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Abstract

Recent progress in long-context language models has spurred development of
diverse benchmarks that often test multiple skills simultaneously, making it diffi-
cult to pinpoint specific reasons for model failures. To address this, we introduce
RULERV2, a benchmark with systematic difficulty progression from basic synthetic
retrieval to complex problem-solving across three domains: multi-key NIAH, multi-
value NIAH, and multi-doc QA. We conduct a large-scale evaluation of leading
models, including seven closed-source and 27 open-weight models. Our findings
reveal a notable performance gap between the two. Critically, we demonstrate that
all models, including those claiming million-token context windows, exhibit per-
formance degradation with increasing length, highlighting an unresolved challenge.
Our analysis shows that explicit decomposition into a retrieve-then-solve strategy
outperforms implicit, single-step approaches, and chain-of-thought reasoning en-
ables models to discover effective decomposition autonomously. Finally, we find
that even top-performing open-weight models struggle with fundamental retrieval
and copying tasks, leading to degraded performance on more complex problems.1

1 Introduction

Recent advancements in long-context language models have driven the creation of various evaluation
benchmarks [1, 2, 3, 4]. These benchmarks test skills beyond simple literal matching [5], including
semantic retrieval, summarization, question answering, in-context learning, and coding. However,
they suffer from a critical limitation: by simultaneously testing multiple capabilities (retrieval,
aggregation, reasoning, etc.) [6], they obscure whether failures stem from basic information access or
higher-level reasoning, hindering targeted model improvement.

To address this gap, we introduce RULERV2, a benchmark designed with a systematic bottom-up
approach that isolates fundamental long-context capabilities before testing their integration. Unlike
existing benchmarks that focus on multi-task ability, RULERV2 increases task difficulty from nearly
solved tasks, like retrieval, to show performance degradation and more precise diagnosis of model
limitations. RULERV2 is organized into three task domains selected from RULERv1 [7] including (1)
multi-key NIAH: from retrieving a single needle to solving a single problem among concatenated
questions [8]. (2) multi-value NIAH: from retrieving multiple, shared-key needles to counting and
copying specific indexed problems [9]. (3) multi-doc QA: from literal content matching to question
answering requiring semantic retrieval and QA reasoning [10]. Each domain progresses through four
difficulty levels: basic (synthetic retrieval), easy (realistic retrieval), medium (retrieve-then-solve),
and hard (single-step solve) (see Figure 1).

1We release our code at https://anonymous.4open.science/r/RULERv2

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Evaluating the Evolving
LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling.
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… special magic numbers for XX is: 123
… special magic numbers for YY is: 456
…
What is the special magic number for XX 
mentioned in the provided text? 
Answer: 123

Question 123: XX …
Question 456: YY …

Please copy the Question 123 from the 
context.
Question 123: XX

Question 123: XX …
Question 456: YY …
Please copy the Question 123 from the 
context and then solve it with an answer 
from A, B, C, D.
Question 123: XX
Answer: A

Multi-key NIAH

Question 123: XX …
Question 456: YY …

Please solve the Question 123 from the 
context with an answer from A, B, C, D.
Answer: A

+ Realistic Content

- Retrieval

+ General Knowledge Understanding

… special magic numbers for XX is: 123 
… special magic numbers for XX is: 456
…
What are all the special magic numbers 
for XX mentioned in the provided text? 
Answer: 123 456

Question 123: XX …
Question 123: YY …
Please copy all the Question 123 from 
the context.
Question 123: XX 
Question 123: YY

Question 123: XX … 
Question 123: YY …
Please first copy all the Question 123 
from the context and then copy the 2nd 
(1 indexed) Question 123 at the end.
Question 123: XX 
Question 123: YY
Question 123: YY

Multi-value NIAH

Question 123: XX … 
Question 123: YY …

Please copy the 2nd (1 indexed) 
Question 123 from the context.
Question 123: YY

+ Realistic Content

- Retrieval

+ Counting

Doc 123: XX …
Doc 456: YY …

Text: XX
Most relevant document index: 123

Doc 123: XX …
Doc 456: YY …

Question: xx
Index of the most relevant document 
that can help answer the question: 123

Doc 123: XX … 
Doc 456: YY …
Please first find and copy paste the 
documents relevant to the following 
question and then answer it based on 
the documents you find. 
Question: xx
Doc 123: XX  Answer: …

Multi-doc QA

Doc 123: XX …
Doc 456: YY …

Please answer the following question 
based on the documents. 
Question: xx
Answer: …

+ Semantics

- Retrieval

+ QA Reasoning

≈ LOFT

≈ MRCR

Basic (synthetic retrieval) Easy (realistic retrieval) Medium (retrieve-then-solve) Hard (single-step solve)

Figure 1: RULERV2 has total 12 tasks among three task domains (multi-key/multi-value NIAH,
multi-doc QA) with four task difficulties from basic to hard. See Appendix A for the full details.

