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ABSTRACT

The reliability of Large Language Models (LLMs) in high-stakes domains such
as healthcare, law, and scientific discovery is often compromised by hallucina-
tions. These failures typically stem from two sources: data-driven hallucinations
and reasoning-driven hallucinations. However, existing detection methods usu-
ally address only one source and rely on task-specific heuristics, limiting their
generalization to complex scenarios. To overcome these limitations, we introduce
the Hallucination Risk Bound, a unified theoretical framework that formally de-
composes hallucination risk into data-driven and reasoning-driven components,
linked respectively to training-time mismatches and inference-time instabilities.
This provides a principled foundation for analyzing how hallucinations emerge
and evolve. Building on this foundation, we introduce HALLUGUARD, a NTK-
based score that leverages the induced geometry and captured representations of
the NTK to jointly identify data-driven and reasoning-driven hallucinations. We
evaluate HALLUGUARD on 10 diverse benchmarks, 11 competitive baselines, and
9 popular LLM backbones, consistently achieving state-of-the-art performance in
detecting diverse forms of LLM hallucinations.

1 INTRODUCTION

Large language models (LLMs) are increasingly deployed in high-stakes domains such as health-
care, law, and scientific discovery(Bommasani et al., 2021; Thirunavukarasu et al., 2023). However,
adoption in these settings remains cautious, as such domains are highly regulated and demand strict
compliance, interpretability, and safety guarantees(Dennstädt et al., 2025; Kattnig et al., 2024). A
major barrier is the risk of hallucinations, generated content appears unfaithful or nonsensical. Such
errors can have severe consequences(Dennstädt et al., 2025)—as the example in Figure 1, a gener-
ated incorrect medical diagnosis may delay treatment or lead to harmful interventions. Therefore,
detecting hallucinations is not merely a technical challenge but a prerequisite for trustworthy de-
ployment, as undetected errors undermine reliability, accountability, and user safety.

Generally, hallucinations in LLMs arise from two primary sources(Ji et al., 2023; Huang et al.,
2023): data-driven hallucinations, which stem from flawed, biased, or incomplete knowledge en-
coded during pre-training or fine-tuning; and reasoning-driven hallucinations, which originate from
inference-time failures such as logical inconsistencies or breakdowns in multi-step reasoning(Zhang
et al., 2023; Zhong et al., 2024). Detection methods broadly split along these two dimensions.
Approaches for data-driven hallucinations often compare outputs against retrieved documents or
references(Shuster et al., 2021; Min et al., 2023; Ji et al., 2023), or exploit sampling consistency as
in SelfCheckGPT(Manakul et al., 2023). In contrast, methods for reasoning-driven hallucinations
rely on signals of inference-time instability, including probabilistic measures such as perplexity(Ren
et al., 2022), length-normalized entropy(Malinin & Gales, 2020), semantic entropy(Kuhn et al.,
2023), energy-based scoring(Liu et al., 2020), and RACE(Wang et al., 2025). Others probe internal
representations, for example, Inside(Chen et al., 2024a), which applies eigenvalue-based covariance
metrics and feature clipping, ICR Probe(Zhang et al., 2025), which tracks residual-stream updates,
and Shadows in the Attention(Wei et al., 2025), which analyzes representation drift under contextual
perturbations. While these methods shed light on the mechanisms underlying hallucinations, most
remain tailored to a single hallucination type and fail to capture their evolution. Yet growing evi-
dence indicates that data-driven and reasoning-driven hallucinations often evolve during multi-step
generation(Liu et al., 2025; Sun et al., 2025). As shown in Figure 1, it emerges from an initial dis-
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Figure 1: An illustration of hallucination emerging and evolving in the context of disease diagnosis.

ease misclassification and evolves into a distorted diagnosis, delaying treatments and risking fatality.
This gap brings two central questions: (1) How can we develop a unified theoretical understanding

of how hallucinations evolve? and (2) How can we detect them effectively and efficiently without
relying on external references or task-specific heuristics?

