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ABSTRACT

The reliability of Large Language Models (LLMs) in high-stakes domains such
as healthcare, law, and scientific discovery is often compromised by hallucina-
tions. These failures typically stem from two sources: data-driven hallucinations
and reasoning-driven hallucinations. However, existing detection methods usu-
ally address only one source and rely on task-specific heuristics, limiting their
generalization to complex scenarios. To overcome these limitations, we introduce
the Hallucination Risk Bound, a unified theoretical framework that formally de-
composes hallucination risk into data-driven and reasoning-driven components,
linked respectively to training-time mismatches and inference-time instabilities.
This provides a principled foundation for analyzing how hallucinations emerge
and evolve. Building on this foundation, we introduce HALLUGUARD, a NTK-
based score that leverages the induced geometry and captured representations of
the NTK to jointly identify data-driven and reasoning-driven hallucinations. We
evaluate HALLUGUARD on 10 diverse benchmarks, 11 competitive baselines, and
9 popular LLM backbones, consistently achieving state-of-the-art performance in
detecting diverse forms of LLM hallucinations.

1 INTRODUCTION

Large language models (LLMs) are increasingly deployed in high-stakes domains such as health-
care, law, and scientific discovery(Bommasani et al.,2021; Thirunavukarasu et al.,2023)). However,
adoption in these settings remains cautious, as such domains are highly regulated and demand strict
compliance, interpretability, and safety guarantees(Dennstidt et al., 2025; |[Kattnig et al., 2024). A
major barrier is the risk of hallucinations, generated content appears unfaithful or nonsensical. Such
errors can have severe consequences(Dennstadt et al., [2025)—as the example in Figure|l| a gener-
ated incorrect medical diagnosis may delay treatment or lead to harmful interventions. Therefore,
detecting hallucinations is not merely a technical challenge but a prerequisite for trustworthy de-
ployment, as undetected errors undermine reliability, accountability, and user safety.

Generally, hallucinations in LLMs arise from two primary sources(Ji et al. |2023; [Huang et al.,
2023)): data-driven hallucinations, which stem from flawed, biased, or incomplete knowledge en-
coded during pre-training or fine-tuning; and reasoning-driven hallucinations, which originate from
inference-time failures such as logical inconsistencies or breakdowns in multi-step reasoning(Zhang
et al., |2023; |Zhong et all [2024). Detection methods broadly split along these two dimensions.
Approaches for data-driven hallucinations often compare outputs against retrieved documents or
references(Krishna & et al.,|2022; [Min et al., 2023b; [Ji et al.,[2023)), or exploit sampling consistency
as in SelfCheckGPT(Manakul et al.,2023)). In contrast, methods for reasoning-driven hallucinations
rely on signals of inference-time instability, including probabilistic measures such as perplexity(Ren
et al., 2022)), length-normalized entropy(Malinin & Gales| [2020), semantic entropy(Kuhn et al.,
2023)), energy-based scoring(Liu et al.,|2020), and RACE(Wang et al.l 2025)). Others probe internal
representations, for example, Inside(Chen et al.,|2024a), which applies eigenvalue-based covariance
metrics and feature clipping, ICR Probe(Zhang et al.,|2025), which tracks residual-stream updates,
and Shadows in the Attention(Wei et al.| 2025)), which analyzes representation drift under contextual
perturbations. While these methods shed light on the mechanisms underlying hallucinations, most
remain tailored to a single hallucination type and fail to capture their evolution. Yet growing evi-
dence indicates that data-driven and reasoning-driven hallucinations often evolve during multi-step
generation(Liu et al., 2025} Sun et al., 2025). As shown in Figure(l] it emerges from an initial dis-
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Figure 1: An illustration of hallucination emerging and evolving in the context of disease diagnosis.

ease misclassification and evolves into a distorted diagnosis, delaying treatments and risking fatality.
This gap brings two central questions: (1) How can we develop a unified theoretical understanding
of how hallucinations evolve? and (2) How can we detect them effectively and efficiently without
relying on external references or task-specific heuristics?

To address these challenges, we propose a unified theoretical framework—Hallucination Risk Bound,
which decomposes the overall hallucination risk into two components: a data-driven term, capturing
semantic deviations rooted in inaccurate, imbalanced, or noisy supervision acquired during model
training; and a reasoning-driven term, reflecting instability introduced by inference-time dynam-
ics, such as logical missteps or temporal inconsistency. This decomposition not only elucidates the
mechanism behind hallucinations but also reveals how they emerge and evolve. Specifically, our
analysis shows that hallucinations originate from semantic approximation gaps-captured by repre-
sentational limits of the model-and are subsequently amplified by unstable rollout dynamics, evolv-
ing across decoding steps. As such, our framework offers a unified theoretical lens for characterizing
the emergence and evolution of these hallucinations.

Building on the theoretical foundation, we propose HALLUGUARD, a Neural Tangent Kernel(NTK)-
based score that leverages the induced geometry and captured representations of the NTK to jointly
identify data-driven and reasoning-driven hallucinations. We evaluate HALLUGUARD comprehen-
sively across 10 diverse benchmarks, 11 competitive baselines, and 9 popular LLM backbones.
HALLUGUARD consistently achieves state-of-the-art hallucination detection performance, demon-
strating its efficacy.

2 PRELIMINARIES

Hallucination Detection. There are two primary sources of hallucinations in LLMs(Ji et al.|
2023;Huang et al.,|2023): data-driven hallucination, which stems from incomplete or biased knowl-
edge encoded during pre-training or fine-tuning, and reasoning-driven hallucination, which arises
from unstable or inconsistent inference dynamics at decoding time. This distinction has implicitly
guided a broad range of detection strategies, which we examine through these two lenses.

For data-driven causes, a recurring signal is elevated predictive uncertainty. A common formulation
adopts the sequence-level negative log-likelihood:

T
1
Uy | x,0) :—f;logpe(ytlyq,xx 1
which quantifies the average uncertainty of generating a sequencey = [y1, . . ., yr| from input x and

0 denotes model parameters. This directly recovers Perplexity(Ren et al., |2022), where low scores
imply confident predictions, while high scores indicate implausible generations due to weak priors.
To capture more nuanced uncertainty, later methods extend this formulation to multi-sample settings.
The Length-Normalized Entropy(Malinin & Gales|[2020) penalizes dispersion across stochastic gen-
erations Y = {y*',...,y®}, offering a finer-grained view of model indecision. This perspective is
further enriched by Semantic Entropy(Kuhn et al., [2023)), which projects sampled responses into
semantic space, and by energy-based scoring(Liu et al., [2020), which replaces log-probability with
a learned confidence function. Collectively, these methods reflect a progression from token-level
likelihoods to semantically grounded multi-sample uncertainty estimators.
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In contrast, reasoning-driven hallucinations arise from brittle inference trajectories, where identical
contexts may yield inconsistent or incoherent outputs. A commonly used measure of such instability
is the cross-sample consistency score:

CY|x,0)= sim(y”,y”) ()

HMN

)

where C' = K - (K — 1)/2, and sim(-, -) is a similarity function such as ROUGE-L(Lin| 2004),
cosine similarity, or BLEU(Chen et al., 2024b). Low scores reflect diverging generations and un-
stable reasoning. Several reasoning-driven detection methods can be interpreted through this lens.
Early approaches used surface-level lexical overlap metrics(Lin et al., 2022b)), while SelfCheck-
GPT(Manakul et all 2023) advanced this by evaluating factual entailment across responses, and
FActScore(Min et al.[2023a)) extended this further by comparing outputs to retrieved reference doc-
uments. More recent efforts probe internal signals directly: Inside(Chen et al., 2024a) analyzes the
covariance spectrum of embedding representations, and RACE(Wang et al., [2025) diagnoses insta-
bility in multi-step reasoning.

Q \

NTK in LLMs. NTK provides a principled framework for analyzing the training dynamics in
the overparameterized regime characteristic of modern LLMs(Jacot et al., |2020). Formally, for a
network output f(z, 8) with input = and parameters 6, the NTK is defined as:

O(z,z',0) = Vof(z,0) Vof(z',0). 3)

This kernel O(z, 2, ) quantifies the similarity of training dynamics between inputs = and z’. In
the infinite-width limit, it converges to a deterministic value at initialization and remains nearly con-
stant throughout training(Lee et al.l[2020). This stability reduces the highly nonlinear optimization
of deep networks to a tractable kernel regression problem. By examining the eigenspectrum of the
NTK, one can probe how internal representations are shaped during training: which features are
prioritized (e.g., syntax versus semantics), how quickly different tasks converge, and why overpa-
rameterized networks generalize effectively to unseen data(Ju et al,,2022)). In this way, the NTK
transforms the apparent complexity of LLM optimization into a clear lens on how these models
capture, process, and generalize information(Zeng et al., 2025)).