We conduct a large-scale evaluation of leading long-context models, including Gemini 2.5 [11],
GPT 5 [12], GPT 4.1 [13], o3 [14], Claude Sonnet 4 [15], Grok 4 [16], and 24 open-weight models
ranging from 8B to over 100B parameters. Our evaluation reveals that all models, including those
claiming million-token context windows [17, 18, 19], exhibit performance degradation as context
length increases, challenging current claims of solved long-context understanding. Additionally, we
find a notable performance gap between closed-source and open-weight models, with top open-weight
models being mixture-of-experts (MoE) transformers in large sizes without hybrid architectures.

Our analysis yields several key insights. First, decomposing complex problems into a retrieve-then-
solve strategy significantly outperforms direct single-step solving. Chain-of-thought enables models
to discover effective decomposition autonomously. Second, while more few-shot demonstrations
benefit larger models, majority voting provides negligible gains, though the maximum scores improve
with more generations. Finally, top-performing open-weight models struggle with basic synthetic
retrieval tasks when needle length or quantity increases, highlighting persistent copying issues that
propagate to more complex problems. Therefore, building truly reliable long-context models requires
focusing fundamental tasks before tackling more difficult problems.

2 Experiments

Data. We use MMLU [20] for both multi-key and multi-value NIAH and HotPotQA [21] for multi-
doc QA. MMLU uses the 5-shot setting while multi-value NIAH uses four needles. We generate 100
samples for each context length: 8k, 16k, 32k, 64k, and 110k tokens (approximates 128k performance
to reserve tokens for reasoning and output). While most tasks have exact-match ground truths, we
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Figure 2: Performance of selected models on RULERV2. Scores are averaged across 12 tasks and five
lengths ranging from 8k to 128k. Results with thinking are shown with stripes. The top-performing
score for each model size is highlighted in red.

also account for partially correct answers. Our final score combines recall-based accuracy and word
error rate (WER): max(Recall, 1− WER). Full inference setup is in Appendix B.

Models. We evaluate seven closed-source and 27 open-weight models, ranging from 7B to 671B
parameters across dense transformers, hybrid transformers, and Mixture-of-Experts (MoE) architec-
tures. Models span general instruction-following and enhanced reasoning capabilities. We use greedy
decoding for instruct models and recommended sampling parameters for reasoning models, with 16k
token output limits for Chain-of-Thought reasoning. Full specifications are in Appendix G.

Results Figure 2 shows aggregated RULERV2 performance. Except Grok4, closed-source mod-
els outperform open-weight models. Within model families (Qwen3), larger models consistently
outperform smaller ones. Top-performing open-weight models are primarily MoE transformers,
while hybrid architectures like Llama4, Minimax, and Jamba underperform expectations, trailing
smaller dense transformers. Reasoning models show 3− 7% improvement when thinking is enabled.
However, despite claims of context lengths beyond 128k, no model maintains stable performance as
context expands (Figure 4). Larger models maintain higher absolute performance but show similar
relative degradation. Gemini2.5 flash and GPT4.1, competitive at shorter lengths, suffer 15%
degradation at 1M tokens (details in Appendix C).

3 Analysis
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#V=32

Number of needles. Our default multi-value NIAH uses four nee-
dles, but we analyze varying configurations. The figure on the right
shows increasing needle count leads to performance degradation
for the top-performing open-weight model, as it requires attending
to multiple scattered locations. This indicates current models can-
not reliably retrieve all relevant information, likely due to attention
mechanism limitations. For other NIAH analysis, see Appendix D.1.

Task difficulties from basic to hard. Figure 3 (top left) shows all models achieve near-perfect
scores on basic and easy multi-key NIAH, but performance drops at medium and hard levels relative to
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Figure 3: (Top) We analyze four task difficulties in two task domains, using four instruct models
from each model sizes. Golden context is the score without any distractors. (Bottom) Results of
test-time compute scaling including input context scaling and inference steps scaling. All the scores
are evaluated on the hard level of multi-value NIAH task.

golden context baseline (short-context MMLU). For multi-value NIAH (Figure 3, top right), GPT4.1
struggles with joint retrieval and counting (hard level), achieving only 58% accuracy. This explains
why MRCR [9] is difficult: failure can stem from either retrieval or counting. Both analyses show
retrieve-then-solve (medium level) consistently outperforms single-step solve (hard level), suggesting
that these tasks can be effectively decomposed and accurate retrieval is a prerequisite for reliable
downstream skill usage within larger contexts. Additional results in Appendix D.2.