To address these challenges, we propose a unified theoretical framework–Hallucination Risk Bound,
which decomposes the overall hallucination risk into two components: a data-driven term, capturing
semantic deviations rooted in inaccurate, imbalanced, or noisy supervision acquired during model
training; and a reasoning-driven term, reflecting instability introduced by inference-time dynam-
ics, such as logical missteps or temporal inconsistency. This decomposition not only elucidates the
mechanism behind hallucinations but also reveals how they emerge and evolve. Specifically, our
analysis shows that hallucinations originate from semantic approximation gaps-captured by repre-
sentational limits of the model-and are subsequently amplified by unstable rollout dynamics, evolv-
ing across decoding steps. As such, our framework offers a unified theoretical lens for characterizing
the emergence and evolution of these hallucinations.

Building on the theoretical foundation, we propose HALLUGUARD, a Neural Tangent Kernel(NTK)-
based score that leverages the induced geometry and captured representations of the NTK to jointly
identify data-driven and reasoning-driven hallucinations. We evaluate HALLUGUARD comprehen-
sively across 10 diverse benchmarks, 11 competitive baselines, and 9 popular LLM backbones.
HALLUGUARD consistently achieves state-of-the-art hallucination detection performance, demon-
strating its efficacy.

2 PRELIMINARIES

Hallucination Detection. There are two primary sources of hallucinations in LLMs(Ji et al.,
2023; Huang et al., 2023): data-driven hallucination, which stems from incomplete or biased knowl-
edge encoded during pre-training or fine-tuning, and reasoning-driven hallucination, which arises
from unstable or inconsistent inference dynamics at decoding time. This distinction has implicitly
guided a broad range of detection strategies, which we examine through these two lenses.

For data-driven causes, a recurring signal is elevated predictive uncertainty. A common formulation
adopts the sequence-level negative log-likelihood:

U(y | x, θ) = − 1

T

T∑
t=1

log pθ(yt | y<t,x), (1)

which quantifies the average uncertainty of generating a sequence y = [y1, . . . , yT ] from input x and
θ denotes model parameters. This directly recovers Perplexity(Ren et al., 2022), where low scores
imply confident predictions, while high scores indicate implausible generations due to weak priors.
To capture more nuanced uncertainty, later methods extend this formulation to multi-sample settings.
The Length-Normalized Entropy(Malinin & Gales, 2020) penalizes dispersion across stochastic gen-
erations Y = {y1, . . . ,yK}, offering a finer-grained view of model indecision. This perspective is
further enriched by Semantic Entropy(Kuhn et al., 2023), which projects sampled responses into
semantic space, and by energy-based scoring(Liu et al., 2020), which replaces log-probability with
a learned confidence function. Collectively, these methods reflect a progression from token-level
likelihoods to semantically grounded multi-sample uncertainty estimators.
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In contrast, reasoning-driven hallucinations arise from brittle inference trajectories, where identical
contexts may yield inconsistent or incoherent outputs. A commonly used measure of such instability
is the cross-sample consistency score:

C(Y | x, θ) = 1

C

K∑
i=1

K∑
j=i+1

sim(yi,yj), (2)

where C = K · (K − 1)/2, and sim(·, ·) is a similarity function such as ROUGE-L(Lin, 2004),
cosine similarity, or BLEU(Chen et al., 2024b). Low scores reflect diverging generations and un-
stable reasoning. Several reasoning-driven detection methods can be interpreted through this lens.
Early approaches used surface-level lexical overlap metrics(Lin et al., 2022b), while SelfCheck-
GPT(Manakul et al., 2023) advanced this by evaluating factual entailment across responses, and
FActScore(Min et al., 2023) extended this further by comparing outputs to retrieved reference doc-
uments. More recent efforts probe internal signals directly: Inside(Chen et al., 2024a) analyzes the
covariance spectrum of embedding representations, and RACE(Wang et al., 2025) diagnoses insta-
bility in multi-step reasoning.