3 METHODOLOGY

3.1 PROBLEM SETTING

Our analysis reveals that hallucination is not a unified failure mode but rather shifts with the task
structure. On the instruction-following Natural benchmark(Wang et al.l [2022), 88.9% of the
overall 3499 errors are from logical missteps (reasoning-driven) while 11.1% are factual inaccura-
cies (data-driven). By contrast, on the math-focused MATH-500(Hendrycks et al.,2021)), the 1985
wrong generations are dominated by 1946 reasoning errors (98.1%), with only 19 factual flaws
(1.9%). This contrast highlights that, in practice, hallucinations are rarely pure but often mixtures of
data-driven bias and reasoning-driven instability—motivating our formal decomposition of halluci-
nation sources.

Problem Definition. Let ) denote the space of textual outputs and let ® : ) — U}, be a task-
specific encoder that maps textual sequences into the hypothesis space Uy, equipped with a norm
I - || (e.g., task-calibrated embedding space or structured metric). We interpret each v € Uj, as
a reasoning chain, composed of step-wise logical statements. For an input x with ground-truth
output y* € ), define the gold-standard reasoning chain as u* := ®(y*) € U,. An LLM with
parameters 6 emits a random sequence Y = (Y1,...,Yr) via po(y: | y<t, X), yielding a predicted
reasoning chain uy, := ®(Y) € Uj,. Its expected value under the model’s decoding distribution is
Elun] := Ey wpy (1) [2(Y)].

We consider perturbations in a local neighborhood of the decoding process. Let § € R” parameterize
a small perturbation (e.g., of the prefix tokens, step-¢ logits, or hidden state), and let B, := {0 :
[6]] < p}. Define the perturbed decoder map G : R” — Uy, by G(8) := (Y (6)), where Y (4) is the
sequence under perturbation. Let J € R%*" denote the (Gauss—Newton) Jacobian of G at § = 0.
Our goal is to formalize how hallucination emerges and evolves in LLMs.
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3.2 HALLUCINATION RISK BOUND

To bridge the formal setup with the phenomenon of hallucination, we first disentangle the sources of
hallucinations. Intuitively, hallucinations may arise either from systematic biases in the knowledge
encoded by the model (data-driven) or from instabilities during autoregressive decoding (reasoning-
driven). The following proposition formalizes this idea by decomposing the total hallucination risk
into two components.

We first impose the following assumptions:
Al. (U, || - ||) is a Hilbert space; ® is measurable with unique best solution and ||®(Y)|| has
finite second moment.
A2. Triangle inequality holds for || - || and ® is Lg-Lipschitz w.r.t. an edit distance on ).

A3. For ¢ € B, the mapping G admits the local expansion G(6) = G(0) + Jé + R(6), where
the remainder is bounded by || R(0)|| < 1 H,||6||* for some curvature constant H, > 0.

Proposition 3.1 (Hallucination Risk Decomposition). Under A1-A3, applying the triangle
inequality yields a natural split of the risk:

o —unll < |[u” = Elun]l| + |lun — Efus]|

data-driven term reasoning-driven term

This decomposition distinguishes errors caused by systematic bias in the learned representation
from those introduced during stochastic rollout.

Characterizing Data-Driven Hallucination. To quantify the data-driven term, we take inspira-
tion from the NTK, which has proven effective in analyzing training dynamics of overparameterized
models. Here, NTK geometry provides a way to measure how well the model’s representation space
aligns with task generation under small perturbations.

Let U;, C U denote the hypothesis subspace accessible to the model under perturbations. By Céa’s
lemma(Céal |1964) with curvature penalty, the data-driven term can be bounded as
* A- . *
o Bl < 7 inf flu” — . @
where v = A\pin(Ko) is the smallest eigenvalue of the NTK Gram matrix on embedded perturba-
tions, and A < ||T|| reflects the operator norm of the problem/operator mapping 7. Intuitively, the

ratio % measures the conditioning of the feature map: well-conditioned NTK spectra allow a closer

approximation to the true generation.

This ratio can be further controlled in terms of pretraining—finetuning mismatch:

A €mismatch

— <1 kpt 1 P L k- ———— 5

5 = + kpilogO(P, L) + Signal,, ’ %)
where logO(P, L) is a complexity term from parameter count P and prompt length L, €mismatch
denotes the Wasserstein distance between prompt and query distributions, Signal, measures task-
aligned energy in the top-k eigenspace. kp; and k are task and model-dependent constants. Thus,
data-driven hallucinations grow when the mismatch is large or when the task signal is weak.

Characterizing Reasoning-Driven Hallucination. The reasoning-driven term captures
reasoning-driven instability that accumulates during autoregressive decoding. Here, we model gen-
eration as a martingale process, where deviation from the expectation is controlled by concentration
inequalities. Specifically, Freedman’s inequality(Geman et al.l [1992)) gives

lun — Efun]|] < K -exp( = 55 a(e’ - 1), ©)

where K is the number of rollouts averaged, 5 summarizes per-step growth in local Jacobians, «
scales the cumulative effect and C is a task and model-dependent constant. This bound shows that
reasoning-driven hallucinations grow exponentially with sequence length 7.

We now synthesize the two components into a unified result that characterizes the overall risk of
hallucination. By combining the NTK-conditioned approximation bound for data-driven deviation
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with the Freedman-style concentration bound for reasoning-driven instability, we obtain the follow-
ing unified bound of data-driven and reasoning-driven hallucinations (detailed proof is provided in

Appendix [A):

Theorem 3.2 (Hallucination Risk Bound). Let u* := ®(y*) denote the semantic embed-
ding of the ground-truth output and u;, := ®(Y) that of the model-generated output. Under

Assumptions A1-A3, suppose there exists 5 > 0 such that H H;T:l Ji H < €T Then the total
2

hallucination risk satisfies

' —unll < (1+ kot log O(P, L) + k- gizmsian ) inf |[u* —ufl + |£]-exp( — 557 - a(e” — 1)
ueUp

Signaly,

data-driven term reasoning-driven term

3.3 HALLUCINATION QUANTIFICATION VIA HALLUGUARD

While Theorem [3.2] makes explicit how data-driven and reasoning-driven hallucinations emerge and
evolve, applying it directly at inference is impractical since direct step-wise Jacobians for billion-
parameter LLMs are intractable, so we seek a proxy score that is computable, stable, and faithful to
our decomposition.

Let IC denote the NTK Gram matrix with eigenvalues \; > --- > A, > 0 and condition number
K(KC) = Amax/Amin- Let J; be the step-t input—output Jacobian of the decoder, and define oy, 1=
sup, || J¢||2 as the uniform spectral bound(note that o,y is independent of the spectrum of K).

Under Assumptions A1-A3, a standard NTK approximation argument yields inf, ¢y, ||u* —u| <
Cy det(IC)~° ||u*||, so that det(KC) capture the representations in systematic bias.
For autoregressive rollout, based on the property of Jacobian, we have H Hthl Ji <

< ePT. Since

Hthl [Jelle = exp(Zthl IOgHJt”Q) , so that we have H Hthl Ji ,
B < log omax With opmayx := sup, ||J¢||2 thus we have the upper bound as || Hthl Jillo <ol =

max
e(08oma)T Thys, log omax Serves as a stable and tractable proxy for the per-step amplification rate.

Perturbation analysis of X', together with classical eigenvalue sensitivity results(Trefethen & Bau,
2022), yields Var[u,] < ¢, k(K)?||6]|?, showing that instability grows quadratically with the
condition number x(K). To temper this effect and ensure additivity, we penalize ill-conditioned
representations via — log k2, where log compression brings a well-behaved dynamic range.

In summary, det(K) quantifies representational ad-
equacy, logomax captures rollout amplification,
and — log x? penalizes spectral instability, together

Table 1: Correlation between NTK proxies
and task families.

forming a compact and tractable proxy consistent SQuAD Math-500 Truthful QA
with the Hallucination Risk Bound. Detailed proofs "+ (K) 0.84 042 0.61
are provided in Appendix [B] 10g Tmax — logk? 039 0.8 0.67

Empirical validation. We empirically validate

how those proxies correlate with different task families. In Table det(KC) correlates most strongly
with the data-centric task SQuAD (0.84), indicating its role in capturing factual fidelity. In contrast,
for the reasoning-oriented MATH-500, the highest correlation is observed with log o.x — log K>
(0.88), reflecting the importance of amplification and stability in multi-step reasoning.