Scaling test-time compute. We scale input via few-shot demonstrations from 0 to 16 (Figure 3,
bottom left). Performance improves for larger models while smaller models show no improvement
over zero-shot performance, suggesting a capacity threshold where models need sufficient parameters
to learn complex retrieval and counting patterns from in-context examples. We evaluate reasoning
models across medium and hard difficulty levels (Figure 3, bottom right). Results show hard task
performance with thinking approaches medium task performance without thinking, suggesting
reasoning enables autonomous task decomposition. For majority voting analysis see Appendix D.3.

4 Conclusion

We introduced RULERV2, a systematic bottom-up benchmark that progressively increases task
difficulty from basic synthetic retrieval to complex problem-solving across three key domains.
Through comprehensive evaluation of 34 long-context models, we revealed critical limitations
that challenge existing claims of solved long-context understanding. All models, including those
claiming million-token context windows, exhibit performance degradations as task difficulty and
context length increase. Most importantly, even top-performing open-weight models struggle with
fundamental retrieval and copying tasks which are prerequisite skills for complex problem-solving.
This finding suggests that reliable long-context AI requires a foundation-first approach, where
mastering basic information access precedes complex multi-step reasoning. Our analysis reveals
that explicit task decomposition through the retrieve-then-solve strategy consistently outperforms
single-step approaches, and chain-of-thought reasoning enables models to autonomously discover
effective problem-solving strategies. RULERV2 addresses a critical evaluation gap by systematically
isolating fundamental capabilities, providing a rigorous framework for diagnosing model limitations
and measuring progress on the core skills that underpin reliable long-context understanding.
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A Benchmark Details

The RULERV2 benchmark comprises three task domains: multi-key NIAH, multi-value NIAH,
and multi-doc QA. Each category features four levels of difficulty designed to test long-context
capabilities: basic (synthetic retrieval), easy (realistic retrieval), medium (retrieve-then-solve), and
hard (single-step solve). This progression enables systematic analysis of model capabilities. If a
model fails at the basic/easy level, the issue is fundamental retrieval. If it succeeds at the medium
level but fails at hard, the problem lies in implicit task decomposition rather than underlying skill.
All evaluation examples are extensible to arbitrary context lengths and allow for flexible substitution
of the base tasks. See Appendix H for the full task templates.

A.1 Multi-key Needle-in-a-Haystack (Multi-key NIAH)

Based on the definition from [7], this task requires models to retrieve a single "needle" (a target piece
of information) from a context filled with similar distractor needles. Prior work has studied variants
of this task, such as phonebook lookups [22] and JSON key-value retrieval [23]. Although finding
specific information among highly similar content is challenging, some state-of-the-art long-context
models can already achieve near perfect scores on such tasks. Therefore, we view the original
MK-NIAH task as a foundational skill and increase the difficulty by requiring the model to not only
retrieve but also solve a problem from a set of concatenated questions.

• Basic: The context consists of key-value pairs, where a word (the key) maps to a number (the
value). Given a query word, the model must retrieve the corresponding number. This tests pure
synthetic retrieval capability.

• Easy: We use a question index as the needle key and a question sampled from a short-context task
as the needle value. Given an index, the model must retrieve and copy the corresponding question.
This tests retrieval with realistic content.

• Medium: Beyond copying the question, this level tests if the model can also solve it. The prompt
instructs the model to first retrieve and copy the question, and then provide its answer. This tests a
combination of retrieval and problem-solving.

• Hard: Without an explicit instruction to retrieve and copy, this level tests if the model can directly
solve one of the concatenated questions. This tests implicit task decomposition, i.e. whether models
can autonomously break down the complex task into retrieval and solving steps. The performance
upper bound is the score on the golden question presented alone.

A.2 Multi-value needle-in-a-Haystack (Multi-value NIAH)

Unlike multi-key NIAH, this task requires the model to find all needles that share the same key. The
goal is to evaluate the ability to perform comprehensive retrieval of non-unique information. We
increase the difficulty by introducing a counting component to find a needle at a specific ordinal
position, similar to the Multi-Round Co-reference Resolution (MRCR) task [9]. Both tasks require
identifying all needles with the same key scattered in the context and then using their order to
determine the correct answer.

• Basic: The context contains multiple needles sharing the same key (a word). Given the query word,
the model must retrieve all associated values (numbers). This tests the ability to perform multiple
selective recalls.

• Easy: The needles are changed to indices mapping to realistic questions. Given an index, the model
must retrieve and copy all questions associated with that same index, introducing realistic content
to comprehensive retrieval.

• Medium: After retrieving all relevant questions, the model must identify a specific question
by ordinal position. This adds a counting component to test whether models can track order
relationships among retrieved information.

• Hard: Without explicit retrieval instructions, the model must directly find the question at a specific
ordinal position for the given key. This task simplifies MRCR by removing confounding factors
such as multi-turn conversational history and the requirement to prepend special strings, while
preserving the core challenge of joint retrieval and counting.
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A.3 Multi-document question answering (multi-doc QA)

This task tests capabilities directly relevant to Retrieval-Augmented Generation (RAG), and has
been used in various forms in prior benchmarks [1, 3, 10]. In RULERV2, we progress from literal,
exact-match retrieval to more complex sematic retrieval and question answering.