NTK in LLMs. NTK provides a principled framework for analyzing the training dynamics in
the overparameterized regime characteristic of modern LLMs(Jacot et al., 2020). Formally, for a
network output f(x, θ) with input x and parameters θ, the NTK is defined as:

Θ(x, x′, θ) = ∇θf(x, θ) · ∇θf(x
′, θ). (3)

This kernel Θ(x, x′, θ) quantifies the similarity of training dynamics between inputs x and x′. In the
infinite-width limit, it converges to a deterministic value at initialization and remains nearly constant
throughout training(Lee et al., 2020b). This stability reduces the highly nonlinear optimization of
deep networks to a tractable kernel regression problem. By examining the eigenspectrum of the
NTK, one can probe how internal representations are shaped during training: which features are
prioritized (e.g., syntax versus semantics), how quickly different tasks converge, and why overpa-
rameterized networks generalize effectively to unseen data(Ju et al., 2022). In this way, the NTK
transforms the apparent complexity of LLM optimization into a clear lens on how these models
capture, process, and generalize information(Zeng et al., 2025).

3 METHODOLOGY

3.1 PROBLEM SETTING

Our analysis reveals that hallucination is not a unified failure mode but rather shifts with the task
structure. On the instruction-following Natural benchmark(Wang et al., 2022), 88.9% of the
overall 3499 errors are from logical missteps (reasoning-driven) while 11.1% are factual inaccura-
cies (data-driven). By contrast, on the math-focused MATH-500(Hendrycks et al., 2021), the 1985
wrong generations are dominated by 1946 reasoning errors (98.1%), with only 19 factual flaws
(1.9%). This contrast highlights that, in practice, hallucinations are rarely pure but often mixtures of
data-driven bias and reasoning-driven instability—motivating our formal decomposition of halluci-
nation sources.

Problem Definition. Let Y denote the space of textual outputs and let Φ : Y → Uh be a task-
specific encoder that maps textual sequences into the hypothesis space Uh, equipped with a norm
∥ · ∥ (e.g., task-calibrated embedding space or structured metric). We interpret each u ∈ Uh as
a reasoning chain, composed of step-wise logical statements. For an input x with ground-truth
output y∗ ∈ Y , define the gold-standard reasoning chain as u∗ := Φ(y∗) ∈ Uh. An LLM with
parameters θ emits a random sequence Y = (Y1, . . . , YT ) via pθ(yt | y<t,x), yielding a predicted
reasoning chain uh := Φ(Y ) ∈ Uh. Its expected value under the model’s decoding distribution is
E[uh] := EY∼pθ(·|x)[Φ(Y )].

We consider perturbations in a local neighborhood of the decoding process. Let δ ∈ Rr parameterize
a small perturbation (e.g., of the prefix tokens, step-t logits, or hidden state), and let Bρ := {δ :
∥δ∥ ≤ ρ}. Define the perturbed decoder map G : Rr→Uh by G(δ) := Φ

(
Y (δ)

)
, where Y (δ) is the

sequence under perturbation. Let J ∈ Rdh×r denote the (Gauss–Newton) Jacobian of G at δ = 0.
Our goal is to formalize how hallucination emerges and evolves in LLMs.
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3.2 HALLUCINATION RISK BOUND

To bridge the formal setup with the phenomenon of hallucination, we first disentangle the sources of
hallucinations. Intuitively, hallucinations may arise either from systematic biases in the knowledge
encoded by the model (data-driven) or from instabilities during autoregressive decoding (reasoning-
driven). The following proposition formalizes this idea by decomposing the total hallucination risk
into two components.

We first impose the following assumptions:

A1. (U, ∥ · ∥) is a Hilbert space; Φ is measurable with unique best solution and ∥Φ(Y )∥ has
finite second moment.

A2. Triangle inequality holds for ∥ · ∥ and Φ is LΦ-Lipschitz w.r.t. an edit distance on Y .
A3. For δ ∈ Bρ, the mapping G admits the local expansion G(δ) = G(0) + Jδ +R(δ), where

the remainder is bounded by ∥R(δ)∥ ≤ 1
2H⋆∥δ∥2 for some curvature constant H⋆ > 0.