Motivated by the above, we formally define HALLUGUARD as follows, which provides a principled
and unified lens for hallucination detection:

HALLUGUARD(uj,) = det(K) + logomax — log k2. (7)

4 EXPERIMENTS

We comprehensively evaluate HALLUGUARD across 10 diverse benchmarks, 11 competitive base-
lines, and 9 popular LLM backbones. We aim to evaluate its efficacy from the following five ques-
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tions: Q1: How does HALLUGUARD perform across different task families? Q2: How does HAL-
LUGUARD perform across LLMs of different scales? Q3: How does each term capture trends across
task families? Q4: Can HALLUGUARD guide test-time inference to improve downstream reason-
ing? @5: How well does HALLUGUARD generalize to detecting fine-grained hallucinations beyond
benchmarks?

Section [4.1] details the setup; Section 2] evaluates HALLUGUARD as a detection method(Q1-Q3),
Section |4.3| applies HALLUGUARD in score-guided inference(Q4) and Section [4.4] analyzes HAL-
LUGUARD on fine-grained hallucination via a case study on semantic data(Q5).

4.1 EVALUATION SETUP

Benchmarks. We evaluate across 10 widely used benchmarks spanning three distinct categories.
For data-grounded QA, we include RAGTruth(Niu et al., [2024), NO-Open(Kwiatkowski et al.,
2019), HotpotQA(Yang et al., 2018) and SQuAD(Rajpurkar et al.,|2016), which emphasize factual
correctness through external evidence. For reasoning-oriented tasks, we use GSM8XK(Cobbe et al.,
2021), MATH-500(Hendrycks et al., 2021), and BBH(Suzgun et al.,[2022), which require multi-step
derivations prone to compounding errors. Finally, for instruction-following settings, we consider
TruthfulQA(Lin et al., [2022a)), HaluEval(Li et al.| [2023) and Natural(Wang et al. 2022),
which probe hallucinations under open-ended or adversarial prompts.

Baselines. We compare HALLUGUARD with 11 competitive detectors spanning diverse strate-
gies. Uncertainty-based methods include Perplexity(Ren et al.l [2022), Length-Normalized Predic-
tive Entropy(LN-Entropy)(Malinin & Gales|, 2020), Semantic Entropy(Kuhn et al., 2023), Energy
Score(Liu et al.l |2020) and P(true)(Kadavath et al., 2022). Consistency-based approaches cover
SelfCheckGPT(Manakul et al |2023), Lexical Similarity(Lin et al., 2022b)), FActScore(Min et al.,
2023a)) and RACE(Wang et al., 2025). Internal-state methods are represented by Inside(Chen et al.}
2024a), MIND(Su et al., |2024)) and ReACTScore(Zheng et al., [2024)).

LLM Backbone Models. We evaluate 9 publicly available LLMs spanning different scales and
architectures. These include five models from the Llama family (Llama2-7B, Llama2-13B, Llama2-
70B, Llama3-8B, and Llama3.2-3B)(Touvron et al.| 2023} Grattafiori et al.,|2024), along with OPT-
6.7B(Zhang et al., [2022), Mistral-7B-Instruct(Jiang et al., [2023)), QwQ-32B(Yang et al.} 2024), and
GPT-2 (117M)(Radford et al.,2019). All models are used in their off-the-shelf form with pre-trained
weights and tokenizers provided by Hugging Face, without further fine-tuning.

Evaluation Metrics. We evaluate hallucination detection ability under two regimes following [Ja-
niak et al.| (2025): ROUGE-based reference evaluation (*,) and LLM-AS-A-JUDGE (). For
performance measures, we report the area under the receiver operating characteristic curve (AU-
ROC) and the area under the precision—recall curve (AUPRC). AUROC is widely used to assess the
quality of binary classifiers and uncertainty estimators, while AUPRC highlights performance under
class imbalance. In both cases, higher values indicate better detection.

4.2 MAIN RESULTS

Q1: How does HALLUGUARD perform across different task families? To evaluate how HAL-
LUGUARD performs across different task types, we conduct experiments on all benchmarks. For
clarity, Table [2| presents representative results from three task families: data-centric (RAGTruth),
reasoning-oriented (Math-500), and instruction-following (TruthfulQAa). As shown, HAL-
LUGUARD consistently outperforms all baselines across backbones. On Math-500, it reaches
81.76% AUROC and 79.76% AUPRC, improving over the second-best method by up to 8.3%.
On RAGTruth, it attains 84.59% AUROC and 81.15% AUPRC, with gains of up to 7.7%. On
TruthfulQA,itachieves 77.05% AUROC and 73.79% AUPRC, exceeding the next strongest base-
line by as much as 6.2%. Overall, HALLUGUARD establishes new state-of-the-art results across di-
verse task families, with particularly pronounced improvements on reasoning-oriented benchmarks.

Q2: How does HALLUGUARD perform across LLMs of different scales?> We fur-
ther investigate whether the effectiveness of HALLUGUARD depends on model scale, as
smaller backbones are typically more prone to hallucination. —Table [3] reports representa-
tive results on small(Llama2-7B, Llama3-8B), mid-sized(LLlama2-13B), and large-scale(Llama2-
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Table 2: Performance comparison on representative benchmarks: data-centric (RAGTruth),
reasoning-oriented (Math-500), and instruction-following (TruthfulQa). We highlight the first
and second best results.

GPT2 OPT-6.7B Mistral-7B QwQ-32B
o o & o ¢ v & O ¢ o e s ¢
F s g s 55§
X X X X Aol Aol X X X X X X X X X X
HALLUGUARD 75.51 73.40 62.40 56.60 80.13 76.77 71.01 63.58 82.31 80.79 64.89 67.25 84.59 81.15 71.82 66.68
Inside 73.42 73.08 61.99 56.39 79.49 71.82 66.1 62.46 75.32 73.19 64.58 61.05 77.72 73.47 66.05 64.73
MIND 58.54 54.79 43.47 41.85 63.82 62.58 51.03 44.78 73.13 71.53 5825 58.6 64.23 63.06 47.37 51.47
Perplexity 58.07 56.68 43.84 41.53 64.47 61.57 47.12 52.98 6542 63.63 53.28 51.36 73.91 72.92 60.81 59.77
£ LN-Entropy  64.42 60.79 49.41 4504 60.81 57.91 48.76 42.27 64.22 60.92 52.24 48.41 63.81 62.26 47.52 52.17
& Energy 65.53 6242 51.8 4722 66.54 63.28 54.21 49.19 64.36 62.26 48.64 53.93 73.26 71.21 65.43 62.32
Q Semantic Ent. 60.72 59.41 50.55 45.86 702 68.34 54.54 56.74 66.01 64.49 5301 55.5 66.48 64.41 51.54 50.11
& Lexical Sim. 6472 63.1 55.04 48.04 67.28 64.62 52.55 54.86 64.96 61.17 52.34 45.11 70.87 67.41 61.25 51.01
SelfCheckGPT ~ 65.4 62.79 52.85 5243 66.64 64.89 52.69 51.17 71.19 68.45 63.13 60.23 65.79 62.45 54.76 51.29
RACE 64.83 62.84 51.8 4844 64.26 61.03 5274 46.22 66.34 64.54 51.88 53.86 71.13 69.96 57.58 55.54
P(true) 66.19 64.04 482 5627 6844 6548 57.53 53.08 72.54 71.8 57.25 59.42 6532 63.01 53.01 52.32
FActScore  65.72 64.39 51.94 47.51 61.53 582 51.86 4557 63.98 60.71 53.54 49.34 66.72 64.03 58.21 49.17
HALLUGUARD 71.06 67.94 62.05 59.05 73.1 70.88 63.67 61.88 79.85 76.5 67.13 60.57 81.76 79.76 68.77 65.46
Inside 66.18 66.81 56.15 58.62 70.64 65.22 63.28 59.28 67.2 6549 513 5346 80.8 71.49 64.05 63.42
MIND 5541 51.77 39.01 41.59 5548 53.46 38.59 40.88 65.71 63.7 49.61 52.54 61.75 60.18 53.46 50.04
Perplexity 53.28 50.22 43.86 38.98 64.89 62.12 48.65 51.99 61.97 60.05 51.15 42.87 60.28 57.75 51.62 43.38
LN-Entropy ~ 60.84 58.76 42.76 47.48 58.71 55.01 43.55 42.02 68.96 69.44 58.79 57.49 63.96 62.18 46.01 49.5
£ Energy 55.09 51.99 462 39.5 53.96 50.98 42.56 34.12 66.27 62.72 49.48 50.06 69.61 68.66 54.35 57.36
2 Semantic Ent. 58.16 54.81 49.61 40.39 62.63 59.52 50.14 45.02 64.99 61.33 50.11 45.53 62.76 60.95 45.77 45.75
Lexical Sim.  51.37 47.18 38.37 39.06 61.27 58.06 44.13 42.96 5825 5592 46.31 46.01 69.46 67.59 55.93 52.6
SelfCheckGPT ~ 54.51 51.86 44.62 4401 57.36 5321 42.55 3827 63.68 62.5 51.7 53.03 64.56 62.49 5585 45.8
RACE 55.99 54.66 41.39 38.32 64.23 62.03 56.03 53.44 66.88 64.33 49.57 48.5 59.5 55.83 46.13 41.07
P(true) 54.57 52.88 45.45 44.74 57.02 55.49 48.81 37.84 57.11 5521 43.93 47.05 61.49 59.03 44.37 44.69
FActScore  56.76 53.85 40.25 40.01 5451 53.2 38.45 3649 62.11 58.64 53.52 47.27 58.82 57.47 49.48 42.74
HALLUGUARD 72.1 68.76 60.09 52.01 69.59 68.36 58.52 52.65 77.05 73.79 63.62 62.26 74.26 72.76 57.39 64.07
Inside 70.42 68.76 60.09 52.01 62.1 59.78 51.07 51.38 62.53 60.99 52.3 49.35 70.89 64.44 56.61 56.01
MIND 59.45 56.79 45.22 43.71 60.56 58.55 47.49 49.63 59.2 57.98 47.23 41.79 62.81 61.5 52.56 46.37
« Perplexity 50.57 47.87 40.64 35.63 55.07 52.26 44.43 42.79 60.8 59.69 47.33 41.62 5529 52.46 43.95 43.92
O LN-Entropy ~ 58.04 56.99 41.94 4721 56.12 54.01 47.06 384 59.67 56.25 41.99 4125 60.76 58.21 46.24 42.64
E Energy 55.02 5331 38.78 45.16 54.42 51.85 36.21 42.57 58.93 55.25 50.76 41.72 64.15 61.32 51.78 50.02
£ Semantic Ent. 61.01 57.08 4335 452 5148 47.81 34.15 38.16 54.44 5333 36.62 40.35 6675 63.85 51.11 4671
& Lexical Sim. 5254 50.56 39.94 3342 59.74 5572 49.89 46.81 66.16 64.05 54.08 51.65 55.24 5136 46.39 39.57
SelfCheckGPT ~ 56.04 54.48 4378 44.38 58.93 56.47 47.65 39.02 61.14 58.91 42.97 47.01 55.86 54.95 41.08 37.35
RACE 53.02 50.33 41.7 33.81 62.95 67.89 54.61 51.93 71.06 68.49 60.4 57.44 5575 52.62 46.5 43.19
P(true) 55.52 53.41 38.33 38.38 54.88 53.1 3822 40.96 55.8 52.01 40.88 38.72 57.18 55.16 46.19 38.21
FActScore  53.82 51.42 41.33 352 5457 51.26 42.51 3552 53.97 50.2 42.97 36.16 6231 60.23 45.06 49.9
70B) models using SQuAD, GSM8K, and HaluEval. Across all settings, HALLUGUARD

