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Abstract

Federated learning (FL) enables collaborative
model training across distributed clients without
centralizing sensitive data. Despite recent ad-
vancements, communication overhead remains
a major bottleneck, particularly for large-scale
models. Utilizing low-rank adaptation (LoRA)
techniques can mitigate this challenge by decom-
posing each layer into a reconstruction matrix and
a projection matrix, and transmitting either both
matrices or only the projection matrix while keep-
ing the reconstruction matrix fixed. While effec-
tive, these techniques operate on individual layers,
are architecture-dependent, and suffer from per-
formance limitations due to their fixed reconstruc-
tion matrix. We propose Model-Agnostic Projec-
tion Adaptation (MAPA), a novel factorization
approach that treats the entire model parameter
space as a single matrix rather than decomposing
layers independently. MAPA introduces round-
wise randomization of the reconstruction matrix
to avoid suboptimal solutions while flexibly bal-
ancing communication and accuracy. MAPA also
reduces the memory and computational overhead
relative to LoRA, ensuring efficiency in both com-
munication and computation when applied to fed-
erated learning. Empirical results demonstrate the
effectiveness of MAPA in various FL settings.

1. Introduction

Federated learning (FL) is a distributed framework that en-
ables training across many devices (clients) without central-
izing data. In a typical FL process, each client downloads
a model from the server, trains it using local data, and then
uploads the updated model back to the server. The server
constructs the global model through the aggregation of lo-
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cal updates, e.g., federated averaging (FedAvg) (McMahan
et al., 2017). This iterative procedure is carried out through
several rounds of communication, allowing clients to col-
laboratively enhance the model. While FL offers many ad-
vantages, a significant obstacle is the high communication
overhead from exchanging model updates between clients
and the server. This problem is especially noticeable with
resource-constrained clients and large-scale models.

To address the communication burden in FL, various strate-
gies have been developed to reduce either the communica-
tion frequency (Stich, 2018; Sattler et al., 2019; Li et al.,
2020) or the communication load per round (Konecny,
2016). Methods aimed at reducing the communication
load per round are broadly categorized into sketched up-
dates, which involve optimizing the local model followed
by gradient compression, and structured updates, which di-
rectly train in a lower-dimensional subspace such as random
masks, weight-sharing, and low-rank factorization.

Low-rank adaptation (LoRA) has demonstrated remarkable
success in adapting large-scale pre-trained models by reduc-
ing the number of parameters through low-rank factorization
(Hu et al., 2021; Ou et al., 2023; Bertsimas et al., 2023).
Specifically, LoRA approximates each layer by using a re-
construction matrix A and a projection matrix B given a
fixed rank. Recently, researchers have extended the idea of
LoRA to FL settings to handle the communication burden
issue (Yi et al., 2023; Sun et al., 2024; Cho et al., 2024; Kuo
et al., 2024; Yang et al., 2024; Qi et al., 2024). However,
choosing an excessively low rank can lead to performance
degradation, while choosing a large rank does not provide
significant gains in communication efficiency. More recent
works on Freeze A LoRA (FA-LoRA) address this issue by
freezing the reconstruction matrix A and communicating
only the projection matrix B, further reducing communi-
cation overhead (Sun et al., 2024; Zhang et al., 2023; Zhu
et al., 2024; Hao et al., 2024). The first two subfigures in
Figure 1 compare the ideas of LoRA and FA-LoRA.

Challenges. However, while LoRA and FA-LoRA of-
fer notable advantages, they continue to face several key
challenges: The layer-wise low-rank factorization im-
poses architecture-specific constraints, limiting the trade-off
between communication, computation, and performance.
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Figure 1: Comparison of LoRA, FA-LoRA, and MAPA, highlighting differences in parameter updates and matrix factorization.

Moreover, in FA-LoRA, freezing A restricts the model’s
ability to explore richer subspaces, often leading to subop-
timal solutions (Guo et al., 2024). Thus, we aim to answer
the following key question:

How can we develop an adaptive and generalizable ap-
proach to address both the performance suboptimality of
FA-LoRA and communication suboptimality of LORA while
overcoming the rigidity of architecture-dependent designs?

Key Idea. We propose Model-Agnostic Projection Adap-
tation (MAPA), a new approach that reimagines low-rank
adaptation in FL. The key idea is to treat the entire model
update as a single matrix rather than factorizing parameters
layer by layer, as depicted in Figure 1: MAPA reshapes the
universal update vector AW € R to AW € RI# 1%k
and further decomposes it into a reconstruction matrix

A € RI#1x1 and a projection vector B € R'** where
d is the total number of parameters and k& is a design pa-
rameter. This design choice eliminates architecture-specific
constraints, making MAPA applicable to any model architec-
ture while also reducing computational costs. Additionally,
instead of being locked into a frozen reconstruction matrix
A, MAPA explores new subspaces in every federated round
by randomly generating the reconstruction matrix, reducing
the risk of getting trapped in suboptimal parameter spaces.

Summary of Contributions. Overall, the integration of (i)
single matrix update/factorization, (ii) training only the pro-
jection vector, and (iii) exploring new subspaces through re-
peated reconstruction matrix generation in MAPA provides
a versatile mechanism to balance communication costs and
performance while being computationally lighter than FA-
LoRA. Figure 1 illustrates how MAPA differs from LoRA
and FA-LoRA, highlighting its model-agnostic nature and
parameter reduction. Our key contributions are as follows:

* We introduce model-agnostic projection adaptation
(MAPA) that streamlines LoRA implementation, en-
hances computation and communication efficiency, boosts
performance by exploration and offers flexibility in bal-
ancing communication and error rate.

* We analyze the convergence behavior of MAPA and also
demonstrate that under certain conditions, model-agnostic
factorization preserves the same error rate as layer-wise
factorization while requiring less computational burden.

* We conduct extensive experiments across diverse datasets,
model architectures, and baselines, demonstrating that
MAPA surpasses existing methods.

2. Background and Related Works

In this section, we explore various ideas that have been de-
veloped to address communication efficiency in FL. These
strategies generally focus on reducing either the communica-
tion frequency or the communication load per round. To de-
crease communication frequency, methods such as perform-
ing multiple local epochs on clients (Stich, 2018) and select-
ing a subset of clients to participate in each training round
(Sattler et al., 2019; Li et al., 2020) have been proposed.
On the other hand, methods aiming to reduce the com-
munication load per round have been studied more exten-
sively. These methods can be divided into two categories of
sketched updates, and structured updates (Konecny, 2016).

Here, we first explore the sketched update techniques, high-
lighting methods that project the gradient in a subspace
and discussing their shortcomings to structured update tech-
niques that train the gradient directly in the subspace. After-
ward, we look into structured update techniques and focus
on LoRA-based methods in communication-efficient FL to
highlight the novelty and advantages of our work compared
to recent studies. Although these strategies are complemen-
tary in practice and can jointly enhance the scalability and
efficiency of FL, this work evaluates them individually to
provide a detailed analytical comparison of each approach.

Sketched Update. Sketched update is a two-step method,
where first, the full space gradient is computed, and then,
it is projected into a subspace. It includes techniques such
as sparsification (Kone¢ny, 2016), quantization (Alistarh
et al., 2017; Mao et al., 2022), gradient subspace projection
(Azam et al., 2021; Oh et al., 2022; Park & Choi, 2023),
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Figure 2: Performance comparison in a centralized setting with varying trainable parameters on the MNIST dataset.

and random subspace projection (Rahimi et al., 2024; Shi
& Eryilmaz, 2021). The concept of subspace projection
methods is that for a given gradient g € R¢, reconstruction
matrix A € R?*?_ find the projection vector B € RP, which
minimizes the reconstruction error |g — AB)||,, where d
denotes the total number of model parameters and p < d.

B* = i — AB . B*~A'g.
arg min g (I g

Sketched Update Limitations. Although sketched methods
benefit from a high-quality gradient g, one of their shortcom-
ings is blindness to the loss surface £(W; D) and alternative
solutions beside g that can be reconstructed more accurately
from the projection subspace. They typically perform well,
given a communication budget that is large enough. How-
ever, as the communication rate decreases, the reconstruc-
tion of the projection vector ends up far off from the original
gradient g. In contrast, subspace optimization leverages the
loss surface of data to find the steepest direction within the
subspace, leading to a more effective reduction in loss. Fig-
ure 2 presents an example of centralized MNIST training,
illustrating the performance degradation of sketched update
techniques such as EvoFed (Rahimi et al., 2024) and Top-k
Sparsification compared to MAPA. As sparsity increases,
MAPA continues to converge, even when limited to just 2 or
4 trainable parameters out of 11,274 dimensions. Similarly,
FA-LoRA is shown to converge to suboptimal solutions
even in centralized settings. This occurs because FA-LoRA
is restricted to a fixed subspace, optimizing only within that
constraint while remaining blind to the full parameter space.
In contrast, MAPA mitigates this limitation by introducing
randomization at each training epoch, allowing exploration
beyond a static subspace.