• Basic: We test the fundamental skill of document retrieval. The model is provided with the full
content of a document and must retrieve its correct index. This isolates pure document identification
capability.

• Easy: This task requires the model to perform semantic retrieval by identifying documents that
contain the answer to a given question. This test a model the ability to understand conceptual
relationships between a query and document content.

• Medium: This level tests QA reasoning after explicit retrieval. The model must first copy and
paste the relevant documents and then use them to answer the question.

• Hard: Without explicit retrieval instructions, the model is tested on its ability to perform end-to-
end QA by directly answering the question based on the full context of concatenated documents,
requiring both semantic understanding and reasoning integration.

B Additional Experimental Setup

To efficiently speed up inference, we evaluated all open-weight models using vLLM [24] and
SGLang [25]. We ran inference on a maximum of 16 NVIDIA H100 GPUs, depending on the
hardware requirements recommended by the source. All tasks were completed in under four hours,
with the exception of the 1m token experiment.

C Additional Results
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Figure 4: (Left): Comparison of different model sizes from lengths 8k to 128k. (Middle): Comparison
of models claiming 1m context length. (Right): Comparison of RULERV1 and RULERV2.

Performance Degradation with Context Length. Increasing context length reveals a universal
challenge across all models. Figure 4 (left) plots performance from 8k to 128k tokens, demonstrating
that no model maintains stable performance as context expands, even though most of these models
claim context lengths well beyond 128k. Even GPT5, which achieves the highest absolute scores,
exhibits a significant performance degradation when going from 8k to 128k context length, despite
claims of 400k context capability. The degradation patterns vary by model size and architecture:
larger models maintain higher absolute performance across all context lengths but show similar
relative decline rates, while open-weight models exhibit more severe degradation compared to the
closed-source counterparts. These results suggest that while model size scaling improves baseline
performance, it does not necessarily address the core challenge of maintaining performance as context
increases.

Performance up to 1M Context Length. Recent claims of million-token context windows require
further examination. Figure 4 (middle) extends our evaluation to 1m tokens for capable models,
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revealing substantial limitations. Both Gemini 2.5 flash and GPT4.1, which perform competi-
tively at shorter lengths, suffer a significant degradation (approximately 15%) as the context extends
to 1m tokens. Open-weight models face even steeper challenges. Qwen3, which is competitive
with closed-source models under 128k, experiences sharp degradation beyond 256k tokens, despite
employing length extrapolation techniques like dual chunk attention [26] and attention temperature
scaling [27]. This suggests current extrapolation methods remain insufficient for reliable ultra-long
context processing. Hybrid architectures show mixed results at extended lengths. Llama4 exhibits
a sharp degradation across all lengths, whereas Minimax maintains stable performance as context
increases but struggles to achieve high scores even at short lengths. These results suggest that while
hybrid architectures are computationally efficient, they have not yet matched the performance as
full-attention transformers for long-context processing.

Comparison between RULERV1 and RULERV2. Comparison with RULERV1 demonstrates the
evolving landscape of long-context capabilities. When RULERV1 was released, most models showed
significant performance degradation at long contexts. Figure 4 (right) shows that current models
achieve high, often saturated, scores on RULERV1, surpassing its established performance thresholds.
This saturation indicates that many existing benchmarks may no longer effectively differentiate model
capabilities or identify remaining challenges.

RULERV2 addresses these limitations by providing substantial headroom for improvement. Per-
formance decreases systematically as both context length and task difficulty increase, creating a
challenging evaluation space with clear improvement targets. The difficulty progression from basic
retrieval to complex reasoning ensures that even models achieving perfect scores on simpler tasks
encounter meaningful challenges at higher levels. This ability to reveal performance gaps where other
benchmarks show saturation confirms the utility of RULERV2 for measuring progress on fundamental
long-context skills.

D Additional Analysis
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Figure 5: Needle-in-a-haystack variants by increasing needle key length (left) and needle value length
(middle) in multi-keys NIAH as well as the numbers of needle value (right) in multi-values NIAH.
We use model Qwen3 235B-22B 2507 Instruct for this analysis.

D.1 Needle-in-a-Haystack Variants

Following RULERV1, which proposed several NIAH variants by altering the type and quantity of
needles and haystacks, we analyze the impact of varying the needle’s key length, value length, and
the number of values associated with a single key. The realistic retrieval (easy levels) of our multi-key
and multi-value NIAH tasks can be viewed as a practical form of increasing the needle’s value length.

