions
(red). Scores averaged over only questions without noise are also stated (blue). Models with asterisks
(*) are open—weight. Note the expanded horizontal axis scaling of the score, which tops out at 1.

2 RELATED WORK

Developing benchmarks to test the manifold capabilities of Al has been an area of serious inquiry
since its inception (Turing, |1950). Early benchmarks drew upon specially collected, publicly avail-
able datasets, and tackled specific tasks: MNIST (Deng, [2012) for visual character recognition,
ImageNet (Deng et al., [2009) for object classification, SQuAD (Rajpurkar et al 2016) for read-
ing comprehension, and BLEU (Papinent et al.l 2002) for machine translation. A trend towards
increasing comprehensiveness is discerned, notably in GLUE (Wang et al.,|2018) and SuperGLUE
(Wang et all 2019) benchmarks for natural language processing (NLP), as well as breadth, such
as in the UCI Machine Learning Repository (Kelly et al., [2023), MMLU (Hendrycks et al., [2021)),
and GSMS8K (Cobbe et al., [2021). However, given the recent development of LLMs, many of these
benchmarks have been saturated or are too narrow to assess open—world behaviors.

To this end, increasingly sophisticated benchmarks are being developed at a remarkable rate. Chat-
bot Arena (Chiang et al.l [2024) pioneered the crowd—sourcing of chatbot evaluation to the public,
which was extended in SciArena (Zhao et al) 2025)) to scientific literature tasks evaluated by the
scientific community. The rigor of benchmarks has also improved considerably, evidenced by the
increased attention paid to the flaws of earlier generations of benchmarks. A few examples in NLP
suffice: Holistic Evaluation of Language Models (HELM) (Liang et al., 2023)) recognized diverse
preferences of evaluators in vastly broadening the scope of metrics applied, AlpacaEval (Dubois
et al., [2025) tackled the bias of auto—evaluators in favor of longer answers, and LiveBench (White
et al.l [2025) minimized the effect of test set contamination by continually refreshing its corpus of
tasks. The scope of tasks evaluated has also evolved, particularly towards real-world tasks in Wild-
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Bench [2024) and professional coding in SWE-bench (Jimenez et al.,[2024). In parallel,
the level of domain expertise tested has grown markedly, such as GPQA (Rein et al, 2023) and

Humanity’s Last Exam (Phan & et al.}[2025)) covering graduate—level tasks across diverse fields and
FrontierMath (Glazer et al.| [2024) targeting expert—level mathematical problems. The past year has
seen the emergence of many extremely specialized benchmarks written by domain experts, including

the field of physics (Chung et al.,[2025)) and condensed matter in particular (Wang et al., [2025).

The scientific process is an iterative cycle of interrelated tasks: hypothesis generation, experiment
execution, data analysis, and communication. As the regular use of LLMs in science shifts beyond

being merely an aid in brainstorming or writing (Liang et al.,|2025)), broad benchmarks have sprung
up measuring their competence in other tasks, particularly by crystallizing these processes as code

generation co—pilots (Chen et al.| 2024) and workflow derivation (Majumder et al.,2024) problems.
At the same time, efforts have been made towards automating the full research pipeline (Jansen et al.,

[2025}, [Lu et al. 2024} [Yamada et al, 2025). The question of whether data analysis can be tackled
has previously been treated by |Liu et al. on far smaller, non—scientific datasets. Now, it has
to be noted that the role of the human in the process of scientific discovery may be thought of as an
act of ‘controlled rebellion’ [1962): the originality (degree of surprise) of their discovery
held in tension against high standards of proof enforced by the inherently conservative attitude of
science towards modifying consensus, standards judged and upheld by other human scientists. Any
agent seeking to supplement, or supplant, the work of the human in science must match the same
high bar, or find its results disregarded by the scientific community. Our benchmark is thus targeted
at this weak link in the scientific process: the question of whether models can be trusted on data
analysis, emphasizing the maintenance of full standards of rigor, accountability, and interpretability.

If models perform well on SciPro Arena, they can automate substantial work for one of the most im-
portant subfields of physics, and results may generalize to other physical data tasks as well. We draw
from several prior works: inductive reasoning in InductionBench and (indirectly)
in ARC-AGI (Chollet et al. [2023), information extraction from complex data (visual reasoning
benchmarks), noise robustness in NoiseQA (Ravichander et al., 2021)), and long context processing
in Long Range Arena (Tay et al.,2020). We build most directly on Michelangelo’s Latent Structure
Query framework (Vodrahalli et al.,2024)), noting the close parallels between scientific analysis and
many standard Al tasks: both involve measuring one thing (‘z’) to learn about something else (‘y’).
Video models, for example, measure pixels (‘z’) in order to learn about objects in the world (‘y’).
Due to the scarcity of real-world quantities in science that can be measured directly (‘z’), most
scientific experiments necessarily involve a proxy relationship between (or representation of) y by
x, which is inevitably complicated by experimental artefacts. The scientific analysis process, where
relevant information (‘y’) is hidden rather than obvious, closely resembles Michelangelo’s latent
structure tasks, which go beyond plain ‘needle in a haystack’ retrieval of information.

Momentum k (4~1)

Figure 2: Sample spectral function A(k,w) from the bottom of a band, for which three different
tiers of questions could be posed. Its dispersion, (k) (traced out with a solid white line) has a finite
broadness set by the linewidth, 3"/ (w). Three noise levels are shown: (a) 0%, (b) 10%, (c) 40%.
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3 ScIPRO ARENA BENCHMARK

3.1 ARPES AND ITS COMPLICATIONS

Our benchmark tests whether models can extract quantitative information from scientific datasets
with realistic experimental problems: the presence of noise and convolution. We focus on An-
gle—Resolved Photoemission Spectroscopy (ARPES), a condensed matter physics technique that
measures electronic structure in materials. Each dataset is a 2D intensity map with real energy (w)
and momentum (k) axes. Figure |Zka) shows an example. Pixels represent electron count rates across
energy and momenta (the spectrum), which reveals electronic behavior in the material: brighter
regions show where electrons are more likely to be found. Physicists extract dispersion curves
€(k) € R (how electron energy varies with momentum) and linewidths ¥”(w) € R (how broad
spectral features are at different energies). ARPES analysis is then an inverse problem. We know
the forward process — given e(k) and ¥”'(w), we can compute the spectrum,
Ak, w) = %" [(w— ) + ()] .