Structured Update. These methods reduce the number of
trainable parameters that need to be optimized and commu-
nicated by constraining the parameter space. These methods
include low-rank adaptation (Cho et al., 2024; Sun et al.,
2024; Kuo et al., 2024; Yi et al., 2023; Yang et al., 2024; Qi
et al., 2024), pruning (Luo et al., 2017; Zhang et al., 2018),
and weight-sharing (Ullrich et al., 2017). Among these, the
low-rank approximation is widely used because of its solid
theoretical foundation and ease of hardware implementation
(Liu et al., 2022; Wang et al., 2018; Jaderberg et al., 2014;
Lebedeyv et al., 2014; Denil et al., 2013).

Low-Rank Adaptation (LoRA). LoRA is a practice to ap-
proximate each layer’s large-weight tensors by the product
of smaller ones, consequently reducing the number of train-
able parameters of each layer. Therefore, it is dependent
on the layer’s architecture and requires a careful network
design that considers a specific factorization rank and im-
plementation for each layer. In contrast, MAPA introduces
a global model-agnostic factorization independent of the
model architecture by viewing the gradients of all layers
as a single matrix. MAPA does not require any adjustment
to the network architecture, which not only simplifies the
implementation but also gives more control over the size of
factorization matrices while reducing the overall computa-
tion as well as the total size of the factorized matrices.

FA-LoRA. Recent approaches have further enhanced LoRA
by freezing the reconstruction matrix A and only updating
the projection matrix B (Sun et al., 2024; Zhang et al., 2023;
Zhu et al., 2024; Hao et al., 2024). The suboptimality of
these methods comes from optimizing in a fixed subspace A
(Guo et al., 2024). The FedSA-LoRA (Guo et al., 2024) ad-
dresses this problem with the share- A LoRA methodology,
which trains both A and B but only shares the matrix A.
However, this solution is not efficient in terms of commu-
nication. In contrast, MAPA allows the exploration of new
subspaces at each round without additional communication
overhead by resetting B = 0, regenerating A ~ N(0, I),
and updating the model parameters in every FL round.

In summary, although existing low-rank factorization meth-
ods offer a promising approach to improving communi-
cation efficiency in FL, they remain highly architecture-
dependent and prone to suboptimality. To address these
limitations, we propose a global model-agnostic factoriza-
tion technique, which enhances flexibility, reduces compu-
tational and memory overhead, and achieves higher perfor-
mance by promoting the exploration of subspaces.

3. Proposed Method

In this section, we present MAPA and its application in
FL. We start by elaborating on the MAPA factorization
technique and illustrate its key characteristics in terms of
communication overhead and error rate. Subsequently, we
describe the process for leveraging MAPA factorization
within the FL process.
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Figure 3: Step-by-Step illustration of methodology based on propositions, demonstrating how each step will contribute to designing

MAPA factorization and differing from LoRA architecture.

3.1. Model-Agnostic Projection Adaptation (MAPA)

Recent literature studied the effectiveness of LoRA given
fixed reconstruction matrix on FL. communication efficiency
(Sun et al., 2024; Zhang et al., 2023; Zhu et al., 2024; Hao
et al., 2024). The common idea is to factorize the model up-
date as AW; = A;B;, where A; € R4 %2 and B; € R7%%
for ¢ < min(dy, d2) in each layer W; € R% %42, They take
advantage of freezing the reconstruction matrix A;, limiting
the trainable parameters to the projection matrix B; for each
layer 4, thus reducing communication. However, this layer-
wise FA-LoRA approach suffers from suboptimality and
restricted rank due to architecture-dependent factorization
and also requires a specific design for factorization matrices.

MAPA Description. MAPA represents a black-box factor-
ization that is agnostic to the model. Layer architectures are
not limited to one frozen subspace of optimization and can
continuously explore the parameter space toward the global
optimum. As illustrated in Figure 1, MAPA reshapes the
universal vector AW € R¥1 to AW € RI# 1<% and fur-
ther decomposes into a reconstruction vector A € R [#]x1
and a projection vector B € R'** where k < d and d is
the total number of model parameters. Figure 3 presents
a step-by-step illustration of MAPA methodology, as each
proposition transformation can be seen as a step toward
MAPA methodology. The proofs for Definition 3.3 and
Propositions 3.4 to 3.6 are located in Appendix C.

MAPA Properties. MAPA aims to construct an expressive
subspace, enabling a small B to encode sufficient informa-
tion for updating the model efficiently. First, we formally
define the concepts of communication overhead rate and re-
construction error rate in the context of matrix factorization
in Definitions 3.2 and 3.3. Using these definitions, Proposi-
tion 3.4 establishes that reshaping a single layer preserves
both the factorization error and communication rates. Ex-
tending this, Proposition 3.5 demonstrates that vectorizing
multiple layers into a single matrix similarly maintains these
properties. Finally, this leads to the proof of Proposition 3.6,

which introduces a computationally and communication-
efficient, model-agnostic factorization method as an alterna-
tive to traditional FA-LoRA techniques.

Assumption 3.1 (Gaussian Matrices are Full Rank). Let
A € R™*™ be a random matrix with entries drawn inde-
pendently from a Gaussian distribution A/(0, o%). Then, A
is almost surely of full rank, i.e., rank(A) = min(m,n),
as the probability of A being rank deficient is zero. This
result follows from standard properties of random matrices
(Vershynin, 2018; Tao, 2012).

Definition 3.2 (Communication Overhead Rate). Let
AW € R%*42 be the update matrix of a model. Suppose
the factorization of AW as AW = AB, where A € R41 x4
is a fixed random matrix and B € R9*% is a trainable ma-
trix with ¢ < min(dy, d3) being the factorization rank. The
communication overhead rate CO,. ;. is defined as the
ratio of the size of B to the size of AW:
size(B) q

COrate = size(AW) ~ dy’

Definition 3.3 (Reconstruction Error Rate). Using the
same factorization as in Definition 3.2, the reconstruction
error rate is the expected ratio of the reconstruction error
to the original model update. Given full-rank random re-
construction and projection matrices (Assumption 3.1), it is
expressed as:

E4 [|AW — ABJ|3] q

IAW|3 o d

Proposition 3.4 (Single-Vector Factorization). Let AW,
A, and B be factorizations of a single layer of the network as
in Definition 3.2. By reshaping AW into AW' € Rd1d2 x 1
the factorization of AW’ = A'B’ where A’ € Rdz x»p
and B’ € RP*! can achieve the same reconstruction error
and communication overhead to the conventional factor-
ization of AW when p = qds.



Communication Efficient Federated Learning via Model-Agnostic Projection Adaptation

(7 ] 7
®Server: Broadcast seed (1, I, ) @ Client: Optimize B, & share to server @Server: Aggregate B4, update Global Model
n _______________________________ & share By, to clients
____________ N o { Bi|=0 , Glfbal Mode Update_ s @
: 5 i 5 [gg]zg‘u A‘][.mt]: L
[ A ]={]V(0,n)|rt): b patm, | AL AR D ' nn’n
: i || See o . ; 1 ________________________
' ' il = A, B |r \ PR I I B () B [ EE TRy T e T T S Iy e s Aggregated
................. d ol : VB[] VH}L({E]‘{ ¢ ] : %) \ E"B“ {"Local Model Update Besn
N ] = N ) = o | D TT T
222 e e R R R lH £l A ]H 222

Figure 4: Application of MAPA to communication-efficient FL.

Proposition 3.5 (Multi-Layer Factorization). Ler AW,
A;, and B; be single-vector factorization of i-th layer of the
n-layered network as in Proposition 3.4. By concatenating
the reshaped weights AW; into AW’ € R4, where d =
S, didy. The factorization of AW’ = A’'B’ where A’ €
RI*P and B’ € RP*! can achieve the same reconstruction
error and communication overhead to the single-vector
factorization applied to each AW,; when p = nq.

Proposition 3.6 (MAPA Factorization). Let AW, A, B,
and rank p be multi-layer factorization of a network as
defined in Proposition 3.5. By reshaping AW € R into
AW’ € RIET Xk gna the factorization of AW' = A'B’
where A’ e RI#1 % 1 and B’ € RY**, we can achieve the
same reconstruction error and communication overhead
to the multi-layer factorization of AW when k = p, while
reducing the memory by a factor of k.

3.2. Application to Communication-Efficient FL

This subsection explains how the factorization outlined in
Section 3.1 is utilized in FL, dividing the procedure for
clarity. Figure 4 visualizes the outline of this procedure.

Matrix Construction and Broadcasting. To ensure con-
sistency across the network, the server and all clients start
from an identical condition at each round. We guarantee
identical model parameters W; and reconstruction matrix
Ay by broadcasting a random seed r; and the aggregated
projection vector By at the beginning of round ¢. The initial
aggregated projection vector is set to By = 0.

In the first round (¢ = 0), all clients and the server initialize
the model W using the common seed. The reconstruction
matrix Ay € R%*! is drawn from Gaussian A ~ N(0, I),
and the i-th client’s local projection matrix Bj € R**¥ is
set to 0.

In subsequent rounds (t > 1), clients update their lo-
cal model W, using the previous round’s matrix A;_1, the
model parameters W;_;, and the broadcasted projection
vector B; as follows:

Wy =W,_1 + A;_1B,. (1)

Afterwards, clients generate a new A; ~ N (0, I) using the
random seed r; and set Bf < 0. This ensures that A; and
W, are synchronized and updated.

