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Abstract
Measuring the similarity between data points
plays a vital role in lots of popular representa-
tion learning tasks such as metric learning and
contrastive learning. Most existing approaches
utilize point-level distances to learn the point-
to-point similarity between pairwise instances.
However, since the finite number of training data
points cannot fully cover the whole sample space
consisting of an infinite number of points, the
generalizability of the learned distance is usu-
ally limited by the sample size. In this paper, we
thus extend the conventional form of data point
to the new form of data ball with a predictable
volume, so that we can naturally generalize the ex-
isting point-level distance to a new volume-aware
distance (VAD) which measures the field-to-field
geometric similarity. The learned VAD not only
takes into account the relationship between ob-
served instances but also uncovers the similarity
among those unsampled neighbors surrounding
the training data. This practice significantly en-
riches the coverage of sample space and thus im-
proves the model generalizability. Theoretically,
we prove that VAD tightens the error bound of
traditional similarity learning and preserves cru-
cial topological properties. Experiments on multi-
domain data demonstrate the superiority of VAD
over existing approaches in both supervised and
unsupervised tasks.

1. Introduction
Similarity learning has been a longstanding focus of re-
search, aiming to learn to measure pairwise similarity be-
tween instances. The learned similarity metric and feature
representation can serve as essential components for down-
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(a). Concept illustration of the traditional point-level distance

(b). Concept illustration of our volume-aware distance (VAD)
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Figure 1. A quick comparison between the traditional point-level
distance and our proposed VAD. By considering the volume aware-
ness, our VAD can obtain the flatter decision boundary for better
generalizability than the traditional distance.

stream recognitions (Weinberger et al., 2006; Xing et al.,
2002; Liu et al., 2018; Yan et al., 2024). Over the past
decades, similarity learning has achieved remarkable suc-
cess, showing its potency in diverse representative tasks,
such as classification (Kaya & Bilge, 2019), clustering
(Zhong et al., 2020), and retrieval (Kou et al., 2022).

Typically, similarity learning algorithms are provided with
(pseudo) supervision in the form of pairwise relationships
(e.g., similar or dissimilar) derived from the training data
(Sohn, 2016; Feng et al., 2023). Then the learning algo-
rithms pull similar instances closer while pushing dissimilar
ones apart, and the overarching goal of similarity learning
is to make the learned similarity metric robust and general-
izable when applied to the complex test phase with unseen
data (Yan et al., 2023b; Kaya & Bilge, 2019).

Substantial progress has been made toward this goal through
the design of various loss functions (Liu & Tsang, 2015;
Sohn, 2016; Oh Song et al., 2016; Chen et al., 2020) and
plentiful regularization terms (Chen et al., 2021; Yan et al.,
2022b; Wang & Qi, 2023; Chen et al., 2024a). These meth-
ods refine the sampling process and constrain the hypothesis
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space to improve learning performance. However, the gen-
eralizability of similarity learning remains limited by the
sample size, as finite sampled data points (i.e., instances)
are unable to sufficiently cover the whole sample space
which contains infinite unsampled points. The coverage
insufficiency is particularly hard in similarity learning due
to considering the Cartesian product (i.e., the pairwise rela-
tionship) of the sample space (Feng et al., 2021; Wu et al.,
2022a). As a result, the decision boundary of similarity
metric learned from the scattered data points may lack the
flatness (see Fig. 1(a)) needed for generalizable classifica-
tion. This practically leads to unsatisfactory performance in
some noisy and difficult recognition scenarios for both su-
pervised tasks (e.g., metric learning) and unsupervised/self-
supervised tasks (e.g., contrastive learning).

Given that the entire sample space usually assumes a specific
volume (e.g., the widely adopted hypercube/hypersphere
with feature normalization (Xu et al., 2022a; Yan et al.,
2021)), it is inherently challenging to adequately fill in this
space by using only volumeless data points. To address this
issue, we introduce a new measure-head network regular-
ized by volume expansion strategy to predict the volume of
each data point (i.e., extending to data balls), thereby effec-
tively considering pairwise relationships within the unsam-
pled neighborhoods surrounding training data points (see
Fig. 1(b)). This allows us to define a novel volume-aware
distance (VAD) to measure the geometric proximity between
volume-predictable data balls, successfully learning a reli-
able similarity metric with better coverage of the sample
space. Theoretically, we establish the geometric soundness
of VAD and derive a tighter error bound. Extensive experi-
ments conducted across multiple domains demonstrate the
effectiveness and superiority of our approach. Our main
contributions are summarized below: 1) We propose a novel
VAD metric for robust similarity learning, supported by
comprehensive theoretical analyses that ensure its sound-
ness and effectiveness; 2) We build a new similarity learn-
ing framework incorporating a measure-head network that
adaptively predicts instance volumes for reliable similarity
determination; 3) The experiments on both the supervised
and unsupervised tasks successfully validate the superiority
of our method over the state-of-the-art approaches.

2. Background & Related Work
We briefly review the research related to this paper.

Notations. We write matrices, vectors, and mappings as
bold uppercase characters, bold lowercase characters, and
calligraphy characters, respectively. We denote the training
dataset X ={xi∈Rd|i=1, 2, . . . , N} where d is the data
dimensionality and N is the total number of instances.

2.1. Metric Learning & Contrastive Learning

In supervised scenarios, similarity learning is commonly
referred to as metric learning (Xing et al., 2002; Yan et al.,
2023a; Kaya & Bilge, 2019), where the pairwise relation-
ships are provided through human supervision. Metric
learning has been extensively studied in both linear models
(Davis et al., 2007; Zadeh et al., 2016; Chen et al., 2019)
and nonlinear deep neural network based models (Chu et al.,
2020; Yan et al., 2023b; Furusawa, 2024). A lot of existing
research has focused on designing novel loss functions to
enrich sampling results, e.g., triplet loss (Ge, 2018), N-pairs
loss (Sohn, 2016), circle loss (Sun et al., 2020b), etc.

In unsupervised scenarios, self-supervised contrastive learn-
ing has garnered significant attention due to its competi-
tive performance compared with the fully supervised ap-
proach (Chen et al., 2020; Yan et al., 2022a). This approach
adopts the similarity metric framework from traditional met-
ric learning and also trains an encoder network in a pairwise
manner. Contrastive learning builds the positive (similar)
data pairs by pulling each instance closer to its data augmen-
tation and creates negative (dissimilar) data pairs by pushing
each instance away from others (Chuang et al., 2020; Yan
et al., 2022a; Tian et al., 2020; Chen et al., 2021).

Both supervised and unsupervised methods rely on point-to-
point similarity metrics. We propose a novel metric that con-
siders field-to-field relationships within the sample space.

2.2. Regularization & Augmentation

The primary goal of regularization is to enhance the general-
izability of learning algorithms. Early works minimize the
ℓ2/ℓ1-norm (Arpit et al., 2016; Yang et al., 2011), or nuclear
norm (Chen et al., 2022a; Dong et al., 2014) of learning
parameters to constrain the hypothesis space within inter-
pretable regions. Recent works such as dropout (Baldi &
Sadowski, 2013), batch normalization (Bjorck et al., 2018),
and mixup (Zhang et al., 2018) focus on regularizing the flat
decision boundary to achieve smooth generalization.

As an implicit form of regularization, data augmentation
is highly effective not only in similarity learning but also
across a broad spectrum of representation learning (Steiner
et al., 2021; You et al., 2020; Zheng et al., 2021). It lever-
ages human prior knowledge to quickly expand the training
dataset, enabling models to better capture neighborhood re-
lationships among sampled data points. Notably, recent ad-
vancements, such as set-level similarity (Wang et al., 2022),
automatic augmentation (You et al., 2021), and adversar-
ial augmentation (Lim et al., 2023), have further enriched
original data and extended sample space coverage.

In this paper, we consider a new metric that expands sample
space coverage and regularizes the learning process without
relying on additional augmented data.
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3. Methodology
In this section, we formulate our proposed new VAD metric
and the corresponding learning objective.

3.1. New Metric and New Framework

The projected Euclidean distance has been a prevalent sim-
ilarity metric in existing research (Liu et al., 2018). For
instances x, x̂ ∈ Rd, this metric is generally defined as:

dφ(x, x̂) = ∥φ(x)−φ(x̂)∥2, (1)

where φ : Rd → Rm represents a feature embedding
learned by an encoder network (e.g., ResNet (He et al.,
2016) and ViT (Han et al., 2022)), and the corresponding
embedding result is sometimes further normalized, namely,
for any x ∈ Rd, φ(x) = φ̂(x)/∥φ̂(x)∥2.

