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Abstract

Pre-trained protein language models have demonstrated significant applicability
in different protein engineering task [1, 2]. A general usage of these pre-trained
transformer models producing latent representation is to use a mean pool across
residue positions to reduce the feature dimensions to further downstream tasks
such as predicting bio-physical properties or other functional behaviours. In this
paper we provide a two-fold contribution to machine learning (ML) driven drug
design. Firstly, we demonstrate the power of sparsity by promoting penalization of
pre-trained transformer models to secure more robust and accurate melting temper-
ature (Tm) prediction of single-chain variable fragments with a mean absolute er-
ror of 0.23◦C. Secondly, we demonstrate the power of framing our prediction prob-
lem in a probabilistic framework. Specifically, we advocate for the need of adopt-
ing probabilistic frameworks especially in the context of ML driven drug design.

1 Introduction

Peptide and protein engineering is the process of optimizing peptide and proteins towards desired
and valuable features for technological or medical applications [3]. In protein engineering, we seek
to optimize the function of a protein with respect to e.g. its expression level, solubility, or thermal
stability. Their functional behavior is directly determined by their amino acid sequence. Thus, to
develop new or optimize desired properties for e.g., biomedical applications require to invert the re-
lationship of the function given the sequence [4], also generally known in statistics and machine
learning as the inverse problem. However, existing design methods have serious problems in dis-
tinguishing the functional levels of closely related proteins [5, 6]. While both protein engineering
and design is a NP-hard problem [7], a direct search in the protein space simply becomes an over-
whelming and intractable approach in linear time. Directed evolution has successfully demonstrated
its applicability of mapping peptide and protein sequencing to functional behavior. However, it is
highly limited by the fact that even high-throughput techniques only can sample a minor fraction of
sequences constructed from diversification methods [8]. Among others, Bedbrook and co-workers
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have demonstrated the direct applicability of utilizing machine learning for optimizing a property
that would not have been possible to engineer through directed evolution alone, [6, 9, 10]. On the
other hand, machine learning models are heavily dependent on learning from data - a crucial part
in designing a machine learning driven drug design pipeline is therefore the accessibility of relevant
functional data for the task at hand.

In this contribution, we demonstrate and discuss classical challenges in both designing compounds
with dedicated properties from a minimal set of observations and data sets with quite scarce diver-
sity. While we at one hand wish to provide as diverse molecules to maximize the coverage of the
chemical search space and on the other hand seek to ensure optimized properties within minimum
number of design rounds (experiments) - we are facing a typical active learning problem balancing
explore vs exploit steps through the usage of model uncertainty estimates. In section 2, we provide a
unified probabilistic framework for integrating compact latent pre-trained transformer features with
Gaussian Process (GP) regression models, [11]. Through careful variant design train, development
(dev), and test splits we demonstrate the applicability of uncertainty estimates to assess the models
own notion of what it does not know. We examine the effect of training data with 1-5 mutations
away from a wild-type sequence and the models ability to reason of its own predictive power to gen-
eralize to multiple mutations. While we in this paper limit ourselves to the quantification of predic-
tive performance of the models, the GPs can be utilized as the surrogate model in a Bayesian Opti-
mization framework for optimizing and searching the sequence space.

2 Background

Here, we motivate our problem and provide a brief overview of the core architecture of our prob-
abilistic models utilizing a transformer architecture as input to our downstream regression models.
Significant improvement and applicability of protein language models have been demonstrated over
the last years, where among others the UniRep [12], Evolutionary Scale Modeling (ESM) [2], Prot-
Bert [13] models can be mentioned. In [12], they utilize pretrained language model representation
UniRep to generalize the representation to unseen regions of sequence space. Furthermore, Vig &
Rao argues for attention in the transformer models corresponds to known biological properties like
structure and binding sites that can enable contact prediction [14, 15]. In a drug design setting, we
are especially interested in enabling pretrained representations in our protein engineering tasks for
designing improved drugs as we are highly limited by the number of experiments we can conduct
relative to the enormous sequence space at hand, e.g. 10130 for proteins of 100 amino-acids length.
Thus, searching the space intelligently is needed even when utilizing high-throughput experimental
setups.