consistently surpasses baselines, with the largest margins on smaller models—for instance,
72.89% AUPRC, on HaluEval with Llama2-7B, —

more than 10% above the second best.

Mid-

sized models also exhibit clear gains (e.g., 79.01%
AUROC,. on GSM8K), while even large-scale mod-
els like Llama2-70B see steady improvements (e.g.,
83.8% AUROC, on SQuAD). Overall, HALLU-
GUARD benefits most on small backbones while
maintaining consistent advantages across scales.

Q3: How does each term capture trends across
task families? As shown in Figure 2] each term
faithfully tracks the ground-truth trend within its re-
spective task family. On data-centric SQuAD, the
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curve across the variant hallucination rate, capturing
the smooth AUROC decline. On reasoning-oriented
MATH-500, the reasoning-driven term mirrors the
monotonic AUROC drop as reasoning drift in-
creases. These results show that each term is well

matched to its task family and faithfully tracks performance trends as hallucination rates rise.

Figure 2: Ablation results comparing in-
dividual terms with ground-truth trends on
SQuAD (top) and Math-500 (bottom).
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Table 3: Performance comparison across backbone scales (small, mid-sized, and large) on three
benchmarks: SQuAD, GSM8K, HaluEval. We highlight the first and second best results.

Llama2-7B Llama-3-8B Llama2-13B Llama2-70B

$ S $ s $ S N §
¢ ¢ & ¢ Y ¢S &

FFFF g £ &8s 8

¥ ¥ T ¥ ¥ ¥ T ¥ ¥ ¥ T ¥ ¥ ¥ ¥ v

HALLUGUARD 81.05 77.16 71.18 64.38 79.56 78.29 67.97 63.27 81.45 78.39 64.39 65.07 83.8 81.77 70.46 73.24
Inside 73.63 75.74 65.22 59.11 76.13 72.44 65.62 62.94 74.68 74.81 61.01 59.51 81.24 75.09 69.48 62.4
MIND 64.57 61.11 52.39 53.13 62.29 59.58 44.49 48.61 68.64 66.95 54.92 5249 73.46 71.71 57.76 56.77

Perplexity 63.93 61.77 46.97 48.2 70.51 67.51 55.71 52,68 70.19 69.22 60.33 54.82 74.23 70.88 62.24 58.05
LN-Entropy ~ 65.96 64.22 53.43 52.84 63.7 604 46.19 42.85 61.66 59.16 49.05 46.27 72.44 68.91 56.77 52.63

95 Energy 59.83 56.11 46.19 43.18 64.41 61.02 56.17 4621 61.02 59.73 48.26 42.08 69.01 66.19 58.44 49.82
& Semantic Ent. 60.29 57.73 43.63 48.83 66.52 62.62 5237 527 70.58 67.22 5331 52.94 72.01 68.51 5649 50.9
# Lexical Sim.  70.31 69.08 53.97 5331 66.43 63.56 53.19 50.96 68.53 67.42 50.73 54.12 68.95 67.91 60.52 56.56
SelfCheckGPT  68.26 67.09 60.06 5731 73.99 72.15 65.26 54.02 6547 61.65 53.12 49.89 73.07 70.49 56.59 54.65
RACE 7135 69.23 59.18 5473 68.17 66.02 54.65 53.06 64.19 60.45 47.53 45.66 64.05 62.39 5438 50.07
P(true) 6255 61.09 46.84 52.32 67.42 63.94 5535 4752 71.56 68.4 57.51 45.66 66.81 62.71 57.43 46.85
FActScore 7032 68.63 58.13 53.01 712 69.45 61.92 5491 6665 63.2 5641 53.42 68.33 65.26 56.93 48.46
HALLUGUARD75.89 72.83 62.29 63.46 752 729 63.62 61.79 79.01 76.73 64.38 64.97 77.33 73.97 60.48 61.26
Inside 74.61 68.35 58.57 62.58 73.73 67.51 56.02 5728 7579 76.26 60.91 59.77 723 72.26 5449 58.39
MIND 65.88 63.4 48.28 48.17 6657 65.55 48.84 534 6149 59.55 51.63 5145 66.41 63.44 52.05 53.57
Perplexity 6623 64.1 53.52 5231 57.61 53.63 41.37 41.59 60.96 58.67 46.27 47.44 64.32 62.81 51.15 513
i¢ LN-Entropy ~ 59.45 55.95 43.04 44.08 68.22 66.05 53.03 5321 6131 58.90 45.83 40.86 G61.81 60.46 44.5 44.76
€ Energy 58.15 54.71 43.65 36.71 59.79 56.52 50.31 4223 57.58 56.07 43.39 38.94 6527 62.94 528 46.6
% Semantic Ent. 57.95 54.68 42.78 4195 669 64.81 50.47 5536 62.72 59.09 4933 44.35 60.63 57.01 46.22 40.24
© Lexical Sim. 658 63.7 52.12 5407 63.29 59.87 53.17 50.02 63.83 60.20 54.43 44.82 63.27 59.41 47.42 47.38
SelfCheckGPT — 60.99 57.54 49.28 44.43 6572 62.01 54.49 5034 57.98 54.58 46.72 39.86 68.06 65.09 52.99 50.89
RACE 63.37 62.33 53.53 49.94 64.49 61.47 53.28 47.55 64.20 61.96 50.15 4535 68.35 66.66 5041 51.16
P(true) 65.95 63.63 54.95 48.25 62.50 58.88 47.21 422 67.08 65.60 53.66 55.12 60.16 58.14 47.73 49.49
FActScore  56.69 53.71 4578 39.52 65.69 61.95 53.69 46.06 5576 54.17 44.91 43.18 59.84 55.85 44.05 39.49
HALLUGUARD 75.72 72.89 66.65 63.15 73.43 71.19 64.95 548 78.15 74.15 65.39 61.14 80.79 79.54 67.68 68.51
Inside 7133 67.63 59.73 53.15 67.95 64.93 60.31 5221 72.01 71.97 56.51 60.64 74.62 68.33 6222 64.4
MIND 548 5143 4415 4334 6454 60.89 49.09 45.13 55.05 53.28 39.16 45.17 57.98 56.01 45.82 41.69
Perplexity ~ 54.02 52.53 38.76 40.51 6131 59.36 50.62 46.01 54.99 51.39 42.64 35.64 62.85 60.59 48.29 43.85
S LN-Entropy 5947 58.33 502 4691 64.89 60.72 51.78 46.39 65.18 63.53 49.70 48.09 60.16 58.89 50.29 48.42
& Energy 6229 59.6 50.68 4224 6274 61.61 50.17 52.01 60.54 59.04 43.53 5037 60.13 58.44 48.79 48.01
£ Semantic Ent. 59.39 55.94 48.53 4635 55.25 53.05 44.5 4435 59.44 57.72 4538 40.77 61.57 57.99 49.07 45.39
= Lexical Sim.  63.61 61.16 55.01 44.75 56.59 5539 44.45 45.57 53.46 52.06 4134 40.57 6437 60.92 54.29 50.86