Volume-Aware Distance. As the above conventional metric
neglects the important information from the neighborhood
fields of x and x̂ during its distance calculation, here we
want to extend it to a volume-aware form. To be specific,
we build a measure function V : Rd → R+ to characterize
the volume value V(x) of the given instance x∈Rd. Based
on the volumes of two instances x and x̂, we can adaptively
scale the original distance value dφ(x, x̂) to intuitively con-
sider the geometric proximity between the two data balls
B(x,V(x)) and B(x̂,V(x̂)) with their corresponding vol-
umes. As the increased volume makes two data balls closer
to each other (see Fig. 2), we naturally use the negative
exponential function to confine the effect of volume to (0, 1)
and thus have the following VAD metric:

Dφ,V(x, x̂)

= dφ(x, x̂) / eV(x)+V(x̂)

= ∥φ(x)−φ(x̂)∥2 / eV(x)+V(x̂), (2)

where we can observe that the conventional projected Eu-
clidean distance dφ(x, x̂) is a specific case of VAD when
V(x)=V(x̂)=0. Meanwhile, the significantly large V(x)
(or V(x̂)) leads to that limV(x)→∞ Dφ,V(x, x̂) = 0, in
which the large-volume data ball will accommodate the
other instances, so that they can share the similar discrim-
inating features with each other. It is easy to validate that
such a new VAD metric satisfies the non-negativity and sym-
metry, so VAD is always a semi-metric for any φ and V , and
we can obtain that VAD is a strict metric if V is a constant
mapping. Nevertheless, it is notable that VAD does not
satisfy the triangle inequality necessarily, because that1

lim
V(x2)→∞

Dφ,V(x1,x2) +Dφ,V(x2,x3)

Dφ,V(x1,x3)
= 0, (3)

1For details, limV(x2)→∞
Dφ,V (x1,x2)+Dφ,V (x2,x3)

Dφ,V (x1,x3)
=

limV(x2)→∞
eV(x3)∥φ(x1)−φ(x2)∥2+eV(x1)∥φ(x2)−φ(x3)∥2

eV(x2)∥φ(x1)−φ(x3)∥2
=

limV(x2)→∞ Ce−V(x2) = 0, with C > 0 independent of V(x2).
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Figure 2. A comparison between the traditional distance and our
proposed VAD. Our metric provides the better coverage to the
sample space when calculating distances.

and thus there exists V̂(·) such that (Dφ,V̂(x1,x2) +

Dφ,V̂(x2,x3))/Dφ,V̂(x1,x3)<1, namely Dφ,V̂(x1,x2)+

Dφ,V̂(x2,x3)<Dφ,V̂(x1,x3). This relaxed triangle prop-
erty is friendly to the distance flexibility, because lots of
real-world similarity relations do not actually match the
triangle inequality necessarily (Fraigniaud et al., 2008; Xu
et al., 2022b), and VAD provides a flexible way to describe
those relations as needed. We also allow overlaps among
those data balls to make VAD able to reveal similar features
belonging to multiple instances.

Learning with Measure-Head. As shown in Fig. 3, we
introduce an additional network H(·) ahead of the existing
encoder φ(·) to measure the volume of the feature embed-
ding result φ(x), i.e., we let V = H ◦φ such that

V(x) = H[φ(x)] = ReLU[α⊤ReLU(W ·φ(x))], (4)

where the measure-head H : Rm → R+ is implemented
with a classical multi-layer perceptron (MLP) (Hastie, 2009).
Here W ∈ Rk×m, α ∈ Rk, and k is the dimensionality of
hidden layer. In this way, the volume prediction effectively
guides the training of the encoder network to capture useful
features. Meanwhile, the reliable features extracted by the
encoder φ can also assist the measure-head H in the faithful
volume determination. Both the encoder φ and the measure-
head H are learned with the conventional empirical loss.
For the widely used (n + 1)-tuplet/Npair loss in metric
learning (Sohn, 2016) and the NCE loss (Chen et al., 2020)
in contrastive learning, based on the given training set X =
{xi∈Rd|i=1, 2, . . . , N}, our corresponding empirical risk
can be easily summarized as

Lemp(φ,H)

=Ex,{bj}n
j=1

[ℓ(φ,H; {x,xb1 ,xb2 , . . . ,xbn})]

=Ex,{bj}n
j=1

[
−log

e−Dφ,V(x,x+)/γ

e−Dφ,V(x,x+)/γ+
∑n

j=1e−Dφ,V(x,xbj
)/γ

]
,

(5)

where γ > 0 is a temperature parameter, and the anchor in-
stance x is sampled from X . Here x+ is directly obtained
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Figure 3. The overall framework of our proposed volume-aware
distance based similarity learning.

from the perturbed x for the unsupervised (contrastive learn-
ing) case, or it is chosen randomly from the intra-class set
X +(x) = {z | yz = yx, z ∈ X \{x}} for the supervised
(metric learning) case. Correspondingly, the mini-batch
instances {xb1 ,xb2 , . . . ,xbn} are directly selected from
X \{x} for the unsupervised case, or from the inter-class
set X −(x) = {z | yz ̸= yx, z ∈ X } for the supervised
case (yx is the class label of x).

Volume Expansion Regularizer. Minimizing the above
empirical loss can finally learn a VAD metric which pro-
vides the consistent prediction with the supervisory in-
formation. However, we further need a new regular-
ization term to explicitly encourage the volume determi-
nation of instances towards a generalizable learning re-
sult. Actually, we want the data points in the embed-
ding space to capture/cover their intrinsically similar fea-
tures as much as possible, so here we simply encourage
the volume of each instance V(x) to be as large as pos-
sible. Such a volume expansion strategy makes the data
balls B(x1,V(x1)), B(x2,V(x2)), . . . ,B(xN ,V(xN )) to
accommodate each other as many as they can, and thus we
propose the following volume expansion regularizer (VER):

Rexpand(φ,H) = E{bj}n
j=1

[∑n

j=1
e−V(xbj

)
]
, (6)

where the mini-batch instances {xb1 ,xb2 , . . . ,xbn} are di-
rectly selected from X , and the natural exponential function
is employed again for numerical simplicity.

3.2. Optimization & Convergence

Here we elaborate on the optimization process and conver-
gence property of our learning algorithm.

Stochastic Gradient & Boundness. By combining the
above empirical loss in Eq. (5) and VER in Eq. (6), we
finally obtain the objective of our volume-aware distance
based similarity learning (VADSL):

min
φ,H

{F(φ,H) = Lemp(φ,H) + λRexpand(φ,H)}, (7)

Algorithm 1 Solving Eq. (7) via SGD.
Input: training set X = {xi}Ni=1; step size η > 0; regu-
larization parameter λ > 0; batch size n ∈ N+; randomly
initialized φ(0); maximum iteration number T .
For t from 1 to T :

1). Uniformly pick (n+ 1) instances {xbj}nj=0 from X ;

2). Compute ∇HLemp({bj}nj=1), ∇HRexpand({bj}nj=1),
∇φLemp({bj}nj=1) and ∇φRexpand({bj}nj=1) accord-
ing to Eq. (8) and Eq. (9);

3). Update the learning parameter:{
φ(t) = φ(t−1) − η(∇φLemp+λ∇φRexpand);

H(t) = H(t−1) − η(∇HLemp+λ∇HRexpand);
(10)

End
Output: converged φ(T ) and H(T ).

where λ > 0 is a trade-off parameter. Then we are able to
optimize our learning objective Eq. (7) in a stochastic way,
where we only need to specify the stochastic terms of both
Lemp(φ,H) and Rexpand(φ,H) for a given mini-batch. It is
worth pointing out that the learning parameters φ and H
are interdependent, where the stochastic gradient of Rexpand
w.r.t. H can be calculated as

∇HRexpand({bj}nj=1)=
∑n

j=1
−e−V(xbj

)∂V(xbj )

∂H
, (8)

and the stochastic gradient ∇HLemp({bj}nj=1) is a direct
calculation of ∂ℓ/∂H. Based on the gradient result w.r.t. H,
we can further obtain that{

∇φLemp({bj}nj=1)=∇HLemp({bj}nj=1) · ∂H
∂φ ,

∇φRexpand({bj}nj=1)=∇HRexpand({bj}nj=1) · ∂H
∂φ ,

(9)

which only requires a single derivative computation of
∂H/∂φ to get the gradient w.r.t. φ. The detailed iter-
ation steps based on stochastic gradient descent (SGD)
(Reddi et al., 2016) are summarized in Algorithm 1. Ex-
isting work reveals that the convergence of iteration points
(φ(1),H(1)), (φ(2),H(2)), . . . , (φ(T ),H(T )) can naturally
inherit from SGD as long as the objective function F(φ,H)
is Lipschitz-smooth and gradient-bounded (Huang et al.,
2019). We have the following theorem to ensure the gradi-
ent boundness and Lipschitz smoothness for our learning
objective F(φ,H) in Eq. (7).
Theorem 1. The learning objective F(φ,H) is always
gradient-bounded and Lipschitz-smooth if the encoder φ(·)
is gradient-bounded and Lipschitz-smooth.