Increase needle key length. To analyze the effect of key length, we use numbers with an increasing
number of digits as the needle key, with results shown in Figure 5 (left). We observe performance
degradation when using keys with 10 and 50 digits, but the model performance is stable for larger
key lengths. This suggests that longer needle keys are actually easier for the model to locate, likely
because they provide more distinctive patterns that reduce ambiguity and false matches with other
subsequences in the context.
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Increase needle value length. As shown in Figure 5 (middle), increasing the needle value length
to 500 or 1000 digits leads to significant performance degradation. This occurs because the model
struggles to accurately copy extremely long and contiguous sequences from the context. Interestingly,
we also observe a performance drop for very short values (3, 5, and 10 digits). This may be because
under a fixed context length budget, shorter needle values result in higher needle density, leading to
substantially more distractors within the context. This increased distractor density makes the retrieval
task more challenging despite the individual needles being shorter.

Increase numbers of needle value. Our default Multi-value NIAH task uses four needles, but other
work has explored different configurations [11, 13]. In Figure 5 (right), we show that increasing the
number of needles leads to progressive performance degradation, as it requires the model to attend to
multiple scattered locations within the context. This analysis indicates that current models cannot
reliably retrieve all relevant information, making this a key ongoing challenge. We hypothesize that
the root cause may stem from fundamental limitations of the attention mechanism, a direction that
requires further investigation.

D.2 Task Difficulties from Basic to Hard
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Figure 6: We analyze four task difficulties in three task domains, using four instruct models from
each model sizes. Golden context is the score without any distractors.

RULERV2 comprises 12 tasks across three domains and four difficulty levels. We analyze the
performance of four different model sizes across these difficulties, plotting the results in Figure 6.

Multi-key NIAH. In Figure 6 (top left), all models achieve near-perfect scores on the basic and
easy levels, though 7B model exhibits a clear degradation from basic to easy. At the medium and
hard levels, all models show a performance drop relative to baseline task performance (i.e., their
short-context MMLU score). We observe a similar trend when substituting other base tasks like
GSM8K [28], MATH500 [29], and MBPP [30], with the degradation being particularly severe for
math-related benchmarks (top right). Notably, performance on the medium level (retrieve-then-solve)
is consistently higher than on the hard level (single-step solve). This suggests that this task can be
effectively decomposed, and good retrieval is a prerequisite for reliably solving a specific question
embedded within a larger context.

Multi-value NIAH. As shown in Figure 6 (bottom left), open-source models perform poorly even
the basic level, with the smaller 7B model achieving only a 48.6% accuracy. Even GPT4.1, which
demonstrates near-perfect retrieval, struggles to jointly perform retrieval and counting in the hard
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setting, achieving only a 58% accuracy. This finding helps explain why MRCR [9] is difficult:
failure can stem from either the retrieval or the counting skill. Decomposing the task into explicit
retrieval and then counting under medium setting results in a substantial performance improvement
for all models compared to the harder setting. Analysis of model outputs reveals that successful
medium-level responses typically first enumerate all relevant questions before performing the ordinal
selection, while hard-level failures often result from models attempting to count implicitly without
explicit enumeration.

Multi-doc QA. The results in Figure 6 (bottom right) show that open-weight models cannot
perfectly solve even the basic synthetic retrieval task. When semantic understanding is required at
the easy level, all models degrade, likely due to failures in understanding latent associations between
query and document beyond literal keyword matching [31]. At higher difficulty levels, all models
fail to match their golden context performance. Counter-intuitively, for smaller models, hard level
scores sometimes exceed medium-level scores. Manual inspection of outputs suggests that smaller
models, even without explicit retrieval instructions, implicitly adopt a retrieve-then-answer strategy,
by incorporating relevant document content into their responses, though they may paraphrase rather
than exactly copy the source material, which can complicate exact-match [32] metrics.

D.3 Scaling Test-Time Compute
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Figure 7: Results of test-time compute scaling including input context scaling (top left), inference
steps scaling (top right), and width scaling (bottom). All the scores are averaged across lengths 8k
to 128k and evaluated on the hard level of multi-values NIAH task.

We explore three test-time compute scaling methods: (1) scaling input context via few-shot demon-
strations, (2) scaling inference steps via Chain-of-Thought reasoning, and (3) scaling width via
majority voting. We use the most challenging task, multi-value NIAH (hard), for this analysis, with
results in Figure 7.

Scaling Input Context. We scale the number of few-shot demonstrations from 0 to 16. As shown
in Figure 7 (top left), performance improves for larger models, while smaller models show no
improvement over their zero-shot performance. This suggests a capacity threshold: models require
sufficient parameters to effectively learn complex retrieval and counting patterns from in-context
examples.

