
Published as a conference paper at ICLR 2024

DMBP: DIFFUSION MODEL-BASED PREDICTOR FOR RO-
BUST OFFLINE REINFORCEMENT LEARNING AGAINST
STATE OBSERVATION PERTURBATIONS

Zhihe Yang1,2 Yunjian Xu1,2 ∗
1The Chinese University of Hong Kong, Hong Kong SAR, China
2The Chinese University of Hong Kong, Shenzhen Research Institute (SZRI), Guangdong, China
zhyang@link.cuhk.edu.hk, yjxu@mae.cuhk.edu.hk

ABSTRACT

Offline reinforcement learning (RL), which aims to fully explore offline datasets
for training without interaction with environments, has attracted growing recent
attention. A major challenge for the real-world application of offline RL stems
from the robustness against state observation perturbations, e.g., as a result of
sensor errors or adversarial attacks. Unlike online robust RL, agents cannot be
adversarially trained in the offline setting. In this work, we propose Diffusion
Model-Based Predictor (DMBP) in a new framework that recovers the actual states
with conditional diffusion models for state-based RL tasks. To mitigate the error
accumulation issue in model-based estimation resulting from the classical training
of conventional diffusion models, we propose a non-Markovian training objective
to minimize the sum entropy of denoised states in RL trajectory. Experiments on
standard benchmark problems demonstrate that DMBP can significantly enhance
the robustness of existing offline RL algorithms against different scales of ran-
dom noises and adversarial attacks on state observations. Further, the proposed
framework can effectively deal with incomplete state observations with random
combinations of multiple unobserved dimensions in the test. Our implementation
is available at https://github.com/zhyang2226/DMBP

1 INTRODUCTION

Reinforcement learning (RL) has been proven to be a powerful tool for high-dimensional decision-
making problems under uncertainty (Mnih et al., 2015; Silver et al., 2017; Schrittwieser et al., 2020).
However, its trial-and-error learning manner requires frequent interactions with the environment,
which can be expensive and/or dangerous in a variety of real-world applications (Levine et al., 2020).
A widely adopted solution is to build up a simulator for policy training, which is costly and may
fail due to the discrepancy between the simulator and reality. As a promising alternative that has
received growing attention, offline RL fully explores offline datasets and requires no interaction with
the environments in the training process.

A major challenge of offline training is on the robustness against perturbation on state observations,
which may result from sensor errors, adversarial attacks, and mismatches between statistic datasets
and the real environment. For example, GPS signal errors can lead to inaccurate positioning of
autonomous vehicles, and position sensor errors can lead to erroneous estimation of robot arm
postures. The robustness of the trained policy against state perturbations is vital for preventing agents
from catastrophic movements. In online settings, various adversarial training methods have been
proposed to robustly handle the mismatch between observed and actual states (Zhang et al., 2020;
2021; Sun et al., 2021). These methods are not directly applicable in offline training.

A classical approach against perturbed state observation is to train robust policies against worst-case
disturbances (see the left subplot in Figure 1), which may lead to over-conservatism (Zhang et al.,
2020; 2021). In a pioneering work (Yang et al., 2022), the authors propose an alternative approach
that adopts the conservative smoothing method to smoothen the Q-value and regularize the policy,
preventing the agent from taking catastrophic movements under adversarial attacks in the test. The
performance of the aforementioned approach may decay quickly with the increasing noise scale,
especially in complicated environments with high-dimensional action and state spaces.

∗Corresponding author

1

https://github.com/zhyang2226/DMBP

Published as a conference paper at ICLR 2024

Figure 1: Overview diagram of classical approach against observation perturbations (left) and the
proposed DMBP improved RL decision process against observation perturbations (right).

For online image-based deep RL, Lin et al. (2017) propose a model-based approach to “denoise”
the observations by predicting the actual states. They construct a multiple-layer perceptron (MLP)
neural network to detect the adversarial attack on image-based observations and predict the original
states for decision-making in Atari games. For state-based RL tasks, similar MLP-based prediction
methods have been used as data augmentation in online (Janner et al., 2019) and offline (Yu et al.,
2020; 2021) settings instead of denoising tools. In general, MLP-based prediction methods cannot be
applied to complicated state-based tasks (like Mujoco) which are sensitive to observation noise and
prone to error accumulation.

Recently, diffusion-based generative models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2020b) are widely used in offline RL/decision-making problems as trajectory generators (Janner et al.,
2022; Ajay et al., 2022; Liang et al., 2023) and behavior cloners (Wang et al., 2022). We note that
the potential of diffusion models to facilitate decision making via state denoising has not been fully
explored.

Towards this end, we propose a new framework that predicts the actual states against observation
perturbations for state based offline RL, which is referred to as Diffusion Model-Based Predictor
(DMBP). Different from the aforementioned works, the proposed approach utilizes diffusion models
as noise reduction tools rather than generation models, and can therefore enhance the robustness of
existing offline RL algorithms against different scales of perturbations on state observations.

A diagram of the proposed approach is shown in the right subplot of Figure 1. Given the past-
estimated state trajectory, last-step agent-generated action, and the noised current state from the
environment, DMBP utilizes a conditioned diffusion model to estimate the current state by reversely
denoising data. To mitigate the error accumulation issue in state estimation, we propose a new
non-Markovian loss function that minimizes the sum entropy of denoised states over the RL trajectory
(cf. Section 4). In order to well capture the relationship between the noised current state and the
denoised state trajectory (especially the last RL timestep denoised state), we propose an Unet-MLP
neural network structure to predict noise information (cf. Appendix B.1). The output of DMBP is an
estimation of the current state, which is fed into an offline RL algorithm to generate the action. To our
knowledge, this is the first state denoising framework for offline RL against observation perturbations
in state-based tasks.

The proposed framework has several advantages over existing offline RL methods against noisy
observations. First, with an objective of recovering the actual state, DMBP can significantly strengthen
the robustness of existing offline RL algorithms against different scales of random noises and
adversarial attacks. The proposed approach does not lead to over-conservative policies, compared
with counterparts that train robust policies against worst-case (or adversarial) perturbations.

Further, by virtue of the capability of diffusion models to infill the missing regions (i.e., image
inpainting), DMBP facilitates the decision making under incomplete state observations with random
combinations of multiple unobserved dimensions in the test. Such a situation is common in reality,
for example, when robots continue to work with compromised sensors.

2

Published as a conference paper at ICLR 2024

2 RELATED WORKS

Robust RL. Robust RL can be categorized into two taxonomies: training-time and testing-time
robustness. Training-time robust RL involves perturbations during the training process, while
evaluating the agent in a clean environment (Zhang et al., 2022b; Ye et al., 2023). Conversely,
testing-time robust RL focuses on training the agent with unperturbed datasets or environments and
then testing its performance in the presence of disturbances (Yang et al., 2022; Panaganti et al., 2022).
Our work primarily aims at enhancing the testing-time robustness of existing offline RL algorithms.

Testing-time robust RL formulations can generally be divided into three categories (Xu et al., 2022).
i) Uncertain observations: In online settings, Zhang et al. (2020) propose a state-adversarial Markov
decision process (SA-MDP) framework, which is advanded by Zhang et al. (2021); Sun et al. (2021)
that adopt neural networks to simulate worst-case observation attacks for the training of more
robust policies. In offline settings, Yang et al. (2022) utilize the conservative smoothing method
to make the agent take similar actions when the perturbations on state observation are relatively
small. ii) Uncertain actions: Tessler et al. (2019) explore the training of robust policies against
two types of action uncertainties, i.e., occasional and constant adversarial perturbations. Tan et al.
(2020) utilize adversarial training on actions to enhance the robustness against action perturbations.
iii) Uncertain transitions and rewards: The computation of optimal policies against uncertain
environment parameters has been explored under the robust Markov Decision Process (MDP) (Xu &
Mannor, 2006; Roy et al., 2017; Ho et al., 2018) and the distributionally robust MDP frameworks (Xu
& Mannor, 2010; Yu & Xu, 2015). In online RL settings, Pinto et al. (2017) and Gleave et al. (2019)
train the agent under adversarial model uncertainty through a two-player Markov game approach
(Littman, 1994). For offline RL training, Panaganti et al. (2022) propose a dual reformulated robust
Bellman operator to deal with the uncertain transition probability.

For models in the first two categories, the true states and transition probabilities of the environments
are not influenced by the action, which is not the case for the robust approaches against model
uncertainties developed in the third category. Our work belongs to the first category.

Diffusion models in offline RL. The diffusion model was originally proposed as an iterative
denoising procedure for image generation in computer vision (Sohl-Dickstein et al., 2015; Ho et al.,
2020). Recently, diffusion model has been adopted in decision-making for state-based tasks. Diffuser
(Janner et al., 2022) and Decision Diffuser (Ajay et al., 2022) utilize the conditional diffusion model
as a trajectory generator to facilitate the decision making of the agent. Wang et al. (2022) propose the
Diffusion-QL algorithm that adopts the diffusion model to regulate the policy not to be far away from
the one used in datasets, in a similar spirit to Fujimoto et al. (2019); Wu et al. (2019). Different from
the aforementioned works, the proposed approach utilizes the diffusion model as a denoiser (against
state observation perturbations) rather than a generator, for robust offline training of RL agents.

3 PRELIMINARIES

Offline RL. RL tasks are generally modeled as Markovian Decision Processes (MDP) in the form of
M = (S,A, r, P, γ, d0), where S is the state space, A is the action space, r : S ×A → R represents
the reward function, P is the model dynamics, γ ∈ [0, 1) is the discount factor, and d0 ∈ ∆(S) is
the distribution of initial state s0 (the set of the probability distribution over X is denoted as ∆(X)).
P (s′|s,a) : S ×A → ∆(S) represents the transition function from state s to s′ when taking action
a. The state-action-reward transitions over trajectory are recorded as τ := (st,at, rt)t≥0.The goal
of RL is to learn a policy πϕ that maximizes the expectation of the cumulated discounted reward
R(τ) =

∑∞
t=0 γ

tr(st,at), denoted by π∗
ϕ = argmaxπ Es0∼d0,a∼π[R(τ)].

A commonly used iteration method for state-based tasks is under the actor-critic framework, where
the Q-value of a policy is defined asQπ(st,at) := Ea∼π[

∑∞
i=t γ

(i−t)r(si,ai)] and is modeled using
neural networks (recorded as Qψ(st,at)). To approach an optimal policy, the temporal difference
(TD) method is adopted to update the critic Q-value by minimizing the TD loss: LTD(ψ) :=
E(s,a,r,s′)∈D[(r + γmaxa′∈AQψ(s

′,a′) − Qψ(s,a))
2]. The actor is updated by Lactor(ϕ) :=

Es∈D,a∼πϕ(·|s)[−Q(s,a)], where the dataset D records historical interactions between agent and
environment, and is continuously updated in the alternate training of the actor and the critic. In offline
RL settings, the training is performed on a statistic dataset Dν := {(s,a, r, s′)}, which is obtained
from a behavior policy πν without any interaction with the environment.

3

Published as a conference paper at ICLR 2024

Direct adoption of the actor-critic approach may lead to a severe distributional shift between the
trained policy πϕ and the behavior policy πν due to the over-estimation of the Q-value of actions
unseen in datasets. To mitigate this issue, policy regularization has been adopted to update the actor
through constrained policy loss (Wu et al., 2019; Kumar et al., 2019; Fujimoto et al., 2019; Fujimoto
& Gu, 2021; Wang et al., 2022): L(ϕ) := Ld(ϕ) + αactorLactor(ϕ), where Ld(ϕ) is the behavior
cloning loss representing the nominal distance between the trained policy and the behavior policy,
and αactor is the coefficient for the Q-value term. Alternatively, conservative Q estimation updates
the critic through minimizing the constrained Q-value loss (Kumar et al., 2020; An et al., 2021; Lyu
et al., 2022; Yang et al., 2022): L(ψ) := Lq(ψ) + αcriticLTD(ψ), where Lq(ψ) is the penalty on
Q-value for out-of-distribution actions, and αcritic is the coefficient for the TD loss term.

Diffusion model. Diffusion based generative models have been widely used for synthesizing high-
quality images from text descriptions. The forward process, i.e., the noising process, is a Markov
chain that gradually adds Gaussian noise to data according to a variance schedule β1, . . . , βK :

q(x1:K | x0) :=
K∏
k=1

q(xk | xk−1), q(xk | xk−1) := N (xk;
√
1− βkxk−1, βkI).

The reverse process, i.e., the denoising process, is a Markov chain with learned Gaussian transitions
that usually starts at p(xK) = N (xK ; 0, I):

pθ(x0:K) := p(xK)
K∏
k=1

pθ(xk−1 | xk), pθ(xk−1 | xk) := N (xk−1;µθ(xk, k),Σθ(xk, k)).

Ho et al. (2020) derive a simplified surrogate loss for the reverse process denoising:
Ldenoise(θ) := Ek∼[1,K],ϵ∼N (0,I)[∥ϵθ(xk, k)− ϵ∥2]. (1)

The Gaussian noise ϵ, which perturbs the original data x0 to noised data xk, is estimated through the
neural network based predictor ϵθ(xk, k). xk−1 is sampled from the reverse process as µθ(xk, k) and
Σθ(xk, k) are functions of ϵθ(xk, k). It is straightforward to extend diffusion models to conditional
ones with pθ(xt−1 | xt, c) (conditioned on information c), where the noise prediction is given by
ϵθ(xk, k, c).