While designing or engineering proteins, we are faced with the problem of optimizing towards spe-
cific functions of the molecules and effectively only interested in a tiny subspace of sequence space.
The main challenge is naturally how can we utilize the general protein representation for a direct
fine tuning to the downstream functional optimization task at hand. In this contribution, we seek to
build a model for predicting the thermal stability of the antibody format single chain variable frag-
ment (scFv). Due to the small sizes and the stranded nature of scFvs, these are commonly used as
building blocks to construct recombinant multi-specific antibody formats, [16]. Unfortunately, the
scFvs has been reported to be less termostable than larger antibody formats and thus more likely to
lead to undesired aggregation and low Tms when utilized in a multi-specific format, [17]. To im-
prove biophysical behavior of the scFV, our goal is to build a predictive model of the experimental
measured Tm values determined by nano differential scanning fluorimetry (nanoDSF) [18]. Having
an accurate model for prediction the melting temperature is needed to assess which variants to test
experimentally for increased thermal stability. To quantify the accurate of our predictions, we fol-
low a probabilistic approach where we not only obtain our mean predictions but just as importantly
can provide uncertainty estimates on the predictions. Uncertainty estimates is critically needed for
providing quantitative and directed search strategies balancing both exploitation and exploration.

2.1 Transformer-based models

Transformers are revolutionising NLP, have recently been repurposed to model biological se-
quences.In the core of a transformer architecture is the attention mechanism allowing to capture long-
range dependencies between positions in a sequence. Originating as a solution to classic sequence-
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to-sequence (seq2seq) models, attention mechanism shows better performance and scaling charac-
teristics than traditional RNNs or LSTMs. Common to those architectures is a context vector com-
prising of a hidden state of the network being carried through subsequent propagation, resulting in
degraded performance with increased sequence lengths. On the other hand, transformers utilize self-
attention, which allows processing of the whole sequence while still focusing on specific parts of it.

In the context of biological sequence modelling, the hidden state of a Transformer model corre-
sponds to individual amino acid residues and represents the given amino acid in its context as a point
in a high dimensional space (embedding). Thus, similar sequences are assigned similar representa-
tions by the network and are mapped to nearby points in space.

In this contribution, we use the ESM1-b variant of a Transformer protein language model from
Facebook AI Research [2] encoding each of our sequences to an embedding x ∈ R250×1280.

2.2 Gaussian process regression

A Gaussian Processes (GP) is a powerful probabilistic framework enabling nonparametric, nonlinear
Bayesian models [11]. A GP defines a prior distribution over the set of function f (x) mapping the
relation between our M -dimensional feature representation of our protein sequences to the target
property y = f (x) + ϵ. Here ϵ represents additive observation noise. Using a standard zero-mean
GP prior we obtain

p (f (X)) = p (fX) = N (0,K), (1)
where K is the covariance matrix between our training input features X = [x1, · · · ,xN ] such that
Kij = k (xi,xj) defines the covariance function between input xi and xj . We utilize one of the
typically applied kernels for GP regression, Matern 5

2 covariance function, with shared length-scale
parameters for each input dimension σl, yielding

k (xi,xj) = σ2
f

(
1 +

√
3r

σl

)
exp

(
−
√
3r

σl

)
where r =

√
(xi − xj)

⊤
(xi − xj) (2)

Assuming additive independent identically distributed Gaussian noise with variance σ2
ϵ our predic-

tive distribution for our new test proteins Z reads, [11],

p (fZ |X,y,Z) = N (µz,Σz) , where µz = k (Z,X)
(
K+ σ2

ϵ I
)−1

y

Σz = k (Z,Z)− k (Z,X)
(
K+ σ2

ϵ I
)−1

k (X,Z) . (3)

3 Driving sparsity through learned masks

Having extracted an embedding for each residue in a sequence of length P , a typical approach used
to represent a complete protein as a single vector x̂ is by averaging across the transformer’s hidden
representation x at each sequence position p (mean pooling):

x̂ =
1

P

∑P

p=1
xp (4)

While significantly reducing the overall dimensionality of the embedding and allowing to represent
proteins of different lengths, this approach inevitably results in loss of information. Intuitively,
averaging assigns equal weight to all residues in the sequence, while in reality, only a handful of
positions might influence the target of interest.