This implies that the gradient boundness and Lipschitz
smoothness of our learning objective are directly inherited
from the original encoder network φ and well preserved in
the VADSL. As a result, the practical convergence of our
learning algorithm is theoretically guaranteed.
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4. Theoretical Analyses
In this section, we provide in-depth theoretical results to
investigate the generalization ability, the distance flexibility,
and the sample-space coverage of our proposed method.

4.1. Generalization Error Bound

Here we would like to prove that our algorithm provides
a tighter generalization error bound (GEB) (Chen et al.,
2021) compared with conventional similarity learning ap-
proaches. This is achieved by analyzing the convergence
rate of the GEB with respect to the sample size N and by
demonstrating how the proposed regularization term Rexpand
contributes to tightening this bound. Specifically, for the
underlying data distribution D , we denote the expected risk
L̃emp(φ,H;D) = E{ti|ti∼D}N

i=1
[Lemp(φ,H; {ti}Ni=1)] and

discuss how far it is from the empirical risk Lemp(φ,H).

Theorem 2. For any φ learned from the objective F(φ,H)
and any given constant δ ∈ (0, 1), we have that with proba-
bility at least 1− δ,

|Lemp(φ,H)− L̃emp(φ,H;D)|

≤ ω(n)log(1 +Dmax)
√
[ln(2/δ)]/(2Nθ(λ)), (11)

where Dmax = max{Dφ,H(t, t̂)|t, t̂ ∈ X }. The function
ω(n) = log

(
e2/n+ 1

)
is monotonically decreasing w.r.t.

n. The function θ(λ) = Cλ where the positive constant C
is independent of φ, H, and X .

The error bound in Eq. (11) is dominated by two factors.
First, the generalization error bound decreases as the sample
size N and batch size n increase. This behavior aligns
with observations in prior research, where larger datasets
and batch sizes typically lead to reduced generalization
error. More importantly, the error bound tightens as the
regularization parameter λ increases. This is because θ(λ),
defined as a monotonically increasing function of λ, grows
larger, thereby enabling faster convergence of the empirical
risk Lemp(φ,H) to the expected risk L̃emp(φ,H;D). It
means that our VER regularizer Rexpand can accelerate the
empirical risk convergence to the expected risk.

4.2. Distance Flexibility of VAD

Now we further analyze the flexibility of our VAD in order-
ing distance sequence. As the most crucial thing in similarity
learning is the relative distance (namely the order of dis-
tance sequence) but not the absolute distance itself (Liu &
Tsang, 2015; Ge, 2018), we want to show that for the given
embedding φ, our VAD always has a volume measure V to
fit any predefined distance sequence. Specifically, we have
the following theorem to reveal the flexibility of our VAD.

Theorem 3. For the given dataset X = {xi ∈ Rd|i =
1, 2, . . . , N}, feature embedding φ, and partial ordering

(a1, b1) ≽ (a2, b2) ≽ · · · ≽ (aC2
N
, bC2

N
), there always exists

H∗ : Rm → R+ such that

Dφ,V∗(xa1
,xb1) ≥ Dφ,V∗(xa2

,xb2) ≥ · · ·
≥ Dφ,V∗(xC2

N
,xC2

N
), (12)

where
⋃C2

N
i=1{(ai, bi)} = {(A,B)|A < B, whereA,B =

1, 2, . . . , N}, V∗ = H∗ ◦φ, and φ is independent of H∗.

The above interesting result implies that our VAD has a
flexible adaptability even if the feature embedding φ is
fixed. The measure-head can always learn an optimal H∗ to
make the finally predicted distances satisfy any given partial
ordering relations. This will also be beneficial to the feature
extraction of the encoder φ because the measure-head H∗

successfully separates the distance measurement apart from
the feature embedding and explicitly keeps it as a white-box
module in the overall learning framework.

4.3. Finite Covering of Volume-Awareness

As our basic motivation, volume-awareness is introduced to
extend the traditional data points x1,x2, . . . ,xN to the data
balls B(x1,V(x1)), B(x2,V(x2)), . . . ,B(xN ,V(xN )),
so that the whole sample space can be covered as much as
possible. Therefore, here we investigate if it is possible to
cover the sample space with any given coverage ratio.
Theorem 4. Suppose that φ is feature-normalized such
that z = φ(x) ∈ [L, U ]m, ∀x ∈ Rd. Then for any given
ρ ∈ (0, 1), there exists sufficiently large N such that∫

z∈[L,U ]m
sign[z ∈

⋃N
i=1 B(xi,V(xi))]dz∫

z∈[L,U ]m
1dz

≥ ρ, (13)

where the integral values
∫
z∈[L,U ]m

sign[z ∈⋃N
i=1 B(xi,V(xi))]dz =

∫
z∈

⋃N
i=1 B(xi,V(xi))

dz and∫
z∈[L,U ]m

1dz are the volumes of all data balls and the
whole feature space [L, U ]m, respectively.

This theorem clearly answers that the volume-awareness
can sufficiently cover (with a desired coverage ratio of ρ)
the whole sample space by using only the finite number
of (namely N ) instances. Intuitively, this is because each
instance has been endowed with a volume (i.e., the data
ball), and thereby it becomes easy to employ those volume-
specified entities to fill in the sample space.

5. Experimental Results
We conduct experiments to evaluate the performance of our
proposed method using real-world datasets. We first con-
duct ablation studies to reveal the usefulness of our newly
introduced block/regularizer. Then we compare our pro-
posed learning algorithm with existing state-of-the-art mod-
els in both the supervised metric learning and unsupervised
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Figure 4. The t-SNE visualizations of our VADSL on CIFAR-10
and STL-10 datasets.

contrastive learning tasks. Both the training and test pro-
cesses are implemented on Pytorch (Paszke et al., 2019)
with TeslaV100 GPUs, where the regularization parameter
λ is set to 0.5. The dimensionality m and the parameter
γ in Eq. (5) are set to 512 and 0.2, respectively. We use a
128-dimensional hidden layer for our H(·) in Eq. (4). The
hyper-parameters of compared methods are set to the rec-
ommended values according to their original papers.

5.1. Ablation Studies & Visualization Results

In this subsection, we explore the effectiveness of our pro-
posed VAD and its associated regularizer on different tasks.

For the supervised task, we adopt different feature encoders
(BN-Inception (Ioffe & Szegedy, 2015) for Npair (Sohn,
2016), and ResNet-50 (He et al., 2016) for ProxyAnchor
(Kim et al., 2020) and MetricFormer (Yan et al., 2022b))
to assess the performance of our method in metric learning.
The results are presented in Tab. 1, where we record the
test accuracy of all compared methods on CAR-196 (Krause
et al., 2013) and CUB-200 (Welinder et al., 2010) datasets
(with 500 epochs, learning rate = 10−3, and batch size =
512). We observe that our VADSL performs well across
all three baseline methods, providing stable performance
in various scenarios with different embedding sizes. Our
approach consistently improves upon all baseline methods
when equipped with the measure-head H. Furthermore,
increasing the regularization parameter λ from 0.1 to 0.5
leads to noticeable improvements in recognition accuracy,
highlighting the critical importance of our regularization
term, the volume expansion.

For the unsupervised task, here we adopt the ResNet-50

Table 1. Classification accuracy rates of baseline methods and our
method on CAR-196 and CUB-200 datasets (feature embedding
sizes are 128 and 512).

METHOD CAR-196 CUB-200

128-dim. 512-dim. 128-dim. 512-dim.