4 DIFFUSION MODEL BASED PREDICTOR

We express the perturbed version of the original state s as s̃, where Bd(s, ϵ) := {s̃ : d(s, s̃) ≤ ϵ} is
the perturbation set and the metric d(·, ·) is based on ℓp norm, as in Shen et al. (2020). An adversarial
attack on state s is introduced in Yang et al. (2022): s̃∗ = argmaxs̃∈Bd(s,ϵ)D(πϕ(·|s)∥πϕ(·|s̃)),
where D(·∥·) is the divergence of two distributions. The targets of both works are to minimize the
smoothness regularizer for the policy: Rπ

s = Es∈D maxs̃∈Bd(s,ϵ)D(π(·|s)∥π(·|s̃)), and to mini-
mize the smoothness regularizer for the value function: RV

s = Es∈D,a∼πmaxs̃∈Bd(s,ϵ)(Q(s,a)−
Q(s̃,a)), against the perturbations on state observations. We remark that we do not normalize the
state observations when applying the perturbations as in Shen et al. (2020); Sun et al. (2021), in
contrast to Zhang et al. (2020); Yang et al. (2022).

In Section 4.1, we propose DMBP to recover the actual state for decision-making (which is fun-
damentally different from the technical approaches in aforementioned works). In Section 4.2, we
propose a new non-Markovian loss function to mitigate error accumulation. In Section 4.3, we apply
DMBP to RL tasks under incomplete state observations with unobserved dimension(s).

4.1 CONDITIONAL DIFFUSION FOR PREDICTING REAL STATE

As there are two timesteps involved in our framework, we use superscripts i, k ∈ {1, . . .K} to denote
diffusion timestep and subscript t ∈ {1, . . . , T} to denote trajectory timestep in RL tasks.

DMBP is inspired by the diffusion model framework originally proposed for image generations (Ho
et al., 2020). As the proposed framework essentially deals with information with small to medium
scale noises instead of generating data from pure noise, we redesign the variance schedule as:

βi = 1− αi = e−
b

i+a+c, ᾱk =
k∏
i=1

αi, β̃i =
1− ᾱi−1

1− ᾱi
βi,

4

Published as a conference paper at ICLR 2024

where a, b, c are hyperparameters (cf. Appendix B.2). The redesigned variance schedule restricts the
noise scale to be small in the diffusion process and limits the total number of diffusion timesteps K
for predictor training. We use the conditional diffusion model to obtain the denoised state ŝt from
the noised state s̃t, with the condition on last step action at−1 and the previously denoised state
trajectory τ ŝ

t−1 := {ŝ1, ŝ2, ..., ŝt−1}. The denoised state ŝt is sampled from the reverse denoising
process, which can be expressed as a Markov chain:

ŝt ∼ pθ(s̃
0:k
t | at−1, τ

ŝ
t−1) = fk(s̃t)

k∏
i=1

pθ(s̃
i−1
t | s̃it,at−1, τ

ŝ
t−1), (2)

where fk(s̃t) =
√
ᾱks̃t. The transitions pθ(s̃i−1

t | s̃it,at−1, τ
ŝ
t−1) can be modeled using Gaus-

sian distribution N (s̃i−1
t ;µθ(s̃

i
t,at−1, τ

ŝ
t−1, i),Σθ(s̃

i
t,at−1, τ

ŝ
t−1, i)), with the following mean and

variance (Ho et al., 2020):

µθ(s̃
i
t,at−1, τ

ŝ
t−1, i) =

√
αi(1− ᾱi−1)

1− ᾱi
s̃it +

√
ᾱi−1βi
1− ᾱi

s̃
0(i)
t , Σθ(s̃

i
t,at−1, τ

ŝ
t−1, i) = β̃iI .

Here, s̃0(i)t is the state directly recovered from the current diffusion step noise prediction, which is
given by

s̃
0(i)
t =

1√
ᾱi

[s̃it −
√
1− ᾱiϵθ(s̃

i
t,at−1, τ

ŝ
t−1, i)]. (3)

The reverse diffusion chain is given by

s̃i−1
t | s̃it =

s̃it√
αi

− βi√
αi(1− ᾱi)

ϵθ(s̃
i
t,at−1, τ

ŝ
t−1, i) +

√
β̃iϵ, (4)

where ϵ ∼ N (0, I) and is set to be 0 at the final denoising step (i = 1). For the final step denoising
output of Eq. 4 s̃0t (i.e., the output of DMBP), we refer it to as ŝt. ŝt can be used for decision-making
by any offline-trained agent according to at = πϕ(· | ŝt). ŝt is stored in the trajectory cache τ ŝ

t ,
and the pair of (τ ŝ

t , at) will be utilized for the next step denoising. In practice, on account of the
stochasticity involved in the diffusion process, we denoise the state 50 times in parallel and take the
average value as the final output ŝt to prevent the denoised state from falling out of the distribution.

We find that directly inputting state trajectories and action into neural networks leads to poor noise
estimation (cf. Appendix C for ablation study on network structure), partially due to the fact that
ŝt−1 is more closely related to s̃it than ŝj with j < t− 1, and that this information cannot be well
captured by neural networks. Therefore, we first extract the information from the trajectory with
U-net (Ronneberger et al., 2015; Janner et al., 2022) (recorded as Uξ(s̃it, τ

ŝ
t−1)), and then utilize an

MLP-based neural network to predict the noise through ϵθ(Uξ(s̃
i
t, τ

ŝ
t−1), s̃

i
t,at−1, ŝt−1, i), which is

represented by ϵθ(s̃
i
t,at−1, τ

ŝ
t−1, i) for notational convenience. See Appendix B.1 for details.

4.2 NON-MARKOVIAN LOSS FUNCTION

The accuracy of the current denoising result ŝt is highly dependent on the accuracy of the diffusion
condition τ ŝ

t−1. A straightforward adoption of the loss function 1 in the denoising diffusion probabilis-
tic model (DDPM) (Ho et al., 2020) may lead to severe error accumulation in online testing, due to the
mismatch between the training-process noise prediction ϵθ(s̃

i
t,at−1, τ

s
t−1, i) and the testing-process

noise prediction ϵθ(s̃
i
t+1,at, τ

ŝ
t−1, i). To mitigate error accumulation and enhance the robustness of

DMBP, we propose a non-Markovian training objective to minimize the sum entropy of denoised
states over the RL trajectory τ :

Lentropy =

T∑
t=2

Est∈τ ,q(st)

[
− logP (ŝt | at−1, τ

ŝ
t−1)

]
, (5)

where P (ŝt | at−1, τ
ŝ
t−1) = pθ(s̃

0
t | at−1, τ

ŝ
t−1) is the distribution of state after denoising at RL

timestep t. Following the setting in (Ho et al., 2020), we establish a closed-form expression of the
training objective that minimizes Eq. 5, which can be simplified as (cf. the details in Appendix A):

Lsimple(θ) = Es1∼d0,ϵit∼N (0,I),i∼UK

[
T∑
t=2

∥ϵθ(s̃it,at−1, τ
ŝ
t−1, i)− ϵit∥2

]
, (6)

5

Published as a conference paper at ICLR 2024

where UK is the uniform distribution over discrete set {1, 2, . . . ,K}, and the noised states for all
terms are sampled through:

s̃it =
√
ᾱist +

√
1− ᾱiϵ

i
t, ϵit ∼ N (0, I).

For computational convenience, we further simplify Eq. 6 and derive our non-Markovian loss function
by sampling the partial trajectory (st−N ,at−N , st−N+1, . . . , st+M−1) from the offline dataset Dν
(N is the condition trajectory length and M is the sample trajectory length):

L(θ) = Ei∼UK ,ϵt∼N (0,I),(st−N ,...,st+M−1)∈Dν

[
∥ϵθ(s̃it,at−1, τ

s
t−1, i)− ϵit∥2︸ ︷︷ ︸

Lt

+

t+M−1∑
m=t+1

∥ϵθ(s̃im,am−1, τ
s̆
m−1, i)− ϵim∥2︸ ︷︷ ︸

Lm

]
,

(7)

where the state trajectory condition for the predictor ϵθ inLt is the original τ s
t−1 = {st−N , . . . , st−1}

from the offline dataset Dν , and the state trajectory condition in Lm can be expressed as τ s̆
m−1 =

{s̆j | j ∈ {m−N, . . . ,m− 1}}, with:

s̆j =

 sj
1√
ᾱi

[
s̃ij −

√
1− ᾱiϵθ(s̃

i
j ,aj−1, τ

s̆
j−1, i)

] if j < t,

otherwise (j ∈ {t, . . . , t+M − 2}).

Different from the loss function in Ho et al. (2020) that concerns only single-step diffusion accuracy
(for data generation under conditions on ground-truth states), the proposed non-Markovian loss
function trades off between the diffusion accuracy at the current RL timestep and the condition shift
in a long RL time horizon (to avoid error accumulation).

4.3 DIFFUSION BASED STATE INFILLING FOR UNOBSERVED DIMENSION

Inspired by the application of diffusion models in image inpainting (Lugmayr et al., 2022), we
propose a state infilling procedure for DMBP facilitated decision making, which is shown to work
well on state-based RL tasks with incomplete state observations (cf. Section 5.2).

Algorithm 1 Diffusion based state infilling for DMBP
Require: sK

t ∼ N (0, I), śt,at−1, τ
ŝ
t−1,m

1: for i = K, . . . , 1 do
2: for u = 1, . . . , U do
3: ϵ ∼ N (0, I) if i > 1, else ϵ = 0
4: śi−1

t,known =
√
ᾱiśt +

√
1− ᾱiϵ

5: z ∼ N (0, I) if i > 1, else z = 0

6: ϵpred = ϵθ(ś
i
t,at−1, τ

ŝ
t−1, i)

7: śi−1
t,unknown = 1√

αi
śi
t − βi√

αi(1−ᾱi)
ϵpred +

√
βiz

8: śi−1
t = m⊙ śi−1

t,known + (1−m)⊙ śi−1
t,unknown

9: if u < U and i > 1 then
10: śi

t ∼ N (
√
1− βi−1ś

i−1
t , βi−1I)

11: end if
12: end for
13: end for
14: return ŝt = ś0

t

We denote the ground truth state as st,
the unobserved state information as
(1−m)⊙ st, and the observed state
information as śt = m ⊙ st, which
is incomplete with some masked di-
mensions. Given the recovered state
trajectory τ ŝ

t−1, agent generated ac-
tion at−1, and the known information
of the current state śt, DMBP aims to
recover the original state ŝt for deci-
sion making. Following the inpaint-
ing method of Lugmayr et al. (2022),
DMBP infills the missing state infor-
mation through Algorithm 1. For each
diffusion timestep, the known region
of the state is determined from the for-
ward process (noising process) in line
4, and the unknown region of the state is determined from the reverse process (denoising process) in
line 7. To avoid the disharmony of the forward and reverse process generated information, the com-
bined information (in line 8) takes one diffusion forward step in line 10, which is called “resampling”.
The resampling is performed by U times for one diffusion timestep. More resampling times may lead
to more accurate and harmonious diffusion information at the cost of higher computational load.

5 EXPERIMENTS

6

Published as a conference paper at ICLR 2024

Figure 2: Visualization of the denoising ef-
fect of DMBP with Diffusion QL (trained on
the dataset of hopper-meidum-replay-v2). The
observation is perturbed with Gaussian dis-
tributed random noise with std of 0.10.

We evaluate the proposed DMBP together with sev-
eral state-of-the-art baseline offline RL algorithms
on D4RL Gym benchmark (Fu et al., 2020) against
different types of attacks on state observations. The
baseline algorithms include Batch Constrained deep
Q-learning (BCQ) (Fujimoto et al., 2019), Conser-
vative Q-Learning (CQL) (Kumar et al., 2020), TD3
with Behavior Cloning (TD3+BC) (Fujimoto & Gu,
2021), Diffusion Q-Learning (Diffusion QL) (Wang
et al., 2022), and Robust Offline Reinforcement
Learning (RORL) (Yang et al., 2022).

We train DMBP for 300 epochs (1000 gradient steps
with a batch size of 256 for each epoch) with hy-
perparameters defined in Appendix B.2. We train
the baseline algorithms with the corresponding sug-
gested hyperparameters in specific environments and
datasets. We perform two tests, on robustness against
noised state observations (in Section 5.1) and on ro-
bustness against incomplete state observations with
unobserved dimension(s) (in Section 5.2). We uti-
lize the same DMBP for all baseline algorithms (cf.
the framework in Figure 1), and benchmark their
performance against the original baseline algorithms
(without DMBP). We present partial results on the
D4RL Mujoco benchmark, and the results of other
datasets (including medium-expert, medium, and
full-replay) and other benchmarks (including Adroit
and Franka Kitchen) can be found in Appendix D.

5.1 ROBUSTNESS AGAINST NOISED STATE OBSERVATIONS

Firstly, we evaluate the performance of DMBP in a basic setting with Gaussian noises of standard
deviation κ: s̃t = st + κ · N (0, I). The evaluation results in Table 1 indicate that DMBP can
significantly enhance the robustness of all baseline algorithms, especially on the dataset “medium-
replay”, where DMBP strengthened baseline algorithms achieve similar scores as in the corresponding
noise-free cases. To demonstrate the powerful denoising effect of DMBP, we visualize a partial
trajectory of "hopper" during the test in Figure 2.

Table 1: D4RL score of the baseline algorithms ("base" recorded in black) and the DMBP strengthened
ones ("DMBP" recorded in blue) trained with expert (e) and medium-replay (m-r) datasets under
different scales of Gaussian random noises on state observation. The evaluation results are averaged
over 5 random checkpoints (20 tests for each checkpoint).