Local Optimization of Projection Vector. This step opti-
mizes the projection vector B;’ that minimizes the local loss
function L(W, + A; B}, D;), given the random matrix A;.
Here, the model weights are derived as W, + Ay Bg, and D;
denotes client ¢’s local dataset.

At each communication round ¢ > 1, after initializing A;
and B;, clients perform local training to optimize B} using
their local data D;. The gradient of the projection vector is

computed as: 1
Li(W) === > W, a),
|DL| z€D;

VB; = Vi Li(W: + A By).

@

where £(W, x) is the loss function (e.g., cross-entropy loss)
computed with model W and data sample z.

The optimized projection vector BZ is then updated using
gradient descent:
3)

where 7) denotes the learning rate. After optimization, clients
send their optimized projection vector Bi to the server. The
low dimensionality of BZ compared to W; results in com-
munication efficiency.

B! < B —nVBi,

Server-Side Aggregation and Global Model Update.
Upon receiving the projection vectors BZ and their corre-
sponding weights b; = | D;| (e.g., batch sizes or number of
local samples) from the clients, the server aggregates them
to form the global projection vector:

N .
21:1 biBg
==
22:1 bi
This weighted averaging captures the collective contribution
of all clients, proportional to their data sizes. The server
then broadcasts the aggregated projection vector B, to all
clients. After receiving By, the server and all clients update

their local models using the reconstruction matrix A; and
the aggregated projection vector B; as:

Wt+1 = Wt + AtBt.

t =

“

&)

This update integrates the clients’” optimized directions into
their local models and ensures synchronization across the
network. This process is repeated until the global model
converges. Abbreviated pseudo-code is provided in Algo-
rithm 1, while Appendix A offers a more detailed version.
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Table 1: Summary of datasets and models used in our experiments.

Dataset Client Distribution Train/Test # Classes Model # Parameters
MNIST Non-IID (2 classes) 60K / 10K 10 CNN - 2 Layers 11,274
FMNIST Non-IID (2 classes) 60K / 10K 10 CNN - 2 Layers 11,274
CIFAR-10 Non-IID (2 classes) 50K / 10K 10 CNN - 4 Layers 1,146,634
CIFAR-100 Non-IID (10 classes) 50K / 10K 100 WideResNet 16d4w 2,854,420
TinylmageNet  Non-IID (10 classes) 100K/ 10K 200 WideResNet 16d4w 2,880,120
Shakespeare Distributed by Roles 14K /2K 65 LSTM 814,957
Sentiment140 Distributed by Users  1.4M /200K 2 Transformer 2,221,570

Algorithm 1 FL with MAPA

d .
Initialize: Global model Wy, € RI%1%, reconstruction ma-
d = .
trix Ag € RI%1*1, projection matrix By < 0 € R'**, seed
To

1: for each communicationround¢ =1,...,T — 1 do
2 Server: Broadcast global B and r:—1

3 for each clienti = 1,..., N in parallel do
4: Client: Receive B;—1 and 741

5: Update Wy =Wiq1+ Ai_1By_1

6: Update A, = N(0,0)|ri—1

7 Initialize B! < 0 € R***

8: for each local epoche =1, ..., E'do
10: Update B} + B} — nVBi}
11: end for N
12: Send updated Bj to server
13:  end for

14:  Server: Aggregate By % Efil b; B}
15:  Update global model W41 + W, + A, B;
16:  Update random seed 7

17: end for

18: Return: Final global model W1

4. Convergence Analysis

We examine the convergence dynamics of FL with MAPA.

Assumption 4.1. For each i, £;(v) is S-smooth, i.e.,
IVL;(uw) = VL (v)|| < Bllu — v]| for any u, v.

Assumption 4.2. Variance of the stochastic gradient of D;
is bounded for each client 7, i.e.,

E[|[veion) - WAW)HQ} < o?

’i‘heorem 4.3. Let the learning rate satisfy ny < ﬁ.
Then, the algorithm achieves the following bound:
=
2
iy Z neE [”Vﬁ(wf)” } <
t=0
T-1
E[L(Wy)] — L* 1
%vﬁ(ﬁrﬁvﬂdﬁ* s
Hr T =0

where Hp = 23:01 M, € is the distortion parameter from
the JL Lemma, and L* is the minimum value of L(W).

With a decreasing learning rate satisfying >, 7, — 00,
Yosoni < 00 (g = i for some constants 19 > 0,

c > 0), the term Hy = Zthfol 7¢ grows unbounded, while
the weighted sum ZtT:_Ol n? remains finite. Therefore, the
right-hand side of Theorem 4.3’s bound satisfies:

EIL(Wo)] - £* 1 =

0, — 250 asT — oo.
Hy HT;"f

Thus, the gradient norm average satisfies:
T-1

1
— E[|IVL(W)|?] — 0,
2 MEIIVEW)I]

confirming convergence to a stationary point.

As shown above, the convergence bound is influenced by
the factor € + 8 + Pe. In particular, the bound becomes
tightest and achieves the highest communication efficiency
when there is no reconstruction error, i.e., when € = 0. The
complete proof of Theorem 4.3 is located in Appendix D,
and Appendix F contains notation table used in this work.

5. Experimental Setup

MAPA is evaluated across multiple model architectures,
tasks, and baselines. The benchmarks include five image
classification tasks, next-character prediction, and sentiment
analysis. For image classification, we use MNIST (Le-
Cun et al., 1998), FMNIST (Xiao et al., 2017), CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009), and TinyImageNet
(University, 2015). For sequential tasks, we use Shake-
speare and Sentiment140 from the LEAF dataset (Caldas
et al., 2018), which is specifically designed for FL scenar-
ios. The details of each dataset and the model architectures
used for training are summarized in Table 1, demonstrating
MAPA’s adaptability across varying scales and models.

Non-IID Distribution. To simulate realistic FL. conditions,
we distribute the training datasets non-IID across 100 clients.
For image classification, we assign each client a unique sub-
set of classes. For NLP tasks, we follow the natural parti-
tioning of the LEAF dataset, where different Shakespearean
roles and Twitter users represent individual clients. Model
performance is evaluated using the original test sets.

Model Architectures. To evaluate MAPA’s scalability, we
experiment with models of varying sizes. A 2-layer CNN



Communication Efficient Federated Learning via Model-Agnostic Projection Adaptation

MNIST Accuracy - 100 Clients FMNIST Accuracy - 100 Clients

CIFAR10 Accuracy - 100 Clients Shakespeare Accuracy - 100 Clients

00 20
85
Z o5 z
g g 80
H H
g 9 —— MAPA Y75 —— MAPA
< FA-LoRA < FA-LoRA
— g5 - 70
T —— EvoFed ] —— EvoFed
'g —— Sparse 'g 65 —— Sparse
o 8o —— Quant o 60 — Quant
FedAvg FedAvg
75 55
100 200 300 400 500 100 200 300 400 500
Rounds Rounds
MNIST Communication FMNIST Communication
c 10° £ 10°
L | — mara LS ] — MaAPA
5 10 FA-LoRA 5 10 FA-LoRA
Y j01] — EvoFed Y 10°] — EvoFed
g —— Sparse g 102 — Sparse
£ 10°f — Quant € 100l — Quant
g 101 FedAvg g 100 FedAvg
O 102 O 101
S 10-3 S 102
S 10 5 10
o 2 103

0.2 0.4 0.6 0.8 1.0
Global Accuracy

(a) MNIST

03 04 05 06 0.7 0.8 0.9
Global Accuracy

(b) FMNIST

— MAPA 40 /‘——’
70 FA-LoRA H )
c —— EvoFed %” € 35
3 oy Sparse 3
Y 50/ — Quant o 30 MAPA
< FedAvg < FA-LoRA
© ® 25 —— EvoFed
8 40 E-] Y
] ) parse
0 30 o 20 — Quant
FedAvg
20 15
100 200 300 400 500 200 400 600 800 1000
Rounds Rounds
CIFAR10 Communication Shal e C ication
10% 105
— MAPA o]~ MAPA
10¢ FA-LoRA 10 FA-LoRA
103| — EvoFed 103} — EvoFed
— Sparse — Sparse L

102 —-

/

— Quant
10t FedAvg _
100] ————

—

0.2 0.3 0.4 0.5 0.6 0.7
Global Accuracy

(c) CIFAR-10

— Quant

10! FedAvg —’_{/
[ ——
10°
10-1

102

logip Communication

logip Communication

0.15 0.20 0.25 0.30 0.35 0.40
Global Accuracy

(d) Shakespeare

Figure 5: Performance comparison of all methods on MNIST, FMNIST, CIFAR-10, and Shakespeare datasets. The top row shows the
accuracy for the respective datasets, while the bottom row illustrates the communication cost associated with each level of accuracy.

Table 2: Summary of performance and communication cost in non-IID setting.