Scaling Inference Steps. We evaluate models with reasoning capability across both medium and
hard difficulty levels. Figure 7 (top right) confirms the benefit of generating a chain of thought before
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the final answer, with all except the smallest models showing improvements. Crucially, performance
on the hard task with thinking approaches the performance on the medium task without thinking,
suggesting that explicit reasoning allows the model to autonomously decompose complex tasks.
Manual analysis of generated reasoning chains reveals that models consistently follow a retrieve-
then-count pattern: first enumerating all relevant information, and then performing ordinal selection.
This mirrors our benchmark decomposition (medium setting), demonstrating that reasoning-capable
models can autonomously discover problem-solving strategies.

Scaling Width. We generate 1 to 15 parallel responses and analyze maximum, majority, and average
scores in Figure 7 (bottom). Majority voting provides little improvements, as models consistently
produce similar incorrect responses rather than diverse attempts. However, maximum scores across
all generations steadily increases, especially for larger models. For instance, the performance gain
from 1 to 15 generations is 6.6% for the largest open-weight model versus 3.0% for the smallest.
This suggests that while the primary prediction is stable, larger model possess a broader solution
spaces and occasionally generate correct responses which could be identified through more selective
sampling strategies.

E Related Work

Existing long-context benchmarks typically aim for comprehensive evaluation by integrating a diverse
set of use cases, including retrieval, question answering, summarization, in-context learning, and
coding. While early versions were limited to shorter contexts [33, 34, 1, 35, 36] because of the rapid
extension of model context lengths, others can evaluate models with context lengths from 128k to over
a million tokens [4, 7, 3, 2, 10]. Alongside these multi-task benchmarks, several synthetic tests have
been proposed to reliably verify long-context capabilities. The widely used "Needle-in-a-Haystack"
(NIAH) test [5] assesses a model’s ability to recall a fact from an extremely long document. Other
examples include MRCR [9], which tests recalling conversations from a specific ordinal position;
NoLiMa [31], which requires inferring latent associations; BABILong [37] and GSM-∞ [38], which
focus on reasoning across facts in complex contexts; Sequential-NIAH [39], designed for extracting
sequential information; NeedleThreading [40], evaluating the ability to follow threads of information.
A common spirit among these tasks is their needs on retrieval, a fundamental capability for processing
long contexts [41]. Therefore, we developed RULERV2 by starting with simple retrieval tests and
progressively increasing task difficulty in a bottom-up manner. Our benchmark is designed to identify
the limitations of current long-context models, highlighting the need for improving fundamental
retrieval abilities before tackling more complex reasoning challenges.

F Limitations

This study has several limitations that we have considered and describe in detail below.

Lack of correlation with realistic long-context tasks. All of our tasks are designed to evaluate
long-context skills synthetically. This is because there are no realistic long-context tasks that are easy
to scale to millions of tokens and can be automatically evaluated without manual checking. While we
emphasize our benchmark as a convenient check to verify long-context capabilities, we still need
to test models in realistic settings that are closer to how they would be truly used. These settings
would require multiple capabilities beyond retrieval, such as question answering from books [42, 43],
processing code repository [44, 45], and many-shot in-context learning [46, 47].

Lack of a clear definition of fundamental skills. Our bottom-up benchmark is built to progres-
sively increase in difficulty, starting with retrieval and moving on to problem-solving skills. However,
we need a clearer definition of the fundamental skills required for other long-context tasks and how
they relate to retrieval, such as aggregation and reasoning. Although this survey [6] has defined
retrieval as the foundation, more studies are needed to break down difficult and complex long-context
tasks into fundamental skills. This would help us better analyze failures and understand the limitations
of current models.
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G Models

We select in total 37 models (listed in Table 1) for evaluation including 7 closed-source and 27
open-weight models. In open-weight models, we have 12 large size (≥100B), nine medium size
(10−99B), and three small size (<10B). Regarding architectures, we have nine dense transformer
and four hybrid transformers with 15 using Mixture-of-Experts. All the models have claimed their
context length more than 128k tokens. Some of them have built-in reasoning switch to turn on and
off thinking mode.

Table 1: Summary of the selected models in RULERV2.