In the language of section 2, this equation maps y — x, where the spectrum A(k, w) is the quantity
measured (‘z’), while dispersion € and linewidth X" are the ground-truth quantities we wish to
extract (‘y’). The aim of ARPES data analysis is then to work out = — y (‘given a noisy spectrum,
extract the underlying dispersion and linewidth functions’), which is harder. This makes a good
benchmark for several reasons, realized by an accurate spectrum simulator written expressly for
this benchmark: (1) a clear, built—in ground truth exists, (2) realistic experimental noise can be
controlled, (3) difficulty is adjustable, and (4) we can measure not just whether answers are right or
wrong, but how far off they are from the ground truth.

The key attributes of ARPES data analysis complicating the solution of this inverse problem—that is,
noise and convolution—recur for many modalities of data defined over continuous domains, which
is the form that predominates in physics, and spectroscopic techniques in chemistry. In astronomical
images, one encounters corruption by Poisson noise (Shamshad et al.} 2018) convolved with point
spread functions (instrumental resolution), such as the characteristic speckles of the James Webb
Space Telescope (Kinakh et al [2024). The study of jets in high—energy physics likewise involves
problems of sifting through background noise and calorimetric instrumental resolution

Lobban et al.| (2002).

3.2 STRUCTURE OF DATASET AND QUESTIONS

We pose 27 question types, each tested at 5 noise levels, for a total of 135 questions. Each question
uses few—shot prompting (often 3—shot) where models read example spectra with answers to figure
out an analysis method, then analyze a spectrum — similarly to ARC-AGI (Chollet et al., [2025).

Form of questions All questions were stated in the form of text strings, beginning with the prompt
itself and followed by datasets corresponding to example and test spectra, as in this example:

Four datasets showing ARPES spectra are contained. They are labeled “Dataset A”, “Dataset B”,
“Dataset C”, and “Dataset D”. Read “Dataset A”. The Fermi energy of “Dataset A” is 2.71 eV. Read
“Dataset B”. The Fermi energy of “Dataset B” is 15.98 eV. Read “Dataset C”. The Fermi energy of
“Dataset C” is 8.01 eV. Now read “Dataset D”. State the Fermi energy of “Dataset D” in units of
electron—Volts. Print only your numerical answer.

Dataset A

Energy (V) /Momentum: —1 —0.973 —0.9459 —0.9189 —0.8919

25 513 622 561 609 633 753 619 685 513 566 727 520 493 548
2.504 566 644 600 654 671 818 667 760 544 557 811 560 514

All (example and test) datasets within a question are contained in a single text string. The first row
of each dataset (after ‘Energy (eV) / Momentum:’) states the momentum corresponding to
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each column, while the first (leftmost) column states the energy of each row. The remaining entries
list spectral intensities per pixel for the range of momenta and energies contained therein. To reduce
token count while still retaining a high dynamic range, spectral intensities are normalized such that
the highest intensity is exactly 1000, and all intensities are rounded to the nearest integer.

3.3 TYPES OF QUESTION

Quantity extracted The 27 categories of questions are grouped under five scientific domains.
Because this classification is primarily relevant to condensed matter physicists, we leave fuller ex-
planations in Appendix D, and in Figs.

Data analysis tasks Each category involves at least one of four analytic tasks: regression (when
simple mathematical formulae can be fit), structure determination (objects in spectra which are not
straightforwardly mathematically described), noise dependence (all questions), and categorization
of objects. A fuller explanation is given in Appendix D. Some tasks common in physics are not
covered, such as anomaly detection and time series prediction.

Difficulty tiers In parallel, we classify questions into three tiers of difficulty: Tier 1. Extraction of
a single quantity departing to a limited extent from ‘needle in a haystack’—type questions. Tier IL.
Extraction of an array of quantities, such as dispersions €(k) and linewidths X" (w). Tier IIL Single
quantities indirectly determined (calculated after extracting such arrays as those of Tier II). For
example, the spectrum shown in Fig.[2]may be used as the basis to ask questions from three different
tiers of difficulty. Asking for the band bottom energy (bottom of parabola) constitutes the easiest,
Tier I. Tracing the dispersion (white line) would be Tier II. Asking for the Fermi velocity vg, which
is the gradient at the top edge of the parabola, is the most difficult, Tier III, answered rigorously only
after having traced the dispersion (Tier II). Note that for questions requiring array—type responses,
analytic forms of the ground truth are ‘smooth’ and remain unchanged no matter how much noise is
added. For few—shot prompting, the ‘smooth,” noiseless ground truth for example spectra are given
to the model to guide its deductive reasoning. These tiers scale differently with token count (or as a
proxy, number of pixels = resolution squared per spectrum). The complexity of questions in Tier I
remains approximately constant with token count, excepting complications from noise, while those
of Tier II scale linearly with resolution, therefore approximately as the square root of token count.
If rigorous analysis is carried out by an agent, questions in Tier III should scale at least at the rate of
Tier II, with whatever additional scaling is associated with the computation required to extract key
quantities from a 1D array.

3.4 REAL-WORLD COMPLICATIONS: NOISE AND CONVOLUTION

Noise was inserted in the manner of Fig. 6(a) in (Kim et al. 2021): as a set of 2 x 10° ran-
domly—distributed spots, whose intensities are randomly chosen within a range, and footprints
broadened into 2D Gaussians. The amount of noise is quantified as mean noise intensity as a fraction
of maximum spectral intensity prior to adding noise. We do not measure against the mean spectral
intensity, as this quantity varies with the size of the spectral feature investigated relative to the size of
the whole dataset, whereas maximum spectral intensity does not; we are interested in the extraction
of strong signals regardless of how much other information (the background signal) is present. Rep-
resentative noise levels are shown in Figure 2} for most question categories, noise levels scale up to
40%. Additionally, all our data were convolved with 1D Gaussians of width 0.005 /A in momentum
and 0.003 meV in energy. This is present in all real-world experimental data. At such a low level of
convolution, only minor artefacts such as slight deviation of observed dispersions from the ground
truth are produced.