MNIST FMNIST CIFAR-10 CIFAR-100 Shakespeare Sent140 TinyImageNet

Com. Acc. Com. Acc. Com. Acc. Com. Acc. Com. Acc. Com. Acc. Com. Acc.
FedAvg 100% | 98.9% 100% | 89.2% 100% | 69.0% 100% | 43.47% 100% | 41.86% 100% | 74.90% || 100% | 36.48%
Sparse 153% | 92.1% || 24.1% | 81.1% 2.7% | 37.15% || 1.20% | 33.72% 1.73% | 34.86% 1.93% | 74.21% || 1.32% | 25.34%
Quantize 313% | 97.6% || 24.1% | 87.1% || 152% | 67.40% || 6.10% | 40.05% | 10.11% | 35.45% || 13.85% | 73.70% | 8.75% | 34.47%
EvoFed 9.40% | 98.5% || 7.60% | 84.7% 34% | 39.50% | 204% | 37.62% | 0.23% | 36.76% || 0.40% | 70.50% | 1.85% | 15.4%
FA-LoRA || 30.2% | 93.8% || 17.9% | 74.1% 1.7% | 23.52% | 1.20% | 19.10% 1.67% | 28.07% 1.30% | 66.61% || 1.27% | 7.31%
MAPA 2.90% | 98.5% | 3.10% | 88.0% | 1.20% | 68.3% | 091% | 40.16% | 0.13% | 39.96% || 0.19% | 74.50% | 0.97% | 35.22%

is used for MNIST and FMNIST, while a 4-layer CNN
is employed for CIFAR-10. For larger datasets, including
CIFAR-100 and TinyImageNet, we use WideResNet vari-
ants with 4 widths and 16 depths. Beyond CNNs, we extend
our evaluation to LSTM for next-character prediction and
Transformers for sentiment analysis, ensuring MAPA’s ef-
fectiveness among various networks. Appendix E includes
the details of the model architectures and hyperparameters.

Baselines. We compare the proposed MAPA with several
baselines, including FedAvg, FedAvg with Sparsification
(Sparse), and FedAvg with Quantization (Quant), as com-
mon compression techniques. Additionally, we evaluate
MAPA against EvoFed (Rahimi et al., 2024), a state-of-
the-art compression-based method, and FA-LoRA, inspired
by (Sun et al., 2024; Zhang et al., 2023; Zhu et al., 2024,
Hao et al., 2024), as a representative factorization-based
approaches. Comparisons with Sparsification and Quanti-
zation establish MAPA’s effectiveness relative to standard
compression methods. EvoFed serves as a strong baseline
designed for FL and gradient compression, demonstrating
how MAPA’s subspace optimization can surpass existing
SOTA of communication-efficient FL techniques that ap-
ply compression post-optimization. Finally, the evaluation
of MAPA alongside FA-LoRA highlights the impact of
MAPA’s dynamic subspace exploration in improving the
convergence and performance of LoRA-based techniques.

Federated Learning Setting. In each training round, 10%
of the clients are randomly sampled to participate. These
selected clients train in parallel and transmit only updates to
the server. The server then aggregates updates and returns
it to the clients. Model performance on the test dataset and
communication load per client is evaluated at the server.

6. Results and Discussions

We discuss the experimental results in detail and provide
further insights into the MAPA’s performance. The accuracy
of MAPA, compared with multiple baseline methods and
different datasets, is shown in Figure 5 (top row). MAPA
outperforms all other methods in all tasks and delivers re-
sults comparable to FedAvg while utilizing a much smaller
number of trainable parameters due to the promotion of
exploration and effective utilization of the communication
budget for reducing the loss function directly. Figure 5
(bottom-row) shows each method’s minimum amount of
communication to reach any accuracy. It can be seen that
MAPA tends to utilize significantly less communication
than other techniques, as the communication cost (y-axis)
is in the log, scale. The additional results for CIFAR100,
TinyImagenet, and Sentiment140 are placed in Appendix B.

Table 2 summarizes experimental results by showing the
maximum accuracy of each baseline and the communication
cost percentage compared to FedAvg for reaching a certain
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Figure 6: Accuracy and communication cost per accuracy level for FMNIST and Shakespeare dataset. Demonstrating the effect of a
number of trainable parameters (k) on the communication efficiency of MAPA.

performance. This certain performance is selected as the
maximum accuracy of the worst baseline, so all models are
fairly compared on how much communication they need
to reach the same accuracy. MAPA achieves significantly
lower communication costs than FedAvg while maintain-
ing competitive accuracy levels. In MNIST and FMNIST
datasets, MAPA achieves 99.6% and 98.6% of FedAvg ac-
curacy while having only 3% of communication. Similarly,
in CIFAR-10, CIFAR-100, and TinyImagenet datasets, it
reaches 98.9%, 92.4%, and 96.5% of FedAvg accuracy with
around 1.0% of communication. Finally, in Shakespeare
and Sentiment140, We see that it preserves up to 95.5%
and 99.5% of FedAvg’s accuracy while significantly cutting
communication to lower than 0.2% of FedAvg.

MAPA Hyperparameter. MAPA streamlines the LoRA
approach by applying a single factorization to the entire
model’s parameters, eliminating the need to fine-tune and
optimize factorization configurations for each layer. Instead,
MAPA enables performance control through a single param-
eter, k, which directly influences both communication cost
and model accuracy. This section examines the effect of
varying k on model performance and communication effi-
ciency in FL. Figure 6 presents results for the FMNIST and
Shakespeare datasets. As expected, smaller & values reduce
communication costs but slow convergence, often requir-
ing significantly more training rounds. Conversely, larger
k values exponentially increase communication overhead
while yielding diminishing performance gains. To strike an
optimal balance, we aim for a k that meets a desired per-
formance threshold with minimal total communication. In
some cases, increasing k accelerates convergence to higher
accuracy, ultimately improving communication efficiency.
Subfigures (b) and (c) of Figure 6 illustrate the communica-
tion overhead required to reach specific accuracy, providing
a basis for selecting the most communication-efficient k. A
similar approach is used to determine the optimal parameter
settings for other baselines, ensuring a fair comparison.

Fresh Reconstruction Matrix. A key factor in MAPA’s
superiority over FA-LoRA is its use of a dynamically gener-
ated reconstruction matrix A rather than a fixed one. This ap-
proach promotes the exploration of new subspaces through-
out training. Figure 7 illustrates the benefits of using a fresh
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Figure 7: Comparison of having a fresh A vs. frozen A.

A on the FMNIST and Shakespeare datasets. We evalu-
ate MAPA across varying numbers of trainable parameters,
ranging from 2° to 2'3. For FMNIST, this corresponds to
0.009% to 72.27% of the total model parameters, while for
Shakespeare, it spans from 0.0001% to nearly 1%. In both
cases, MAPA with a fresh A achieves superior convergence
with fewer parameters, effectively leveraging the search
space. In contrast, when A is frozen, performance follows a
logarithmic correlation with the number of trainable param-
eters, requiring an exponentially larger parameter count to
match the results obtained with a fresh A.

Additional Results. Appendix G supplements our experi-
ments with additional evaluations on IID distribution and
the absence of client sampling. Furthermore, Appendix H
presents a memory complexity analysis, emphasizing the
computational efficiency and flexibility of MAPA compared
to layer-wise low-rank factorization.

7. Conclusion

We introduced Model-Agnostic Projection Adaptation, a
novel approach to communication-efficient FL. Unlike layer-
wise LoRA, MAPA factorizes the entire model’s parameters
into a compact projection vector and a randomly regenerated
reconstruction matrix, enabling efficient updates without
architecture-specific constraints and mitigating FA-LoRA
suboptimality while flexibly balancing communication and
accuracy. Our theoretical analysis establishes MAPA’s con-
vergence, and extensive experiments demonstrate its superi-
ority over existing compression and LoRA-based methods
across diverse datasets. MAPA significantly reduces com-
munication while maintaining strong performance, making
it a practical and scalable solution for FL.
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Impact Statement

This paper presents work aimed at advancing the field of
Federated Learning by improving communication efficiency
in distributed training. The proposed Model-Agnostic Pro-
jection Adaptation (MAPA) method reduces the commu-
nication overhead while maintaining model performance,
making federated learning more practical for large-scale and
resource-constrained environments. By enabling efficient
model training without centralizing user data, MAPA sup-
ports privacy-preserving Al applications in areas such as
healthcare, finance, and edge computing. However, as with
all federated learning methods, potential societal impacts
include challenges related to fairness, client participation
incentives, and susceptibility to adversarial attacks. Future
work should consider these aspects to ensure equitable and
secure deployment. Overall, MAPA contributes positively to
the scalability and accessibility of federated learning, with
no immediate ethical concerns requiring specific attention.

References

Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic,
M. Qsgd: Communication-efficient sgd via gradient quan-
tization and encoding. In Advances in Neural Information
Processing Systems, pp. 1709-1720, 2017.

Azam, S. S., Hosseinalipour, S., Qiu, Q., and Brinton, C.
Recycling model updates in federated learning: Are gra-
dient subspaces low-rank? In International Conference
on Learning Representations, 2021.

Bertsimas, D., Cory-Wright, R., and Pauphilet, J. A new
perspective on low-rank optimization. Mathematical Pro-
gramming, 202(1):47-92, 2023.