Model Name Size Claimed
Length Thinking Huggingface / API

GPT5 [12] - 400k Y gpt-5 (2025-08-07)
GPT4.1 [13] - 1m N gpt-4.1 (2025-04-14)
o3 [14] - 200k Y o3 (2025-04-16)
Gemini2.5 pro [11] - 1m Y gemini-2.5-pro
Gemini2.5 flash [11] - 1m Y/N gemini-2.5-flash
Claude4 Sonnet [15] - 200k Y/N claude-sonnet-4-20250514
Grok4 [16] - 256k Y grok-4-0709
Qwen3 235B Thinking 2507 [48] 235B-22B 1m Y Qwen/Qwen3-235B-A22B-Thinking-2507
Qwen3 235B Instruct 2507 [48] 235B-22B 1m N Qwen/Qwen3-235B-A22B-Instruct-2507
Qwen3 30B Thinking 2507 [48] 30B-3B 1m Y Qwen/Qwen3-30B-A3B-Thinking-2507
Qwen3 30B Instruct 2507 [48] 30B-3B 1m N Qwen/Qwen3-30B-A3B-Instruct-2507
Qwen3 80B Thinking Next [48] 80B-3B 1m Y Qwen/Qwen3-Next-80B-A3B-Thinking
Qwen3 80B Instruct Next [48] 80B-3B 1m N Qwen/Qwen3-Next-80B-A3B-Instruct
Qwen3 32B [48] 32.8B 128k Y/N Qwen/Qwen3-32B
Qwen3 14B [48] 14.8B 128k Y/N Qwen/Qwen3-14B
Qwen3 8B [48] 8.2B 128k Y/N Qwen/Qwen3-8B
Qwen2.5 14B 1M [19] 14.7B 1m N Qwen/Qwen2.5-14B-Instruct-1M
Qwen2.5 7B 1M [19] 7.6B 1m N Qwen/Qwen2.5-7B-Instruct-1M
DeepSeek V3.1 [49] 671B-37B 128k Y/N deepseek-ai/DeepSeek-V3.1
DeepSeek R1 0528 [50] 671B-37B 128k Y deepseek-ai/DeepSeek-R1-0528
DeepSeek V3 0324 [49] 671B-37B 128k N deepseek-ai/DeepSeek-V3-0324
Llama4 Maverick [17] 400B-17B 1m N meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8
Llama4 Scout [17] 109B-17B 10m N meta-llama/Llama-4-Scout-17B-16E-Instruct
Llama3.1 70B [51] 70B 128k N meta-llama/Llama-3.1-70B-Instruct
Llama3.1 8B [51] 8B 128k N meta-llama/Llama-3.1-8B-Instruct
GPT OSS 120B [52] 117B-5.1B 128k Y openai/gpt-oss-120b
GPT OSS 20B [52] 21B-3.6B 128k Y openai/gpt-oss-20b
MiniMax M1-40k [53] 456B-45.9B 1m Y MiniMaxAI/MiniMax-M1-40k
MiniMax Text01 [18] 456B-45.9B 1m N MiniMaxAI/MiniMax-Text-01
Seed OSS [54] 36B 512k Y/N ByteDance-Seed/Seed-OSS-36B-Instruct
GLM 4.5 [55] 355B-32B 128k Y/N zai-org/GLM-4.5
Nemotron1.5 Super [56] 49.9B 128k Y/N nvidia/Llama-3_3-Nemotron-Super-49B-v1_5
Jamba1.7 Large [57] 398B-94B 256k N ai21labs/AI21-Jamba-Large-1.7
Command A 03-2025 [58] 111B 256k N CohereLabs/c4ai-command-a-03-2025

H Task Templates

The detailed task templates we used are provided in Tables 2, 3, and 4. We used MMLU [20] as the
base task for our multi-key and multi-value NIAH tasks and used HotPotQA [21] for the multi-doc
QA task.
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Table 2: Multi-key NIAH templates from basic to hard difficulties.

Multi-key
NIAH
(Basic)

Synthetic
Retrieval

Prompt:
A special magic number is hidden within the following text. Make sure to memorize it. I will quiz you about
the number afterwards.
One of the special magic numbers for word-1 is: number-1.
One of the special magic numbers for word-2 is: number-2.
......
One of the special magic numbers for word-x is: number-x.
......
One of the special magic numbers for word-n-1 is: number-n-1.
One of the special magic numbers for word-n is: number-n.

What is the special magic number for word-x mentioned in the provided text? The special magic number for
word-x mentioned in the provided text is

Answer: number-x

Multi-key
NIAH
(Easy)

Realistic
Retrieval

Prompt:
Below are some questions. I will ask you to copy one of them. Please copy and paste the question you find.
Question index-1: question-1.
Question index-2: question-2.
......
Question index-x: question-x.
......
Question index-n-1: question-n-1.
Question index-n: question-n.

Please copy the Question index-x from the context.

Answer: question-x

Multi-key
NIAH

(Medium)
Retrieve-then

-solve

Prompt:
Below are some questions. I will ask you to solve one of them. Please solve the question you find and make
sure to put the answer (and only answer) inside \boxed{}.
Question index-1: question-1.
Question index-2: question-2.
......
Question index-x: question-x.
......
Question index-n-1: question-n-1.
Question index-n: question-n.

Here are some examples to help you understand the task:
(×N )
Please copy the Question index from the context and then solve it with an answer from A, B, C, D.
Question index: question.
Solution: \boxed{answer}.

Here is the actual task you need to solve:
Please copy the Question index-x from the context and then solve it with an answer from A, B, C, D.