4 EXPERIMENTS

4.1 SET-UP

Few-Shot Prompting We had observed, during preliminary tests, that models sometimes regur-
gitated the answers of given examples rather than reason through to obtain the actual answer of the
question itself. We have therefore made sure that the correct answer does not overlap or coincide
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with those of prior test examples (whether they come in the form of a single number, or an array), so
that such regurgitation would not accidentally inflate the score. Few—shot prompting was introduced
to reduce dependence on elicitation (in which case performance would depend on the skill of the
evaluator rather than the model), an approach following that of ARC-AGI (Chollet et al.| [2025).
Notwithstanding the higher importance models may place to information at the start of prompts (Liu
et al.| [2024a)), the vast majority of content by token count are comprised of the examples themselves
(~ 10° tokens) rather than worded starting instructions (a few hundred tokens at most). Addition-
ally, we note that dependence on the number of examples could not be independently investigated.
Because of large token count, varying the number of examples would introduce trade—offs: either
reducing resolution, or performance scaling with token count (see Effect of resolution, Section 4.2).

Evaluation A clear ground truth exists for each question, whether in the form of a single number,
several, or an array of numbers consisting of outputs of some analytic function over points in a
domain (energy w or momentum k). Models are prompted to respond by returning a number or set
of numbers. There is no numerical restriction to their answer other than the expected array length
(which is clearly stated at the start of each question; an array of incorrect length returned is counted
as an incorrect answer). As a result, responses are not scored as strictly correct or incorrect. We
score each response using a rescaled Lorentzian as a measure of deviation from the ground truth.
The score is averaged amongst multiple responses to the same question, then averaged amongst all
135 questions. For a single scalar answer, this takes the form (see Appendix C for details)

Score = 7% - [(z — z0)* +7°] !

for model response x, ground truth z(, and half-width half-maximum (HWHM) ~, such that a
completely correct response is scored 1, and a completely incorrect response 0. As an interpretative
rule of thumb, an answer deviating by a typical experimental error (HWHM ~) scores 0.5. For array
responses, this is repeated for each element of the array, then averaged. Depending on the domain of
the expected response, HWHM + takes the convolutionary values of 0.005/A in momentum, 0.003
meV in energy, and 0.03 in doping (a quantity explained in Fig[T5|of Appendix D). We recognize that
more sophisticated measures of deviation (or even distance) may be in principle be used (Appendix
C), and that there is no a priori reason why a Lorentzian should be selected over, say, a Gaussian;
its ‘long tail” merely allows us to pick up responses deviating further from the ground truth.

Models and Inference-Time Compute Preliminary tests had indicated that non—reasoning mod-
els (prior to December 2024) by and large performed poorly on our test. We have thus restricted
our leaderboard to reasoning models released December 2024 and after. Firstly, this includes var-
ious closed—weight models from OpenAl (ol-mini, ol, 03-mini, 03, 03-pro, and 04-mini), Google
(Gemini 2.0 Flash, Gemini 2.5 Pro Preview), and Anthropic (Claude 3.7 Sonnet). OpenAl mod-
els with adjustable inference—time compute (all excluding o1-mini and 03-pro) were evaluated as a
function of compute mode (low, medium, and high). Secondly, open—weight models were tested:
DeepSeek-R1, Qwen3 (on Thinking Mode), Kimi K2, GLM-4.5, got-oss-120b, and gpt-0ss-20b.

03 (high) Gemini 2.5 Pro Preview Code (human-written)

T

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Score Score Score

« Noise

Figure 3: Comparing tiers of questions for best—performing models and human—written code, high-
lighting the generally deleterious effect of increasing noise.
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Figure 4: Effect of resolution for two questions, A1 (Tier I) and B1 (Tier II). Shaded areas indicate
error in the mean score, that is the standard error, 0z = o, //n for score z, sample standard devi-
ation o, and sample size n. Dots correspond to the scores of single responses. Score distributions
are decidedly non—Gaussian, and are instead multi-modal and peaked at certain values, reflecting
the persistence of specific responses across resolutions. Note the logarithmic vertical axis.

4.2 RESULTS

Comparing models For a fair comparison, we tested models on the same low resolution datasets;
these are the highest resolutions that would still be accepted by models with the smallest context
windows. A clear correlation between release date and model performance was observed (Fig. [I)).
Much of this may be chalked up to progress in the performance of reasoning models in the recent
half—year. In particular, 03 on high compute mode and Gemini 2.5 Pro Preview are among the best—
performing models; these likely reflect the long inference time and long built—in context window that
the respective models afford. Among open—weight models, Qwen3 (on Thinking Mode) performed
competitively for noiseless questions without noise, but performance worsened rapidly with noise.

Comparing tasks A similar ordering of model performance was observed for the four data ana-
lytic tasks mentioned in Section 3.3, and presented in Figs. [§]and [0]in Appendix D, although a few
surprises have showed up: Gemini 2.5 performed surprisingly poorly in tasks involving regression
and categorization (relative to its overall performance), and Qwen3 found to be better for structure
determination and categorization than other tasks.