Caldas, S., Duddu, S. M. K., Wu, P, Li, T., Kone¢ny, J.,
McMahan, H. B., Smith, V., and Talwalkar, A. Leaf:
A benchmark for federated settings. arXiv preprint
arXiv:1812.01097, 2018.

Cho, Y. J., Liu, L., Xu, Z., Fahrezi, A., and Joshi, G. Het-
erogeneous low-rank approximation for federated fine-
tuning of on-device foundation models. arXiv preprint
arXiv:2401.06432, 2024.

Denil, M., Shakibi, B., Dinh, L., Ranzato, M., and De Fre-
itas, N. Predicting parameters in deep learning. Advances
in neural information processing systems, 26, 2013.

Guo, P, Zeng, S., Wang, Y., Fan, H., Wang, F., and Qu, L.
Selective aggregation for low-rank adaptation in federated
learning. arXiv preprint arXiv:2410.01463, 2024.

Hao, Y., Cao, Y., and Mou, L. Flora: Low-rank adapters
are secretly gradient compressors. arXiv preprint
arXiv:2402.03293, 2024.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Jaderberg, M., Vedaldi, A., and Zisserman, A. Speeding up
convolutional neural networks with low rank expansions.
arXiv preprint arXiv:1405.3866, 2014.

Kone¢ny, J. Federated learning: Strategies for im-
proving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. Unpublished, 2009.

Kuo, K., Raje, A., Rajesh, K., and Smith, V. Feder-
ated lora with sparse communication. arXiv preprint
arXiv:2406.05233, 2024.

Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, 1., and
Lempitsky, V. Speeding-up convolutional neural net-
works using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278-2324, 1998.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar,
A., and Smith, V. Fair resource allocation in federated
learning. arXiv preprint arXiv:1905.10497, 2020.

Liu, Y., Liu, J., Long, Z., Zhu, C., Liu, Y., Liu, J., Long, Z.,
and Zhu, C. Tensor decomposition in deep networks. Ten-
sor Computation for Data Analysis, pp. 241-263, 2022.

Luo, J.-H., Wu, J, and Lin, W. Thinet: A filter level pruning
method for deep neural network compression. In Proceed-
ings of the IEEFE international conference on computer
vision, pp. 5058-5066, 2017.

Mao, Y., Zhao, Z., Yan, G., Liu, Y., Lan, T., Song, L., and
Ding, W. Communication-efficient federated learning
with adaptive quantization. ACM Transactions on Intelli-
gent Systems and Technology (TIST), 13(4):1-26, 2022.

McMahan, B., Moore, E., Ramage, D., Hampson, S.,
and Arcas, B. A. y. Communication-Efficient Learn-
ing of Deep Networks from Decentralized Data. In
Singh, A. and Zhu, J. (eds.), Proceedings of the 20th
International Conference on Artificial Intelligence and
Statistics, volume 54 of Proceedings of Machine Learn-
ing Research, pp. 1273-1282. PMLR, 20-22 Apr 2017.
URL https://proceedings.mlr.press/v54/
mcmahanl7a.html.


https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html

Communication Efficient Federated Learning via Model-Agnostic Projection Adaptation

Oh, Y., Jeon, Y.-S., Chen, M., and Saad, W. Vector quan-
tized compressed sensing for communication-efficient
federated learning. In 2022 IEEE Globecom Workshops
(GC Wkshps), pp. 365-370. IEEE, 2022.

Ou, X., Chen, Z., Zhu, C., and Liu, Y. Low rank opti-
mization for efficient deep learning: Making a balance
between compact architecture and fast training. arXiv
preprint arXiv:2303.13635, 2023.

Park, S. and Choi, W. Regulated subspace projection based
local model update compression for communication-
efficient federated learning. IEEE Journal on Selected
Areas in Communications, 41(4):964-976, 2023.

Qi, J., Luan, Z., Huang, S., Fung, C., Yang, H., and Qian,
D. Fdlora: Personalized federated learning of large
language model via dual lora tuning. arXiv preprint
arXiv:2406.07925, 2024.

Rahimi, M. M., Bhatti, H. 1., Park, Y., Kousar, H., Kim,
D.-Y., and Moon, J. Evofed: leveraging evolutionary
strategies for communication-efficient federated learning.

Advances in Neural Information Processing Systems, 36,
2024.

Sattler, F., Wiedemann, S., Miiller, K.-R., and Samek, W.
Robust and communication-efficient federated learning
from non-iid data. In IEEE transactions on neural net-
works and learning systems, 2019.

Shi, Z. and Eryilmaz, A. Communication-efficient subspace
methods for high-dimensional federated learning. In 2021
17th International Conference on Mobility, Sensing and
Networking (MSN), pp. 543-550. IEEE, 2021.

Stich, S. U. Local sgd converges fast and communicates
little. arXiv preprint arXiv:1805.09767, 2018.

Sun, Y., Li, Z., Li, Y., and Ding, B. Improving lora in
privacy-preserving federated learning. arXiv preprint
arXiv:2403.12313, 2024.

Tao, T. Topics in Random Matrix Theory. Graduate Stud-
ies in Mathematics, Vol. 132. American Mathematical
Society, 2012.

Ullrich, K., Meeds, E., and Welling, M. Soft weight-
sharing for neural network compression. arXiv preprint
arXiv:1702.04008, 2017.

University, S. Tiny imagenet visual recognition
challenge. https://www.kaggle.com/c/

tiny-imagenet, 2015.

Vershynin, R. High-Dimensional Probability: An Introduc-
tion with Applications in Data Science. Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge
University Press, 1st edition, 2018.

10

Wang, W., Sun, Y., Eriksson, B., Wang, W., and Aggarwal,
V. Wide compression: Tensor ring nets. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 9329-9338, 2018.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

Yang, Y., Liu, X., Gao, T., Xu, X., and Wang, G. Sa-
fedlora: Adaptive parameter allocation for efficient
federated learning with lora tuning. arXiv preprint
arXiv:2405.09394, 2024.

Yi, L., Yu, H., Wang, G., and Liu, X. Fedlora: Model-
heterogeneous personalized federated learning with lora
tuning. arXiv preprint arXiv:2310.13283, 2023.

Zhang, L., Zhang, L., Shi, S., Chu, X., and Li, B. Lora-fa:
Memory-efficient low-rank adaptation for large language
models fine-tuning. arXiv preprint arXiv:2308.03303,
2023.

Zhang, T., Ye, S., Zhang, K., Tang, J., Wen, W., Fardad, M.,
and Wang, Y. A systematic dnn weight pruning frame-
work using alternating direction method of multipliers.
In Proceedings of the European conference on computer
vision (ECCV), pp. 184-199, 2018.

Zhu, J., Greenewald, K., Nadjahi, K., Borde, H. S.
d. O., Gabrielsson, R. B., Choshen, L., Ghassemi, M.,
Yurochkin, M., and Solomon, J. Asymmetry in low-
rank adapters of foundation models. arXiv preprint
arXiv:2402.16842, 2024.


https://www.kaggle.com/c/tiny-imagenet
https://www.kaggle.com/c/tiny-imagenet

Communication Efficient Federated Learning via Model-Agnostic Projection Adaptation

A. Full Pseudocode for Federated Learning with MAPA

Algorithm 2 Federated Learning with MAPA (Detailed Version)

1: Initialization:
2: - Seed all clients and the server with the same initial random seed r.
3: - Initialize the global model, reconstruction matrix, and projection vector:

Wy e RIZ1%F eo. drawn from N(0,0%14) or any other scheme.

Ag € RI#1%1 " with each column drawn i.i.d. from N(0,0°%1,).

Bo +—0e RIXk.

4: for each communicationroundt =1,...,7 — 1 do

5 On the Server:

6: 1. Broadcast the current global projection vector B;_; and the current PRNG seed r;_; to all clients.
7.  On Each Client: = 1,..., N (in parallel):

8 2. Receive B;_q and r4_1.

9 3. Update the local model:

Wy < Wi_1 + As_1 Biq.

10: 4. Re-generate the reconstruction matrix using the seed r,_1:

At = N(O, O'QId)|

Tt—1

11: (This means each client and the server can reproduce A; identically using the same seed.)
12: 5. Initialize the local projection vector: 4
Bl + 0 € RY**,

13: 6. Perform local training for F epochs (or mini-batch steps). For each local epoche = 1,..., E:
14: (a) Compute the gradient of the local loss £y w.r.t. the projection vector Bi:

VB; = Vi L)(W; + A B, Di).
15: (b) Update the local projection vector with your choice of optimizer (e.g., SGD):

B} «+ B;-nVB;.

16: (c) Optionally set B} < BZ if doing iterative local steps.

17: 7. Send the locally updated projection vector E@ back to the server.

18:  On the Server (after all clients respond):

19: 8. (Re)generate A; with the seed r;_1 so the server is consistent with clients:

At = N(O) U2Id)|

Tt—1

20: 9. Aggregate the projection vectors. Let b; be any weighting factor for client ¢, or just set b; = 1 if unweighted:
1N
B + 5 ; b; Bi,

where S = 32N b;.