R@1 R@8 R@1 R@8 R@1 R@8 R@1 R@8

Npair(BN) w/o H 68.36 86.01 82.37 95.12 58.12 78.72 65.38 90.82
VADSL[N. w/ H (λ=0)] 68.36 86.21↑ 82.48↑ 95.29↑ 58.56↑ 79.12↑ 65.88↑ 91.22↑
VADSL[N. w/ H (λ=0.1)] 68.39↑ 88.26↑ 85.32↑ 96.12↑ 58.14↑ 80.34↑ 66.32↑ 91.87↑
VADSL[N. w/ H (λ=0.5)] 70.23↑ 90.39↑ 89.26↑ 96.32↑ 62.07↑ 82.35↑ 69.07↑ 92.55↑

ProxA.(R50) w/o H 69.24 87.86 87.71 97.86 62.12 79.26 69.72 92.41
VADSL[P. w/ H (λ=0)] 69.27↑ 87.86 87.77↑ 97.95↑ 62.12 79.86↑ 69.91↑ 92.69↑
VADSL[P. w/ H(λ=0.1)] 69.22 88.84↑ 89.85↑ 98.26↑ 62.26↑ 80.83↑ 71.25↑ 92.69↑
VADSL[P. w/ H (λ=0.5)] 70.26↑ 91.32↑ 92.42↑ 98.85↑ 63.19↑ 82.21↑ 73.92↑ 94.14↑

M.F.(R50) w/o H 72.42 89.53 91.76 97.21 69.33 85.12 74.42 92.53
VADSL[M. w/ H (λ=0)] 72.42 89.53 91.66 97.21 69.77↑ 85.82↑ 74.42 92.63↑
VADSL[M. w/ H(λ=0.1)] 73.45↑ 91.26↑ 91.48 97.77↑ 70.95↑ 86.48↑ 74.72↑ 92.65↑
VADSL[M. w/ H (λ=0.5)] 73.59↑ 92.35↑ 92.23↑ 98.45↑ 72.55↑ 88.35↑ 75.74↑ 93.45↑

backbone for several contrastive learning methods includ-
ing SimCLR (Chen et al., 2020), BYOL (Grill et al., 2020),
and HCL (Robinson et al., 2021). In Fig. 5, we record the
classification accuracy of all compared methods on CIFAR-
10 (Krizhevsky et al., 2009) and STL-10 datasets (Coates
et al., 2011), where we can observe that our method con-
sistently improves the corresponding baseline results in all
scenarios. To be more intuitive, we also conduct the t-SNE
embedding (Van der Maaten & Hinton, 2008) to obtain the
2-dimensional data points to better understand the useful-
ness of our introduced new component. In Fig. 4, VADSL
(w/ measure-head H) can successfully obtain the better sep-
arability than the baseline result (w/o H), where the results
of λ = 0.5 achieve very satisfactory separability. These
results clearly demonstrate the crucial role of maintaining
the measure-head network H along with the corresponding
regularizer Rexpand in our approach.

5.2. Experiments on Supervised Metric Learning

In this subsection, we evaluate the effectiveness and superi-
ority of VADSL on the supervised task of metric learning.

Image Data. We assess the performance of VADSL in
general image retrieval tasks across datasets on CAR-196
(Krause et al., 2013), CUB-200 (Welinder et al., 2010), SOP
(Oh Song et al., 2016), and In-Shop (Liu et al., 2016). The
methods we compare include JDR (Chu et al., 2020), IBC
(Seidenschwarz et al., 2021), ContextSimilarity (Liao et al.,
2023), MetricFormer (Yan et al., 2022b), MFC (Furusawa,
2024), and DASL (Chen et al., 2024a). All compared meth-
ods are incorporated into the ResNet-50 backbone, and we
refer to the combinations of our approach with Npair loss
and ProxyAnchor loss as VADSL-NP and VADSL-PA, re-
spectively. The NMI and Recall@R scores of all methods
are shown in Tab. 2, where we clearly observe that DASL,
MFC, and our methods obtain higher accuracies than other
methods. Compared with those strong baseline methods,
our VADSL can further achieve either better or competitive
NMI and Recall@R scores.
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Table 2. Performance of all compared methods (with ResNet-50 backbone) on CAR-196, CUB-200, SOP, and In-Shop datasets. The best
two results are bolded and underlined, respectively.

METHOD CAR-196 CUB-200 SOP In-Shop

NMI R@1 R@4 R@8 NMI R@1 R@4 R@8 NMI R@1 R@10 R@100 NMI R@1 R@10 R@20
Npair(Sohn, 2016) 69.50 82.57 94.97 95.92 69.53 64.52 85.63 91.15 91.11 76.21 88.43 92.08 85.12 90.21 98.01 98.72
ProxyA.(Kim et al., 2020) 75.72 87.71 95.76 97.86 72.31 69.72 87.01 92.41 91.02 78.39 90.48 96.16 90.22 91.49 98.12 98.83

JDR(Chu et al., 2020) 70.56 84.86 94.56 97.21 70.32 69.44 87.01 91.33 92.21 79.21 90.53 96.01 91.69 92.11 97.63 98.31
IBC(Seidenschwarz et al., 2021) 74.82 88.11 96.21 98.21 74.01 70.32 87.61 92.72 92.61 81.42 91.32 95.89 91.34 92.82 98.52 99.13
MetricF.(Yan et al., 2022b) 76.23 91.76 96.31 97.21 75.41 74.42 85.75 92.53 92.71 82.23 92.62 96.33 89.32 91.25 97.82 98.36
ContextS.(Liao et al., 2023) 76.32 91.80 97.14 98.41 74.01 71.91 88.82 93.42 92.61 82.63 92.56 96.74 86.89 90.73 97.82 98.51
MFC(Furusawa, 2024) 75.96 91.61 97.64 98.57 73.37 71.83 88.25 93.27 91.37 79.59 92.36 96.57 91.78 92.78 98.86 98.87
DASL(Chen et al., 2024a) 77.32 92.31 97.82 98.90 76.50 73.96 90.54 94.21 93.86 83.32 93.86 97.95 86.32 90.62 97.56 98.95

VADSL-NP (ours) 76.86↑ 93.42↑ 97.65↑ 98.97↑ 76.82↑ 77.36↑ 90.62↑ 94.61↑ 93.85↑ 84.55↑ 94.12↑ 98.92↑ 92.38↑ 93.38↑ 98.21↑ 99.53↑
VADSL-PA (ours) 78.22↑ 94.13↑ 98.28↑ 99.40↑ 77.55↑ 78.69↑ 91.45↑ 95.12↑ 94.96↑ 86.23↑ 95.36↑ 98.92↑ 93.15↑ 93.82↑ 98.95↑ 99.28↑

Table 3. Accuracy rates of all compared methods on AgeDB30,
CFPFP, and MegaFace datasets.

METHOD Face Verification Face Identif. (MegaFace)

Age. CFP. M.-106 M.-105 M.-104

Softmax 91.30 93.39 80.43 87.11 92.83
Sph.+ℓ2(Liu et al., 2017) 93.42 94.30 88.38 92.86 95.93
Sph.+SEC(Zhang et al., 2020) 93.45 94.39 88.42 92.79 95.88
Arc.+ℓ2(Deng et al., 2019) 93.93 94.77 90.68 94.34 96.83
Arc.+SEC(Zhang et al., 2020) 93.82 94.91 90.91 94.56 96.95
MFC(Furusawa, 2024) 94.98 95.21 90.82 95.68 97.32
VADSL (ours, Sph.+VAD) 94.92↑ 95.37↑ 89.75↑ 93.77↑ 96.42↑
VADSL (ours, Arc.+VAD) 95.21↑ 96.24↑ 91.78↑ 95.89↑ 97.45↑

Facial Data. We employ CASIA-WebFace (Yi et al., 2014)
as the training set while using AgeDB30 (Moschoglou et al.,
2017), CFP-FP (Sengupta et al., 2016), and MegaFace
(Kemelmacher-Shlizerman et al., 2016) as the test sets.
For all methods, we set the batch size to 256 and the em-
bedding size to 512, using the ResNet-50 backbone. The
methods compared include various regularized versions of
Sphereface (Zhang et al., 2020) and Arcface (Deng et al.,
2019), and the deep metric learning loss MFC (Furusawa,
2024). As shown in Tab. 3, we can clearly observe that
our VAD enhances the performance of both Sphereface and
Arcface in all cases. For example, on MegaFace with 106

distractors, the accuracies of Sphereface and Arcface are
boosted by 1.37% and 1.1%, respectively.

5.3. Experiments on Unsupervised Contrastive Learning

In this subsection, we use different domains of data to eval-
uate the effectiveness and superiority of VADSL on the
unsupervised task of contrastive learning.

Image Data. We employ ResNet-50 as the backbone and
integrate our method with SimCLR (Chen et al., 2020) and
SwAV (Caron et al., 2020), yielding the results labeled as
VADSL (cluster-free) and VADSL (cluster-used), respec-
tively. We train our method on ImageNet-100 and ImageNet-
1K (Russakovsky et al., 2015), and compare it with existing
representative approaches including HCL (Robinson et al.,
2021), PCL (Li et al., 2021), BYOL (Grill et al., 2020), GCA
(Chen et al., 2024b), and INTL (Weng et al., 2024). Addition-
ally, we implement our method using the popular ViT-B/16
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(d). CIFAR-10 with 400 epochs
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Figure 5. Classification accuracy of all methods on STL-10 and
CIFAR-10 datasets with different training epochs, where the (neg-
ative) batch size is from 32 to 512.

backbone and compare it with three more methods includ-
ing DINO (Caron et al., 2021), iBOT (Zhou et al., 2022),
and MTE (Li et al., 2024). The classification accuracy is
evaluated using the linear softmax (i.e., the Top-1 score and
Top-5 score of linear probing) and the k-NN classification
(here k = 8). From the results shown in Tab. 4, it is evi-
dent that our method consistently improves both SimCLR
and SwAV by at least 3% in most cases. When leveraging
the powerful ViT-B/16 encoder, our method consistently
improves the baselines and surpasses three state-of-the-art
methods (DINO, iBOT, and MTE) across multiple datasets.