BCQ CQL TD3+BC Diffusion QL RORLEnv Dataset Noise
scale base DMBP base DMBP base DMBP base DMBP base DMBP

0 96.9±1.8 - 93.0±6.1 - 95.8±8.9 - 92.9±10.7 - 108.5±11.2 -
0.05 4.5±2.6 60.2±23.9 18.1±8.6 60.9±22.5 7.3±6.6 77.1±15.5 4.8±3.6 75.2±20.7 15.4±3.9 55.7±29.2e
0.10 4.5±2.5 26.8±16.2 7.4±4.0 40.5±16.6 4.7±3.6 47.5±22.2 3.3±2.5 39.8±21.8 3.7±1.9 32.8±20.4

0 41.6±4.2 - 47.0±1.0 - 45.2±0.9 - 47.7±0.8 - 66.7±1.4 -
0.10 20.6±6.9 38.5±11.2 35.6±1.3 45.8±1.0 28.5±5.5 44.3±1.0 30.1±4.1 45.6±0.9 43.5±2.4 61.9±1.2H

al
fC

he
et

ah

m-r
0.15 14.8±10.2 35.1±8.7 28.8±1.5 44.6±1.1 24.0±8.9 42.5±2.6 24.2±7.6 44.6±3.0 30.3±5.9 58.4±1.2

0 88.4±22.4 - 109.1±13.7 - 108.9±10.5 - 104.9±15.1 - 110.4±3.1 -
0.05 34.3±13.4 61.0±25.2 41.2±21.8 85.7±26.2 32.2±18.4 79.1±28.2 38.2±12.4 84.8±27.4 56.9±34.9 64.3±19.8e
0.10 24.3±10.9 37.1±18.5 24.3±11.8 48.8±20.4 22.7±11.6 32.6±18.7 24.0±9.3 56.1±17.3 24.1±20.2 37.5±10.5

0 78.7±19.6 - 96.9±8.8 - 80.9±24.5 - 95.7±17.2 - 103.1±0.8 -
0.10 15.7±9.0 66.8±17.3 47.5±21.6 89.1±12.4 14.4±12.3 71.9±24.5 25.9±12.4 85.9±20.9 85.9±29.5 103.2±1.3H

op
pe

r

m-r
0.15 11.1±7.2 64.5±17.2 33.7±21.2 80.7±16.5 9.6±7.3 66.1±22.8 17.9±11.5 72.2±22.9 51.1±22.3 104.2±3.2

0 111.6±0.6 - 108.8±1.9 - 110.7±0.5 - 109.6±0.5 - 104.8±12.5 -
0.10 77.9±37.6 110.3±2.0 97.6±21.9 94.3±20.3 72.9±39.4 109.2±1.5 93.3±27.2 109.1±4.0 95.4±19.7 97.8±20.2e
0.15 28.2±32.4 104.2±13.5 78.9±33.2 83.4±23.3 9.2±13.6 107.5±5.2 30.5±32.5 94.5±18.1 81.6±26.4 84.5±26.4

0 50.6±31.6 - 79.9±4.8 - 84.7±9.8 - 93.1±10.9 - 88.7±1.9 -
0.10 14.7±11.1 53.1±28.5 70.8±18.9 78.7±7.2 40.7±25.3 84.4±8.7 59.6±31.8 92.6±10.6 88.6±1.1 88.4±2.5W

al
ke

r2
d

m-r
0.15 11.2±5.9 52.9±29.9 48.6±26.5 73.6±10.1 16.5±12.8 77.9±17.2 19.2±15.7 91.3±9.6 89.4±1.2 89.0±4.5

7

Published as a conference paper at ICLR 2024

Table 2: D4RL score of the baseline algorithms and the DMBP strengthened ones under uniformly
distributed random noise (U-rand), maximum action-difference attack (MAD), and minimum Q-value
attack (MinQ) on state observations.

BCQ CQL TD3+BC Diffusion QL RORLEnv Dataset/
Noise Scale

Noise
Type base DMBP base DMBP base DMBP base DMBP base DMBP

U-rand 7.4±4.9 69.1±21.5 27.2±6.4 69.6±22.4 16.3±13.1 84.2±17.1 11.6±10.9 77.8±21.8 24.3±7.5 66.8±27.0
MAD 3.6±1.7 52.5±17.9 12.4±6.9 61.2±19.7 4.7±3.5 65.4±16.0 4.3±3.2 62.9±13.2 14.1±2.5 54.3±27.1e

0.05 MinQ 12.8±9.3 51.8±23.9 19.4±11.3 60.4±19.4 18.0±4.2 88.2±11.3 8.0±6.7 71.1±15.2 9.3±8.8 71.0±29.1
U-rand 31.5±10.6 40.3±5.9 40.9±2.6 46.4±1.8 36.9±6.6 46.9±1.1 38.5±5.7 46.8±0.9 39.9±2.3 61.2±1.1
MAD 19.2±8.2 29.4±6.9 29.0±2.6 46.5±0.9 27.1±3.4 36.2±0.9 22.3±3.8 34.5±5.5 22.5±1.5 62.3±1.0H

al
fC

he
et

ah

m-r
0.10 MinQ 5.1±5.2 36.7±8.8 39.2±0.8 46.2±1.1 36.7±6.8 44.8±1.1 37.0±4.8 38.6±1.1 34.0±1.4 63.2±2.3

U-rand 46.1±20.7 66.9±26.3 59.6±29.4 95.7±23.8 42.6±28.4 84.0±27.4 53.2±20.8 84.4±25.3 85.3±37.0 81.9±25.2
MAD 31.1±14.4 53.2±24.2 22.6±13.9 73.9±27.9 27.2±10.9 60.3±27.2 36.8±9.0 37.1±12.3 36.6±22.2 59.0±13.8e

0.05 MinQ 47.4±18.9 62.5±27.9 32.7±13.5 58.7±17.9 45.3±27.5 95.7±27.6 66.7±33.6 59.2±23.9 79.8±32.7 59.4±22.1
U-rand 18.5±8.2 68.9±19.2 66.3±20.1 95.9±8.8 20.6±9.1 65.4±22.0 33.9±10.7 94.9±17.7 80.7±28.0 103.5±1.5
MAD 5.1±5.0 37.5±26.1 32.1±15.9 88.9±13.7 6.1±5.5 64.3±21.8 9.9±8.1 38.3±15.8 51.6±30.7 97.5±2.5H

op
pe

r

m-r
0.10 MinQ 5.3±5.4 18.3±18.4 84.6±14.1 87.5±6.6 11.8±7.6 80.5±18.1 51.2±25.1 62.5±27.3 98.3±6.2 103.2±2.4

U-rand 102.1±1.8 110.4±0.8 106.1±9.9 106.0±7.4 106.1±2.9 110.0±0.5 107.2±1.0 109.4±0.5 95.1±15.7 97.2±9.5
MAD 50.5±43.7 70.5±13.3 64.1±27.0 97.6±16.1 19.9±22.7 69.7±17.5 36.6±35.5 88.2±24.8 61.9±29.2 83.8±19.9e

0.10 MinQ 99.9±22.2 105.6±1.1 99.9±11.8 102.4±6.9 91.9±22.4 105.5±1.3 101.1±2.0 102.4±1.3 91.8±28.0 89.3±13.3
U-rand 17.3±12.2 54.9±25.7 69.2±20.9 78.1±9.2 51.2±28.3 83.6±14.8 64.2±27.8 91.1±12.1 89.9±1.1 88.7±2.1
MAD 6.6±3.3 43.4±29.8 19.7±14.7 78.4±8.8 8.8±4.4 70.8±19.1 7.2±2.3 66.1±24.2 81.9±11.5 90.5±3.5W

al
ke

r2
d

m-r
0.15 MinQ 7.3±4.2 30.3±26.1 66.5±11.8 78.5±4.2 21.7±15.9 76.4±14.9 47.2±23.2 68.0±19.5 82.3±1.4 89.6±1.7

We consider three additional types of noise attacks that are commonly used on state observations,
where DMBP-strengthened algorithms also outperform the corresponding baselines (cf. Table 2):
i) Uniform random noise distributed inside the ℓ∞ ball with the norm of κ: s̃t = st + κ · U(−I, I).
ii) Maximum action-difference (adversarial) attack: The noises are selected inside the ℓ∞ ball with
the norm of κ, such that s̃t = st + argmaxs̃∈Bd(s,κ)D(πϕ(·|s)∥πϕ(·|s̃)). Among 20 samples of s̃t
in the ball, we choose the one with the largest ∥πϕ(·|s)− πϕ(·|s̃)∥2.
iii) Minimum Q-value (adversarial) attack: The noises are selected inside the ℓ∞ ball with the norm
of κ such that, s̃t = st + argmins̃∈Bd(s,κ)Q(s̃t, πϕ(·|s̃)). Again, we sample 20 times and choose
the one with the minimum Q to be the perturbed state s̃t.

The latter two adversarial attacks have been considered in the literature (Pinto et al., 2017; Zhang
et al., 2020; Yang et al., 2022). For fair comparison, when we use DMBP against adversarial attacks,
we first sample 20 noised states s̃t and denoise them using DMBP, and then choose the denoised
states ŝt with the maximum action difference or the minimum Q-value as the perturbed state.

Figure 3: The performance of CQL, DMBP-CQL, RORL, and DMBP-RORL with incomplete state
observations that have 1-5 unobserved dimensions. The dash-dot lines represent the performance of
the corresponding baseline algorithms in the original environment with fully observable states. (The
total state observation dimension is 11 for hopper, and 17 for both halfcheetah and walker2d.)

8

Published as a conference paper at ICLR 2024

5.2 ROBUSTNESS AGAINST INCOMPLETE STATE OBSERVATIONS WITH UNOBSERVED
DIMENSION

We utilize DMBP to recover the missing state information for decision-making. In D4RL benchmark
problems, we mask some dimensional state information that cannot be observed by the tested policy
(i.e., the masked dimensions of the state are set as 0 for t ∈ {2, 3, . . . , T}). The baseline algorithms
make decisions based on the observed (incomplete) states, and DMBP-improved counterparts take
actions according to the recovered states. For each dimension of the state, we make the dimension
unobserved and conduct 10 tests. When multiple state dimensions cannot be observed, we randomly
select 30 groups of dimensions and conduct 10 tests on each group. The experiment results of
CQL, RORL with offline “expert” and “medium-replay” datasets are shown in Figure 3. DMBP
significantly enhances the performance of all baseline algorithms by accurately predicting the missing
state information. On “medium-replay” datasets, the DMBP strengthened algorithms incur little
performance degradation in masked environments, compared with that achieved in the original
environments with complete and accurate observations.

5.3 ABLATION STUDY

Figure 4: The checkpoint and training process evaluations of DMBP-Diffusion QL under Gaussian
random noises, where DMBP is trained on hopper-expert-v2 with different sample trajectory lengths
(M). The curves are averaged over 5 random seeds, and the checkpoints are selected randomly after
gradient steps of 2× 105.

In Figure 4, we conduct ablation studies on dataset "hopper-expert-v2", where algorithms are more
prone to error accumulation than in other datasets/environments, to demonstrate the efficacy of the
proposed non-Markovian loss function and evaluate the impact of the non-Markovian sampling length
(M in Eq. 7). We utilize pre-trained Diffusion QL for decision-making to evaluate the performance
of DMBP under the framework in Figure 1. Other hyperparameters and DMBP training follow the
basic settings in Appendix B.2 and D.1, respectively.

When M = 1, the DMBP training objective 7 reduces to the classical training objective of diffusion
models in Eq. 1 (i.e. LM = 0 in Eq. 7). From the second to the fourth subplots of Figure 4, we
observe that the direct adoption of classical conditional diffusion models suffers from severe error
accumulation as training proceeds. The proposed non-Markovian training objective significantly en-
hances the robustness of the baseline RL algorithm against state observation perturbations, especially
when the noise scale is large. When M is no less than 6, the performance of DMBP remains almost
the same. To expedite the computation, we set M = 6 for the "hopper" environment. More ablations
studies on neural network structure and condition trajectory lengths (N) can be found in Appendix C.

6 CONCLUSION

In this work, we propose the first framework of state-denoising for offline RL against observation
perturbations in state-based tasks. Leveraging conditional diffusion models, we develop Diffusion
Model-Based Predictor (DMBP) to recover the actual state for decision-making. To reduce the error
accumulation during test, we propose a new non-Markovian loss function that minimizes the sum
entropy of denoised states along the trajectory. Experiments on D4RL benchmarks demonstrate
that the proposed DMBP can significantly enhance the robustness of existing offline RL algorithms
against different scales of random noises and even adversarial attacks. The proposed framework is
shown to be able to effectively deal with the cases of incomplete state observations (with multiple
unobserved dimensions) for state-based RL tasks.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

This work was supported in part by the General Research Fund (GRF) project 14200720 of the Hong
Kong University Grants Committee and the National Natural Science Foundation of China (NSFC)
Project 62073273. The authors would like to thank the anonymous reviewers for valuable discussion.

REFERENCES

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is con-
ditional generative modeling all you need for decision-making? arXiv preprint arXiv:2211.15657,
2022.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified Q-ensemble. Advances in Neural Information Processing
Systems, 34:7436–7447, 2021.

David M Chan, Roshan Rao, Forrest Huang, and John F Canny. t-sne-cuda: Gpu-accelerated t-sne and
its applications to modern data. In 2018 30th International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD), pp. 330–338. IEEE, 2018.

Hyungjin Chung, Byeongsu Sim, and Jong Chul Ye. Come-closer-diffuse-faster: Accelerating
conditional diffusion models for inverse problems through stochastic contraction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12413–12422,
2022.

Giulio Franzese, Simone Rossi, Lixuan Yang, Alessandro Finamore, Dario Rossi, Maurizio Filippone,
and Pietro Michiardi. How much is enough? a study on diffusion times in score-based generative
models. arXiv preprint arXiv:2206.05173, 2022.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in Neural Information Processing Systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062. PMLR, 2019.

Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine, and Stuart Russell. Adversarial
policies: Attacking deep reinforcement learning. arXiv preprint arXiv:1905.10615, 2019.

Chin Pang Ho, Marek Petrik, and Wolfram Wiesemann. Fast Bellman updates for robust MDPs. In
International Conference on Machine Learning, pp. 1979–1988. PMLR, 2018.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. Advances in Neural Information Processing Systems, 32, 2019.

Michael Janner, Yilun Du, Joshua B. Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, 2022.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
Q-learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

10

Published as a conference paper at ICLR 2024

Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptdiffuser:
Diffusion models as adaptive self-evolving planners. arXiv preprint arXiv:2302.01877, 2023.