Comparing tiers of questions Representative scores from two best—performing models and hu-
man-written code are shown in Fig.[3] Full scores are shown in Appendix D. Models performed best
in Tier I questions; these did not ask for much beyond an awareness of the context and amounted to a
simple retrieval of information, departing not far from older ‘needle in a haystack’ measures. Poorer
performance was observed in Tier II questions, for which a grasp of the underlying latent structure
was necessary to answer the question, and in Tier III questions, whose proper analysis would involve
two steps models were not explicitly guided through: first retrieving a latent structure, then obtain-
ing some information from that structure, such as Fermi velocity or doping level. While Tier III
questions can in principle only be rigorously tackled after performing an analysis of a Tier II type,
and thus should be at least as difficult as Tier II questions, models may ‘short—circuit’ the inductive
process. This reason, and the fact that our Tier III questions required single—valued rather than array
responses, may be why o3 (high) performed similarly on Tiers II and III (Fig.[3} left panel).

Effect of resolution Tests were carried out on how increasing token count (dataset resolution)
affected scores in Gemini 2.5 Pro Preview, which had the largest context window. These were
limited to two noiseless questions, A1 (a Tier I question) and B1 (a Tier II question), and to the best—
performing model for noiseless questions, Gemini 2.5 Pro Preview. Scores worsened more quickly
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with increasing resolution for B1 than A1 (Fig. ), although part of this may be accounted for by
the square—root scaling of task complexity with token count (number of pixels) in B1. Additionally,
while the score for A1 tapered off towards a finite value (around 0.2-0.3) in the limit of long context
window/large resolution, that for B1 appeared to drop precipitously towards zero, indistinguishable
from near-random responses under our scoring mechanism. It may be the case that Gemini 2.5
Pro Preview’s longer built—in context window offset the longer inference—time compute afforded by
its main rival, 03, resulting in their similar placements on the leaderboard (Fig. [T). We postulate
that at low resolutions, Gemini 2.5 Pro Preview may be placed at an earlier stage of its resolution—
dependent reduction in score compared to 03, consequently suffering less decline in performance
attributable to long token count, but further tests are needed to justify this more comprehensively.

Gemini 2.5 Pro Preview

Score

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Noise ratio

Figure 5: Effect of noise for four questions; A1 and D1 (Tier I), B1 and B2 (Tier II). Shaded areas
indicate error in the mean score, also known as the standard error, oz = o, /+/n for score z, sample
standard deviation o, and sample size n. Note the logarithmic vertical axis.
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Figure 6: Responses for a linear dispersion (B1, green in Fig. [5): dependence on strength of noise,
set at (a) 4% and (b) 35% of maximum dispersion intensity. A solid red line indicates the ground
truth. The general trend is that response accuracy declines with increasing noise.

Effect of noise Limited work has been done on this front, using four questions tested on Gemini
2.5 Pro Preview (Figs. BH7), a model which performed best for noiseless questions yet showed a
steeper decline in score with increasing noise compared to 03. For Tier I questions, such as A1 and
D1 (at coupling strength A = 1), we observed a general trend of scores worsening under increasing
noise level, even though this was partly obscured by randomness stemming from the limited number
of responses sampled. Scores for D1 were worse than A1l because the feature tested (phononic
kink, Fig.[T4) was less discernible, particularly at high noise levels. For Tier II questions (B1 and
B2), the effect of noise was mixed. The observation that increasing noise results in an ‘injection
of randomness’ in responses generally and visually holds, especially at higher noise levels, even
if the concomitant decrease in score was not captured by the score due to our strict error criterion
(small 7). In Fig. @ (a) to (b), and Fig.[7] (b) to (c)), increasing noise clearly led to more responses
resembling ‘random walks.” It was sometimes observed that at low noise levels, a small injection of
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(a)

Energy w (eV)
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Figure 7: Responses for a quadratic dispersion (B2, red in Fig.[5): dependence on noise, set at (a)
0%, (b) 10%, and (c) 40% of maximum dispersion intensity; ground truth in red. Note unexpected
improvement and subsequent expected decline in accuracy of answers with increasing noise.

noise appeared to ‘kick’ the model out of an incorrect answer and unexpectedly improved the score.
This was the case for B2 in Fig. [/} where a completely incorrect response for low noise in (a) (its
quadratic dispersion hardly traced) resolved to a less—incorrect response in (b) (the dispersion now
approximately traced), before the aforementioned ‘random walk’ set in at higher noise levels in (c)
and severely degraded its responses.

Tokenization dependence Errors in numerical calculations are known to stem from how numbers
are represented (Levy & Geval 2025)). To isolate the effect of tokenization, tests were run in which
the maximum spectral intensity was varied as a ratio of the original normalization of 1000, and no
discernible trend on scores were found for questions A1 and B1 within the bounds of sampling error
(Fig.[I0]in Appendix D). It is probable that the difficulty of questions are dependent not as much on
low—-level numerical calculations on the fine scale of tokenization, but how models deal with the mix
of analysis tasks involved (section 3.3), such that tokenization errors may be considered as another
injection of ‘noise’.

To be continued: Python interpreter and .csv tabulation.

5 DISCUSSION

We have presented SciPro (Scientific Process) Arena, a benchmark for testing frontier Al systems on
scientific data analysis. We test models on inductive reasoning, pattern recognition, and information
extraction from noisy datasets — core skills for scientific reasoning and autonomous agents. Our
results show that current frontier models (as of September 2025) can handle simple retrieval tasks but
fail at complex pattern recognition and derived calculations that real scientific analysis requires. The
best current models score only 0.13 out of 1 on average, with clear performance degradation as data
resolution increases and noise levels rise. Models perform reasonably on Tier I questions (simple
information retrieval) but poorly on Tier II (latent structure extraction) and on Tier III (derived
calculations from extracted patterns). This reveals fundamental limitations in how current models
process structured numerical information and perform multi—step reasoning on scientific data.