SelfCheckGPT ~ 64.29 61.83 48.4 4549 65.44 63.13 57.02 48.23 6524 63.52 53.71 54.33 57.12 55.26 40.5 43.06
RACE 59.78 59.14 48.1 40.47 61.98 60.32 48.08 46.29 60.65 59.11 49.92 44.51 62.11 58.24 40.5 43.06
P(true) 57.46 54.8 41.84 4047 56.32 54.04 42.55 43.75 65.77 63.01 49.98 4547 55.75 54.94 44.14 43.97
FActScore 63.93 61.33 469 51.87 61.73 57.85 49.92 42.15 65.15 63.71 5598 54.61 62.66 60.3 53.13 46.42

4.3 TEST-TIME INFERENCE

Test-time reasoning remains challenging, as models need to generate coherent multi-step solu-
tions without drifting into errors. To assess whether hallucination detection can mitigate this dif-
ficulty, we integrate detectors into beam search and evaluate Qwen2.5-Math-7B on MATH-500 and
Llama3.1-8B on Natural. As shown in Table @] HALLUGUARD achieves the strongest gains: on
MATH-500, it reaches 81.00% accuracy, around 10% higher than IO Prompt; on Natural, it at-
tains 70.96%, exceeding 10 Prompt by 15.72%. These results demonstrate that HALLUGUARD not
only detects hallucinations but also strengthens test-time reasoning by guiding models toward more
reliable solutions.

Table 4: Performance of hallucination score-guided test-time inference across reasoning tasks. We
highlight the first and second best results.

Dataset 10 HALLUGUARInside MIND  Perplexity LN- Energy  Semantic SelfCheck- RACE P(true)  FActScore
Prompt Entropy Ent. GPT

MATH-500  72.70 81.00 74.90 77.10 77.10 76.20 78.00 72.50 74.00 75.10 67.10 71.60
Natural 55.24 70.96 67.42 68.32 67.51 68.04 68.59 68.10 65.68 66.90 68.16 67.74

4.4 CASE STUDY

Fine-grained hallucinations—Ilexically similar yet semantically incorrect outputs—pose a particu-
lar challenge for detection. To evaluate whether HALLUGUARD can comprehensively capture such
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subtle errors, we use the PAWS dataset(Zhang et al [2019), which contrasts paraphrases with high
surface overlap but divergent meanings. Following |Li et al.| (2025), we adopt ROUGE-based refer-
ence signals for evaluation (Table [5). Across model scales, HALLUGUARD consistently surpasses
baselines: it achieves 90.18% AUROC and 87.64% AUPRC on Llama2-70B, and 91.24% AUROC
and 88.53% AUPRC on QwQ-32B—exceeding the next-best method by nearly five points. Even on
GPT-2, it leads with 83.27% AUROC and 80.46% AUPRC. These results confirm HALLUGUARD’s
effectiveness in capturing fine-grained semantic inconsistencies beyond benchmark settings.

Table 5: Results on PAWS measuring semantic hallucination detection with Llama-3.2-3B, Llama2-
70B, and QwQ-32B. We highlight the first and second best results.

Method HALLUGUARBside MIND  Perplexity LN- Energy Semantic Lexical SelfCheck- RACE P(true) FActScore
Entropy Ent. Sim. GPT

AUROC 85.63 8046 7893 7127 7219 73.05 7511 6458 77.82 7947 7356 68.44
AUPRC 82.14 7728 7541 67.55 6834 7022 7241 59.67  73.41 76.28 7043  63.58

Llama3.2

AUROC 90.18 8547 8392 7568 7623 77.14 79.06 6835  82.71 84.26 7739  72.62
AUPRC 87.64 8238 81.06 7142 7259 7428 7632 6344 7889 81.73 7418 67.58

QwQ AUROC 91.24 8541 8456 7672 7743 7829 8042 69.54 8359 86.38 7853 73.46
AUPRC 88.53 8227 8137 72,63 7329 7544 77.18 6427 7942 8341 7521 6832

Llama2

5 RELATED WORK

In this section, we review prior hallucination-detection methods by their detection target—Data-
driven hallucinations and reasoning-driven hallucinations.

Detecting Data-Driven Hallucinations. Recent work has shown that internal activations encode
rich indicators of such flaws. [Zhou & et al.| (2024) proposed EIGENSCORE, which computes statis-
tics of hidden representations from the eigen matrix to estimate hallucination risk. Su et al.| (2024)
introduced MIND, an unsupervised detector that models temporal dynamics of hidden states with-
out requiring labels, along with HELM benchmark to enable standardized evaluation. |Azaria &
Mitchell (2023) demonstrated using linear probes on intermediate states to predict truthfulness.

Detecting Reasoning-Driven Hallucinations. There are other works targeting inference-time in-
consistencies during generation—such as logical errors, instability across decoding steps, or tempo-
ral drift in extended outputs. Manakul et al.| (2023)) proposed SELFCHECKGPT, which assesses self-
consistency by sampling multiple candidate generations and measuring their alignment using entail-
ment and lexical overlap. [Wu et al.|(2024) introduced a suite of calibration-based uncertainty scores
designed to capture hallucination risk directly from output distributions. Zheng et al.| (2024)) pro-
posed REACTSCORE, which integrates entropy with intermediate reasoning traces to detect failures
in multi-step decision-making. FACTSCORE(Min et al., |2023a) decomposes outputs into atomic
factual units and verifies each against retrieved passages using entailment-based scoring.

6 CONCLUSION

The reliability of LLMs is often undermined by hallucinations, which arise from two main sources:
data-driven, caused by flawed knowledge acquired during training, and reasoning-driven, stemming
from inference-time instabilities in multi-step generation. Although these hallucinations frequently
evolve in practice, existing detectors usually target only one source and lack a solid theoretical foun-
dation. To address this gap, we propose a unified theoretical framework—a Hallucination Risk Bound,
which formally decomposes hallucination risk into data-driven and reasoning-driven components,
offering a principled view of how hallucinations emerge and evolve during generation. Building
on this foundation, we introduce HALLUGUARD, a NTK-based score that measures sensitivity
to semantic perturbations and captures internal instabilities, thereby enabling holistic detection of
both data-driven and reasoning-driven hallucinations. We evaluate HALLUGUARD across 10 di-
verse benchmarks, 11 competitive baselines, and 9 popular LLM backbones, where it consistently
achieves state-of-the-art performance, demonstrating robustness and practical efficacy.
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REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our work. A complete description
of the theoretical framework, including the formal assumptions and proofs of the Hallucination Risk
Bound, is provided in Section [3| and Appendix |A] Detailed experimental settings and evaluation
protocols are documented in Section [ and Appendix covering all 10 benchmarks, 11 base-
lines, and 9 LLM backbones. Together, these resources ensure that both our theoretical claims and
empirical results can be independently validated and extended by the community.

ETHICS STATEMENT

This study is based exclusively on publicly available datasets and open-source large language mod-
els, and does not involve human subjects or the use of private data. All scientific concepts, method-
ological designs, experimental implementations, and resulting conclusions remain entirely the re-
sponsibility of the authors.

REFERENCES

Amos Azaria and Tom Mitchell. The internal state of an 1lm knows when it’s lying. In Findings of
the Association for Computational Linguistics: EMNLP, 2023.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel,
Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Ste-
fano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Pe-
ter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard,
Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte
Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya
Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li,
Xuechen Li, Ece Kamar, Michal Kosinski, Ryan Chi-Ying Hsieh, Drew A. Linsley, Long O. Mai,
Nikolay Manchev, Christopher D. Manning, Yian Yin, Christopher J. N. de M. L. Matthews, Lu-
cia Mondragon, Ognjen Oreskovic, Mark Sabini, Yusuf Sahin, Clark Barrett, Christopher Potts,
James Y. Zou, Jiajun Wu, and Percy Liang. On the opportunities and risks of foundation models,
2021.