Answer: \boxed{answer-x}

Multi-key
NIAH
(Hard)

Single-step
Solve

Prompt:
Below are some questions. I will ask you to solve one of them. Please solve the question you find and make
sure to put the answer (and only answer) inside \boxed{}.
Question index-1: question-1.
Question index-2: question-2.
......
Question index-x: question-x.
......
Question index-n-1: question-n-1.
Question index-n: question-n.

Here are some examples to help you understand the task:
(×N )
Please solve the Question index from the context with an answer from A, B, C, D.
Solution: \boxed{answer}.

Here is the actual task you need to solve:
Please solve the Question index-x from the context with an answer from A, B, C, D.

Answer: \boxed{answer-x}
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Table 3: Multi-value NIAH templates from basic to hard difficulties.

Multi-value
NIAH
(Basic)

Synthetic
Retrieval

Prompt:
Some special magic numbers are hidden within the following text. Make sure to memorize them. I will quiz
you about the numbers afterwards.
One of the special magic numbers for word-1 is: number-1.
......
One of the special magic numbers for word-x is: number-x1.
One of the special magic numbers for word-x is: number-x2.
One of the special magic numbers for word-x is: number-x3.
One of the special magic numbers for word-x is: number-x4.
......
One of the special magic numbers for word-n is: number-n.

What are all the special magic numbers for word-x mentioned in the provided text? The special magic
numbers for word-x mentioned in the provided text are

Answer: number-x1, number-x2, number-x3, number-x4

Multi-value
NIAH
(Easy)

Realistic
Retrieval

Prompt:
Below are some questions. I will ask you to copy some of them. Please copy and paste the questions you find.
Question index-1: question-1.
Question index-2: question-2.
......
Question index-x: question-x1.
Question index-x: question-x2.
Question index-x: question-x3.
Question index-x: question-x4.
......
Question index-n-1: question-n-1.
Question index-n: question-n.

Please copy the Question index-x from the context.

Answer: question-x1, question-x2, question-x3, question-x4

Multi-value
NIAH

(Medium)
Retrieve-then

-solve

Prompt:
Below are some questions. I will ask you to copy one of them. Please copy and paste the question you find.
Question index-1: question-1.
Question index-2: question-2.
......
Question index-x: question-x1.
Question index-x: question-x2.
Question index-x: question-x3.
Question index-x: question-x4.
......
Question index-n-1: question-n-1.
Question index-n: question-n.

Please first copy all the Question index-x from the context and then copy the {order} (1 indexed) Question
index-x at the end.

Answer: question-x{order}

Multi-value
NIAH
(Hard)

Single-step
Solve

Prompt:
Below are some questions. I will ask you to copy one of them. Please copy and paste the question you find.
Question index-1: question-1.
Question index-2: question-2.
......
Question index-x: question-x1.
Question index-x: question-x2.
Question index-x: question-x3.
Question index-x: question-x4.
......
Question index-n-1: question-n-1.
Question index-n: question-n.

Please copy the {order} (1 indexed) Question index-x from the context.

Answer: question-x{order}
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Table 4: Multi-doc QA templates from basic to hard difficulties.

Multi-doc
QA

(Basic)
Synthetic
Retrieval

Prompt:
Below are some documents. I will give you a text at the end. Please find the document index of the text. Only
give me the index without any document contents.
Document index-1: document-1.
Document index-2: document-2.
......
Document index-x: document-x.
......
Document index-n-1: document-n-1.
Document index-n: document-n.

Text: document-x
Most relevant document index:

Answer: index-x

Multi-doc
QA

(Easy)
Realistic
Retrieval

Prompt:
Below are some documents. I will give you a question at the end. Please find the index of the most relevant
document that can help answer the question. Only give me the index without any document contents.
Document index-1: document-1.
Document index-2: document-2.
......
Document index-x: document-x.
......
Document index-n-1: document-n-1.
Document index-n: document-n.

Question: question-x
Index of the most relevant document that can help answer the question:

Answer: index-x

Multi-doc
QA

(Meidum)
Retrieve-then

-solve

Prompt:
Below are some documents. I will ask you to answer a question based on the documents. Please answer the
question.
Document index-1: document-1.
Document index-2: document-2.
......
Document index-x: document-x.
......
Document index-n-1: document-n-1.
Document index-n: document-n.

Please first find and copy paste the documents relevant to the following question and then answer it based on
the documents you find.
Question: question-x

Answer: answer-x

Multi-doc
QA

(Hard)
Single-step

Solve

Prompt:
Below are some documents. I will ask you to answer a question based on the documents. Please answer the
question.
Document index-1: document-1.
Document index-2: document-2.
......
Document index-x: document-x.
......
Document index-n-1: document-n-1.
Document index-n: document-n.

Please answer the following question based on the documents.
Question: question-x

Answer: answer-x
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