Additionally, it signals an existing bound on their agentic abilities. The difference between Tier 11
and Tier III questions arises not from a leap in computational complexity, but rather from combining
separate tasks, and unprompted pivoting from the first (not explicitly stated) task to the second, with
successful completion of the former required to succeed on the latter. The potential achievement
of agency has a separate scientific significance. Due to the ubiquity of emergence in condensed
matter (Appendix B), the microscopic origin at which theories work is typically many (qualitatively)
different layers of reasoning removed from measurable properties, the latter of which are the starting
point of data analysis. The path from experiment to theory is therefore highly serpentine and at times
impenetrable. (ARPES is special in that the number of these ‘layers’ involved is fewer than most
other experimental techniques.) The scientific process, especially in condensed matter, consists not
of a single inverse problem (Tier I and II questions in SciPro Arena), but of a string of inverse
problems. As this may be mapped onto a sequence of tasks in an agentic workflow, it is possible
that the attainment of agency may be a necessary precondition for a model to tackle the problem of
emergence: the ability to start from raw data and reason through to the level of microscopic theory.
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Until that point is reached, human intervention is expected at every step to guide models through
these disparate layers of reasoning.

Extensions to other experimental techniques We wish to extend our benchmark to encompass
data from other experimental techniques in condensed matter physics as well as elsewhere in physics,
and welcome future scientific collaborators. Experts in experimental techniques who may imple-
ment these extensions may adopt approaches which are likely to be different from us. Therefore,
we have formatted questions in SciPro Arena in a general yet standardized manner to ensure con-
sistency of application and analysis (Appendix A), while allowing freedom in realizing details.

Future directions Current frontier agents are not ready for publication—level data analysis, where
accuracy is critical. However, they could be useful for preliminary analysis, especially when pro-
cessing large datasets at speed is important. A key limitation in scientific progress is data quality
itself; sophisticated analysis cannot compensate for poor data. Reinforcement learning—based agents
working in real-time could therefore be valuable, by analyzing large datasets quickly and suggest-
ing experimental adjustments while data is being collected, rather than during post—processing. In
the near future, this points toward benchmarks that test scientific agents in dynamic, real-world
experimental scenarios, akin to 7—bench (Yao et al., 2024)), rather than static data analysis. To be
continued: more on agentic systems developed atop LLMs; image compression.

A final parallel may be drawn between science and other real-world tasks. An irreversible loss of
information occurs in data collection, as the complexities of microscopic physics are collapsed into
the highly constrained feature space that each measurement affords. The parable of the blind men
and the elephant is apt. From a single experiment alone, one cannot uniquely trace any phenomenon
back to a single underlying microscopic origin, therefore a holistic description of a system or phe-
nomenon (such as a superconductor) is necessarily pieced together from disparate experiments; even
this collected information provides but a fragmentary understanding. Only an agent is capable of
generalizing and reasoning across the results of various measurements to piece together a physical
picture that transcends the mere specifics of individual experiments. Today, this is achieved through
the formation of a scientific consensus across a broad array of human experts. We hope that agents
in the medium—term future, possibly acting in synergy with human guidance, may supplement this
process by performing a variety of targeted measurements to compare with, and constrain possible
physical models. In superconductivity, for example, structural probes (such as X-ray diffraction)
and electronic probes (such as ARPES) may be compared with theoretical predictions arising from
microscopic mechanisms (phonons, spin fluctuations, excitonic pairing). Because the high level of
rigor in the scientific process has to be maintained, and convergence between theory and experiment
at each step is critical for achieving a coherent overall understanding, each of these quantities must
be benchmarked and calibrated with experiments.

REPRODUCIBILITY STATEMENT

An anonymized repository containing downloadable source code is linked here. While it does not
contain the extensive data collected during our evaluation, it is sufficient to run once the user has set
up their own API keys, server, and database (see instructions in readme . md). The same content is
also available in the supplementary material.
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APPENDIX A EXTENSIONS TO OTHER EXPERIMENTAL TECHNIQUES

This appendix presents general guidelines for other experimentalists wishing to evaluate the capa-
bilities of agents on analyzing their own data, in the same manner as SciPro Arena.

Format of prompts In adapting SciPro Arena to various experimental techniques, prompts should
contain only a modicum of information necessary for agents to understand the nature of the data
they are presented, without being assisted by additional information. Researchers with expertise in
different fields are disposed to phrase questions very differently, and it is crucial to ensure that in
extending the scope of SciPro Arena, the test remains a pure evaluation of reasoning abilities of
agents themselves, rather than partly be a test of elicitation cabilities by the writers of prompts. The
format of questions should follow that set out in Section 3.2. Several guidelines apply:

¢ Questions should be written in .txt and structured in the form prompt + content,
with all data contained within content.

* In lieu of a detailed explanation in the prompt on how data should be analyzed, agents
should deduce this method through few—shot prompting: multiple examples are given (in
content) with their answers stated (in prompt ), before the actual dataset to be analyzed
is stated (obviously without the answer).

* The expected form and length of the answer should also be stated in the prompt: whether it
is a single numerical value or an array of values; for the latter, the length of the array should
also be stated. This is necessary for analysis to be automated, while agents with structured
responses are not unfairly advantaged over agents without.

¢ Data should be either one— or two—dimensional, with axis values, units, and labels stated.
Two—dimensional data should presented as a table; the explanation in Section 3.2 suffices.

* Precision of numerical values in the data may be left to the discretion of the evalua-
tor. In our ARPES case (which may generalize to other methods with high-resolution,
two—dimensional data), the context window afforded by an agent may be easily exceeded,
and we found it necessary to limit the precision of our data in the manner mentioned in
Section 3.2.

Tiering of questions We recognize that different experimental probes involve vastly different is-
sues when it comes to the question of interpretability. ARPES is unusual in that variations in inten-
sity in ARPES data may be straightforwardly ascribed to single—particle excitations. That is because
it has a comparatively large feature space (energy and several momentum axes) which are collapsed
into a smaller set of axes in many other measurements: for example, many other spectroscopies
(such as Raman, or Angle—Integrated Photoemission) are not resolved in momentum space, and
retain only the energy axis (the ‘spectrum’, hence ‘spectroscopy’). Furthermore, many transport
measurements (such as resistivity and heat conductivity) lack even energy resolution; instead, data
consists of the variation of some quantity with another (such as temperature).

Nevertheless, the tiering of questions by difficulty (Section 4.2) may be generalized to other mea-
surements. Departing from the set of difficulty tiers stated in Section 3.3, examples are given for
other experimental techniques, with prior ARPES examples (Appendix D) italicized.