Jean Céa. Approximation variationnelle des problemes aux limites. In Annales de I’institut Fourier,
volume 14, pp. 345444, 1964.

Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping Ye. In-
side: Llms’ internal states retain the power of hallucination detection, 2024a. URL https:
//arxiv.org/abs/2402.03744.

Yuyan Chen, Qiang Fu, Yichen Yuan, Zhihao Wen, Ge Fan, Dayiheng Liu, Dongmei Zhang, Zhixu
Li, and Yanghua Xiao. Hallucination detection: Robustly discerning reliable answers in large
language models, 2024b. URL https://arxiv.org/abs/2407.04121.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Fabio Dennstéddt, Janna Hastings, Paul Martin Putora, Max Schmerder, and Nikola Cihoric. Im-
plementing large language models in healthcare while balancing control, collaboration, costs and
security. NPJ digital medicine, 8(1):143, 2025.

Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the bias/variance dilemma.
Neural computation, 4(1):1-58, 1992.

10


https://arxiv.org/abs/2402.03744
https://arxiv.org/abs/2402.03744
https://arxiv.org/abs/2407.04121
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168

Under review as a conference paper at ICLR 2026

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmén, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Celebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,

11



Under review as a conference paper at ICLR 2026

Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shugiang Zhang, Shugiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.
URLhttps://arxiv.org/abs/2103.03874.

Lei Huang, Weijiang Yu, Weitao Wang, Yujia Wang, Shi-Qi Chen, and Ju-Hua Wang. A survey
on hallucination in large language models: Principles, taxonomy, challenges, and open questions,
2023.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks, 2020. URL https://arxiv.org/abs/1806.07572.

Denis Janiak, Jakub Binkowski, Albert Sawczyn, Bogdan Gabrys, Ravid Shwartz-Ziv, and Tomasz
Kajdanowicz. The illusion of progress: Re-evaluating hallucination detection in 1lms, 2025.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
Computing Surveys, 55(12):1-38, March 2023. ISSN 1557-7341. doi: 10.1145/3571730. URL
http://dx.doi.org/10.1145/3571730.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

12


https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/1806.07572
http://dx.doi.org/10.1145/3571730
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825

Under review as a conference paper at ICLR 2026

Peizhong Ju, Xiaojun Lin, and Ness B. Shroff. On the generalization power of the overfitted three-
layer neural tangent kernel model, 2022. URL https://arxiv.org/abs/2206.02047.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott Johnston, Sheer
El-Showk, Andy Jones, Nelson Elhage, Tristan Hume, Anna Chen, Yuntao Bai, Sam Bow-
man, Stanislav Fort, Deep Ganguli, Danny Hernandez, Josh Jacobson, Jackson Kernion, Shauna
Kravec, Liane Lovitt, Kamal Ndousse, Catherine Olsson, Sam Ringer, Dario Amodei, Tom
Brown, Jack Clark, Nicholas Joseph, Ben Mann, Sam McCandlish, Chris Olah, and Jared Ka-
plan. Language models (mostly) know what they know, 2022.

Markus Kattnig, Alessa Angerschmid, Thomas Reichel, and Roman Kern. Assessing trustworthy ai:
Technical and legal perspectives of fairness in ai. Computer Law & Security Review, 55:106053,
2024.

Kalpesh Krishna and et al. Can retrieval-augmented language models hallucinate less? In EMNLP,
2022.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
uncertainty estimation in natural language generation, 2023.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: A benchmark for question answering research. Transactions of the
Association for Computational Linguistics, 7:452-466, 2019. doi: 10.1162/tacl_a_00276. URL
https://aclanthology.org/Q19-1026/.

Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent *. Journal of Statistical Mechanics: Theory and Experiment, 2020(12):
124002, December 2020. ISSN 1742-5468. doi: 10.1088/1742-5468/abc62b. URL http:
//dx.doi.org/10.1088/1742-5468/abc62b.

Jiawei Li, Akshayaa Magesh, and Venugopal V. Veeravalli. Principled detection of hallucinations in
large language models via multiple testing, 2025. URL https://arxiv.org/abs/2508.
18473.

Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Halueval: A large-
scale hallucination evaluation benchmark for large language models, 2023. URL https://
arxiv.org/abs/2305.11747.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74-81, 2004.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulga: Measuring how models mimic human
falsehoods, 2022a. URL https://arxiv.org/abs/2109.07958.

Zi Lin, Jeremiah Zhe Liu, and Jingbo Shang. Towards collaborative neural-symbolic graph se-
mantic parsing via uncertainty. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio
(eds.), Findings of the Association for Computational Linguistics: ACL 2022, pp. 4160-4173,
Dublin, Ireland, May 2022b. Association for Computational Linguistics. doi: 10.18653/v1/2022.
findings-acl.328. URL https://aclanthology.org/2022.findings-acl.328/l

Chengzhi Liu, Zhongxing Xu, Qingyue Wei, Juncheng Wu, James Zou, Xin Eric Wang, Yuyin Zhou,
and Sheng Liu. More thinking, less seeing? assessing amplified hallucination in multimodal
reasoning models, 2025. URL https://arxiv.org/abs/2505.21523|

Weitang Liu, Xiaoyun Wang, John D. Owens, and Yixuan Li. Energy-based out-of-distribution
detection, 2020.

Andrey Malinin and Mark Gales. Uncertainty estimation in autoregressive structured prediction,
2020.

13


https://arxiv.org/abs/2206.02047
https://aclanthology.org/Q19-1026/
http://dx.doi.org/10.1088/1742-5468/abc62b
http://dx.doi.org/10.1088/1742-5468/abc62b
https://arxiv.org/abs/2508.18473
https://arxiv.org/abs/2508.18473
https://arxiv.org/abs/2305.11747
https://arxiv.org/abs/2305.11747
https://arxiv.org/abs/2109.07958
https://aclanthology.org/2022.findings-acl.328/
https://arxiv.org/abs/2505.21523

Under review as a conference paper at ICLR 2026

Potsawee Manakul, Adian Liusie, and Mark J. F. Gales. Selfcheckgpt: Zero-resource black-box
hallucination detection for generative large language models, 2023. URL https://arxiv.
org/abs/2303.08896.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen tau Yih, Pang Wei Koh, Mohit Iyyer,
Luke Zettlemoyer, and Hannaneh Hajishirzi. Factscore: Fine-grained atomic evaluation of fac-
tual precision in long form text generation, 2023a. URL https://arxiv.org/abs/2305.
14251,

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer,
Luke Zettlemoyer, and Hannaneh Hajishirzi. Factscore: Fine-grained atomic evaluation of factual
precision in long form text generation. arXiv preprint arXiv:2305.14251, 2023b.

Cheng Niu, Yuanhao Wu, Juno Zhu, Siliang Xu, Kashun Shum, Randy Zhong, Juntong Song, and
Tong Zhang. Ragtruth: A hallucination corpus for developing trustworthy retrieval-augmented
language models, 2024. URL https://arxiv.org/abs/2401.00396,

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text, 2016. URL https://arxiv.org/abs/1606.05250.

Jie Ren, Jiaming Luo, Yao Zhao, Kundan Krishna, Mohammad Saleh, Balaji Lakshminarayanan,
and Peter J. Liu. Out-of-distribution detection and selective generation for conditional language
models, 2022.

Weihang Su, Changyue Wang, Qingyao Ai, Yiran HU, Zhijing Wu, Yujia Zhou, and Yiqun Liu. Un-
supervised real-time hallucination detection based on the internal states of large language models,
2024. URL https://arxiv.org/abs/2403.06448.

Zhongxiang Sun, Qipeng Wang, Haoyu Wang, Xiao Zhang, and Jun Xu. Detection and mitigation
of hallucination in large reasoning models: A mechanistic perspective, 2025. URL https:
//arxiv.orqg/abs/2505.12886.

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-
bench tasks and whether chain-of-thought can solve them, 2022. URL https://arxiv.org/
abs/2210.09261.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kavya Elangovan, Lio Gutierrez, Teng Fong
Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature Medicine, 29(8):
1930-1940, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Lloyd N Trefethen and David Bau. Numerical linear algebra. SIAM, 2022.
Changyue Wang, Weihang Su, Qingyao Ai, and Yiqun Liu. Joint evaluation of answer and reasoning

consistency for hallucination detection in large reasoning models, 2025.