In this work, we investigate 3 different positional-weighted approaches to the typical averaging: a
positively constrained Learned mask wl, sparsity promoting Sigmoid-transformed mask ws and
a Half-Cauchy Prior based mask wp:

x̂l =

∑P
p=1 exp(wlp)xp∑

exp(wl)
(5) x̂s =

∑P
p=1 S(wsp)xp∑

S(ws)
where S(x) =

1

1 + exp(−x)
(6)

x̂p =

∑P
p=1 wppxp∑

wp
where wp ∼ Half-Cauchy(0, σ) (7)
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From a practical perspective, for all three approaches, we learn the masks as a part of the standard
gradient based GP Maximum Log-Likelihood maximization procedure.

4 Results

Using Mean Absolute Error (MAE) as our metric, and partitioning the data set, we ran 3 sets of
experiments corresponding to 3 different splits. First, we tested on the subset of the training set
where single-site mutations were used as the validation (1MUT), next we used a random sample of
the training set as validation (Uniform Shuffle) and finally evaluated the proposed methods on the
hold-out test set itself. The reason for this partitioning is the spread of the positions of mutations
in the wild-type sequence and relative sizes of training and validation set. Naturally, having learned
a specific mask on the smaller training set, performance will degrade if mask does not reflect the
mutated positions in the bigger test-set. This effect is simulated for the "Uniform Shuffle" split
where the size of validation set was 24 samples (vs. 10 samples for the 1-MUT split).

Table 1: Evaluation of the Baseline and the proposed methods. For each split and method we report
mean ± std over 64 trials. Bold values denote statistical significance against Baseline (p < 0.05).

1-MUT Shuffle Uniform Shuffle Test Set (Hold out)

Baseline 1.216 ± 0.306 0.819 ± 0.157 0.273 ± 0.006
Learned mask 1.110± 0.338 0.836 ± 0.231 0.227± 0.010
Learned mask (Sigmoid) 1.150± 0.347 0.813 ± 0.161 0.227± 0.008
Learned mask (Prior) 1.090± 0.314 0.841 ± 0.158 0.226± 0.010

Gross metrics are reported in Table 1. Here, we see that the Learned Mask (prior) proposed
method outperforms the standard averaging approach referenced as Baseline in the cases of balanced
train/validation splits. Naturally, this method also depends on the actual value of the prior: σ - the
second moment of Half-Cauchy distribution. In our case, a prior of σ = 0.15 was chosen as a result
of a parameter sweep on the 1-MUT Shuffle resulting in lowest MAE. That prior is then reused for
all Learned Mask (prior) runs.
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Figure 1: Masks learned on the hold out set. The number of zero entries (values below 1e−5 thresh-
old) are: 208 for Learned mask, 203 for Learned mask (Sigmoid) and 9 for Learned mask
(Prior). Unused entries are marked with a cross ×.

Learned masks are shown in Figure 1. In terms of the importance on melting temperature they em-
phasize roughly same positions in the sequence. Interestingly, the addition of Half-Cauchy prior, re-
sults in a more dense mask, as seen on the number of zero-entries. This appear to help generalization.

We summarize the individual test-set predictions and their corresponding uncertainties in Figure 2
(full version in Appendix, Figure 6).