Proposition 3.1 (Hallucination Risk Decomposition). Under A1–A3, applying the triangle
inequality yields a natural split of the risk:

∥u∗ − uh∥ ≤ ∥u∗ − E[uh]∥︸ ︷︷ ︸
data-driven term

+ ∥uh − E[uh]∥︸ ︷︷ ︸
reasoning-driven term

This decomposition distinguishes errors caused by systematic bias in the learned representation
from those introduced during stochastic rollout.

Characterizing Data-Driven Hallucination. To quantify the data-driven term, we take inspira-
tion from the NTK, which has proven effective in analyzing training dynamics of overparameterized
models. Here, NTK geometry provides a way to measure how well the model’s representation space
aligns with task generation under small perturbations.

Let Uh ⊂ U denote the hypothesis subspace accessible to the model under perturbations. By Céa’s
lemma(Céa, 1964) with curvature penalty, the data-driven term can be bounded as

∥u∗ − E[uh]∥ ≤ Λ

γ
inf

u∈Uh

∥u∗ − u∥, (4)

where γ = λmin(KΦ) is the smallest eigenvalue of the NTK Gram matrix on embedded perturba-
tions, and Λ ≤ ∥T∥ reflects the operator norm of the problem/operator mapping T . Intuitively, the
ratio Λ

γ measures the conditioning of the feature map: well-conditioned NTK spectra allow a closer
approximation to the true generation.

This ratio can be further controlled in terms of pretraining–finetuning mismatch:
Λ

γ
≤ 1 + kpt logO(P,L) + k · ϵmismatch

Signalk
, (5)

where logO(P,L) is a complexity term from parameter count P and prompt length L, ϵmismatch

denotes the Wasserstein distance between prompt and query distributions, Signalk measures task-
aligned energy in the top-k eigenspace. kpt and k are task and model-dependent constants. Thus,
data-driven hallucinations grow when the mismatch is large or when the task signal is weak.

Characterizing Reasoning-Driven Hallucination. The reasoning-driven term captures
reasoning-driven instability that accumulates during autoregressive decoding. Here, we model gen-
eration as a martingale process, where deviation from the expectation is controlled by concentration
inequalities. Specifically, Freedman’s inequality(Geman et al., 1992) gives

∥uh − E[uh]∥ ≤ K · exp
(
− Kϵ2

C

)
· α(eβT − 1), (6)

where K is the number of rollouts averaged, β summarizes per-step growth in local Jacobians, α
scales the cumulative effect and C is a task and model-dependent constant. This bound shows that
reasoning-driven hallucinations grow exponentially with sequence length T .

We now synthesize the two components into a unified result that characterizes the overall risk of
hallucination. By combining the NTK-conditioned approximation bound for data-driven deviation
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with the Freedman-style concentration bound for reasoning-driven instability, we obtain the follow-
ing unified bound of data-driven and reasoning-driven hallucinations (detailed proof is provided in
Appendix A):

Theorem 3.2 (Hallucination Risk Bound). Let u∗ := Φ(y∗) denote the semantic embed-
ding of the ground-truth output and uh := Φ(Y ) that of the model-generated output. Under
Assumptions A1–A3, suppose there exists β ≥ 0 such that

∥∥∥∏T
t=1 Jt

∥∥∥
2

≤ eβT . Then the total
hallucination risk satisfies

∥u∗−uh∥ ≤
(
1 + kpt logO(P,L) + k · ϵmismatch

Signalk

)
inf

u∈Uh

∥u∗ − u∥︸ ︷︷ ︸
data-driven term

+ |L| · exp
(
− Kϵ2

C

)
· α

(
eβT − 1

)
︸ ︷︷ ︸

reasoning-driven term

3.3 HALLUCINATION QUANTIFICATION VIA HALLUGUARD

While Theorem 3.2 makes explicit how data-driven and reasoning-driven hallucinations emerge and
evolve, applying it directly at inference is impractical since direct step-wise Jacobians for billion-
parameter LLMs are intractable, so we seek a proxy score that is computable, stable, and faithful to
our decomposition.

Let K denote the NTK Gram matrix with eigenvalues λ1 ≥ · · · ≥ λr > 0 and condition number
κ(K) = λmax/λmin. Let Jt be the step-t input–output Jacobian of the decoder, and define σmax :=
supt ∥Jt∥2 as the uniform spectral bound(note that σmax is independent of the spectrum of K).