14


https://arxiv.org/abs/2303.08896
https://arxiv.org/abs/2303.08896
https://arxiv.org/abs/2305.14251
https://arxiv.org/abs/2305.14251
https://arxiv.org/abs/2401.00396
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/2403.06448
https://arxiv.org/abs/2505.12886
https://arxiv.org/abs/2505.12886
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2307.09288

Under review as a conference paper at ICLR 2026

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei, An-
jana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, Eshaan
Pathak, Giannis Karamanolakis, Haizhi Gary Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson,
Kirby Kuznia, Krima Doshi, Maitreya Patel, Kuntal Kumar Pal, Mehrad Moradshahi, Mihir Par-
mar, Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri,
Rushang Karia, Shailaja Keyur Sampat, Savan Doshi, Siddhartha Mishra, Sujan Reddy, Sumanta
Patro, Tanay Dixit, Xudong Shen, Chitta Baral, Yejin Choi, Noah A. Smith, Hannaneh Hajishirzi,
and Daniel Khashabi. Super-naturalinstructions: Generalization via declarative instructions on
1600+ nlp tasks, 2022. URL https://arxiv.org/abs/2204.07705,

Zeyu Wei, Shuo Wang, Xiaohui Rong, Xuemin Liu, and He Li. Shadows in the attention: Contextual
perturbation and representation drift in the dynamics of hallucination in llms, 2025. URL https:
//arxiv.org/abs/2505.16894.

X. Wu, T. Lei, and Z. Hu. Hallusion: Calibrating hallucination prediction in large language models.
arXiv preprint arXiv:2505.03793, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jin-
gren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao,
Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wen-
bin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu,
Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024. URL
https://arxiv.org/abs/2407.10671.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering, 2018. URL https://arxiv.org/abs/1809.09600.

Xinyue Zeng, Haohui Wang, Junhong Lin, Jun Wu, Tyler Cody, and Dawei Zhou. Lensllm: Unveil-
ing fine-tuning dynamics for 1lm selection. ICML, 2025. arXiv preprint arXiv:2505.03793.

Muru Zhang, Ofir Press, William Merrill, Alisa Liu, and Noah A. Smith. How language model
hallucinations can snowball, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer,
Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettle-
moyer. Opt: Open pre-trained transformer language models, 2022. URL https://arxiv.
org/abs/2205.01068.

Yuan Zhang, Jason Baldridge, and Luheng He. Paws: Paraphrase adversaries from word scrambling,
2019. URL https://arxiv.org/abs/1904.01130.

Zhenliang Zhang, Xinyu Hu, Huixuan Zhang, Junzhe Zhang, and Xiaojun Wan. Icr probe: Track-
ing hidden state dynamics for reliable hallucination detection in 1lms, 2025. URL https:
//arxiv.org/abs/2507.16488.

L. Zheng et al. Reactscore: Unified reasoning and factuality tracing for hallucination detection.
arXiv preprint arXiv:2505.16122, 2024.

Weihong Zhong, Xiaocheng Feng, Liang Zhao, Qiming Li, Lei Huang, Yuxuan Gu, Weitao Ma,
Yuan Xu, and Bing Qin. Investigating and mitigating the multimodal hallucination snowballing
in large vision-language models, 2024.

D. Zhou and et al. Inside: Interpretable self-diagnosis for llm hallucination detection. ICML, 2024.

15


https://arxiv.org/abs/2204.07705
https://arxiv.org/abs/2505.16894
https://arxiv.org/abs/2505.16894
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/1904.01130
https://arxiv.org/abs/2507.16488
https://arxiv.org/abs/2507.16488

Under review as a conference paper at ICLR 2026

A PROOF OF HALLUCINATION RISK BOUND

We restate the main inequality from Section 3.2}

mismatc . K 2
®)
Step 1: Triangle inequality split. We define the hallucination decomposition by writing:
[u* —un| = llu” = E[un] + Elun] — un| < lu* = Elua]|| + [lun — E[us]l.

We denote the first term as the deterministic approximation error (bias) and the second term as the
stochastic residual (variance).

Step 2: Approximation term via Céa’s lemma. Assume E[uy] is the Galerkin projection of u*
in a coercive bilinear form a(-, -), i.e., for all v € Uy,

a(Elup],v) = £(v).

Then, by Céa’s lemma, we have:
[u” = Elup]l| < — inf [lu* —ul,
’y ueUy

where A and ~ are continuity and coercivity constants of a(-, -), respectively.

Step 3: Variance term via Bernstein concentration. Let ¢}, = ITI\ ZLﬂ ¢; be the empirical
supervision functional from finite labeled chains. Define the fluctuation:
Al =1l — ¢,

and the residual:
r:=up — Elup], sothat Apr= Al

Applying operator norm bounds and covering number uniformization (cf. Vershynin, 2018), we have
with high probability:
Ke?

Il < 1€lesp (= ) ale™ = )

which completes the proof.

Step 4: Substitution. Combining both terms yields:

A Ke?
* < * o BT )
o~ < 2 nt =l + el exp (=75 ) e’ ~ 1)

We now bound A /v via NTK decomposition.

A.1 DECOMPOSITION OF NTK CONTINUITY CONSTANT

Let a(-, -) denote the bilinear form induced by the NTK in the finite-width regime. We decompose:
a=ag+ 6pt + 6mm,

where qq is the infinite-width baseline kernel, d, is the perturbation due to pre-training noise, and
Omm 18 the domain mismatch from fine-tuning. The continuity constant satisfies:

A=A+ Api + Ap.

Bounding A;. Following Jacot et al.[(2020), we apply matrix concentration to finite-width NTK:
Ayt < vhpy log O(P,L).
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Bounding A,,,,,. Using spectral generalization bounds under data distribution shift (Lee et al.|
2020), we have:

€mi h
A < ~k mismatc )
mm =7 Signal,,

Substituting both into the bound for A/, we get:

A €mismatch
— <1+kylogO(P, L) + k————7—.
v + kp log O(P, L) + Signal,,

B HALLUGUARDDERIVATION AND INTERPRETATION

B.1 PRELIMINARIES AND NOTATION

Let L € R™*" be the NTK Gram matrix formed on r light semantic perturbations (see Assumptions

A1-A4 in the main theory section). Denote its eigen decomposition by K = VAV T with
A:diag()\l,...7)\r), A > >N >0.

Let Amax 1= A1y Amin := Ary £(K) := Amax/Amin, and det(K) = [T_; A;. Let @ denote the NTK

feature matrix whose columns span the hypothesis subspace Uy, so that K = @ T®, || ®||2 = v Amax

and omin(®) = v/ Amin. For the autoregressive decoder, let J; be the step-t input—output Jacobian,
and write opayx := sup, || J¢||2.

We will use the following two standard inequalities repeatedly:

NV 1 < tr(K)
Macl in/AM — —GM j l : A <7E/\i: , (9
aclaurin/ oneigenvalues (}:[1 ) < 2 . 9)
Submultiplicativity : |AB|l2 < [|A]]2||Bll2. (10)

B.2 REPRESENTATIONAL ADEQUACY VIA det(/C) WITH EXPLICIT CONSTANTS

Assumptions for this subsection. Beyond A1-A3, we assume a mild source condition and a
spectral envelope:

S1 (Source condition) There exist s > 0 and R; > 0 such that v* € Range(A®), ie.,

Sy W}\# < RZ. This is standard in kernel approximation and encodes RKHS reg-

ularity.

S2 (Spectral envelope) There exist constants 0 < A < X\ < oo and o > 1 such that \; < \ for
all 7 and A\, > Ar~“. (Polynomial decay is a common stylization; other envelopes can be
treated similarly.)

Lemma B.1 (Best-approximation error under source condition). Let U;, = span{vy,...,v,}. Un-

der S1,
nf et =l = "~ Tl < RoAZ

where \41 denotes the next-eigenvalue of the infinite-dimensional kernel operator (or, equivalently,

the empirical tail eigenvalue if more perturbations are added).

Proof. Write u* = ., ¢;v; with ¢; = (u*,v;). Then |Ju* — Iy, w*||* = 3,0 7 < 3.0 AF-
12

< 2s c 25 P2
T?a < )\T+1 Zi>r Tﬁs < A7‘—1—1Pis' O

To connect A, (or \,) to det(KC), we need an explicit lower bound of the form ), > ¢ det(K)?
with constants (¢, f) depending on the spectral envelope. The following inequality suffices.