» Tier I — extraction of a single quantity departing to a limited extent from ‘needle-in-
haystack’ type questions. Examples: Fermi level, band bottom energy, Dirac cone energy,
superconducting gap size, phonon frequencies, positions of peaks, minima, and disconti-
nuities in 1D arrays such as resistivity/conductivity, specific heat, magnetic susceptibility,
quantum oscillations, and most spectroscopies presenting only energy resolution.

* Tier I — extraction of an array of quantities. Examples: tracing 1D dispersions €j and
line widths "' (w) from a 2D data array, dispersions in RIXS data, variation in supercon-
ducting gap size along a 1D path in tunneling measurements, edge states in microwave
impedance microscopy.

e Tier IIT — single quantities that are indirectly determined; that is, quantities calculated
after extracting such arrays as those of Tier I, or parsing arrays directly stated in the
data. Examples: Fermi velocities, doping levels, scaling laws in transport measurements
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and what processes they may be ascribed to (sources of scattering), scattering wavevec-
tors obtained by Fourier transforming quasiparticle interference data, matching Raman fre-
quencies obtained from the data with their possible origins (such as specific phonons), and
matching RIXS dispersions with possible excitations (such as magnons).

Experimental complications It is recommended that data be simulated, with expected experi-
mental complications inserted. This makes sure that (1) a predetermined ground truth exists (and is
not restrained by the potential inaccuracy and slow speed of human data analysis), and that (2) the
intensity of complicating factors may be quantified. In particular, we watch out for:

* Noise levels. In our benchmark, the intensity of noise is measured as a fraction of the
peak signal intensity, rather than alternatives such as average intensity of the entire dataset,
which depends on such other factors as background level and axis ranges. A similar pre-
scription is recommended. (Our only deviation from this is in Fermi level extraction from
a featureless background, for which the background itself constitutes most of the ‘signal’).

* Convolution. It is evident that broader convolution increases the difficulty for a signal
to be extracted. While we have not conducted a detailed study on this dependence (as
we had for noise), we have found it sufficient to fix convolution at a level expected in an
actual experiment, and measure deviation with respect to the half-width half maximum
(HWHM) of the convolution (Section 4.1).

APPENDIX B EMERGENCE IN CONDENSED MATTER

The core idea that emergent behavior is central to the description of large systems is a point of
commonality between the artificial intelligence and condensed matter communities. This is the
belief that knowledge of the properties or laws that govern smaller components (such as atoms in
physics, or artificial neurons in machine learning) are at best ancillary to, and at worst exceedingly
insufficient for predicting the behavior of large systems composed of them (by the same analogy—a
material, or a neural network). It stands in (partial) opposition to the reductionist impulse that had
historically prevailed over much of physics, and is embodied in Al thinking by such approaches
as mechanistic interpretability. We provide several examples of emergence for readers in the Al
community.

Criticality and scaling laws As a system approaches a phase transition (such as boiling water),
fluctuations become increasingly large (size of bubbles), rendering most microscopic details irrele-
vant to its behavior. This gives rise to scaling laws that relate thermodynamic quantities and depend
on very few properties. Vastly different systems that happen to share these properties (more pre-
cisely, dimension and symmetry) then develop the same scaling laws; this is known as universality
(Stanley,|1971). An example is the onset of ferromagnetism and boiling water (critical opalescence),
both of which are classed into the Ising model. The idea that scaling laws emerge in large systems is
also central to the Al mythos, epitomized by the work of |[Kaplan et al.|(2020)), which considered how
performance (loss) scaled with some measure of size (such as parameters, tokens, or compute), and
recognized the same phenomenon of universality. A key difference exists between the two commu-
nities. Scaling laws in Al often revolve around some aspect of system size, as this approach satisfies
the need to improve performance far more than varying architectural details (for which similar laws
exist). On the other hand, physicists, whose attention is not focused on any single overarching goal
in scaling, consider a wider range of laws.

Superconductivity This is an inherently quantum mechanical phenomenon and an example of a
collective instability. When conditions arise in which electrons experience a net attraction rather than
repulsion, and pair up (Cooper pairing), a lower-energy ground state is favored. This ground state
is the superconducting state; it manifests in ARPES spectra as the opening of an energy gap around
the Fermi level (see question B6 in Appendix D). Although the mechanism for Cooper pairing
is microscopic, the superconducting state exhibits such macroscopic properties as zero resistance,
expulsion of magnetic fields, and macroscopic quantum coherence.

16



Under review as a conference paper at ICLR 2026

Non-Fermi liquids In a Fermi liquid (such as many metals), interactions between electrons are
weak enough that the qualitative behavior of the whole system departs little from a hypothetical
system that lacks these interactions (the independent electron approximation), albeit with some
numerics altered (renormalization). This is because a one-to—one mapping between states of
these two systems (quasiparticles and independent electrons, respectively) is retained; a superficial
analogy may be made with the process of tokenization in LLMs. In a non—Fermi liquid, however,
the mapping breaks down, and the system produces qualitatively different behavior. This is partly
because the fundamental constituents of the system have ceased to be quasiparticles; what they are
is presently unknown. In a sense this is a problem of representation. Those in the Al community
grappling with non—interpretable features in large models are dealing with a comparable matter.

APPENDIX C SCORING SYSTEM

It was stated in Section 4.1 that a Lorentzian (otherwise known as Cauchy) distribution was used,

Score = 7% - [(z — 20)* +7°] -

with choices of the half-width half-maximum ~ depending on the quantity being measured. There
is no mathematically rigorous reason why the Lorentzian distribution should be favored over others,
but two general principles guided our choice of measure:

» Completely correct answers should receive a score of 1 and completely incorrect answers
a score of 0; that is, there is a finite bound of scores, and this bound is normalized to unity.
Our intention is to reward answers which come close to the ground truth without unnec-
essarily penalizing those which stray far from it. An answer that is rather wrong and an
answer that is very wrong would both attain similar, near—zero scores. This rules out the use
of loss or reward functions which are not bounded, as they discriminate between increas-
ingly incorrect answers in their task to guide models towards optimal solutions. (Inverting
this reason, future extensions of SciPro Arena tailored to performing reinforcement learn-
ing on open—weight models may replace bounded scores with unbounded loss functions.)