Yen-Chen Lin, Ming-Yu Liu, Min Sun, and Jia-Bin Huang. Detecting adversarial attacks on neural
network policies with visual foresight. arXiv preprint arXiv:1710.00814, 2017.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine Learning Proceedings 1994, pp. 157–163. Elsevier, 1994.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11461–11471, 2022.

Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative Q-learning for offline
reinforcement learning. arXiv preprint arXiv:2206.04745, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021.

Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, and Mohammad Ghavamzadeh. Robust reinforcement
learning using offline data. arXiv preprint arXiv:2208.05129, 2022.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial rein-
forcement learning. In International Conference on Machine Learning, pp. 2817–2826. PMLR,
2017.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pp. 234–241. Springer, 2015.

Aurko Roy, Huan Xu, and Sebastian Pokutta. Reinforcement learning under model mismatch.
Advances in Neural Information Processing Systems, 30, 2017.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering Atari,
Go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Qianli Shen, Yan Li, Haoming Jiang, Zhaoran Wang, and Tuo Zhao. Deep reinforcement learning
with robust and smooth policy. In International Conference on Machine Learning, pp. 8707–8718.
PMLR, 2020.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of Go
without human knowledge. Nature, 550(7676):354–359, 2017.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning,
pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yanchao Sun, Ruijie Zheng, Yongyuan Liang, and Furong Huang. Who is the strongest enemy?
Towards optimal and efficient evasion attacks in deep RL. arXiv preprint arXiv:2106.05087, 2021.

11

Published as a conference paper at ICLR 2024

Kai Liang Tan, Yasaman Esfandiari, Xian Yeow Lee, Soumik Sarkar, et al. Robustifying reinforcement
learning agents via action space adversarial training. In 2020 American Control Conference (ACC),
pp. 3959–3964. IEEE, 2020.

Chen Tessler, Yonathan Efroni, and Shie Mannor. Action robust reinforcement learning and applica-
tions in continuous control. In International Conference on Machine Learning, pp. 6215–6224.
PMLR, 2019.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Huan Xu and Shie Mannor. The robustness-performance tradeoff in Markov decision processes.
Advances in Neural Information Processing Systems, 19, 2006.

Huan Xu and Shie Mannor. Distributionally robust Markov decision processes. Advances in Neural
Information Processing Systems, 23, 2010.

Mengdi Xu, Zuxin Liu, Peide Huang, Wenhao Ding, Zhepeng Cen, Bo Li, and Ding Zhao. Trustworthy
reinforcement learning against intrinsic vulnerabilities: Robustness, safety, and generalizability.
arXiv preprint arXiv:2209.08025, 2022.

Rui Yang, Chenjia Bai, Xiaoteng Ma, Zhaoran Wang, Chongjie Zhang, and Lei Han. RORL: Robust
offline reinforcement learning via conservative smoothing. In Advances in Neural Information
Processing Systems, 2022.

Chenlu Ye, Rui Yang, Quanquan Gu, and Tong Zhang. Corruption-robust offline reinforcement
learning with general function approximation. arXiv preprint arXiv:2310.14550, 2023.

Pengqian Yu and Huan Xu. Distributionally robust counterpart in Markov decision processes. IEEE
Transactions on Automatic Control, 61(9):2538–2543, 2015.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. MOPO: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
COMBO: Conservative offline model-based policy optimization. Advances in Neural Information
Processing Systems, 34:28954–28967, 2021.

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-Jui
Hsieh. Robust deep reinforcement learning against adversarial perturbations on state observations.
Advances in Neural Information Processing Systems, 33:21024–21037, 2020.

Huan Zhang, Hongge Chen, Duane Boning, and Cho-Jui Hsieh. Robust reinforcement learning on
state observations with learned optimal adversary. arXiv preprint arXiv:2101.08452, 2021.

Qinsheng Zhang, Molei Tao, and Yongxin Chen. gddim: Generalized denoising diffusion implicit
models. arXiv preprint arXiv:2206.05564, 2022a.

Xuezhou Zhang, Yiding Chen, Xiaojin Zhu, and Wen Sun. Corruption-robust offline reinforcement
learning. In International Conference on Artificial Intelligence and Statistics, pp. 5757–5773.
PMLR, 2022b.

12

Published as a conference paper at ICLR 2024

A DERIVATION OF THE TRAINING OBJECTIVE IN EQ. 7

Following the standard setting of diffusion models with Gaussian distributed noised states (Sohl-
Dickstein et al., 2015; Ho et al., 2020), below we derive the non-Markovian training objective via
conditional diffusion models.

Suppose that the initial state is perfectly known for the agent, i.e., s1 is known and does not need to
be estimated. τ ŝ

t−1 := {ŝj | 1 ≤ j ≤ t− 1} represents the denoised state trajectory. Our learning
objective is to minimize the cross-entropy of the denoised states along the RL trajectory:

Lentropy =
T∑
t=2

Eq(st)

[
− log pθ(s̃

0
t | at−1, τ

ŝ
t−1)

]
.

We denote the state in the forward diffusion process as sit and the state in the reverse diffusion process
as s̃it. We refer pθ(s̃0t | at−1, τ

ŝ
t−1) to as pθ(s̃0t) below. Following Ho et al. (2020), we adopt the

variational lower bound (VLB) to optimize the negative log-likelihood:

LVLB =

T∑
t=2

Eq(st)

[
− log pθ(s̃

0
t) +DKL(q(s

1:K
t | s0t)∥pθ(s̃1:Kt | s̃0t ,at−1, τ

ŝ
t−1)

]
=

T∑
t=2

{
−Eq

[
log pθ(s̃

0
t)
]
+ Es1:K

t ∼q(s1:K
t |s0

t)

[
log

q(s1:Kt | s0t)
pθ(s̃1:Kt | s̃0t ,at−1, τ ŝ

t−1)

]}

=

T∑
t=2

{
−Eq

[
log pθ(s̃

0
t)
]
+ Es1:K

t ∼q(s1:K
t |s0

t)

[
log

q(s1:Kt | s0t)
pθ(s̃0:Kt | s̃0t ,at−1, τ ŝ

t−1)pθ(s̃
0
t)

]}

=

T∑
t=2

Es1:K
t ∼q(s1:K

t |s0
t)

[
log

q(s1:Kt | s0t)
pθ(s̃0:Kt | s̃0t ,at−1, τ ŝ

t−1)

]

=

T∑
t=2

Es1:K
t ∼q(s1:K

t |s0
t)

[
log

∏K
i=1 q(s

i
t | si−1

t)

pθ(s̃Kt)
∏K
i=1 pθ(s̃

i−1
t | s̃it,at−1, τ ŝ

t−1)

]

=

T∑
t=2

Es1:K
t ∼q(s1:K

t |s0
t)

[
− log pθ(s̃

0
t | s̃1t ,at−1, τ

ŝ
t−1) +

K∑
i=2

log
q(si−1

t | sit, s0t)
pθ(s̃

i−1
t | s̃it,at−1, τ ŝ

t−1)

+ log
q(sKt | s0t)
pθ(s̃Kt)

]
=

T∑
t=2

Es1:K
t ∼q(s1:K

t |s0
t)

[
− log pθ(s̃

0
t | s̃1t ,at−1, τ

ŝ
t−1)

+

K∑
i=2

DKL

(
q(si−1

t | sit, s0t) ∥ pθ(s̃i−1
t | s̃it,at−1, τ

ŝ
t−1)

)
+DKL

(
q(sKt | s0t) ∥ pθ(s̃Kt)

)]
,

(8)
where DKL(·∥·) represents the Kullback-Leibler divergence and it is guaranteed that LVLB ≥
Lentropy (Ho et al., 2020).

As in Ho et al. (2020), for the first term in the last line of Eq. 8, we let

pθ(s̃
0
t | s̃1t ,at−1, τ

ŝ
t−1) = N

(
s̃1t√
α1

− β1√
α1(1− ᾱ1)

ϵθ(s̃
1
t ,at−1, τ

ŝ
t−1, 1) , β1Σ

)
. (9)

To directly produce the noised state under Gaussian distributed perturbations, we obtain from the
forward diffusion process that

sit =
√
ᾱist +

√
1− ᾱiϵ

i
t, ϵit ∼ N (0, I), i ∈ {1, 2, . . . ,K}. (10)

13

Published as a conference paper at ICLR 2024

For the expression in Eq. 9, we have

− log pθ(s̃
0
t | s̃1t ,at−1, τ

ŝ
t−1)

= log
[
(2π)

d
2 | β1Σ | 12

]
+

1

2
∥s̃0t −

s̃1t√
α1

+
β1√

α1(1− ᾱ1)
ϵθ(s̃

1
t ,at−1, τ

ŝ
t−1, 1)∥2(β1Σ)−1

=
1

2
log
[
(2π)d | β1Σ |

]
+

1

2α1
∥ϵθ(s̃1t ,at−1, τ

ŝ
t−1, 1)− ϵi=1

t ∥2(Σ)−1 ,

(11)

where the first equality follows from Eq. 9, and the second equality holds due to Eq. 10.

For the second term in the last line of Eq. 8, we let (Ho et al., 2020)

q(si−1
t | sit, s0t) = N

(√
αi(1− ᾱi−1)

1− ᾱi
sit +

√
ᾱi−1βi
1− ᾱi

s0t ,
1− ᾱi−1

1− ᾱi
βiΣ

)
, (12)

and

pθ(s̃
i−1
t | s̃it,at−1, τ

ŝ
t−1) = N

(
s̃it√
αi

− βi√
αi(1− ᾱi)

ϵθ(s̃
i
t,at−1, τ

ŝ
t−1, i) ,

1− ᾱi−1

1− ᾱi
βiΣ

)
.

(13)

Utilizing the Kullback-Leibler divergence for Gaussian distributions in Eq. 12 and Eq. 13, we obtain

DKL

(
q(si−1

t | sit, s0t) ∥ pθ(s̃i−1
t | s̃it,at−1, τ

ŝ
t−1)

)
=

1

2
∥
√
αi(1− ᾱi−1)

1− ᾱi
sit +

√
ᾱi−1βi
1− ᾱi

s0t −
s̃it√
αi

+
βi√

αi(1− ᾱi)
ϵθ(s̃

i
t,at−1, τ

ŝ
t−1, i)∥2(1−ᾱi−1

1−ᾱi
βiΣ

)−1

=
βi

2αi(1− ᾱi−1)
∥ϵθ(s̃it,at−1, τ

ŝ
t−1, i)− ϵit∥2Σ−1 ,

(14)
where the last equality follows from Eq. 10.

As in (Ho et al., 2020), for the third term in the last line of Eq. 8, we let

q(sKt | s0t) = N
(√
ᾱKs0t , (1− ᾱK)Σ

)
. (15)

In a similar spirit to the pure Gaussian distributed noise assumption made in Ho et al. (2020), we
assume that the observed noised state follows a Gaussian distribution, i.e.,

pθ(s̃
K
t) = N

(
ms0t , nΣ

)
. (16)

According to Eq. 15 and Eq. 16, we obtain the KL divergence of two Gaussian distributions

DKL

(
q(sKt | s0t) ∥ pθ(s̃Kt)

)
=

1

2

[
∥(
√
ᾱK −m)s0t∥2(nΣ)−1 + d

1− ᾱK
n

− d− d log
1− ᾱK
n

]
,

(17)
which is a constant and does not depend on the neural network parameters ϵθ.

Substituting Eqs. 11 14 17 to the last line in Eq. 8, we can express LVLB as

LVLB =

T∑
t=2

Es1∼d0,ϵit∼N (0,I)

[
Ct +

K∑
i=1

γi∥ϵθ(s̃it,at−1, τ
ŝ
t−1, i)− ϵit∥2Σ−1

]

= Es1∼d0,ϵit∼N (0,I)

[
T∑
t=2

Ct +

T∑
t=2

K∑
i=1

γi∥ϵθ(s̃it,at−1, τ
ŝ
t−1, i)− ϵit∥2Σ−1

]
,

(18)

where Ct is a constant for t ∈ {1, 2, . . . , T − 1}:

Ct =
1

2

[
∥(
√
ᾱK −m)s0t∥2(nΣ)−1 + d

1− ᾱK
n

− d− d log
1− ᾱK
n

+ log
[
(2π)d | β1Σ |

]]
,

and the coefficients for the norm terms are given by

14

Published as a conference paper at ICLR 2024

γi =

1

2α1
βi

2αi(1− ᾱi−1)

if i = 1,

otherwise (i ∈ {2, 3, . . . ,K}).

Following the setting in Ho et al. (2020), we ignore the constant term and the coefficients. The
training objective in Eq. 18 can be simplified as

Lsimple(θ) = Es1∼d0,ϵit∼N (0,I)

[
T∑
t=2

K∑
i=1

∥ϵθ(s̃it,at−1, τ
ŝ
t−1, i)− ϵit∥2

]

= Es1∼d0,ϵit∼N (0,I)

[
K∑
i=1

T∑
t=2

∥ϵθ(s̃it,at−1, τ
ŝ
t−1, i)− ϵit∥2

]

= Es1∼d0,ϵit∼N (0,I),i∼UK

[
T∑
t=2

∥ϵθ(s̃it,at−1, τ
ŝ
t−1, i)− ϵit∥2

]
,

(19)

where UK is the uniform distribution over discrete set {1, 2, . . . ,K}, and for τ ŝ
t−1 := {ŝj | j ≤ t−1},

we have

ŝj =

s1

fk(s̃
k
j)

k∏
i=1

pθ(s̃
i−1
j | s̃ij ,aj−1, τ

ŝ
j−1)

if j = 1,

otherwise (j ∈ {2, . . . , t− 1}).