Lemma B.2 (Lower-bounding A, by det(K)). Suppose \; < X for all i and A\, > 0. Then
A > det(KC) and \s > det(K)

- erl T o= Xs(rfl)‘
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Proof. Since det(K) = [[/_, \i < X'

IAT, we obtain A, > det(lC)/XTﬁl. Raising to power s
yields the second inequality. O

Theorem B.3 (Determinant-based adequacy bound with explicit constants). Under AI-A3 and S1-
S2,
inf [u* —ul| < Cq det(K)™“ [Ju”[,
ucUp

with R
cqg = i and Cyg = b —j
r—1 ||

Moreover, if the empirical spectrum satisfies A\, > Ar~%, one may choose

. s S 1
¢4y = min , — * = )
_ X
r-la log(det(lC))

which improves with slower decay (smaller o).
Proof. By Lemma with A1 < A, infyuep, |u* — ul| < RsAS. Lemma gives \° >
det(K) S/XS(PU; rearranging,

inf [Ju* —uf < RA"TY det(r)>.
ucUp,

Rescale constants relative to ||u*|| by setting Cy := X° (R /|[u*|)) and ¢q := s/(r — 1) to obtain
the stated form: .

inf [lu” —ul < (N7 Ber) det(FO) /0= Jlur.

uelUp

flwl

The variant using the envelope A\, > Ar~% is obtained by combining det(K) < Xr_lx\,, with the
explicit lower bound on A, yielding the alternative exponent shown. O

Numerical note (stable surrogate). In practice we use logdet(K) via Cholesky and aggregate
with z-normalization across components to avoid scale domination by any single term.

B.3 ROLLOUT AMPLIFICATION VIA JACOBIAN PRODUCTS (EXACT CONSTANTS)
Theorem B.4 (Amplification bound with exact constant). Let J; be the step-t Jacobian and 0,5 :=
supy || J¢||2. Then
T
ne
t=1

Defining f3 := log omax gives €T = ol hence

max’

T
, < [T < o
t=1

AT < o7

with equality if and only if ||Ji|l2 = Omax for all t and the top singular directions align across
factors.

Proof. The first inequality is equation [I0] applied iteratively. The second is by definition of oyax.
Setting 5 = log omax yields equality in the worst case. Alignment of top singular vectors is the
tightness condition for submultiplicativity. O

Token-dependent refinement. If one defines oy := | J¢||2 and favg = % Z;T:l log o, then
I TI, Ji||, < exp( 32, logoy) = eP+sT, which is tighter but requires per-step measurements.

B.4 CONDITIONING-INDUCED VARIANCE WITH £ (K)? SCALING

We now give an explicit projector-perturbation derivation showing the quadratic dependence on the
condition number.
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Setup. Let P := ®(®"®)T®T be the orthogonal projector onto Uy, ; then the linearized output is
up, = Pu*. Consider a feature perturbation A® induced by a prefix perturbation J satisfying

|A®|ly < Lag ||5]| (A2/A3).
Let the perturbed projector be P := (® + A®)((® + A®)T(® + A®))'(® + A®)T and define
AP:=P — P.

Lemma B.5 (Projector perturbation bound). There exists an absolute constant Cr > 0 such that

1|2 V Amax [AD2
AP|; < Cp ——— [|A®||s = C Adlly = C K .
H H2 = II a'min(q))Q || HQ 11 )\min H ||2 I K( ) \/m

Proofidea. Use standard bounds for the perturbation of orthogonal projectors onto column spaces
(e.g., Wedin’s sin® theorem and Stewart—Sun, Matrix Perturbation Theory, Thm 3.6). One shows

IAP]2 < 2((27@) 2|27 ARl + O(|AD]3).

Since |[(®T®)T|la = 1/Amin and ||@ TA®||5 < ||®]l2 |AP|l2 = v Amax||A®]|2, the result follows
for sufficiently small || A®||2, absorbing lower-order terms into Cfy. O

Theorem B.6 (Variance amplification with explicit constant). Let up(®) = Pu* and up(P+AP) =

Pu*. Then
[A®[[2

\% )\min
If A® is induced by a random prefix perturbation § with || A®||s < Le||0|| and E||5||> = o2, then

Varfup] < Ellun(® + A®) —un(®)[* < ¢ w(K)* [|0]]%,

[un(® + A®) —up(P)|| < Cur(K) [

with 2 172
L3 ||u*
Y, = 02 )
¢ 1 )\min
Proof: By Lemma [un(® + A®) — un(®)| = [[APw| < [AP|flur]] <
Cn k(K) % |lw*]]. Square both sides and take expectation over d, using [|A®|s < Lgldl,
to obtain the stated variance bound with the explicit constant c,,. O

Interpretation. The (K)? factor arises from two sources: (i) x(K) from the projector sensitivity
(Lemma|B.3), and (ii) 1/Amin from converting || A P||5 to a mean-squared bound after squaring and
averaging, yielding an overall x2-scaling in the variance constant.

B.5 CONSOLIDATION: COMPACT SURROGATE CONSISTENT WITH THE RISK
DECOMPOSITION

Combining Theorem[B.3] Theorem|[B.4} and Theorem[B.6] we obtain a computable surrogate aligned
with the Hallucination Risk Bound:

Adequacy: det(K)  Amplification: log 0., Conditioning penalty: — log s(KC)2.

This motivates the score

‘ HALLUGUARD(up,) = det(K) + logomax — logs(K)? ‘

with the following explicit, implementation-ready notes:
* Use log det(K) via Cholesky for stability; replace det in the score with log det if desired
(monotone equivalent).

* Estimate oyx either as sup, ||.J||> or its tighter average form Bavg = = >, log || J¢||2
(then use Bavg in place of log o max).

* z-normalize each component across a validation set before summation to avoid scale dom-
inance; optionally fit task-specific weights if permitted.
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B.6 EXPERIMENT DETAILS

Implementation Framework. All experiments use PyTorch and HuggingFace
Transformers with a fixed random seed for reproducibility.  Unless otherwise noted,
computations run in mixed precision (fp16). Hardware details (A100/H200) are reported once in
the main setup section.

Generation Configuration. For default evaluation of detectors, we use nucleus sampling with
temperature = 0.5, top—p = 0.95, and top—-k = 10, decoding K=10 candidate responses
per input (unless otherwise specified). For score-guided test-time inference (Section [4.3)), we use
beam search (beam size = 10) and score candidate trajectories at each step with the chosen detector.
For stability analysis, HALLUGUARD extracts sentence representations from the final token at the
middle transformer layer (L/2), which empirically preserves semantics relevant to truthfulness.

NTK-Based Score Computation. For each set of generations, we form a task-specific NTK fea-
ture matrix and compute the semantic stability score from its eigenspectrum. We add a small ridge
a = 1073 for numerical stability and compute singular values via SVD.

Perturbation Regularization. To prevent pathological activations that amplify instability, HAL-
LUGUARD clips hidden features using an adaptive scheme. We maintain a memory bank of N=3000
token embeddings and set thresholds at the top and bottom 0.2% percentiles of neuron activations;
out-of-range values are truncated to attenuate overconfident hallucinations.

Optimization. Backbone language models are not fine-tuned. We train only HALLUGUARD’s
lightweight projection layers using AdamW with learning rate selected from {1 x 107° 5 x
107%, 1 x 10~*} and weight decay from {0.0, 0.01}. The best setting is chosen on a held-out
validation split.

Implementation Details. For score-guided inference we apply beam search with beam size 10,
rescoring candidates stepwise with different hallucination detectors.

Ablation Setup. All ablations reuse the main paper’s splits, prompts, and decoding; we vary only
HALLUGUARD internals and explicitly control the hallucination base rate. On the generation side,
we modulate prevalence by adjusting temperature/top-p and beam size; to stress the two families,
we increase the prefix perturbation budget p and rollout horizon 7' to amplify reasoning drift, and
(when applicable) toggle retrieval masking to induce data-driven errors. On the detection side, AU-
ROC/AUPRC are threshold-free; when a fixed operating point is needed, we set a decision threshold
7 on the validation set by (i) matching a target predicted-positive rate 7 Via score quantiles or

CFN 1—m.
1S

(ii) fixing a desired FPR (e.g., 1%, 5%, 10%); a cost-sensitive Bayes rule 7 = .
. . . . . CFp +CFN T
optional when misclassification costs are specified. Unless noted, we toggle one factor at a time and
sweep p € {0.75,1.0,1.5}, T € {12,16, 24}, and the number of semantic probes m € {2,4,8};
no additional training is performed beyond optional temperature/z-score calibration on the training
split. We report mean-=std over 5 seeds.

B.7 USAGE OoF LLM

Large language models (LLMs) were employed in a limited and transparent manner during the
preparation of this manuscript. Specifically, LLMs were used to assist with linguistic refinement,
style adjustments, and minor text editing to improve clarity and readability. They were not involved
in formulating the research questions, designing the theoretical framework, conducting experiments,
or interpreting results. All scientific contributions—including conceptual development, methodol-
ogy, analyses, and conclusions—are the sole responsibility of the authors.
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