Text Data. In this experiment, we use the STS dataset
(Agirre et al., 2016) (including the tasks of STS12, STS13,
STS14, STS15, and STS16). Following the approach in Sim-
CSE (Gao et al., 2021), we utilize pre-trained BERT (Devlin
et al., 2018) checkpoints and compare our method with
InforMin-CL (Chen et al., 2022b), misCSE (Klein & Nabi,
2022), PCL (Li et al., 2021), SCL (Wu et al., 2022b), and AD-
NCE (Wu et al., 2024). As we can observe from Tab. 5, our
VADSL obtains considerable improvements on the baseline
method SimCSE. Meanwhile, our method can outperform
the representative methods misCSE and InforMin-CL in
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Table 4. Classification accuracy (%) of all methods on ImageNet-100 and ImageNet-1K datasets. The batch sizes are set to 1024 and 512
for ResNet-50 and ViT-B/16 backbones, respectively. Here the best and second-best results are bolded and underlined, respectively.

METHOD FC100 Plant ImageNet-100 ImageNet-1K #Arch.
/#Total-Param.

5-W
1-S

5-W
5-S

5-W
1-S

5-W
5-S

100 epochs 400 epochs 300 epochs 800 epochs

k-NN Top-1 Top-5 k-NN Top-1 Top-5 k-NN Top-1 Top-5 k-NN Top-1 Top-5

SimCLR(Chen et al., 2020) 38.45 54.93 67.29 85.29 55.9 61.3 78.6 70.6 75.2 92.1 64.2 67.4 87.9 66.1 69.3 89.6 Res.50 / 23MB
BYOL(Grill et al., 2020) 35.49 55.91 65.92 85.91 56.3 65.5 77.8 69.2 73.2 90.1 66.9 71.2 90.5 67.2 73.2 91.5 Res.50 / 23MB
PCL(Li et al., 2021) 39.92 56.12 68.24 87.19 55.9 60.2 77.2 71.5 76.1 93.2 59.5 66.5 86.7 62.2 70.5 90.5 Res.50 / 47MB
SwAV(Caron et al., 2020) 40.19 58.29 69.29 88.39 58.2 61.0 79.4 72.1 75.8 92.9 65.4 73.1 91.2 65.7 75.3 91.5 Res.50 / 23MB
HCL(Robinson et al., 2021) 41.39 59.92 70.29 88.39 55.9 60.8 79.3 70.2 74.6 92.3 64.2 71.2 91.2 67.2 71.7 90.7 Res.50 / 23MB
GCA(Chen et al., 2024b) 44.27 60.53 74.57 91.69 60.5 63.4 79.4 72.8 75.6 93.2 67.4 74.5 91.9 67.8 76.6 92.9 Res.50 / 23MB
INTL(Weng et al., 2024) 44.96 62.49 77.05 91.92 60.1 66.5 78.1 69.5 76.3 92.8 67.2 73.5 91.7 65.8 75.2 91.7 Res.50 / 23MB
VADSL (ours, cluster-free) 45.92 63.59 77.95 92.95 61.6 67.1 79.8 73.9 76.5 93.8 68.9 73.7 92.2 68.3 76.3 92.4 Res.50 / 23MB
VADSL (ours, cluster-used) 45.96 64.19 77.95 93.19 62.1 67.3 80.9 74.5 77.8 94.8 68.8 74.9 92.9 69.8 77.6 93.8 Res.50 / 23MB

BYOL(Grill et al., 2020) 37.91 57.45 67.59 87.69 57.2 62.8 77.9 72.1 76.9 93.8 66.6 71.4 91.2 68.2 74.2 92.8 ViT.16 / 48MB
SwAV(Caron et al., 2020) 42.39 58.92 73.91 90.78 60.1 62.5 80.5 74.2 77.8 94.2 64.7 71.8 91.1 69.2 75.6 91.8 ViT.16 / 48MB
DINO(Caron et al., 2021) − − − − 61.5 67.5 81.8 78.2 79.2 95.5 72.3 76.1 92.4 76.2 78.2 94.2 ViT.16 / 48MB
iBOT(Zhou et al., 2022) − − − − 61.5 68.2 82.2 77.5 78.5 95.2 71.5 75.0 91.9 75.2 76.0 92.6 ViT.16 / 48MB
MTE w/ iBOT(Li et al., 2024) − − − − 62.3 66.7 82.5 78.5 79.5 94.8 72.4 75.4 93.3 78.3 83.9 95.2 ViT.16 / 48MB
VADSL (ours, cluster-free) 46.56 65.34 78.59 93.44 63.4 68.4 82.8 79.5 81.3 96.5 72.7 77.5 93.1 79.1 82.1 95.6 ViT.16 / 48MB
VADSL (ours, cluster-used) 47.12 65.45 79.69 93.78 64.6 69.8 83.9 80.7 83.4 97.8 73.8 79.6 93.9 80.5 83.4 96.9 ViT.16 / 48MB
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Figure 6. Violin plots (with mean values) of compared methods on
graph embedding tasks including eight popular datasets.

most cases, where our method also achieves the best aver-
age score in all compared methods. These results suggest
that our method can work well for the text data and VAD
leads to enhanced semantic understanding.

Graph Data. We further evaluate our method on a chal-
lenging graph embedding task using biochemical-molecule
data and social-network data, including DD, PTC, IMDB-
B, IMDB-M, RDT-B, PROTEINS, NCI1, and MUTAG (Ya-
nardag & Vishwanathan, 2015). We use the representa-
tive method InfoGraph (Sun et al., 2020a) as the baseline
and perform downstream graph-level classification on these
datasets. For evaluation, we fine-tune an SVM (Cortes &
Vapnik, 1995) on the learned feature representations using
10-fold cross-validation. The dataset is split into training,
test, and validation sets in an 8/1/1 ratio. The accuracy
results are reported after 10 runs. Our compared methods
include HCL, GraphCL (You et al., 2020), JOAO (You et al.,
2021), and CI-GCL (Tan et al., 2024). From violin plots
in Fig. 6, VADSL consistently improves InfoGraph across

Table 5. Classification accuracy rates (%) of all compared methods
on the STS dataset including five tasks and the corresponding
average scores.
METHOD STS12 STS13 STS14 STS15 STS16 Aver.
SimCSE (Gao et al., 2021) 68.69 82.05 72.91 81.15 79.39 76.84
PCL (Chen et al., 2022b) 72.74 83.36 76.05 83.07 79.26 78.90
Inf.Min (Chen et al., 2022b) 70.22 83.48 75.51 81.72 79.88 78.16
miCSE (Klein & Nabi, 2022) 71.71 83.09 75.46 83.13 80.22 78.72
SCL (Wu et al., 2022b) 72.86 84.91 76.79 84.35 81.74 80.13
ADNCE (Wu et al., 2024) 72.83 81.88 74.43 85.88 81.88 79.38
VADSL (ours) 72.74 85.54 78.32 87.85 82.44 81.38

all eight datasets. Moreover, compared with other graph
contrastive learning approaches, JOAO, CI-GCL, and our
method can perform relatively better. In most cases, our
VADSL surpasses all compared methods with higher accu-
racy mean and lower accuracy variance.

6. Conclusion
In this paper, we introduced an extension to the conven-
tional data point by representing each instance as a data ball,
endowing it with a volume value. This led to the natural
definition of the VAD metric, which computes the geomet-
ric proximity between data balls, allowing the relationship
among unsampled instances within these data balls to be
effectively captured. The incorporation of a volume expan-
sion regularizer further emphasized the utility of volume-
awareness in enhancing the model generalizability. VAD is
a general technique that can be easily integrated into both
supervised and unsupervised learning tasks with negligi-
ble computational overhead. To the best of our knowledge,
this is the first work in similarity learning that considers
the instance volume. We provided comprehensive theoreti-
cal analyses that guarantee the effectiveness of our method.
Experiments on real-world data across multiple domains
indicated that our learning algorithm acquires more reliable
features than state-of-the-art methods. In the future, we plan
to apply VAD in broader paradigms of machine learning.
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Appendix
This part is the appendix of our manuscript. It includes the additional experiments and the mathematical proofs of theorems.