From 19, it is clear that the simplified target is to make ϵθ(s̃it,at−1, τ
ŝ
t−1, i) as close as possible to ϵit

for any t. From the forward noising process in Eq. 10, we have the following approximation

ŝt = s̃
0(i)
t ≈ s̃it√

ᾱi
−

√
ᾱi√

1− ᾱi
ϵθ(s̃

i
t,at−1, τ

ŝ
t−1, i), t ∈ {2, . . . , T − 1}. (20)

Therefore, Eq. 19 can be expressed as:

Lsimple(θ) = Es1∼d0,ϵit∼N (0,I),i∼UK

[
∥ϵθ(s̃i2,a1, s1, i)− ϵi2∥2︸ ︷︷ ︸

term1

+

T∑
t=3

∥ϵθ(s̃it,at−1, τ
ŝ
t−1, i)− ϵit∥2︸ ︷︷ ︸

term2

]
,

(21)

where τ ŝ
t−1 := {ŝj | j ≤ t − 1}, and ŝt along the RL trajectory can be calculated through Eq. 20

iteratively from t = 2 to t = T . However, this is time-consuming as the sampling process needs to
be looped for (T − 2) times. In addition, the historical state trajectories multiple RL timesteps ago
have little impact on the current denoising results. To expedite the computation, we extract a partial
trajectory with a window size of N +M (N is the condition trajectory length and M is the sample
trajectory length) in Eq. 21, and set the training objective as in Eq. 7:

L(θ) = Ei∼UK ,ϵt∼N (0,I),(st−N ,...,st+M−1)∈Dν

[
∥ϵθ(s̃it,at−1, τ

s
t−1, i)− ϵit∥2︸ ︷︷ ︸

Lt

+

t+M−1∑
m=t+1

∥ϵθ(s̃im,am−1, τ
s̆
m−1, i)− ϵim∥2︸ ︷︷ ︸

Lm

]
,

where the state trajectory condition for the predictor ϵθ inLt is the original τ s
t−1 = {st−N , . . . , st−1}

from the offline dataset Dν , and the state trajectory condition in Lm can be expressed as τ s̆
m−1 =

{s̆j | j ∈ {m−N, . . . ,m− 1}}, with:

s̆j =

 sj
1√
ᾱi

[
s̃ij −

√
1− ᾱiϵθ(s̃

i
j ,aj−1, τ

s̆
j−1, i)

] if j < t,

otherwise (j ∈ {t, . . . , t+M − 2}).

15

Published as a conference paper at ICLR 2024

B IMPLEMENTATION DETAILS

B.1 DMBP NETWORK STRUCTURE

Figure 5: Neural network structure of DMBP.

We implement DMBP based on classical diffusion models (Ho et al., 2020). As discussed in
Section 4.1, the naive adoption of MLP neural network structure, which stacks all inputs in one
dimension, leads to poor estimation of noise, partially due to the fact that ŝt−1 is more closely related
to s̃it than ŝj with j < t− 1, and that this information cannot be well captured by the MLP structure.
Therefore, we first extract the information from the trajectory with U-net (Ronneberger et al., 2015;
Janner et al., 2022) (see "Information Extraction" block in Figure 5). Then, the output of U-net
Uξ(s̃

i
t, τ

ŝ
t−1) is flattened on one dimension and fed into "Noise Prediction" block together with the

noised current state s̃it, last-step agent generated action at−1, last-step denoised state ŝt−1, and the
diffusion timestep i.

It should be mentioned that directly inputting state and action to neural networks may lead to poor
estimation performance, partially due to the much higher dimensionality of state than that of action.
We utilize MLP-based neural networks as encoders to match the dimensions of action and states.
The final output of our Unet-MLP neural network is recorded as ϵθ(s̃

i
t,at−1, τ

ŝ
t−1, i). Detailed

hyperparameter settings can be found in Appendix B.2, and ablation studies on network structure can
be found in Appendix C.

B.2 DMBP HYPERPARAMETERS AND TRAINING

As discussed in Section 4.1, the proposed framework essentially deals with information with small to
medium scale noises instead of generating data from pure noise. We redesign the variance schedule
to restrict the noise scale in the diffusion process and limit the total number of diffusion timesteps K
for predictor training. The generic neural network and the variance schedule hyperparameters can be
found in Table 3.

Since action and state dimensions vary greatly in different environments, we choose different numbers
of neurons in the proposed MLP-based encoders in various environments. The corresponding
hyperparameter is recorded as the embedded dimension ζ, and the action/state encoder can be

16

Published as a conference paper at ICLR 2024

expressed as FC(2ζ, 1
2ζ) with Mish activations. Besides, for different benchmark environments and

datasets, we choose different condition trajectory lengths (N) and sample trajectory lengths (M) to
achieve the best performance (cf. Table 4).

Table 3: Generic hyperparameters of DMBP

Hyper-parameters Value

Noise prediction network FC(256,256,256) with Mish activations
Dropout for predictor network 0.1
Learning rate 3e-4
Batch size 64
Variance schedule a = 3.065, b = 24.552, c = −3.170
Total diffusion step (K) 10 for denoising tasks

100 for infilling tasks

Table 4: Hyperparameters of DMBP for different benchmark environments and datasets

Domain Environment Dataset
Embedded
dimension

(ζ)

Condition
trajectory
length (N)

Sample
trajectory

length (M)

Mujoco
halfcheetah all 64 4 2

hopper all 64 4 6
walker2d all 64 4 4

Adroit

pen "expert" 128 4 6
hammer "expert" 128 4 6

door "expert" 128 4 6
relocate "expert" 128 4 4

Franka
Kitchen

kitchen "mixed" 256 4 4
kitchen "complete" 256 4 4
kitchen "partial" 256 4 4

Different from classical conditional diffusion models, our proposed DMBP utilizes a non-
Markovian loss function 7 for updating. For each iteration, we sample the partial trajectory
(st−N ,at−N , st−N+1, . . . , st+M−1) from offline dataset Dν . Following the setting in Section 4.2,
we present the procedure for DMBP training in Algorithm 2.

Algorithm 2 DMBP algorithm
Require: offline dataset Dv , initialized noise predictor ϵθ

1: for each iteration do
2: Sample trajectory mini-batch B = {(st−N ,at−N , st−N+1, . . . , st+M−1)} ∼ Dv
3: Sample uniformly distributed diffusion timestep i ∼ {1, 2, . . . ,K}
4: Sample random Gaussian noise ϵit ∼ N (0, I)
5: Produce noised state through s̃it =

√
ᾱist +

√
1− ᾱiϵ

i
t

6: Get Trajectory τ ŝ
t−1 = {st−N , . . . , st−1}

7: Lt = ∥ϵθ(s̃it,at−1, τ
ŝ
t−1, i)− ϵit∥2

8: Recover the noised state through s̆t =
1√
ᾱi

[
s̃it −

√
1− ᾱiϵθ(s̃

i
t,at−1, τ

ŝ
t−1, i)

]
9: τ ŝ

t = POP(PUSH(τ ŝ
t−1, s̆t), st−N)

10: for m = t+ 1, . . . , t+M − 1 do
11: Sample ϵim ∼ N (0, I)
12: s̃im =

√
ᾱism +

√
1− ᾱiϵ

i
m

13: Lm = ∥ϵθ(s̃im,am−1, τ
ŝ
m−1, i)− ϵim∥2

14: s̆m = 1√
ᾱi

[
s̃im −

√
1− ᾱiϵθ(s̃

i
m,am−1, τ

ŝ
m−1, i)

]
15: τ ŝ

m = POP(PUSH(τ ŝ
m−1, s̆m), s̆m−N)

16: end for
17: Update noise predictor ϵθ by minimizing

∑t+M−1
n=t Ln

18: end for
19: return ϵθ

17

Published as a conference paper at ICLR 2024

C ADDITIONAL ABLATION STUDIES

As introduced in Section 5.3, our proposed non-Markovian training objective is essential for avoiding
error accumulation in model-based estimation. To demonstrate the efficacy of the proposed approach,
we visualize partial trajectory of "hopper" during the test in Figure 6.

Figure 6: Visualization of the denoising effect of DMBP (trained with different sample trajectory
length M) alongside Diffusion QL (all trained on the dataset hopper-expert-v2). During the test, the
observation is perturbed with Gaussian distributed random noise with std of 0.10, and the action is
determined based on the denoising results of DMBP trained with M = 6.

When the proposed non-Markovian loss function is adopted to train DMBP (see the third subplot of
Figure 6), DMBP can give accurate predictions on the original states in a long RL trajectory. Even
though prediction errors exist for some RL timesteps, such errors do not collapse future prediction
results. However, when the classical Markovian loss function is used to train DMBP (in the fourth
subplot of Figure 6), prediction error accumulates, leading to severe prediction errors and significant
deviation of the predicted trajectory (away from the actual one).

18

Published as a conference paper at ICLR 2024

We further conduct ablation studies on the condition trajectory length (N) in Figure 7. When N = 1,
the noise prediction ϵθ(s̃

i
t,at−1, τ

ŝ
t−1, i) decays to ϵθ(s̃

i
t,at−1, ŝt−1, i), i.e., the state condition for

DMBP reduces to only the last step denoised state ŝt−1 (instead of the trajectory τ ŝ
t−1). Theoretically,

this is enough for predicting the noise information as reinforcement learning problems are always
modeled as Markov decision processes (MDP), and most model-based methods follow this assumption
(Lin et al., 2017; Janner et al., 2019; Yu et al., 2020; 2021). However, we observe that DMBP performs
poorly in the conventional MDP training setting with N = 1. On the contrary, larger condition
trajectory length N leads to better prediction of the noised states. This is partially due to the fact that
when predicting the current state (ŝt), the prediction error of the previous RL timestep denoised state
(ŝt−1) can be compensated by the information extracted on the state trajectory (τ ŝ

t−1). We set N = 4
for the "hopper" environment.

Figure 7: Ablation studies of condition trajectory length (N) on dataset "hopper-expert-v2". M is set
to be 6 for all DMBP.

Lastly, we conduct the ablation studies on our proposed Unet-MLP structure. As discussed in
Section 4.1, directly inputting state trajectories and action into MLP networks leads to poor noise
estimation. In Figure 8, we compare the performance of DMBP with MLP network structure
and DMBP with the proposed Unet-MLP network structure. For the MLP network, we stack all
information in one dimension as input, and the network hyperparameters are set to be the same as the
"Noise Prediction" module of our Unet-MLP structure (cf. Figure 5). For the Unet-MLP network,
we follow the basic settings in Appendix B. We observe that the MLP network converges faster but
achieves much worse denoising performance than Unet-MLP.

Figure 8: Ablation studies of the proposed Unet-MLP structure on dataset "hopper-expert-v2".

D EXPERIMENTAL DETAILS

D.1 EXPERIMENT SETTINGS

For the baseline RL algorithms (including BCQ (Fujimoto et al., 2019), CQL (Kumar et al., 2020),
TD3+BC (Fujimoto & Gu, 2021), Diffusion QL (Wang et al., 2022), and RORL (Yang et al., 2022)),
we train them with the suggested hyperparameters for specific environments and datasets. For the
sake of fair comparison, we set checkpoints every 10 epochs (1000 gradient steps for each epoch)
during the training process of each algorithm, and randomly select 5 from the last 10 checkpoint
policies for robustness evaluation.

19

Published as a conference paper at ICLR 2024

As for the training process of DMBP, we follow the hyperparameter settings in Appendix B.2. We
train DMBP for 300 epochs and set the checkpoints every 10 epochs. Analogously, we randomly
select 5 from the last 10 checkpoint DMBPs and pair them randomly with the previously selected
policies for robustness evaluation.

When DMBP is adopted to improve the robustness against noised state observations (denoising tasks
introduced in Section 5.1), we utilize different diffusion start timesteps (k) (see Eq. 2) for different
types and scales of noises (cf. Table 5). When DMBP is used for improving the robustness of policy
against incomplete state observations with unobserved dimension(s) (the infilling tasks introduced in
Section 5.2), we set the diffusion start timestep to be 100 and the resampling times to be 2 for all
benchmark experiments.

Table 5: Choices of the diffusion start timestep under different types and scales of noises
Gaussian Uniform Adversarial

Noise Scale
(std)

Diffusion start
timestep (k)

Noise Scale
(norm)

Diffusion start
timestep (k)

Noise Scale
(norm)

Diffusion start
timestep (k)

(0.00, 0.03] 1
(0.00, 0.05] 1

(0.00, 0.04] 1
(0.03, 0.06] 2 (0.04, 0.08] 2
(0.06, 0.09] 3 (0.05, 0.10] 2 (0.08, 0.12] 3
(0.09, 0.12] 4

(0.10, 0.15] 3
(0.12, 0.15] 4

(0.12, 0.15] 5

D.2 ADDITIONAL EXPERIMENTAL RESULTS ON MUJOCO

We provide more experimental results in addition to the robustness evaluation of DMBP against
noised state observation (in Section 5.1) and against incomplete state observations with unobserved
dimensions (in Section 5.2).

Following the basic setting with Gaussian noises defined in Section 5.1, the full robustness evaluation
results of five baseline algorithms (BCQ, CQL, TD3+BC, Diffusion QL, and RORL) on the Mujoco
domain with and without DMBP are presented in Table 6, where we include the training datasets
"medium-expert", "medium", and "full-replay". In Table 7, we further provide full evaluation
results of three other types of noise attacks that have been commonly adopted on state observations
(including uniform random noise, maximum action-difference attack, and minimum Q-value attack).
It is clear that DMBP greatly enhances the robustness of all baseline algorithms against different
types of attacks on state observation for all environments and datasets. Almost all baseline algorithms
(without robustness consideration) strengthened by DMBP outperform the SOTA robust offline RL
algorithm RORL.

To better demonstrate the robustness enhancement of DMBP on the baseline algorithms under
different noise scales, we present the robustness evaluation of CQL and RORL against four different
attacks in Figure 9.