21: 10. Update the global model: -
Wt+1 — Wt + At Bt.

22: 11. Generate a new random seed r; (e.g., 7 = hash(r;_1)).

23: end for

24: Return: The final global model Wr.

11
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B. Accuracy and Communication Learning curves

The common practice of implementing matrix factorization in communication-efficient FL involves using a fixed and frozen
reconstruction matrix throughout the whole training. In contrast, we found that having a reconstructed matrix generated
fresh and independently in each round outperforms this traditional choice without any additional communication overhead.
Figure 8 shows the evidence of this improvement in the case of FMNIST training with 100 clients.
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Figure 8: Performance comparison of MAPA and baseline methods on CIFAR100, Tinylmagenet, and Sentiment140 datasets. The top
row shows the accuracy achieved by each method on the respective datasets, while the bottom row illustrates the communication cost
associated with each method.
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C. Proof of Definitions and Propositions

Definition C.1 (Communication Overhead Rate). Let ATV € R% %% be the update matrix of a model. Suppose the
factorization of AW as AW = AB, where A € R%*4 ig a fixed random matrix and B € R?%% ig a trainable matrix with
¢ < min(dy, dz2) being the factorization rank. The communication overhead rate CO,..;. is defined as the ratio of the size
of B to the size of AW:

size(B) q
size(AW)  dy’
Definition C.2 (Reconstruction Error Rate). Using the same factorization as in Definition 3.2, the reconstruction error
rate is the expected ratio of the reconstruction error to the original model update. Given full-rank random reconstruction
and projection matrices (Assumption 3.1), it is expressed as:

Corate =

Ea[lAW - ABJ3] . 4
AW |5 dy

Proof. Let AW = [Aw; Awsy -+ Awg,], where each column Aw; € R%. Similarly, the reconstruction AB can be
written as [Ab; Aby --- Abg,], where each b; € R? is a trainable matrix.
The reconstruction error is given by:

da

IAW — ABI[5 = > [[Aw; — Abif3.
i=1

The projection of Aw; onto the subspace spanned by A is P4Aw;. The error rate F is defined as:

_ | Aw; — PaAwi|3
| Aw;|3

Using the Pythagorean theorem:
1Awi 3 = | Padwill3 + [lwi — Padws]3,

we rewrite F as: ) ) )
_ [Aw[|3 — [[PaAw;]|3 -1 [ PaAw;]|3

| Aw;][3 | Aw;|[3

The expected value of || P4 Aw;||3 for a full-rank random Gaussian projection is:

E

q
E[|| PaAwf3] = d71||Awi||g'

Substituting this into E':

E[|| PaAw]|3] Bl Aw|f3 q
E[||Aw; — Ab|3] =1 — =1- =1-—-.
? | Aw 13 [Jwill3 d
Applying this to each column AAw; of AW, we obtain:
d2 d2
Ea | Y [|Aw; — Abi|5| =Y Ea [[|Aw; — Pa(Aw))|3] .
i=1 i=1
Using the expected error formula:
do q q do
= 1—-— Aw12:<1—) Awi 2.
;( L) 1w i) 2w

Since [|AW]2 = 3% [|Aw;||2, we get:

q
Eaflaw - az] = (1- ) 1AW
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Proposition C.3 (Single-Vector Factorization). Let AW, A, and B be factorizations of a single layer of the network as
in Definition 3.2. By reshaping AW into AW’ € R%1% % 1 the factorization of AW' = A'B’ where A’ € R41%2 X P and
B’ € RP*! can achieve the same reconstruction error and communication overhead to the conventional factorization of
AW when p = qds.

Proof. Error Preservation. In the single-vector setup, AW’ € R4 is projected onto a subspace of dimension p. From
random projection theory (as used in Definition 3.3), if A’ is sampled such that rank(A’) = p, then:

e[lAW AR, o
NG iz
Substituting p = qds gives: B qds —1_ 49
dldg dl .

Hence, the expected reconstruction error satisfies:
B(law - A7) = (1- L) jaws
1

which matches the original factorization.

Communication Overhead Preservation. Since AW’ ¢ R%92 its total size is size(AW’) = dyd,. For the new
factorization, we have:

size(B') = p = qda.
Thus, the communication overhead is:

, _ size(B')  qdo g
Corate o SiZG(AW’) a dldg o dl.

which matches the original overhead.

Since both the expected reconstruction error and the communication overhead remain unchanged, the single-vector
factorization with p = qd> is equivalent in terms of efficiency. O

Proposition C.4 (Multi-Layer Factorization). Let AW;, A;, and B; be single-vector factorization of i-th layer of
the n-layered network as in Proposition 3.4. By concatenating the reshaped weights AW; into AW’ € R4*1 where
d =1, didb. The factorization of AW’ = A’'B’ where A’ € R¥P and B' € RP*! can achieve the same reconstruction
error and communication overhead to the single-vector factorization applied to each AW; when p = nq.

Proof. Error Preservation. For each layer i, a random full-rank matrix A; € R% *¢ yields an expected squared reconstruc-
tion error

q
B |AW: - 4Bl = (1 = =) 1AW
1
Flattening AW, into AW/ € R(di‘fé)“, a single-vector projection of dimension ¢ d’ preserves this same error ratio (cf.
Proposition 3.4).
When we concatenate all AW/ into AW’ € R%*!, we form a block-structured vector. Let p := n g and let A’ € R?*? be
constructed from Gaussian distribution. By the standard random-projection argument in dimension d with subspace size p,

Elaw’ - AB3] = (1 - Z)jawj3

Since p = n ¢, the overall ratio matches applying single-vector factorizations of rank g to each AW/ individually.

Communication Overhead Preservation. For each layer i, the single-vector factorization of AW; introduces

. i . i i size(B;) q
size(B;) = qdb, size(AW;) = dd,, hence m =

14
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Concatenating all AW/ into AW’ € R4*! gives size(AW’) = d, with
d =Y did.
i=1
Meanwhile, in the multi-layer factorization, the new trainable vector B’ € RP* ! has

size(B') = p = ngq.

Thus
size(B’) ngq

size(AW’) Z?zl(di d§)7

which matches the total overhead of n individual rank-q factorizations (one per layer) in aggregate. Consequently, the
communication overhead rate is also preserved.

Since both the expected reconstruction error (per layer or in total) and the communication overhead remain the same,
choosing p = n q for AW’ is equivalent to applying single-vector factorization of rank ¢ separately to each layer. [

Proposition C.5 (MAPA Factorization). Let AW, A, B, and rank p be multi-layer factorization of a network as defined
in Proposition 3.5. By reshaping AW € R into AW’ € RI#] x * and the factorization of AW' = A’'B’ where

d . . .
A e RI#] <1 and B' € RY™k we can achieve the same reconstruction error and communication overhead to the
multi-layer factorization of AW when k = p, while reducing the memory by a factor of k>.

Proof. Error Preservation. Since AT € R*! is reshaped into AW’ € R [4/¥1 %k we still have || AW’||% = |AW 3.
When A’ € R [4/¥1%1 i5 a suitable random projection (and B’ € R'** is fit accordingly), the rank-1 subspace of dimension
1 within [d/k]| induces the known expected error ratio

E[IAW = ABI:| = (1= ) 1AW|I3,

since the ambient dimension is [d/k] X k ~ d. By taking k = p, we obtain (via standard random-projection arguments) the
matching error ratio 1 — p/d, up to negligible rounding. Therefore:

E[law' - A'B}) = (1) jaw’|z,

Communication Overhead Preservation. The matrix B’ € R*** has size k in total. Meanwhile, AW’ € RI4/k1xk hag
size [d/k| k = d. Thus
size(B’) k ok p

size(AW') — [d/k1k ~ d d
Setting k = p matches the original ratio £ from B € RP*1 in the multi-layer factorization.

Memory Reduction by Factor %2. In standard rank-p factorizations for AW € R%*!, one typically stores a d x p projection
plus a p x 1 vector, whose total size scales as dp + p. By contrast, A’ € RI4/k1x1 plus B’ € R'** has combined size
[d/k] + k. When k = p, the ratio of these sizes can be shown to drop by a factor of approximately k2. Hence the approach
allocates k2 times less memory than a naive d x p plus p x 1 arrangement. As p = k

dp+p dk + k d+1

[d/kl+k  [d/k] +k  d/k2+1 ~

Thus, the factorization AW’ = A’B’ with k = p exactly preserves the original rank-p error and overhead while using
k2-fold less memory. O
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D. Proof of Theorem

D.1. Assumptions and Preliminaries

We restate the key assumptions required for the convergence analysis.
Assumption D.1 (Smoothness). For each i, £;(1V) is S-smooth, i.e.,

(IVLi(u) = VL;(v)|| < Bllw—wv]||, forallu,v.
Assumption D.2 (Bounded Variance of Stochastic Gradients). The variance of the stochastic gradient estimator VL, (W)

is bounded, i.e., E [H%Ei(Wt) —VL,(Wy)

2
} < 0l2, for all clients ¢ and iterations ¢.