* The score monotonically decreases with increasing deviation. A different measure abiding
by this requirement could have been chosen, such as a Gaussian (whose choice could
have been supported by the central limit theorem), but this choice only approximately
amounts to a redistribution of weighting between answers of different accuracy, and a
similar change could be effected by just changing the value of . A Lorentzian was
ultimately chosen for two reasons: (1) it has a longer tail compared to the Gaussian,
which is equivalent to more relaxed scoring, and (2) it is the Lorentzian and not Gaussian
distribution that naturally appears in spectral line shapes such as those seen in ARPES,
where half-width half-maxima ~ do attain physical meaning. Scientists extending this
benchmark to other fields may wish to use the Gaussian if they see fit, especially if its use
is found to be more justified within their domain.

APPENDIX D QUESTION DOMAINS, EXAMPLE SCRIPTS, AND FULL SCORES

The 27 categories of questions mentioned in Section 3.3 are grouped into five domains (A-E) ac-
cording to the physical quantity of interest. These are shown in Figs. [[THI5| with accompanying
explanations. Note that all spectra are shown at the highest resolution setting (at the upper end of
the scale in Fig. |4)) and without noise. Full scores for all models tested, across all 135 questions
(multiplexed by five levels of noise), are shown in Figs. [I6H21] with explanatory comments. Note
that shaded areas in these figures indicate error in the mean score, also known as the standard error,

Oy
NG

for score x, sample standard deviation o, and sample size n for each question.

OF =

These five domains of scientific significance are:
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¢ A. Extraction of Fermi level (A1).

* B. Extraction of dispersions e(k) or information thereof. Questions requiring array re-
sponses include linear (B1) and curved/quadratic (B2) dispersions; linear dispersions with
superstructure (B3) and displaying band bottoms (B4). Questions requiring single numer-
ical answers are the Fermi velocities (vg) of linear (B1_vF), curved (B2_vF), and super-
structural (B3_vF') dispersions, as well as the energies of band bottoms (B4 _bbE), Dirac
cones (B5), and superconducting gaps (B6).

* C. Extraction of linewidths X" (w) as arrays, whose variation with energy is an indication
of interaction processes in a material: impurity scattering (C1), marginal Fermi liquid/MFL
(C2), Fermi liquid/FL (C3), MFL and a single phonon (C4), FL with a single phonon (C5).

* D. Retrieval of phonon energy, whose presence is revealed by a kink in the dispersion €(k)
at the phonon energy and increase in linewidth X" (w) approaching and passing below the
phonon energy. This includes a single phonon (D1) at five levels of coupling strength A
(showing up as increasing salience of the aforementioned phonon features), as well as two
(D2) and three (D3) phonons at a fixed, intermediate coupling strength.

* E. Extraction of doping level for a single-band cuprate (E1), two—band cuprate (E2), stron-
tium ruthenate (E3), and three—band nickelate (E4).

Four data analysis tasks are identified. With the exception of noise dependence, scores for each task
are calculated by averaging over the scores of questions tagged with each task.

* Regression. These apply when simple mathematical formula may in principle be fit onto
spectra, which covers all questions except B5, B6, and the D of questions where the math-
ematical form is not apparent.

* Structure determination. This covers identifying such objects as superstructure in B3,
B3_vF, band bottoms in B4 _bbE, the Dirac cone in B5, separating the superconducting
gap of B6 from the rest of the bandstructure, as well as phononic kinks in the D series and
Fermi surfaces in the E series of questions.

» Categorization. These questions involve distinguishing between different objects in spec-
tra and assign different values to them, such as the frequencies of multiple phononic kinks
in D2 and D3, and the doping levels of separate bands in E2—4.

* Noise dependence. Scores are calculated within each question category by taking the
ratio of the score coresponding to maximum noise over that of no noise, and subsequently
averaged over all categories.

Lastly, the three tiers of difficulty may be mapped.

* Tier 1. Extraction of a single quantity departing to a limited extent from ‘needle in a
haystack’—type questions; these are A1, B4_bbE, B5, B6, and the D series of questions.

* Tier IL Extraction of an array of quantities, such as dispersions €(k) and linewidths ¥ (w),
including B1, B2, B3, B4, and the C series of questions.

* Tier III. Single quantities indirectly determined (calculated after extracting such arrays as
those of Tier II). These include B1_vF, B2_vF, B3_vF, and the D series of questions.

Sample, human—written code used as an equivalent non-agentic comparison is located towards the
endof client/init.py in the supplementary code, and is summarized here. (A1) Intensity was
summed across all momenta to yield curves that depend only on energy (these are known as energy
distribution curves, or EDCs). The EDC was then fit with a Fermi—Dirac function (see caption in
Fig.[T) to retrieve the Fermi level, ;. (B1-B3 and B5) Spectra were sliced at each individual energy
level to yield momentum distribution curves (MDCs, momentum-dependent counterparts to EDCs).
Each MDC was fit with Lorentzian(s), and the process repeated across energies to extract their dis-
persions e(k). Similar EDC analysis was used for B4 and B6. (C1-C5) The same MDC analysis of
the B series of questions were used to extract linewidths 3" (w), which are related to the half-width
half-maxima (HWHM) ~ of Lorentzians. The main source of error in this analysis is that mo-
mentum and energy convolutions artificially increase HWHM; retrieval of actual HWHM through
deconvolution or other procedures is an active area of research in the field. (D1-D3) Linewidth
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analysis of the C series of questions was first carried out. Phonon frequencies were heuristically de-
fined as those at which linewidth increased most rapidly with energy, within certain energy bounds.
(E1-E4) Fermi surface maps were sliced at fixed values of k, and the resulting intensities were fit
with Lorentzians whose peaks trace the locus of locus of the Fermi surface, whose area is related to
the doping level (see caption in Fig. [[5). The main difficulty in this procedure is that an awareness
of Fermi surface topology is required to interpret the fitted curves. As a result, human intervention
is required in professional practice, and the present (unagentic) code performs relatively poorly.