For the robustness evaluation against incomplete state observations with unobserved dimensions (see
experiment settings in Section 5.2), we perform the robustness evaluation test under three baseline RL
algorithms, BCQ, TD3+BC, and Diffusion QL, on halfcheetah (cf. Figure 10), hopper (cf. Figure 11),
and walker2d (cf. Figure 12); the training datasets are chosen to be "medium-expert", "medium" and
"full-replay". The evaluation results highlight the robust adaptability of DMBP, i.e., its compatibility
with a wide range of offline RL algorithms and diverse datasets.

20

Published as a conference paper at ICLR 2024

Table 6: D4RL score of the baseline algorithms and the DMBP strengthened ones trained with expert
(e), medium-expert (m-e), medium (m), medium-replay (m-r), and full-replay (f-r) datasets in Mujoco
domain under different scales of Gaussian random noise on state observation.

BCQ CQL TD3+BC Diffusion QL RORLEnv Dataset Noise
scale base DMBP base DMBP base DMBP base DMBP base DMBP

0 96.9±1.8 - 93.0±6.1 - 95.8±8.9 - 92.9±10.7 - 108.5±11.2 -
0.05 4.5±2.6 60.2±23.9 18.1±8.6 60.9±22.5 7.3±6.6 77.1±15.5 4.8±3.6 75.2±20.7 15.4±3.9 55.7±29.2e
0.10 4.5±2.5 26.8±16.2 7.4±4.0 40.5±16.6 4.7±3.6 47.5±22.2 3.3±2.5 39.8±21.8 3.7±1.9 32.8±20.4

0 94.5±3.8 - 92.0±10.6 - 89.0±12.1 - 94.4±1.5 - 106.5±3.6 -
0.05 38.9±5.3 64.8±17.9 34.5±9.8 66.2±19.6 38.8±4.2 72.6±12.7 38.0±7.4 80.1±9.9 55.2±17.3 69.8±15.0m-e
0.10 28.9±4.2 48.7±9.9 26.8±5.3 43.6±16.1 26.9±5.4 52.1±16.7 28.5±3.8 63.5±10.3 21.5±6.5 46.2±9.7

0 47.6±0.9 - 49.4±0.9 - 48.4±0.8 - 52.5±0.7 - 64.2±3.3 -
0.10 29.3±5.9 46.2±1.1 31.7±6.2 47.7±1.1 28.9±1.8 47.0±0.8 29.5±5.0 48.1±1.6 43.8±9.5 59.2±4.2m
0.15 22.1±3.8 43.6±4.1 24.6±5.8 46.3±2.6 21.9±5.9 45.4±1.1 21.7±5.8 45.5±6.3 30.5±7.6 57.9±6.8

0 41.6±4.2 - 47.0±1.0 - 45.2±0.9 - 47.7±0.8 - 66.7±1.4 -
0.10 20.6±6.9 38.5±11.2 35.6±1.3 45.8±1.0 28.5±5.5 44.3±1.0 30.1±4.1 45.6±0.9 43.5±2.4 61.9±1.2m-r
0.15 14.8±10.2 35.1±8.7 28.8±1.5 44.6±1.1 24.0±8.9 42.5±2.6 24.2±7.6 44.6±3.0 30.3±5.9 58.4±1.2

0 75.5±1.8 - 78.7±2.3 - 75.7±1.5 - 77.9±1.3 - 88.1±3.0 -
0.10 27.4±7.4 59.8±4.4 31.8±3.2 63.4±2.7 27.9±8.3 58.3±8.4 30.7±3.3 62.8±2.1 43.2±6.5 67.5±5.8

H
al

fC
he

et
ah

f-r
0.15 21.2±6.9 48.4±12.4 25.0±2.0 55.8±2.4 23.7±3.8 51.9±6.3 22.4±4.9 55.1±2.5 33.9±4.6 62.3±7.9

0 88.4±22.4 - 109.1±13.7 - 108.9±10.5 - 104.9±15.1 - 110.4±3.1 -
0.05 34.3±13.4 61.0±25.2 41.2±21.8 85.7±26.2 32.2±18.4 79.1±28.2 38.2±12.4 84.8±27.4 56.9±34.9 64.3±19.8e
0.10 24.3±10.9 37.1±18.5 24.3±11.8 48.8±20.4 22.7±11.6 32.6±18.7 24.0±9.3 56.1±17.3 24.1±20.2 37.5±10.5

0 97.7±.14.3 - 106.7±15.3 - 107.8±16.1 - 105.2±16.6 - 111.3±8.9 -
0.05 45.6±17.9 74.4±31.7 35.5±17.5 78.2±26.6 42.6±14.1 80.7±25.0 42.0±14.6 74.3±23.5 65.4±31.0 81.0±23.9m-e
0.10 33.4±16.3 57.2±22.1 30.9±13.3 53.5±21.9 36.2±13.2 37.2±19.9 29.8±8.3 52.6±17.3 30.6±16.7 66.9±26.3

0 59.1±12.6 - 73.6±14.2 - 59.7±9.3 - 80.4±16.3 - 102.6±15.1 -
0.10 29.5±9.2 50.1±16.3 37.8±13.9 32.9±21.7 30.2±12.1 51.3±14.1 33.9±12.3 57.9±22.2 42.3±22.9 57.3±21.3m
0.15 20.7±8.3 43.9±18.8 25.8±11.3 30.9±20.0 20.2±9.3 42.5±17.2 21.9±7.9 51.3±21.9 21.6±13.0 33.9±17.0

0 78.7±19.6 - 96.9±8.8 - 80.9±24.5 - 95.7±17.2 - 103.1±0.8 -
0.10 15.7±9.0 66.8±17.3 47.5±21.6 89.1±12.4 14.4±12.3 71.9±24.5 25.9±12.4 85.9±20.9 85.9±29.5 103.2±1.3m-r
0.15 11.1±7.2 64.5±17.2 33.7±21.2 80.7±16.5 9.6±7.3 66.1±22.8 17.9±11.5 72.2±22.9 51.1±22.3 104.2±3.2

0 89.7±23.9 - 102.1±2.1 - 78.8±27.2 - 106.7±0.1 - 107.5±3.3 -
0.10 17.4±7.3 73.1±29.0 54.3±25.0 103.3±4.2 19.4±7.7 67.2±30.3 34.9±10.2 96.0±11.4 69.2±19.8 101.6±7.5

H
op

pe
r

f-r
0.15 11.7±6.9 64.9±25.6 31.1±11.1 97.3±19.9 9.4±5.2 64.2±27.8 22.9±10.2 83.2±22.6 52.5±26.3 99.5±10.8

0 111.6±0.6 - 108.8±1.9 - 110.7±0.5 - 109.6±0.5 - 104.8±12.5 -
0.10 77.9±37.6 110.3±2.0 97.6±21.9 94.3±20.3 72.9±39.4 109.2±1.5 93.3±27.2 109.1±4.0 95.4±19.7 97.8±20.2e
0.15 28.2±32.4 104.2±13.5 78.9±33.2 83.4±23.3 9.2±13.6 107.5±5.2 30.5±32.5 94.5±18.1 81.6±26.4 84.5±26.4

0 111.8±0.6 - 107.3±12.0 - 110.6±0.9 - 110.2±0.7 - 114.3±1.1 -
0.10 60.2±36.2 108.7±3.3 90.8±21.3 105.1±6.7 78.5±26.1 108.1±4.5 91.8±24.9 108.6±3.5 110.6±3.7 113.2±1.2m-e
0.15 40.7±32.3 105.3±6.7 73.4±29.2 97.3±10.4 37.3±28.3 104.5±11.4 50.7±35.9 106.8±8.4 111.4±3.6 105.3±8.2

0 77.3±15.3 - 82.3±3.1 - 83.6±10.1 - 86.4±1.2 - 101.5±0.8 -
0.10 67.2±22.0 74.4±18.3 76.8±15.8 89.3±8.1 81.5±11.3 84.9±7.7 77.7±20.4 85.2±7.3 98.6±7.5 93.3±11.0m
0.15 48.7±28.6 65.8±20.7 64.4±22.9 77.2±9.2 62.3±29.8 80.6±10.2 53.6±28.3 78.3±14.4 82.3±18.3 90.0±14.2

0 50.6±31.6 - 79.9±4.8 - 84.7±9.8 - 93.1±10.9 - 88.7±1.9 -
0.10 14.7±11.1 53.1±28.5 70.8±18.9 78.7±7.2 40.7±25.3 84.4±8.7 59.6±31.8 92.6±10.6 88.6±1.1 88.4±2.5m-r
0.15 11.2±5.9 52.9±29.9 48.6±26.5 73.6±10.1 16.5±12.8 77.9±17.2 19.2±15.7 91.3±9.6 89.4±1.2 89.0±4.5

0 82.2±23.3 - 92.8±2.2 - 96.7±1.7 - 99.2±1.4 - 104.3±0.7 -
0.10 38.5±28.5 85.6±19.7 89.2±6.9 91.3±3.2 69.9±28.3 96.3±2.2 79.2±29.5 98.7±2.8 99.2±7.4 101.5±6.7

W
al

ke
r2

d

f-r
0.15 19.3±18.3 77.1±25.0 68.6±28.1 89.1±6.1 23.3±22.1 92.2±5.5 18.5±23.4 97.6±4.7 71.2±33.9 98.5±11.8

21

Published as a conference paper at ICLR 2024

Table 7: D4RL score of the baseline algorithms and the DMBP strengthened ones in Mujoco domain
under uniformly distributed random noise (U-rand), maximum action-difference attack (MAD), and
minimum Q-value attack (MinQ) on state observation.

BCQ CQL TD3+BC Diffusion QL RORLEnv Dataset/
Noise Scale

Noise
Type base DMBP base DMBP base DMBP base DMBP base DMBP

U-rand 7.4±4.9 69.1±21.5 27.2±6.4 69.6±22.4 16.3±13.1 84.2±17.1 11.6±10.9 77.8±21.8 24.3±7.5 66.8±27.0
MAD 3.6±1.7 52.5±17.9 12.4±6.9 61.2±19.7 4.7±3.5 65.4±16.0 4.3±3.2 62.9±13.2 14.1±2.5 54.3±27.1e

0.05 MinQ 12.8±9.3 51.8±23.9 19.4±11.3 60.4±19.4 18.0±4.2 88.2±11.3 8.0±6.7 71.1±15.2 9.3±8.8 71.0±29.1
U-rand 39.9±10.4 68.2±17.3 29.1±13.1 69.7±21.5 42.2±8.9 76.9±9.5 44.5±9.0 80.7±13.2 41.5±15.1 73.5±13.7
MAD 38.7±2.8 54.5±13.0 10.9±5.4 49.5±16.0 34.5±3.2 72.5±9.0 32.6±5.7 76.2±11.1 22.5±5.4 69.5±15.6m-e

0.05 MinQ 36.3±6.1 51.7±12.9 26.9±12.5 58.5±24.0 30.8±7.3 78.3±12.6 45.0±2.0 71.5±10.2 55.8±13.2 79.5±4.5
U-rand 44.9±2.1 47.5±0.7 46.7±1.1 48.9±0.9 45.9±1.1 48.3±0.7 44.7±5.2 48.3±0.7 54.3±7.2 64.9±2.3
MAD 40.3±1.6 46.4±2.5 41.0±1.3 48.9±0.9 39.1±2.0 48.3±0.8 36.9±3.1 49.2±0.8 43.5±7.9 49.9±5.3m

0.05 MinQ 34.3±9.8 46.1±2.7 45.6±0.9 49.0±1.1 42.2±2.0 48.3±0.8 43.3±0.8 43.2±1.0 51.6±5.4 55.3±5.0
U-rand 31.5±10.6 40.3±5.9 40.9±2.6 46.4±1.8 36.9±6.6 46.9±1.1 38.5±5.7 46.8±0.9 39.9±2.3 61.2±1.1
MAD 19.2±8.2 29.4±6.9 29.0±2.6 46.5±0.9 27.1±3.4 36.2±0.9 22.3±3.8 34.5±5.5 22.5±1.5 62.3±1.0m-r

0.10 MinQ 5.1±5.2 36.7±8.8 39.2±0.8 46.2±1.1 36.7±6.8 44.8±1.1 37.0±4.8 38.6±1.1 34.0±1.4 63.2±2.3
U-rand 36.5±5.8 67.0±3.3 40.1±1.9 70.4±1.7 32.2±11.3 66.5±5.4 36.9±7.8 69.5±1.8 45.3±10.2 79.5±8.0
MAD 26.5±3.6 58.4±5.5 24.2±4.2 62.3±1.9 19.6±7.6 53.3±4.4 21.8±2.3 63.2±1.5 25.3±13.2 66.7±14.3

H
al

fC
he

et
ah

f-r
0.10 MinQ 13.8±9.2 46.1±11.9 36.2±1.5 53.4±3.7 20.4±12.8 67.2±1.5 35.6±1.4 53.1±1.8 53.5±16.9 72.4±6.2

U-rand 46.1±20.7 66.9±26.3 59.6±29.4 95.7±23.8 42.6±28.4 84.0±27.4 53.2±20.8 84.4±25.3 85.3±37.0 81.9±25.2
MAD 31.1±14.4 53.2±24.2 22.6±13.9 73.9±27.9 27.2±10.9 60.3±27.2 36.8±9.0 37.1±12.3 36.6±22.2 59.0±13.8e

0.05 MinQ 47.4±18.9 62.5±27.9 32.7±13.5 58.7±17.9 45.3±27.5 95.7±27.6 66.7±33.6 59.2±23.9 79.8±32.7 59.4±22.1
U-rand 62.0±28.6 84.7±21.5 64.8±29.4 96.2±25.8 60.2±29.3 88.8±23.0 64.8±25.5 96.2±16.4 85.3±31.2 89.2±27.1
MAD 18.3±13.3 50.1±27.5 65.6±19.9 85.4±25.2 22.2±7.4 73.3±30.4 35.6±11.3 59.5±11.2 65.2±29.0 67.5±31.2m-e