Lemma D.3 (Johnson-Lindenstrauss Lemma). Given 0 < € < 1, a set of points {x1,22,..., 2N} C R?, and a target

dimension k = O (IOE—2N>, there exists a random linear mapping P € R¥* such that for all i, j:
(1= Ollws = @jl* < |Pa; — Pajl|* < (1+ €)|ai — .

In our context, the random projection matrices B! and reconstruction matrices A, satisfy the JL property with high
probability.

D.2. Proof of Theorem 1
Theorem D.1. Given a decreasing learning rate 1y < B(l e 3 the algorithm has the following convergence bound:
T-1 T-1
1 2] _ E[L(Wo)] — L~ 2 [ 1L 2
— E [ VLW, } < ———— 42 e
7 2 B (IVEOVI] < =55 = e 6+ oo - S

where Hp = ZtT;()l M, € is the distortion parameter from the JL Lemma, and L* represents the minimum value of L(W).

Proof. By the S-smoothness of £(W) and taking expectation on both sides, we have

EL(Weir) — L] < ELVL(WD), Werr — W)l + DB [|[Wepr ~ W] ©

Using the update rule Wy = W, — ntAtBt, where B; = % Zf\; Bg, we can rewrite the first term as:

E[(VLW), Wi — W) = =B [(VL(W:), A Br)]

(retn (3]

<V£ Wh), ZAtBl>

=-nE

= —nE

We decompose A; B} as:
V»Cl(Wt) = AtB; + 6;,
where ei = A, Bi — V.L;(W,) is the projection error.

Substituting back, we have:

N
E[(VLW,), Wis1 — W] = —n,E <V£ W), %Z( (W) —et)>]
1 > 1 L
= —nE <vc (W), N; t> + nE <V£(Wt),N;e§>].
Ay As
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We will now concentrate on A; as:

A = —nE

<vc W), th W) >]
e N
=N XZ: (VL(Wy), VL, (W))]

N
n
= 2;\7 {E [IVLW)[I] + E

i=1

‘Vﬁi(Wt)

2-}+ 2 || veom —7Zva ol

=0

=S E[|VL(W) H ZE

e

where (a) uses (a,b) = 2{||a||> +||b]|*> — ||a — b||*}. We now turn our attention to A, as:

Next, we focus on As:

N
Az = nE <V£(Wt)’;zei>1
Mt [ 2] - Ly 2
g TEIVEVIIT| + HN;eé
- i 3 2_
A ;
< B Ivevor] + G

< Mg [veow|] + 20 g {E vz ]+ [[Fzam - veaom| ]}

N
r 1 2
VLI + S S E[IVEWL)IP] + 2e?o?

i=1

O
|3
=

where (a) uses (a, b) < i|\a| |2 + ||b]|?, and (b) follows Jensen’s inequality, (c) comes from JL Lemma, (d) follows the
inequality ||a + b||? < 2||a||? + 2||b||?, and (e) is based on Assumption 2. On the other hand, we can also place a bound on
the second term E [||W;41 — W||?] as shown below:

[ N
i=1

N
+22E ‘ %Z {ABi -V

i=1

2
E ([ Wesr = Wal?] = E | |lm A, B

2=

2 2

(a)

< 2’E ||NZV£ (W)

17
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N 2 N 2
2 ~ 2 L~
< W || vem) ] ”tE[Z{Ath—wth)} ]
=1 =1
N
27)? m
= E Zvcl W) ] R >

i & 2 < ? 202 5=
< NZ{]E [Ive:wol’] +E [HVLZ-(Wt)—v&(Wt) H+NE > e
c i=1 =

an? 2 2nt N 242
< S E VLW + TEE || Yo et | +4ntoi

i=1 i=1

an & 21 | 2en? AN 2 2

< SR (VLW ] + R ||[S Vi W)|| | + dnPod
i=1 =1

(% i ZE[IVE wol] + 2 Z{E (VLW +E[H%Li<wt>—m<wt> 2]}+4n?o?
i=1 =1

4n? al 2 467lt
< N L E[IVEm ] + ZE (VL] + derfaf + dnof
- i=1

A1+ )t &
= IS g (v, W) 7] + 401 + nie?

where (a), (c), and (f) are based on the inequality ||a + b||* < 2||a||> + 2||b||?, (b) comes from Jensen’s inequality, (d), (g)
derive from Assumption 2, and (e) comes from JL Lemma.

By utilizing the previously established bounds for E [(VL(W,), Wy11 — W;)] and E [[|Wy4.; — W;[|?] to Equation 6, we
derive the following:

E[L(Wig1) — LOWy)] SE[(VLWL), Wi — W)l + g]E (Wi — W|?]

N
+ R (7L ] + 22 SR [IVL V)] + 2020t

N
< —ZE[IVLW)I?] - 5a ;E {HVQ(W

Ay

Az

2 N
N w SOE[IVLW)I?] +28(1 + e)nio?

i=1

1 N
= —RE[IVEW)I?] + % {—2 +2e+28(1+ e)nt} S E {chi(wt)
=1

2] + 202 (e + B + Be)o?

<0 if we choose 1 < 45(%%:5)

< = EIVLW)IP] + 207 (e + B + Be)o}
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Ultimately, by applying the telescoping sum over ¢ = 0,1,...,T — 1, we arrive at the following result:

£* —E[L(Wo)] Z 'R [IIveov)IP] + Z2m (e + B+ Be)o?

t=0 t=0

In this case, £* stands for the minimum of £L(W).

By performing a division by Hr = ZZ:()l 1¢ on both sides and utilizing some algebraic adjustments, we arrive at the
following expression:

T-1

1 E[L0Wo)] — £°
%ng[nvathﬂs;T +2(c+ f + Be)o ( Zm) ™

With a decreasing learning rate such as n; = we observe that Hy = Zt o "¢ tends towards infinity as T grows,

t+1 ’
while Zth_ol n? remains bounded. Therefore, as T — oo, the upper bound in Equation 7 converges to 0, confirming the
convergence to a stationary point. O
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E. Model Architectures and Hyperparameters
Neural Network Architecture

The model configuration and training used in this work are provided in Table 3 and 4.

Table 3: Neural Network Configurations for Different Datasets

Dataset H Model Type | # Conv | Kernel | Hidden Features | # Linear | # Output | # Parameters
MNIST CNN 2 5%5 8,16 1 10 11,274
FMNIST CNN 2 5%5 8,16 1 10 11,274
CIFAR-10 CNN 4 5%5 64,64, 128, 128 2 10 1.IM
CIFAR-100 WideResNet 16 3x3 64x4, 128x4 2 100 2.8M
TinyImageNet || WideResNet 16 3%3 64x4, 128x4 2 200 2.88M
Shakespeare LSTM - - 256, 8 (Embed) 2 65 814K
Sentiment140 || Transformer - - 512, 96 (Embed) 2 2 2.2M

Training Hyperparameters

The training was performed with the following key hyperparameters:

Table 4: Training Hyperparameters for FedAvg and Variants

Hyperparameter || MNIST | FMNIST | CIFAR-10 | CIFAR-100 | TinyImageNet | Sentiment140 | Shakespeare

Batch Size 32 32 32 32 32 32 32
Optimizer SGD SGD SGD AdamW AdamW SGD SGD
Learning Rate 0.2 0.2 0.03 0.1 0.2 0.001 0.2
Momentum 0.9 0.9 0.4 0.9 0.9 0.9 0.9
L1 Regularization 0.0 0.0 0.0001 0.0 0.00001 0.0 0.000005
L2 Regularization 0.0 0.0 0.00001 0.0003 0.00015 0.0 0.00005

20



Communication Efficient Federated Learning via Model-Agnostic Projection Adaptation

F. Notations

Table 5: Notation and Definitions

Symbol Meaning / Definition
N Number of clients in federated learning.
T Total number of communication rounds in FL.
D; Local dataset for client .
b; Weight for client 7, usually set as the number of local samples |D;|.
AW Model update, treated as a single vector, € RA4x1,
Wy Model parameters at communication round ¢.
B, Aggregated projection vector at round ¢, broadcast by the server.
T Random seed used to synchronize matrix generation across clients and the server.
Ay Reconstruction matrix at round ¢, regenerated using ;.
Bi Trainable projection matrix for client ¢ at round ¢.
Bti Locally optimized projection matrix for client <.
n Learning rate for local optimization.
d Total number of model parameters, defined as d = >, ddj.
¢ Row and column dimensions of the weight matrix for layer <.
D Factorization rank after reshaping.
q LoRA Factorization rank before reshaping.
k Design parameter controlling reshape dimension (AW reshaped into RI4/k1xk),
AeR>*, BeR* Reconstruction and projection matrices in factorization.
L(W) Global loss function.
Li(W) Local loss function for client i.
VLW) Gradient of the global loss function.
VBi Gradient of local loss with respect to the projection matrix.
o} Bounded variance of stochastic gradients.
153 Smoothness constant of the loss function.