A Additional Experiments
A.1 Additional Experiments on COCO dataset

We would like to further investigate the transferability of our method on the object detection and instance segmentation
tasks. We first pre-train the model (with ResNet-50 backbone) on ImageNet-1K, and then fine-tune the pre-trained backbone
on the new dataset. Specifically, we select COCO (Lin et al., 2014) as our target dataset and follow the common setting
(as discussed in MoCo-v3 (Chen et al., 2021)) to fine-tune all layers of the pre-trained model over the train2017 set
while evaluating the performance on the val2017 set. We employ Faster R-CNN (Ren et al., 2015) and Mask R-CNN (He
et al., 2017) as our backbone for detection and segmentation, respectively. We implement our method based on the loss
functions of SimCLR (negative-used) and BYOL (negative-free). As listed in Tab. A1, our VADSL shows considerable
improvement over MoCo-v3 and DINO on both two recognition tasks. This indicates that our method not only works well
on classification-oriented tasks but also on more natural image-related recognition tasks.

Table A1. Performance of all methods for two transfer learning tasks: object detection and instance segmentation on COCO dataset.

METHOD Object Detection Instance Segmentation

APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

Supervised 38.2 59.1 41.5 35.4 56.5 38.1
BYOL (Grill et al., 2020) 39.9 60.2 43.3 36.5 58.4 39.1
SwAV (Caron et al., 2020) 40.3 61.5 44.4 36.3 58.7 39.4
MoCo-v2 (Chen et al., 2020) 37.6 57.9 40.8 35.3 55.9 37.9
MoCo-v3 (Chen et al., 2021) 39.9 61.2 43.2 36.5 58.1 38.8
DenseCL (Wang et al., 2021) 40.3 59.9 44.3 36.4 57.0 39.2
DINO (Caron et al., 2021) 40.3 62.0 44.1 36.8 58.8 39.2
INTL (Weng et al., 2024) 40.7 60.9 43.7 35.4 57.3 37.6
VADSL (neg.-used) 43.1 63.3 43.4 37.6 59.4 40.2
VADSL (neg.-free) 42.1 63.1 45.1 36.5 58.5 39.7

A.2 Additional Experiments on BookCorpus dataset

For the BookCorpus dataset which includes six sub-tasks movie review sentiment (MR), product reviews (CR), subjectivity
classification (SUBJ), opinion polarity (MPQA), question type classification (TREC), and paraphrase identification (MSRP),
we follow the experimental settings in the baseline method quick-thought (QT) (Logeswaran & Lee, 2018) to choose the
neighboring sentences as positive pairs. Then, we further compare our VDASL with DCL, HCL, CO2 (Wei et al., 2021),
UnReMix (Tabassum et al., 2022), and ADNCE (Wu et al., 2024), and the corresponding average classification accuracy
rates are shown in Fig. A1.

A.3 Running Time Comparison

In our learning framework, we have an additional measure-head network as well as the corresponding VER regularizer in the
learning objective. We would like to investigate if the efficiency of the learning algorithm will be affected by the additional
calculations. Here we further provide experiments to record the training time of our method as well as the corresponding
baseline method. Specifically, we use two NVIDIA TeslaV100 GPUs to train our method based on SimCLR and SwAV with
100 epochs, respectively. For each case, we set the batch size to 512 and 1024.

In Tab. A2, we can find that the proposed new measure-head and the new regularizer only brings in very little additional
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Figure A1. Accuracy rates (%) of all methods on BookCorpus dataset including six text classification tasks.

time consumption. This is because the calculations of measure-head and VER are independent to the size of training data, so
the training time is completely acceptable in practice use.

A.4 Parametric Sensitivity

As we only introduced one additional hyper-parameter in our method. Here we want to simply investigate the parametric
sensitivity of the regularization parameter λ in our learning objective. Specifically, we change λ in [0.01, 5], and we record
the classification accuracy of our method on STL-10 and CIFAR-10 datasets (batch size=256/512/1024, epochs=100).
Tab. A3 shows that the accuracy variation of our method is smaller than 1.5%. These results clearly demonstrate that the
regularization parameter λ is relatively stable within a given range. It implies that the hyper-parameter of our method can be
easily tuned in practice use.

Table A2. Training time of the baseline methods and our proposed method (100 epochs, in hours).

METHOD
CIFAR-10 ImageNet-100 ImageNet-1K

512 1024 512 1024 512 1024

SimCLR 2.3 1.3 10.9 5.5 70.1 35.2
SwAV 2.6 1.7 11.5 5.8 71.2 36.7

VADSL (SimCLR+) 2.4 1.5 11.2 5.6 71.5 35.6
VADSL (SwAV+) 2.7 1.9 11.9 6.0 72.1 36.9

Table A3. Parametric sensitivity of λ on the STL-10 and CIFAR-10 datasets (%). Here λ is changed within [0.01, 5].

dataset (batchsize) 0.01 0.1 0.5 1.5 5

STL-10 (256) 76.8 77.8 78.1 77.9 76.9
STL-10 (512) 78.1 78.8 79.5 78.5 78.2
STL-10 (1024) 81.5 81.9 82.1 81.9 81.5

CIFAR-10 (256) 87.9 88.5 89.3 88.9 88.5
CIFAR-10 (512) 91.5 91.9 92.3 92.5 91.8
CIFAR-10 (1024) 93.2 93.6 94.5 93.6 93.1
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B Proofs
B.1 Proof for Theorem 1

Proof. For the gradient boundness of F , let us firstly assume that max{∥∇φ1(x)∥2, ∥∇φ2(x)∥2, . . . , ∥∇φm(x)∥2} ≤ δ
for any x ∈ Rd. Then we have that

∇φLemp(φ,H)

= Ex,{bj}n
j=1

−∑n
j=0e−Dφ,V(x,xbj

)/γ

e−Dφ,V(x,x+)/γ
·

− 1
γ e−Dφ,V(x,x+)/γ

∑n
j=0e−Dφ,V(x,xbj

)/γ∇φDφ,V(x, x
+)(∑n

j=0e−Dφ,V(x,xbj
)/γ
)2

−
− 1

γ e−Dφ,V(x,x+)/γ
∑n

j=0 e−Dφ,V(x,xbj
)/γ∇φDφ,V(x,xbj )(∑n

j=0e−Dφ,V(x,xbj
)/γ
)2




= Ex,{bj}n
j=1

− 1
γ e−Dφ,V(x,x+)/γ

∑n
j=0e−Dφ,V(x,xbj

)/γ(∇φDφ,V(x, x
+)−∇φDφ,V(x,xbj ))

e−Dφ,V(x,x+)/γ
(∑n

j=0e−Dφ,V(x,xbj
)/γ
)

 ,

and thus1

∥∇φLemp(φ,H)∥22

≤ max


∣∣∣∣∣∣−

1
γ e−Dφ,V(x,x+)/γ
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)/γ
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(n+ 2)2δD

= δ1.

Meanwhile we have that

∇φRexpand(φ,H)

=
∑n

j=1
−e−V(xbj

)∂V(xbj )

∂H
∇φ(x), (0.1)

and thus

∥∇φRexpand(φ,H)∥22

≤
∥∥∥∥∑n

j=1

∂V(xbj )

∂H
∇φ(x)

∥∥∥∥2
2

≤
∑n

j=1

∥∥∥∥∂V(xbj )
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1For details, here ∥∇φDφ,V(x, x̂)∥22 ≤ max(x,x̂)

(
∇φ∥φ(x)−φ(x̂)∥22(eV(x)+V(x̂))

2−2∥φ(x)−φ(x̂)∥22(eV(x)+V(x̂))(∇H∇φ(x)+∇H∇φ(x̂))

(eV(x)+V(x̂))4

)
≤

max(∥φ(x̂)
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j=1 ∇φj(x) +φ(x)
∑n

j=1 ∇φj(x̂)∥22) + 2max(∥φ(x)−φ(x̂)∥22 ∥∇φ(x) +∇φ(x̂)∥22) ≤ 4n2δ2 + 8 · 2δ2 = δD.
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Similarly, we can obtain that

∥∇HLemp(φ,H)∥22 ≤ δ3, and ∥∇HRemp(φ,H)∥22 ≤ δ4. (0.3)

Finally, we have that

∥∇F(φ,H)∥22
= ∥∇Lemp(φ,H) + λ∇Rexpand(φ,H)∥22
= ∥(∇φLemp(φ,H) + λ∇φRexpand(φ,H),∇HLemp(φ,H) + λ∇HRexpand(φ,H))∥2

2

≤ ∥∇φLemp(φ,H)∥22 + λ2∥∇φRexpand(φ,H)∥22 + ∥∇HLemp(φ,H)∥22 + λ2∥∇HRexpand(φ,H)∥22
= δ1 + λ2δ2 + δ3 + λ2δ4, (0.4)

which shows that F(φ,H) is always gradient-bounded.

For the Lipschitz-smoothness of F , let us also assume that there exists L > 0 such that ∥∇φ(x)−∇φ̂(x)∥2 ≤ L∥φ− φ̂∥2.
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and the proof is completed.