0.05 MinQ 28.5±18.1 43.2±13.9 74.1±28.2 81.2±29.4 88.4±31.5 101.1±21.7 38.3±25.6 69.9±32.3 93.3±27.9 85.9±28.2
U-rand 47.8±13.2 62.2±17.1 62.9±16.1 72.2±19.3 48.3±11.3 58.5±12.0 47.8±17.2 62.2±17.7 71.5±23.8 82.3±17.6
MAD 37.3±10.7 48.3±13.2 49.8±14.7 36.6±17.5 45.7±16.0 48.7±11.1 29.2±16.2 45.8±12.2 66.3±27.2 71.9±20.5m

0.05 MinQ 27.9±10.8 45.2±10.5 59.9±18.7 87.0±27.9 49.7±18.2 61.3±13.6 59.2±18.6 75.4±12.9 63.9±21.7 77.5±18.2
U-rand 18.5±8.2 68.9±19.2 66.3±20.1 95.9±8.8 20.6±9.1 65.4±22.0 33.9±10.7 94.9±17.7 80.7±28.0 103.5±1.5
MAD 5.1±5.0 37.5±26.1 32.1±15.9 88.9±13.7 6.1±5.5 64.3±21.8 9.9±8.1 38.3±15.8 51.6±30.7 97.5±2.5m-r

0.10 MinQ 5.3±5.4 18.3±18.4 84.6±14.1 87.5±6.6 11.8±7.6 80.5±18.1 51.2±25.1 62.5±27.3 98.3±6.2 103.2±2.4
U-rand 28.3±10.3 75.2±26.8 86.8±24.7 100.7±7.5 26.7±10.0 73.3±29.9 46.7±18.6 105.8±10.1 99.9±11.1 98.6±13.2
MAD 8.6±5.5 55.9±28.8 19.5±17.1 96.5±1.0 6.3±5.8 69.9±23.8 16.2±7.3 58.5±26.2 65.4±26.7 77.3±28.0

H
op

pe
r

f-r
0.10 MinQ 14.7±8.1 17.0±18.1 99.1±1.8 102.3±4.6 6.8±6.0 77.9±29.6 66.0±24.2 80.2±22.6 82.5±20.9 91.7±16.3

U-rand 102.1±1.8 110.4±0.8 106.1±9.9 106.0±7.4 106.1±2.9 110.0±0.5 107.2±1.0 109.4±0.5 95.1±15.7 97.2±9.5
MAD 50.5±43.7 70.5±13.3 64.1±27.0 97.6±16.1 19.9±22.7 69.7±17.5 36.6±35.5 88.2±24.8 61.9±29.2 83.8±19.9e

0.10 MinQ 99.9±22.2 105.6±1.1 99.9±11.8 102.4±6.9 91.9±22.4 105.5±1.3 101.1±2.0 102.4±1.3 91.8±28.0 89.3±13.3
U-rand 91.9±26.5 110.7±1.1 102.7±11.2 108.7±7.5 90.7±22.8 110.1±1.0 103.3±13.7 109.5±0.8 108.3±3.2 106.2±4.5
MAD 38.3±33.7 98.5±7.5 73.2±34.7 102.5±16.1 22.8±21.0 78.5±5.4 37.3±34.1 99.5±11.3 88.6±21.7 101.9±6.0m-e

0.10 MinQ 75.5±23.7 105.0±5.3 73.7±29.8 100.9±10.2 70.2±20.3 92.9±14.1 96.7±19.1 101.9±12.1 93.5±16.6 95.7±14.2
U-rand 77.8±16.2 76.1±15.7 82.6±5.5 81.5±3.7 82.6±13.7 84.9±4.2 85.5±5.9 85.3±5.5 99.7±3.8 101.0±0.6
MAD 38.6±27.4 74.7±16.8 59.3±29.5 80.5±5.6 41.1±34.3 74.1±8.1 32.2±29.5 61.5±13.7 77.3±26.6 79.2±21.3m

0.10 MinQ 69.2±18.8 75.3±11.1 71.7±2.0 68.7±4.9 77.6±9.2 74.6±3.2 74.2±12.4 82.8±5.1 90.0±15.0 91.2±16.7
U-rand 17.3±12.2 54.9±25.7 69.2±20.9 78.1±9.2 51.2±28.3 83.6±14.8 64.2±27.8 91.1±12.1 89.9±1.1 88.7±2.1
MAD 6.6±3.3 43.4±29.8 19.7±14.7 78.4±8.8 8.8±4.4 70.8±19.1 7.2±2.3 66.1±24.2 81.9±11.5 90.5±3.5m-r

0.15 MinQ 7.3±4.2 30.3±26.1 66.5±11.8 78.5±4.2 21.7±15.9 76.4±14.9 47.2±23.2 68.0±19.5 82.3±1.4 89.6±1.7
U-rand 40.9±30.6 83.4±21.4 88.7±7.7 91.9±2.3 60.2±28.1 96.2±2.4 85.7±21.1 98.2±3.8 103.2±3.3 98.7±9.0
MAD 5.8±4.5 66.1±26.3 36.6±29.7 86.3±9.0 7.6±1.8 76.3±2.9 5.9±1.8 63.9±10.9 75.3±21.3 72.9±20.6

W
al

ke
r2

d

f-r
0.15 MinQ 11.1±7.1 58.6±31.3 79.3±2.8 84.1±2.5 39.4±25.4 86.6±5.5 63.8±27.8 79.3±2.0 89.3±14.5 97.5±7.0

22

Published as a conference paper at ICLR 2024

(a) Performance under Gaussian random noise attack

(b) Performance under uniform random noise attack

(c) Performance under the maximum action-difference attack

(d) Performance under the minimum Q-value attack

Figure 9: The performance of CQL, DMBP-CQL, RORL, and DMBP-RORL under different scales
of (a) Gaussian random noise attack, (b) uniform random noise attack, (c) maximum action difference
attack, and (d) minimum Q-value attack. The curves are smoothed with a window size of 3 and
the shaded region represents half a standard deviation over 5 random checkpoints (20 tests for each
checkpoint).

23

Published as a conference paper at ICLR 2024

Figure 10: The performance of BCQ, DMBP-BCQ, TD3+BC, DMBP-TD3+BC, Diffusion QL, and
DMBP-Diffusion QL (trained on halfcheetah medium-expert, medium, and full-replay datasets)
with incomplete state observations that have 1-5 unobserved dimension(s). The dimension of state
observation in halfcheetah is 17.

Figure 11: The performance of BCQ, DMBP-BCQ, TD3+BC, DMBP-TD3+BC, Diffusion QL,
and DMBP-Diffusion QL (trained on hopper medium-expert, medium, and full-replay datasets)
with incomplete state observations that have 1-5 unobserved dimension(s). The dimension of state
observation in hopper is 11.

24

Published as a conference paper at ICLR 2024

Figure 12: The performance of BCQ, DMBP-BCQ, TD3+BC, DMBP-TD3+BC, Diffusion QL,
and DMBP-Diffusion QL (trained on walker2d medium-expert, medium, and full-replay datasets)
with incomplete state observations that have 1-5 unobserved dimension(s). The dimension of state
observation in walker2d is 17.

D.3 EXPERIMENTAL RESULTS ON ADROIT

We further evaluate DMBP in the Adroit domain, where agents are required to control a 24-DoF
robotic hand to manipulate a pen, a hammer, a door, and a ball. The action and state spaces in the
Adroit domain have much higher dimensions than those in the Mujoco domain, and most of the
baseline algorithms perform poorly on "human" and "cloned" datasets. Therefore, we only present the
robustness evaluation results on the "expert" dataset as shown in Table 8. Again, DMBP significantly
enhances the robustness of all baseline algorithms. Stronger robustness enhancement is observed for
"policy regularization" offline RL algorithms (i.e., BCQ and Diffusion QL), compared to "Q-value
constrain" offline RL algorithms (i.e., CQL and RORL).

For the robustness evaluation against in-complete state observations (cf. Figure 13), we mask more
state dimensions (ranging from 2 to 20), and the evaluation results demonstrate that DMBP performs
well even when roughly half of the state dimensions are masked, especially in "hammer" and "door"
environments.

D.4 EXPERIMENTAL RESULTS ON FRANKA KITCHEN

To demonstrate the efficacy of DMBP, we conduct experiments on the Franka Kitchen domain, where
agents are required to control a 9-DoF Franka robot in a kitchen environment to finish multiple
tasks on common household items. It is noticed that the Franka Kitchen domain has sparse reward
environments, i.e., agent scores 25 when it finishes a given task and scores 0 otherwise. Therefore, it
is challenging to train an agent in such environments, and it becomes extremely difficult for an agent
to obtain any rewards with perturbed state observations. We present the robustness evaluation results
of DMBP against noised state observations in Table 9 and against incomplete state observations with
unobserved dimensions in Figure 14. We note that DMBP significantly enhances the robustness of all
baseline algorithms.

25

Published as a conference paper at ICLR 2024

Table 8: D4RL score of the baseline algorithms and the DMBP strengthened ones in Adroit domain
under Gaussian distributed random noise (G-rand), uniformly distributed random noise (U-rand),
maximum action-difference attack (MAD), and minimum Q-value attack (MinQ) on state observa-
tions.

BCQ CQL Diffusion QL RORLEnv/
dataset

Noise
Scale

Noise
Type base DMBP base DMBP base DMBP base DMBP

0 - 121.2±38.5 - 104.5±66.5 - 143.4±25.4 - 126.3±55.5 -
G-rand 114.3±48.3 111.5±41.2 69.7±45.4 89.7±55.3 131.0±37.6 141.1±20.5 121.1±31.0 124.8±43.7
U-rand 116.9±38.1 114.8±39.2 83.3±73.2 95.5±62.8 130.7±32.3 137.8±39.9 128.3±54.9 131.9±46.9
MAD 112.6±42.9 113.5±46.2 76.9±52.5 87.6±59.8 122.7±58.0 131.5±25.9 123.5±47.1 121.8±32.20.10

MinQ 118.7±42.2 121.1±49.7 83.5±66.3 76.1±66.9 129.0±43.9 142.6±23.7 114.9±48.7 126.4±41.6
G-rand 108.4±50.9 114.1±43.2 51.3±42.5 71.6±65.9 128.3±43.9 143.1±39.5 102.6±56.1 124.0±48.5
U-rand 115.2±49.5 119.8±39.5 68.8±69.3 83.0±66.9 131.7±39.2 130.8±48.7 121.5±27.5 121.0±35.8
MAD 111.6±62.9 117.1±40.3 58.3±59.8 65.6±55.2 116.6±54.9 129.4±32.8 103.0±57.1 110.2±53.5

pe
n-

ex
pe

rt
-v

1

0.15

MinQ 108.4±42.8 113.1±38.3 69.3±55.9 97.5±59.5 119.6±49.5 135.4±45.6 111.3±48.8 122.4±38.2
0 - 108.5±1.2 - 85.4±31.5 - 105.7±4.8 - 111.7±53.1 -

G-rand 29.7±48.7 109.1±1.3 5.7±1.0 48.3±15.5 68.6±49.8 103.6±16.7 11.7±0.2 38.3±56.5
U-rand 86.9±28.2 107.3±13.0 29.6±1.0 76.0±21.7 84.9±47.5 107.3±1.5 33.2±38.4 60.5±40.2
MAD 5.8±11.9 84.9±31.5 -0.1±0.3 18.5±12.5 16.4±18.4 78.5±31.0 0.0±0.1 18.9±11.90.10

MinQ 83.3±37.9 109.9±1.2 15.5±23.0 52.2±26.8 33.3±32.2 103.5±11.7 11.2±1.7 46.9±37.3
G-rand 0.4±0.6 101.8±5.4 0.0±0.3 21.6±0.7 33.3±46.5 100.1±26.2 0.1±0.2 11.7±0.4
U-rand 51.1±56.6 109.0±5.9 10.6±9.2 55.9±23.9 79.0±56.5 106.1±7.2 4.5±6.1 40.3±35.7
MAD 0.1±0.0 69.0±22.3 -0.1±0.0 11.9±13.9 4.0±11.3 66.2±34.6 -0.1±0.0 9.2±5.2ha

m
m

er
-e

xp
er

t-
v1

0.15

MinQ 26.4±47.3 99.3±1.2 0.9±1.2 31.3±22.5 0.5±0.9 99.2±32.9 0.1±0.1 22.2±13.3
0 - 104.7±7.7 - 106.6±0.9 - 103.6±7.3 - 117.8±4.6 -

G-rand 88.2±33.2 83.5±36.0 88.3±23.6 103.2±9.8 95.6±21.3 103.5±9.2 65.3±48.2 95.3±27.4
U-rand 104.4±5.3 102.9±10.6 103.0±3.7 103.6±14.3 101.5±18.5 105.1±1.4 86.5±40.4 98.5±26.7
MAD 97.3±19.6 103.2±6.9 31.0±21.7 74.5±26.6 92.9±35.8 103.7±7.8 30.4±23.8 86.6±36.50.10

MinQ 95.6±25.0 99.3±19.9 53.5±41.7 105.1±3.1 100.6±13.8 103.2±5.1 86.1±35.8 102.0±14.6
G-rand 44.1±48.6 82.5±19.2 25.5±34.2 102.9±8.6 53.2±46.1 101.5±16.0 14.0±31.1 95.7±25.2
U-rand 95.9±24.7 100.9±9.8 89.2±26.2 98.7±20.4 93.7±24.0 101.1±14.0 73.7±42.2 95.9±18.1
MAD 37.7±37.7 84.2±15.8 0.2±0.4 62.8±38.5 54.8±35.8 81.9±27.8 7.4±11.7 73.7±27.7

do
or

-e
xp

er
t-

v1

0.15

MinQ 74.3±44.5 94.8±27.2 0.1±0.1 97.3±17.9 86.1±25.5 103.7±3.2 42.7±38.3 100.5±14.9
0 - 66.2±30.8 - 76.2±36.6 - 101.2±12.7 - 43.3±20.5 -

G-rand 2.0±4.9 42.0±35.5 0.9±2.9 34.6±31.7 15.3±25.1 96.6±24.3 1.1±0.1 27.3±11.5
U-rand 50.9±37.8 65.8±39.0 2.3±3.9 41.4±24.1 69.8±42.9 98.0±13.6 12.1±2.1 35.7±31.7
MAD 0.1±0.2 34.7±25.8 0.2±0.2 24.2±21.0 0.1±0.5 66.8±30.7 0.0±0.1 15.8±21.00.10

MinQ 57.7±35.3 52.9±29.8 0.2±0.3 37.5±25.8 3.4±4.2 70.6±37.1 0.9±0.8 34.2±22.1
G-rand 0.2±0.4 48.3±33.7 0.0±0.1 34.2±31.2 1.3±3.5 87.2±20.5 -0.1±0.0 22.0±15.5
U-rand 8.1±11.3 47.4±25.5 0.8±1.9 36.1±30.0 32.5±22.5 93.4±16.7 0.1±0.1 30.3±22.7
MAD 0.0±0.1 33.6±31.5 0.0±0.0 28.2±21.9 0.0±0.3 67.1±32.5 -0.1±0.1 16.3±18.5re

lo
ca

te
-e

xp
er

t-
v1

0.15

MinQ 17.5±17.2 42.2±23.5 0.1±0.1 36.6±25.6 0.7±0.4 50.2±31.6 -0.1±0.0 9.4±5.4

26

Published as a conference paper at ICLR 2024

Figure 13: The performance of BCQ, DMBP-BCQ, Diffusion QL, and DMBP-Diffusion QL in Adroit
domain with incomplete state observations that have 2-20 unobserved dimensions. (The dimension
of state observation is 45 in pen, 46 in hammer, and 39 in both door and relocate.)