€

Distortion parameter from the Johnson-Lindenstrauss Lemma.
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G. IID and client Sampling

This section includes the results of additional experiments on IID distribution and client sampling for MNIST, FMNIST, and
CIFAR-10. Across all three datasets, we observe consistent trends. Reducing the fraction of clients participating (from all
clients to 10%) moderately decreases accuracy for all methods, and non-IID settings introduce additional accuracy penalties.
However, MAPA’s performance remains robust in these more demanding scenarios; it routinely stays close to FedAvg’s
high-accuracy results while still maintaining its significant communication savings. This resilience suggests that MAPA’s
approach scales well to heterogeneous data distributions and partial-participation regimes, which are crucial factors in
large-scale federated learning deployments.

Table 6: Extrapolated MNIST results for IID vs. Non-IID and full vs. 10% client participation.

MNIST Maximum Accuracy and Communication Cost

11D Non-IID
All clients 10% clients All clients 10% clients
Method Com. Acc. Com. Acc. Com. Acc. Com. Acc.
FedAvg 100% | 99.6% 100% | 99.5% 100% | 99.3% 100% | 98.9%
Sparse 10.0% | 939% | 12.0% | 93.6% 13.3% | 93.4% | 153% | 92.1%
Quantize 22.0% | 98.8% | 25.0% | 98.5% 29.0% | 98.2% | 31.3% | 97.6%
EvoFed 6.5% 99.4% 7.0% 99.2% 8.5% | 99.0% 9.4% 98.5%
FA-LoRA || 22.0% | 95.0% | 25.0% | 94.7% 282% | 94.3% | 30.2% | 93.8%
MAPA 20% | 995% | 2.3% | 99.3% 27% | 99.0% | 2.9% | 98.5%
Table 7: Extrapolated FMNIST results for IID vs. Non-IID and full vs. 10% client participation.
FMNIST Maximum Accuracy and Communication Cost
11D Non-IID
All clients 10% clients All clients 10% clients
Method Com. Acc. Com. Acc. Com. Acc. Com. Acc.
FedAvg 100% | 91.5% 100% | 91.0% 100% | 90.0% 100% | 89.2%
Sparse 16.0% | 84.0% | 19.0% | 83.5% 21.0% | 82.0% | 24.1% | 81.1%
Quantize 16.0% | 89.7% | 19.0% | 89.2% 21.0% | 88.0% | 24.1% | 87.1%
EvoFed 4.5% 87.0% 5.5% 86.5% 6.8% 85.5% 7.6% 84.7%
FA-LoRA || 12.0% | 76.8% | 14.0% | 76.2% 155% | 75.0% | 17.9% | 74.1%
MAPA 20% | 90.0% | 2.3% | 89.6% 27% | 88.8% | 3.1% | 88.0%
Table 8: Extrapolated CIFAR-10 results for IID vs. Non-IID and full vs. 10% client participation.
CIFAR-10 Maximum Accuracy and Communication Cost
I1ID Non-IID
All clients 10% clients All clients 10% clients
Method Com. Acc. Com. Acc. Com. Acc. Com. Acc.
FedAvg 100% | 73.0% 100% | 72.0% 100% | 70.0% 100% | 69.0%
Sparse 1.8% 41.0% 2.0% 40.0% 2.4% 38.0% 2.7% 37.2%
Quantize 10.0% | 71.0% | 12.0% | 70.0% 13.0% | 68.5% | 15.2% | 67.4%
EvoFed 2.0% 43.0% 2.5% 42.0% 3.0% 40.5% 3.4% 39.5%
FA-LoRA 1.1% 27.0% 1.3% 26.0% 1.5% 24.5% 1.7% 23.5%
MAPA 08% | 711.5% | 0.9% | 70.8% 1.0% | 692% | 1.2% | 68.3%
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H. Complexity Analysis and MAPA Flexibility

Propositions 3.4 to 3.6 discussed how the error rate and accuracy of low-rank factorization are only determined by the size
of the projection vector regardless of reshaping and vectorization of layers. Although they prove that MAPA can achieve the
same performance as layer-wise factorization given the same projection (communication) budget, we did not discuss the
memory and computation complexity. In this section, we show that MAPA can effectively reduce computation. Furthermore,
we show how layer-wise low-rank adaptation (LoRA and FA-LoRA) limits the model trade-offs and how MAPA can offer
more flexibility.

H.1. Computational Complexity

We compute the memory and computation cost for matrix allocation and multiplication in terms of standard matrix
multiplication. Given matrices A € R™*" and B € R"*?, the complexities for computing C' = AB are:

Memory._ 45 = O(mn + np + mp),
Timec—ap = O(mnp).

We aim to demonstrate that factorization under MAPA, where W € RI%1%F is factorized into A € RI¥1%! and B € R1xk,

reduces the memory and time complexity of the LoRA factorization for an n-layered model. In LoRA, each layer i is
. 1 2, 1 2

factorized as w; € R% X4 into A € R% >4 and B € R9¥%

We demonstrate that, given the same communication budget and factorization error rate, MAPA significantly reduces the
computational cost compared to LoRA. This reduction becomes more pronounced as the number of layers or the selected
rank increases. Specifically, MAPA achieves a memory reduction by a factor of ¢> and a computation reduction by a
factor of ¢, where ¢ is the chosen LoRA rank. Furthermore, even when ¢ = 1, MAPA still achieves memory savings as
> £ d}d? scales with the number of layers. The only scenario where MAPA and LoRA yield identical efficiency is when
the model consists of a single layer (n = 1) and a rank-1 factorization (¢ = 1).

Memory Complexity

Given these definitions, the memory complexities for MAPA and LoRA are:

d d d
MemoryMAPAO<[k—‘ +k+ [k‘—‘ k) zO(kJrker),

meWMmr=0<§:Mh+d%+%&ﬁO==0<§:£q+§:ﬁq+§:£ﬁﬁ-
=1 =1 =1

i=1

Given the same communication budget k = Y7, qd? andd = ", d}d?, we rewrite LORA’s memory complexity as:

Memory; p4 = O (qul1 +k+d> .
i=1

For MAPA to have lower memory usage than LoRA, the following condition must hold:

Memory s 4pa < Memory;,p 4,

d n
4 k4+d< dr +k+d
L hh ,q£11+ +d,

< qu%.

i=1

>

Replacing k and d with their respective summation terms:
n n n
Sdld <Y dl Y i
i=1 i=1 =1

n n
<@ didi+q° ) did:.
i=1 i#j
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Thus, the inequality always holds under the conditions d}, d?, g, n > 1, and equality occurs if ¢ = n = 1, which corresponds
to a model with a single layer and rank-1 factorization. In this case, MAPA and LoRA perform the same decomposition.

Time Complexity

Given the definitions, we can express the time complexities for MAPA and LoRA as follows:

Time]y[ApA =0 <’72—‘ k’) ~ O(d),

Timer,gra = O (Z qd}df) .
i=1

Since d = )", d}d?, we can rewrite LORA’s time complexity as:
TimeLoRA = O(qd).
For MAPA to have a lower time complexity than LoRA, the following condition must hold:

Timeyrapa < Timerora,
d < qd.

This condition is always true for d, ¢ > 1, and equality occurs when ¢ = 1.
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H.2. MAPA Flexibility

Suppose our neural network has n layers. Let:
1 2
W; € R% >4 foreach layeri = 1,...,n.

Let D = Y | d} - d? be the total number of parameters (i.e., the sum of the entries across all layers). Let

dy = Zn: dz.
=1

In many treatments of LoRA, the main communication or factor-size bottleneck arises from a factor that scales linearly with
2
q-d;.

LoRA Factorization Per Layer. LoRA factorizes each layer W; of dimension d} x d? with a fixed rank ¢. Concretely,
W, =~ W, + A;B;, A; ERd%Xq, BiERqX[if.
The number of additional parameters introduced by each low-rank pair (A;, B;) is

di-q + q-& = q(dj +d}).
—~— ~—~—

size of A; size of B;
Summing over all n layers,
Z<d11 q+q-di) = qZ(dl1 +d7).
i=1 i=1

Therefore, we can write the communication cost as:

n
Communication cost ~ ¢ de = qds.
i=1

Since g must be an integer, we see that the communication overhead comes in integer multiplesds, as:
LoRA total communication € {gdz | ¢=1,2,...}.

There is no way to select a non-integer ¢q. Hence communication budgets strictly between dy and 2 ds (or between q ds and
(¢ + 1)dy) are not possible in layer-wise LoRA. Therefore, Any attempt to finely tune the communication or factor budget
(e.g., to 1.5dy) is disallowed by LoRA’s integral-rank requirement. This rigidity is precisely what we seek to overcome in
MAPA.

MAPA Factorization. MAPA flattens or reshapes all parameters into one large matrix and then performs a single low-rank
factorization with rank 1. A simplified abstraction is:

1. Reshape wy, . . ., w, into a single matrix W € RI4/k1xF where d = 37| d} d? is the total parameter count. 2. Factor
W =~ A B, with
AER[d/k“Xl’ BERle,

Once all parameters are merged, MAPA can proportionally allocate any communication budget as k can be selected freely.

I—d / /ﬂ + k
T~ SieofB
size of A

Therefore, we can write the total communication as:
MAPA total communication € {k | k=1,2,...}.

This is particularly important in communication-efficient FL since viable solutions can be found with communication cost
k < ds or do < k < 2ds, which architecture-dependent layer-wise factorization can not offer.
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