B.2 Proof for Theorem 2

We first introduce the following lemma for proving Theorem 2.

Lemma 1. For independent random variables t1, t2, . . . , tn ∈ T and a given function ω : T n → R, if ∀v′i ∈ T
(i = 1, 2, . . . , n), the function satisfies

|ω(t1, . . . , ti, . . . , tn)− ω(t1, . . . , t
′
i, . . . , tn)| ≤ ρi, (0.6)

then for any given µ > 0, it holds that P{|ω(t1, . . . , tn)− E[ω(t1, . . . , tn)]| > µ} ≤ 2e−2µ2/
∑n

i=1 ρ2
i .

Proof. We prove Theorem 2 by analyzing the perturbation (i.e., ρi in the above Eq. (0.6)) of the loss function Lemp.

We denote that

ω = Lemp(φ,H;X ) =
1

N

N∑
i=1

−log
e−Dφ,H(xi,x

+)/γ

e−Dφ,H(xi,x+)/γ+
∑n

j=1e−Dφ,H(xi,xbj
)/γ

, (0.7)
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and

ω̃r =
1

N

 N∑
i ̸=r

−log
e−Dφ,H(xi,x

+)/γ

e−Dφ,H(xi,x+)/γ+
∑n

j=1e−Dφ,H(xi,xbj
)/γ

,

− log
e−Dφ,H(x̂, x̂+)/γ

e−Dφ,H(x̂, x̂+)/γ+
∑n

j=1e−Dφ,H(x̂,x̂bj
)/γ

 ,

(0.8)
where (x̂, {x̂bj}nj=1) is an arbitrary mini-batch from the sample space. Then we have that

|ω − ω̃r|

=
1

N

∣∣∣∣∣log
e−Dφ,H(x̂, x̂+)/γ

e−Dφ,H(x̂, x̂+)/γ+
∑n

j=1e−Dφ,H(x̂,x̂bj
)/γ

− log
e−Dφ,H(xr,x

+)/γ

e−Dφ,H(xr,x+)/γ+
∑n

j=1e−Dφ,H(xr,xbj
)/γ

∣∣∣∣∣
≤ 1

N
log

[
e−Dφ,H(x̂, x̂+)/γ(e−Dφ,H(xr,x

+)/γ+
∑n

j=1e−Dφ,H(xr,xbj
)/γ)

e−Dφ,H(xr,x+)/γ(e−Dφ,H(x̂, x̂+)/γ+
∑n

j=1e−Dφ,H(x̂,x̂bj
)/γ)

]

≤ ω(n)log(1 + max{dφ(t, t̂)|t, t̂ ∈ X })
2CλN

, (0.9)

where ω(n) = log
(

e2
n + 1

)
. Meanwhile, we have

1

N

N∑
i=1

−log
e−Dφ,H(xi,x

+)/γ

e−Dφ,H(xi,x+)/γ+
∑n

j=1e−Dφ,H(xi,xbj
)/γ

−E

(
−log

e−Dφ,H(xi,x
+)/γ

e−Dφ,H(xi,x+)/γ+
∑n

j=1e−Dφ,H(xi,xbj
)/γ

)
= Lemp(φ,H;X )− L̃emp(φ,H;D). (0.10)

By Lemma 1, we let that for all i = 1, 2, . . . , N

ρi =
ω(n)log(1 + max{dφ(t, t̂)|t, t̂ ∈ X })

2CλN
, (0.11)

so that we have

P

{∣∣∣Lemp(φ;X )− L̃emp(φ;D)
∣∣∣ < ω(n)log(1 + max{dφ(t, t̂)|t, t̂ ∈ X })

2Cλ

√
ln(2/δ)
2N

}
= 1− 2e−2µ2/

∑N
i=1 ρ2

i

≥ 1− 2e
−2N(η

√
[ln(2/δ)]/(2CλN))2

max2(ω(n)log(1+max{dφ(t,t̂)|t∈X })α)

= 1− 2e−2N
(√

[ln(2/δ)]/(2CλN)
)2

= 1− 2e−ln(2/δ)

= 1− δ, (0.12)

where η =
ω(n)log(1+max{dφ(t,̂t)|t,̂t∈X })

2Cλ and µ =
√

[ln(2/δ)]/(2θ(λ)N). The proof is completed.

B.3 Proof for Theorem 3

Proof. We prove the theorem via mathematical induction.

i). We first validate that the inequality holds for (a1, b1) ≽ (a2, b2). To be specific, we suppose that Dφ,V(xa1 ,xb1) <
Dφ,V(xa2 ,xb2). Then we let 

VS(xa2) = SV(xa2),

VS(xb2) = SV(xa2
),

VS(xa1
) = V(xa1

),

VS(xb1) = V(xb1),

(0.13)
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and we have that

lim
S→+∞

Dφ,VS
(xa2

,xb2)

Dφ,VS
(xa1

,xb1)
= lim

S→+∞

∥φ(xa2
)−φ(xb2)∥2

∥φ(xa1
)−φ(xb1)∥2

· eV(xa1
)+V(xb1

)

eS(V(xa2 )+V(xb2
))

= 0, (0.14)

which implies that there exists sufficiently large Ŝ such that

Dφ,VŜ
(xa2 ,xb2) ≤ Dφ,VŜ

(xa1 ,xb1). (0.15)

Therefore, the case of (a1, b1) ≽ (a2, b2) clearly holds.

ii). By assume that the inequality holds for (a1, b1) ≽ (a2, b2) ≽ . . . ≽ (aK, bK), we show that the inequality can be still
satisfied for (a1, b1) ≽ (a2, b2) ≽ . . . ≽ (aK+1, bK+1). Specifically, without loss of generality, we assume that

Dφ,V(xa1
,xb1) ≥ Dφ,V(xa2

,xb2) ≥ · · · ≥ Dφ,V(xai
,xbi)

≥ Dφ,V(xaK+1
,xbK+1

) ≥ Dφ,V(xai+1
,xbi+1

) ≥ · · · ≥ Dφ,V(xaK
,xbK ), (0.16)

where 0 ≤ i ≤ K − 1. Then we let 
VS(xaK+1

) = SV(xaK+1
),

VS(xbK+1
) = SV(xbK+1

),

VS(xaj ) = V(xaj ),

VS(xbj ) = V(xbj ),

(0.17)

and thus we have

lim
S→+∞

Dφ,VS
(xaK+1

,xbK+1
)

Dφ,VS
(xaj ,xbj )

= lim
S→+∞

∥φ(xaK+1
)−φ(xbK+1

)∥2
∥φ(xaj

)−φ(xbj )∥2
· eV(xaj

)(1+(S−1)sign(aj∈{aK+1,bK+1}))+V(xbj
)(1+(S−1)sign(bj∈{aK+1,bK+1}))

eS(V(xaK+1
)+V(xbK+1

))

= 0, (0.18)

where j = 1, 2, . . . ,K, and at most one of the conditions aj ∈ {aK+1, bK+1} and bj ∈ {aK+1, bK+1} can be satisfied due
to the fact that (aK+1, bK+1) /∈ {(a1, b1), (a2, b2), . . . , (aK, bK)}. Therefore, there exists sufficiently large S∗ such that

Dφ,VS∗ (xaK+1
,xbK+1

) ≤ min{Dφ,VS∗ (xa1 ,xb1),Dφ,VS∗ (xa2 ,xb2), . . . ,Dφ,VS∗ (xaK
,xbK )}. (0.19)

Then we need to resort {Dφ,VS∗ (xa1
,xb1),Dφ,VS∗ (xa2

,xb2), . . . ,Dφ,VS∗ (xaK
,xbK )}. To be specific, we further con-

struct that 
V
√
S

S (xaK
) =

√
SV(xaK

),

V
√
S

S (xbK ) =
√
SV(xbK ),

V
√
S

S (xaj
) = VS(xaj

),

V
√
S

S (xbj ) = VS(xbj ),

(0.20)

and we have that

lim
S→+∞

D
φ,V

√
S

S

(xaK
,xbK )

D
φ,V

√
S

S

(xaj ,xbj )

= lim
S→+∞

∥φ(xaK
)−φ(xbK )∥2

∥φ(xaj
)−φ(xbj )∥2

· eV(xaj
)(1+(

√
S−1)sign(aj∈{aK ,bK}))+V(xbj

)(1+(
√
S−1)sign(bj∈{aK ,bK}))

e
√
S(V(xaK

)+V(xbK
))

= 0, (0.21)

where j = 1, 2, . . . ,K − 1, and at most one of the conditions aj ∈ {aK , bK} and bj ∈ {aK , bK} can be satisfied due to the
fact that (aK, bK) /∈ {(a1, b1), (a2, b2), . . . , (aK−1, bK−1)}. Therefore, there exists sufficiently large S1 such that