Additionally, we train a model on a subset of the training-data comprising of only 80 samples all
being single site mutations. While this restricted model does not perform particularly well in terms
of our metric (resulting MAE = 1.33), it does great job in terms of uncertainties as shown in Figure 3
(full version in Appendix, Figure 7). Note that this limited model is consistently underestimating
the target, as it is unable to capture additive effects of mutations.
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Figure 2: A subset of melting temperature prediction and corresponding uncertainties on the test-set.
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Figure 3: A subset of melting temperature prediction and corresponding uncertainties on the test-set
when model is trained only on the sigle-mutations N train = 80

5 Conclusions

Utilization of machine learning driven techniques for navigating the drug design process towards op-
timized properties requires good compact representation of the molecule space of interest. We have
demonstrated that sparsity promoting concentration of the larger pre-trained latent space provided by
the protein language model, ESM-1b, leads to more robust estimate of a dedicated thermal stability
optimization task for scFvs. We have proposed three variants of sparsity promoting effects through
GP regression models integrating learned masks. In general all three models leads to improved pre-
dictive performance relative to a standard mean pooled feature representation. Even though our spar-
sity promoting models outperform our baseline model without mask on our final test data, our vali-
dation data indicates that the learned masks are sensitive to too aggressive sparsity when validation
data is out-of-distribution of the training data. In fact, this makes sense as the sparse models exactly
will seek to favor sparse representations given the training data at hand. Thus, if we seek to utilize
the models solely for optimization in regions (residue positions) outside the support of previous seen
data, care should be taken in utilizing the masks. From a Bayesian Optimization perspective, this
type of evaluation would correspond to the explorative evaluation and thus the mean prediction eval-
uation is not suitable here. Instead of providing the mean prediction for evaluation we would seek
opportunities to enrich the model support towards new regions e.g. through the upper-confidence-
bound as acquisition function evaluation. Future work will examine the applicability sparsity pro-
moting models in the context of steering explorative searches.
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A Appendix
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Figure 4: Histogram of the mutations occurring at the respective positions in training and test set.
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Figure 5: Histogram of the single site mutations of the training set.

7



Mutant 1

Mutant 2

Mutant 3

Mutant 4

Mutant 5

Mutant 6

Mutant 7

Mutant 8

Mutant 9

Mutant 10

Mutant 11

Mutant 12

Mutant 13

Mutant 14

Mutant 15

Mutant 16

Mutant 17

Mutant 18

Mutant 19

Mutant 20

Mutant 21

Mutant 22

Mutant 23

Mutant 24

Mutant 25

Mutant 26

Mutant 27

Mutant 28

Mutant 29

Mutant 30

Mutant 31

Mutant 32

Mutant 33

Mutant 34
(3 mutations)

Mutant 35
(3 mutations)

58606264666870 TmC

Tr
ue

 ta
rg

et
s

M
od

el
 p

re
di

ct
io

n 
(2

 u
nc

er
ta

in
ty

)

Fi
gu

re
6:

C
om

pl
et

e
te

st
-s

et
m

el
tin

g
te

m
pe

ra
tu

re
pr

ed
ic

tio
n

an
d

co
rr

es
po

nd
in

g
un

ce
rt

ai
nt

ie
s.

Mutant 1

Mutant 2

Mutant 3

Mutant 4

Mutant 5

Mutant 6

Mutant 7

Mutant 8

Mutant 9

Mutant 10

Mutant 11

Mutant 12

Mutant 13

Mutant 14

Mutant 15

Mutant 16

Mutant 17

Mutant 18

Mutant 19

Mutant 20

Mutant 21

Mutant 22

Mutant 23

Mutant 24

Mutant 25

Mutant 26

Mutant 27

Mutant 28

Mutant 29

Mutant 30

Mutant 31

Mutant 32

Mutant 33

Mutant 34
(3 mutations)

Mutant 35
(3 mutations)

58606264666870 TmC

Tr
ue

 ta
rg

et
s

M
od

el
 p

re
di

ct
io

n 
(2

 u
nc

er
ta

in
ty

)

Fi
gu

re
7:

C
om

pl
et

e
te

st
-s

et
m

el
tin

g
te

m
pe

ra
tu

re
pr

ed
ic

tio
n

an
d

co
rr

es
po

nd
in

g
un

ce
rt

ai
nt

ie
s.

8


	Introduction
	Background
	Transformer-based models
	Gaussian process regression

	Driving sparsity through learned masks
	Results
	Conclusions
	Appendix