Figure 14: The performance of CQL, DMBP-CQL, Diffusion QL, and DMBP-Diffusion QL in
Franka Kitchen domain with incomplete state observations that have 2-20 unobserved dimensions.
(The dimension of state observation in kitchen is 59.)

27

Published as a conference paper at ICLR 2024

Table 9: D4RL score of the baseline algorithms and the DMBP strengthened ones in Franka Kitchen
domain under Gaussian distributed random noise (G-rand), uniformly distributed random noise
(U-rand), maximum action-difference attack (MAD), and minimum Q-value attack (MinQ) on state
observation.

BCQ CQL Diffusion QL RORLEnv/
dataset

Noise
Scale

Noise
Type base DMBP base DMBP base DMBP base DMBP

0 - 7.5±15.9 - 47.3±32.4 - 84.5±27.7 - 22.8±26.8 -
G-rand 0.8±4.3 5.0±12.9 0.0±0.0 34.5±25.6 0.8±4.3 65.8±22.4 0.0±0.0 12.5±17.8
U-rand 0.8±4.3 4.5±9.6 0.8±4.3 31.8±24.0 0.8±4.3 60.0±29.6 0.0±0.0 13.0±18.1
MAD 0.8±4.3 12.5±17.8 0.0±0.0 10.8±18.4 2.5±7.5 42.0±20.0 0.0±0.0 6.5±14.80.05

MinQ 0.0±0.0 6.3±12.8 0.8±4.3 17.3±20.2 0.0±0.0 56.8±28.0 0.0±0.0 9.8±17.9
G-rand 0.3±2.5 1.3±5.4 0.0±0.0 32.5±24.4 0.0±0.0 61.0±30.5 0.0±0.0 6.0±14.2
U-rand 0.8±4.3 3.3±8.4 0.0±0.0 23.5±27.1 0.0±0.0 53.0±25.4 0.0±0.0 8.0±16.4
MAD 0.0±0.0 4.0±9.2 0.0±0.0 9.8±17.8 0.0±0.0 34.3±25.9 0.0±0.0 3.5±8.7ki

tc
he

n-
co

m
pl

et
e-

v0

0.10

MinQ 0.0±0.0 5.8±10.6 0.0±0.0 23.3±27.0 0.0±0.0 47.8±22.4 0.0±0.0 6.5±14.6
0 - 29.3±18.3 - 51.3±34.5 - 71.8±23.2 - 30.3±23.0 -

G-rand 6.3±11.7 11.8±19.0 0.0±0.0 32.5±24.4 12.5±17.8 65.8±22.4 0.0±0.0 18.8±20.9
U-rand 3.3±8.4 10.0±18.1 0.8±4.3 28.5±22.7 22.5±26.3 60.0±29.6 1.5±5.8 21.5±25.5
MAD 6.5±14.8 5.3±13.0 0.0±0.0 22.5±26.3 5.0±12.7 48.3±22.7 1.3±5.4 13.3±18.10.05

MinQ 5.0±12.9 5.0±12.7 3.3±8.4 29.8±22.9 4.3±12.1 40.0±28.6 0.0±0.0 15.3±19.5
G-rand 0.8±4.3 7.3±11.5 0.0±0.0 26.8±22.3 7.3±15.8 64.3±21.3 0.0±0.0 16.0±19.8
U-rand 2.3±7.2 7.5±15.9 0.0±0.0 23.3±27.1 4.3±12.3 55.8±28.5 0.5±3.5 17.3±20.2
MAD 2.5±7.5 4.3±9.4 0.0±0.0 14.3±18.8 0.8±4.3 41.3±19.6 0.0±0.0 9.8±17.9ki

tc
he

n-
pa

rt
ia

l-
v0

0.10

MinQ 5.0±10.0 10.8±18.4 0.0±0.0 12.5±20.0 3.3±8.4 39.5±18.1 0.0±0.0 12.0±19.8
0 - 18.3±23.2 - 51.3±34.5 - 65.3±21.8 - 33.5±24.9 -

G-rand 7.3±11.3 16.3±20.0 0.0±0.0 30.8±23.3 11.3±18.8 49.3±22.8 0.8±4.3 11.5±19.1
U-rand 9.3±17.6 18.8±20.9 0.0±0.0 32.8±24.6 22.5±26.2 55.0±26.9 0.0±0.0 12.3±19.8
MAD 5.8±14.0 15.0±19.2 0.0±0.0 26.3±22.0 13.3±18.2 42.3±20.1 2.3±7.2 13.0±18.10.05

MinQ 0.8±4.3 15.8±19.7 0.0±0.0 34.3±22.6 9.3±17.6 40.0±28.6 1.5±5.8 15.5±19.6
G-rand 1.3±5.4 14.5±18.9 1.8±6.4 28.3±22.5 0.0±0.0 50.0±33.7 0.0±0.0 9.8±16.1
U-rand 5.0±10.0 16.8±20.0 1.5±5.8 30.3±22.9 1.5±5.8 50.8±34.3 0.0±0.0 11.5±18.8
MAD 0.0±0.0 12.5±20.2 0.0±0.0 17.8±20.3 2.5±7.5 40.0±28.6 0.8±4.3 12.8±17.8ki

tc
he

n-
m

ix
ed

-v
0

0.10

MinQ 0.8±4.3 13.3±18.1 0.3±2.5 25.8±21.9 1.8±6.4 40.0±28.8 0.3±2.5 12.3±19.8

D.5 COMPUTATIONAL COST

In Table 10, we compare the computational cost of DMBP for multiple baseline algorithms on a single
machine with one GPU (NVIDIA RTX4090 24GB) and one CPU (AMD Ryzen 9 7950X). For each
algorithm, we perform the training on halfcheetah-expert-v2 dataset, and measure the average epoch
time (1000 gradient steps for each epoch) and the GPU memory usage over 10 epochs. Although the
training of DMBP requires more computing time per epoch, DMBP expedites the convergence (in
200-300 epochs) of the baseline algorithms (which usually converge in 1000-3000 epochs), i.e., the
total training time of DMBP is similar to that of the baseline algorithms in comparison.

Table 10: Computational cost comparison
Algorithms Runtime (s/epoch) GPU Memory (GB)

BCQ 4.33 1.36
CQL 19.58 1.33
TD3+BC 2.82 1.29
Diffusion QL 12.05 1.69
RORL 22.63 1.44
DMBP 194.08 2.22

Table 11: Decision time consumption comparison (1000 timesteps)

Decision algorithms Runtime(s)
- Decision algorithms Runtime(s)

(k = 1)
Runtime(s)

(k = 5)

BCQ 0.543 DMBP-BCQ 2.411 9.980
CQL 0.491 DMBP-CQL 2.323 9.776
TD3+BC 0.365 DMBP-TD3+BC 2.215 9.698
Diffusion QL 3.388 DMBP-Diffusion QL 4.786 12.241
RORL 0.525 DMBP-RORL 2.439 10.143

28

Published as a conference paper at ICLR 2024

We also perform experiments to measure the decision time consumption for baseline RL algorithms
and the DMBP improved ones (see Table 11). We compare the total runtime over 1000 RL timesteps
of the baseline algorithms (trained on halfcheetah-expert-v2 dataset) with and without the DMBP
denoising framework. For the start diffusion timestep of DMBP in denoising tasks, we select two
values of k = 1 and k = 5. DMBP consumes more decision time within an acceptable range.

To expedite the training process of DMBP, one can optimize the training schedule by adjusting the
number of diffusion steps (Chung et al., 2022; Franzese et al., 2022) and the design of noise scale
(Nichol & Dhariwal, 2021) through learning, which have been proven effective in speeding up the
convergence rate. Analogously, to expedite the testing process of DMBP, one can employ implicit
sampling techniques, such as Song et al. (2020a); Zhang et al. (2022a), which aim to reduce the
number of reverse denoising steps required during the testing phase. The proposed methods will be
subject to verification in our future work.

D.6 EXPERIMENTAL RESULT ANALYSIS

In our experiments, we find that DMBP achieves better robustness enhancement performance when
it is combined with offline RL algorithms based on policy regularization (BCQ, TD3BC, Diffusion
QL), as opposed to those based on conservative Q estimation (CQL, RORL). Among the baseline
algorithms we evaluate, Diffusion QL demonstrates the best performance when paired with DMBP,
while the least improvement exhibits for RORL. For the purpose of understanding the underlying
mechanisms, we employ t-SNE (Van der Maaten & Hinton, 2008; Chan et al., 2018) to visualize
the distributions of states and actions encountered during the training and testing processes of these
offline RL algorithms.

As shown in Figure 15, we train various baseline offline RL algorithms using the halfcheetah-expert-
v2 dataset. The visualization depicts the distributions of states and actions in the dataset, as well
as during the testing process without any perturbations, across 20 epochs (each epoch consisting
of 1000 RL timesteps). The test results indicate that policy regularization based algorithms tend to
replicate the policies observed in the dataset during the testing process. They also exhibit a preference
for accessing states that are present in the dataset. This phenomenon is particularly evident in the
case of Diffusion QL, where the training and testing sets largely overlap. For conservative Q based
algorithms, on the other hand, the overlap between the training and testing sets is less significant
(particularly for RORL). By the nature of the Diffusion Models, DMBP has a tendency to recover
states that frequently appear in the dataset. This explains why DMBP exhibits better robustness
enhancement performance when paired with policy regularization based offline RL algorithms.

Figure 15: Visualization of the state and action distributions of the training datasets (halfcheetah-
expert-v2), and the generated data during the testing process in the clean environment for various
baseline offline RL algorithms (BCQ, CQL, TD3+BC, Diffusion QL, RORL).

29

Published as a conference paper at ICLR 2024

We note that DMBP demonstrates a certain level of generalization ability for unseen states and
actions in the dataset. We visualize the distributions of states and actions for the agent in the clean
environments, the agent in the noised environments with the assistance of DMBP, and the agent in the
noised environments without the assistance of DMBP (see Figure 16).1 There is a significant overlap
between the state and action distributions obtained by the agent in the clean environment (the green
scatter plot) and those from the agent assisted by DMBP in the noisy environment (the red scatter
plot). This indicates that DMBP is able to accurately infer the original states during testing, even
in cases where some states are not observed in the training set. Without the assistance of DMBP,
the distribution of actions taken by the agent in the noisy environment, as well as the distribution of
states encountered during the process (the purple scatter plot), are completely different from those
observed in the clean environment.

Figure 16: Visualization of the state and action distributions for the agent in the clean environments,
the agent in the noised environments with the assistance of DMBP, and the agent in the noised
environments without the assistance of DMBP. The noise is set to be Gaussian distributed with a std
of 0.03. The baseline RL algorithms (BCQ, CQL, TD3+BC, Diffusion QL, RORL) and DMBP are
all trained on halfcheetah-expert-v2.

E LIMITATIONS

One limitation of our present work is that the noise scale related hyperparameter (i.e., the diffusion
start timestep k in Eq. 2) is manually defined when DMBP is deployed for online tests in environments
with different scales of noises. In future work, we will consider self-adaptive diffusion start timestep
to make DMBP more adaptive for environments with varying noise scales.

Another limitation of this work is the lack of validation of DMBP’s performance with normalized
state observations (as in Zhang et al. (2020); Yang et al. (2022)). Without normalizing the state
observation, adding noise of the same scale may introduce a bias in the corruption’s effect on different
dimensions. In future work, we will validate and optimize the performance of DMBP with normalized
state observations.

1Note that the recorded states during the testing process in the noised environment are the original states
other than the noised ones.

30

	Introduction
	Related works
	Preliminaries
	Diffusion Model Based Predictor
	Conditional diffusion for predicting real state
	Non-Markovian loss function
	Diffusion based state infilling for unobserved dimension

	Experiments
	Robustness against noised state observations
	Robustness against incomplete state observations with unobserved dimension
	Ablation study

	Conclusion
	Derivation of the training objective in Eq. 7
	Implementation details
	DMBP network structure
	DMBP hyperparameters and training

	Additional ablation studies
	Experimental details
	Experiment settings
	Additional experimental results on Mujoco
	Experimental results on Adroit
	Experimental results on Franka Kitchen
	Computational cost
	Experimental result analysis

	Limitations