D
φ,V

√
S1

S1

(xaK
,xbK ) ≤ min{D

φ,V
√

S1
S1

(xa1
,xb1),D

φ,V
√

S1
S1

(xa2
,xb2), . . . ,D

φ,V
√

S1
S1

(xaK−1
,xbK−1

)}. (0.22)
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By letting S∗ = S1, we have that

D
φ,V

√
S∗

S∗
(xaK+1

,xbK+1
)

≤ D
φ,V

√
S∗

S∗
(xaK

,xbK )

≤ min{D
φ,V

√
S∗

S∗
(xa1

,xb1),Dφ,V
√

S∗
S∗

(xa2
,xb2), . . . ,Dφ,V

√
S∗

S∗
(xaK−1

,xbK−1
)}. (0.23)

By further constructing Eq. (0.20) K − 1 times for (aK−1, bK−1), (aK−2, bK−2), . . . , (a1, b1), we finally have that

Dφ,V∗(xaK+1
,xbK+1

) ≤ Dφ,V∗(xaK
,xbK ) ≤ . . . ≤ Dφ,V∗(xa1 ,xb1), (0.24)

which implies that the inequality holds for (a1, b1) ≽ (a2, b2) ≽ . . . ≽ (aK+1, bK+1).

iii). By integrating i) and ii), we have that Dφ,V∗(xa1
,xb1) ≥ Dφ,V∗(xa2

,xb2) ≥ · · · ≥ Dφ,V∗(xC2
N
,xC2

N
) can be

satisfied for (a1, b1) ≽ (a2, b2) ≽ · · · ≽ (aC2
N
, bC2

N
). The proof is completed.

B.4 Proof for Theorem 4

Proof. We firstly show that for the given dataset X , there exist positive constants Vmin and Dmin, such that the learned
encoder φ∗ and measure-head H∗ (corresponding to the volume function V∗)

V∗(xi) ≥ Vmin, ∀i = 1, 2, . . . , N, (0.25)

and
Dφ∗,V∗(xi,xj) ≥ Dmin, 1 ≤ i < j ≤ N. (0.26)

This is because that F(φ∗,H∗) ≤ F(φ,H), namely

Ex,{bj}n
j=1

[
−log

e−Dφ∗,H∗ (x,x+)/γ

e−Dφ∗,H∗ (x,x+)/γ+
∑n

j=1e−Dφ∗,H∗ (x,xbj
)/γ

]
+ λE{bj}n

j=1

[∑n

j=1
e−V∗(xbj

)
]

≤ Ex,{bj}n
j=1

[
−log

e−Dφ,H(x,x+)/γ

e−Dφ,H(x,x+)/γ+
∑n

j=1e−Dφ,H(x,xbj
)/γ

]
+ λE{bj}n

j=1

[∑n

j=1
e−V(xbj

)
]
, (0.27)

and thus

e−V∗(xbk
)

≤ Ex,{bj}n
j=1

[
−log

e−Dφ,H(x,x+)/γ

e−Dφ,H(x,x+)/γ+
∑n

j=1e−Dφ,H(x,xbj
)/γ

+log
e−Dφ∗,H∗ (x,x+)/γ

e−Dφ∗,H∗ (x,x+)/γ+
∑n

j=1e−Dφ∗,H∗ (x,xbj
)/γ

]
+ λE{bj}n

j=1

[∑n

j=1
e−V(xbj

)
]
− λE{bj}n

j=1,j ̸=k

[∑n

j=1
e−V∗(xbj

)
]
, (0.28)

so that

V∗(xbk)

≥ −log

[
Ex,{bj}n

j=1

[
−log

e−Dφ,H(x,x+)/γ

e−Dφ,H(x,x+)/γ+
∑n

j=1e−Dφ,H(x,xbj
)/γ

+log
e−Dφ∗,H∗ (x,x+)/γ

e−Dφ∗,H∗ (x,x+)/γ+
∑n

j=1e−Dφ∗,H∗ (x,xbj
)/γ

]
+λE{bj}n

j=1

[∑n

j=1
e−V(xbj

)
]
− λE{bj}n

j=1,j ̸=k

[∑n

j=1
e−V∗(xbj

)
]]

≥ log

[
Ex,{bj}n

j=1

[
log

e−Dφ∗,H∗ (x,x+)/γ

e−Dφ∗,H∗ (x,x+)/γ+
∑n

j=1e−Dφ∗,H∗ (x,xbj
)/γ

e−Dφ,H(x,x+)/γ+
∑n

j=1e−Dφ,H(x,xbj
)/γ

e−Dφ,H(x,x+)/γ

]

+
1

λE{bj}n
j=1

[∑n
j=1 e−V(xbj

)
]
− λE{bj}n

j=1,j ̸=k

[∑n
j=1 e−V∗(xbj

)
]
 . (0.29)
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So we easily have that

V∗(xbk)

≥ log

 1

λE{bj}n
j=1

[∑n
j=1 e−V(xbj

)
]
− λE{bj}n

j=1,j ̸=k

[∑n
j=1 e−V∗(xbj

)
]


≥ log
[

1

λe−V(xbk
)

]
= log

[
1

λ
eV(xbk

)

]
= log[

1

λ
] + log

[
eV(xbk

)
]

=
1

λ
+ V(xbk) = Vmin. (0.30)

Meanwhile, we have

Ex,{bj}n
j=1

[
log

e−Dφ∗,H∗ (x,x+)/γ+
∑n

j=1e−Dφ∗,H∗ (x,xbj
)/γ

e−Dφ∗,H∗ (x,x+)/γ

]

≤ Ex,{bj}n
j=1

[
−log

e−Dφ,H(x,x+)/γ

e−Dφ,H(x,x+)/γ+
∑n

j=1e−Dφ,H(x,xbj
)/γ

]
+ λE{bj}n

j=1

[∑n

j=1
e−V(xbj

)
]

− λE{bj}n
j=1

[∑n

j=1
e−V∗(xbj

)
]

= E1, (0.31)

which implies that

e−Dφ∗,H∗ (x,xbj
)/γ

≤ e−Dφ∗,H∗ (x,x+)/γexp(E1)− (e−Dφ∗,H∗ (x,x+)/γ+
∑n

j ̸=k
e−Dφ∗,H∗ (x,xbj

)/γ), (0.32)

and thus

Dφ∗,H∗(x,xbj )

≥ −γlog
[
e−Dφ∗,H∗ (x,x+)/γexp(E1)− (e−Dφ∗,H∗ (x,x+)/γ+

∑n

j ̸=k
e−Dφ∗,H∗ (x,xbj

)/γ)
]

= γlog

[
1

e−Dφ∗,H∗ (x,x+)/γexp(E1)− (e−Dφ∗,H∗ (x,x+)/γ+
∑n

j ̸=k e−Dφ∗,H∗ (x,xbj
)/γ)

]

≥ γlog
[

1

e−Dφ∗,H∗ (x,x+)/γ

]
≥ γlog

[
1

e−Dφ∗,H∗ (x,x+)/γ

]
= Dφ∗,H∗(x, x+) = Dmin. (0.33)
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Then we go ahead to show the finite coverage. To be specific, the union volume of all N data balls
B(x1,V∗(x1)),B(x2,V∗(x2)), . . . ,B(xN ,V∗(xN )) can be calculated as∫

z

sign[z ∈
N⋃
i=1

B(xi,V(xi))]dz

=

N∑
i=1

∫
z

sign[z ∈ B(xi,V(xi))]dz −
∑
i<j

∫
z

sign[z ∈ B(xi,V(xi))
⋂

z ∈ B(xj ,V(xj))]dz

+
∑

i<j<k

∫
z

sign[z ∈ B(xi,V(xi))
⋂

z ∈ B(xj ,V(xj))
⋂

z ∈ B(xk,V(xk))]dz − . . .+

∫
z

sign[z ∈
N⋂
i=1

B(xi,V(xi))]dz

≥
N∑
i=1

∫
z

sign[z ∈ B(xi,V(xi))]dz −N max
i<j

(∫
z

sign[z ∈ B(xi,V(xi))
⋂

z ∈ B(xj ,V(xj))]dz
)

= NVmin −Nµ(Dmin)Vmin

= N(1− µ(Dmin))Vmin, (0.34)

where µ(Dmin) ∈ (0, 1). Finally, we let

N =

⌈
ρ|L− U |m

(1− µ(Dmin))Vmin

⌉
, (0.35)

and have that ∫
z

sign[z ∈
⋃N

i=1 B(xi,V(xi))]dz∫
z∈[L,U ]m

1dz

≥ N(1− µ(Dmin))Vmin ·
1

|L− U |m

≥ ρ|L− U |m

(1− µ(Dmin))Vmin
(1− µ)Vmin ·

1

|L− U |m

= ρ, (0.36)

which completes the proof.
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