Note that the standard of the field is significantly higher than the given code, but the present standard
of code was chosen for two reasons: (1) professional data analysis in ARPES requires almost contin-
ual human intervention (e.g. judging goodness of fit, removing erroneous data), whereas we prefer
that the code be self—contained and transparent, and (2) what constitutes the standard of the field
also depends on the specific analysis task at hand; being an inverse problem with noise, it remains
an active area of research across many diverse fields.

Code (human-written)
03 (high)

o04-mini (high)

03 (medium)

03-pro

04-mini (medium)

03 (low)

03-mini (high)

Gemini 2.5 Pro Preview
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gpt-0ss-120b (*)
Qwen3 (*)
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Claude 3.7 Sonnet
gpt-0ss-20b (*)
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Figure 8: Leaderboards for regression and structure determination.
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Figure 9: Leaderboards for categorization and noise dependence.
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Figure 10: Effect of normalization of maximum spectral intensity on scores for A1 and B1, relative
to their score at the original normalization value of 1000.

The remaining pages of this text are a catalog of noiseless spectra representative of question do-
mains, and breakdowns of scores for all models.
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Figure 11: Question domain A (Fermi level extraction). This is the easiest question domain, judging
from the full scores in Figs. [T6H21] Spectra here (a1) are featureless in momentum & (horizontal
axis), and take on a Fermi—Dirac distribution in energy w (vertical axis),

1

Inten51ty X m

where p corresponds to the Fermi level, kg is the Boltzmann constant, and 7' temperature. The
Fermi level is the midpoint of spectral intensity and is visually obvious in the figure; the point of A1
is to retrieve this energy as a single number, a task not far removed from a ‘needle in a haystack’
retrieval, although the addition of noise complicates this somewhat. Note that spectra in question
domains B-D (Figs.[I2HI4) have an upper cut—off at the Fermi level as little information of interest
is contained above the Fermi level; this also separates the problems tested by later questions from the
task of Fermi level extraction itself. Question domain E (Fig. [I3) is arrayed along two momentum
axes, cut at the Fermi level in energy w.
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Figure 12: Question domain B (dispersion tracing). These cover a linear dispersion (B1),
curved/quadratic dispersion (B1), linear dispersion with superstructure (B3), a quadratic dispersion
with a band bottom (B4), a Dirac cone (B5), and superconducting gap(s) (B6). For B1-B4, models
are prompted to trace the dispersion itself (white line) as function of momentum k or energy w;
these are Tier II tasks. B4_bbE, B5, and B6 respectively ask for the band bottom energy (bottom of
parabola), Dirac cone energy (crossing point of two dispersions), and superconducting gap energy
(given by half the distance between the two horizontal white lines); these are Tier I questions. Lastly,
B1l_vF, B2_vF, and B3_vF ask for Fermi velocity vp, which are the gradients of the dispersion at
the top of the spectra; these are Tier III.
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Figure 13: Question domain C (linewidth tracing). Models are prompted to reproduce half—width
half-maximum (HWHM) as a function of energy w, visually shown as half the distance between
the red lines. These cover cases where HWHM is constant (C1, impurity scattering), increases
linearly away from the Fermi energy/top of spectrum (C2, marginal Fermi liquid), and increases
quadratically (C3, Fermi liquid). C4 and C5 are variants of C2 and C3 with the presence of a single
phonon at some phonon energy (horizontal white line). The presence of the phonon is signaled by a
shift in the (red) dispersion away from the original linear (white) dispersion, an effect termed mass
renormalization by physicists, and a broadening of linewidth below the phonon energy.

22



Under review as a conference paper at ICLR 2026

24.975

24.950

24,925

N
Iy
0
3
S

24.875

Energy w (eV)

24.850

24.825

24.800

24.975

24.950

24.925

V)
f
io
S
S

24.875

Energy w (eV)

24.850

24.825

24.800

Energy w (eV)
Energy w (eV)

2.00 2.25 2.50
Momentum k (A-1)

2.00 2.25 2.50
Momentum k (A1)

Figure 14: Question domain D (phonon energy determination). Horizontal white lines indicate

phonon energies for a single phonon at five different coupling strengths A (D1), as well as two (D2)
and three phonons (D 3); models are prompted to state these energies.
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Figure 15: Question domain E (doping determination). Spectra shown are Fermi surface maps in two
momentum axes, k, and k,, over a single Brillouin zone (BZ). Fermi surfaces enclose areas whose
size is linearly dependent on the doping level of a material. To keep matters internally consistent,
we normalize each BZ to the same extent (+1/ A in both directions), and define
A

Doping=1-2- i,
Area(BZ)
such that a Fermi surface that takes up the whole BZ has a doping of —1 (completely electron—
doped), and none of the BZ, +1 (completely hole—doped). Suffice it to say that conventions and BZ
sizes vary in real life, but we wish to keep things simple here.
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Figure 16: Scores from Gemini 2.0 Flash and Gemini 2.5 Pro Preview.
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Figure 17: Scores from o3 for three inference—time compute modes.
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Figure 18: Scores from o4-mini for three inference—time compute modes.
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Figure 19: Scores from 03-mini for three inference—time compute modes.
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Figure 20: Scores from o1 for three inference—time compute modes.
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Figure 21: Scores from ol-mini, Claude 3.7 Sonnet, and the open-weight model DeepSeek-R1.
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Figure 22: Scores from the open-weight models, Qwen3 (Thinking Mode), GLM-4.5, and Kimi K2.
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Figure 23: Scores from the open-weight models, gpt-0ss-20b and gpt-oss-120b.
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Figure 24: Scores from 03-pro and human—written code.
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