Under Assumptions A1–A3, a standard NTK approximation argument yields infu∈Uh
∥u∗ − u∥ ≤

Cd det(K)−cd ∥u∗∥, so that det(K) capture the representations in systematic bias.

For autoregressive rollout, based on the property of Jacobian, we have
∥∥∥∏T

t=1 Jt

∥∥∥
2

≤∏T
t=1 ∥Jt∥2 = exp

(∑T
t=1 log ∥Jt∥2

)
, so that we have

∥∥∥∏T
t=1 Jt

∥∥∥
2

≤ eβT . Since

β ≤ log σmax with σmax := supt ∥Jt∥2 thus we have the upper bound as ∥
∏T

t=1 Jt∥2 ≤ σT
max =

e(log σmax)T . Thus, log σmax serves as a stable and tractable proxy for the per-step amplification rate.

Perturbation analysis of K, together with classical eigenvalue sensitivity results(Trefethen & Bau,
2022), yields Var[uh] ≤ cv κ(K)2 ∥δ∥2, showing that instability grows quadratically with the
condition number κ(K). To temper this effect and ensure additivity, we penalize ill-conditioned
representations via − log κ2, where log compression brings a well-behaved dynamic range.

Table 1: Correlation between NTK proxies
and task families.

SQuAD Math-500 TruthfulQA

det(K) 0.84 0.42 0.61
log σmax − log κ2 0.39 0.88 0.67

In summary, det(K) quantifies representational ad-
equacy, log σmax captures rollout amplification,
and − log κ2 penalizes spectral instability, together
forming a compact and tractable proxy consis-
tent with the Hallucination Risk Bound. The
lightweight projection layers are self-supervised
spectral calibration modules, optimized offline (via
AdamW) to align NTK spectral properties across heterogeneous backbones into a stable, comparable
geometric space—without hallucination labels or task-specific supervision, with the backbone fully
frozen and zero runtime overhead during inference. Detailed proofs are provided in Appendix B.

Empirical validation. We empirically validate how those proxies correlate with different task
families. In Table 1, det(K) correlates most strongly with the data-centric task SQuAD (0.84), in-
dicating its role in capturing factual fidelity. In contrast, for the reasoning-oriented MATH-500, the
highest correlation is observed with log σmax − log κ2 (0.88), reflecting the importance of amplifi-
cation and stability in multi-step reasoning.

Motivated by the above, we formally define HALLUGUARD as follows, which provides a principled
and unified lens for hallucination detection:

HALLUGUARD(uh) = det(K) + log σmax − log κ2. (7)
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4 EXPERIMENTS

We comprehensively evaluate HALLUGUARD across 10 diverse benchmarks, 11 competitive base-
lines, and 9 popular LLM backbones. We aim to evaluate its efficacy from the following five ques-
tions: Q1: How does HALLUGUARD perform across different task families? Q2: How does HAL-
LUGUARD perform across LLMs of different scales? Q3: How does each term capture trends across
task families? Q4: Can HALLUGUARD guide test-time inference to improve downstream reason-
ing? Q5: How well does HALLUGUARD generalize to detecting fine-grained hallucinations beyond
benchmarks?

Section 4.1 details the setup; Section 4.2 evaluates HALLUGUARD as a detection method(Q1–Q3),
Section 4.3 applies HALLUGUARD in score-guided inference(Q4) and Section 4.4 analyzes HAL-
LUGUARD on fine-grained hallucination via a case study on semantic data(Q5).

4.1 EVALUATION SETUP

Benchmarks. We evaluate across 10 widely used benchmarks spanning three distinct categories.
For data-grounded QA, we include RAGTruth(Niu et al., 2024), NQ-Open(Kwiatkowski et al.,
2019), HotpotQA(Yang et al., 2018) and SQuAD(Rajpurkar et al., 2016), which emphasize factual
correctness through external evidence. For reasoning-oriented tasks, we use GSM8K(Cobbe et al.,
2021), MATH-500(Hendrycks et al., 2021), and BBH(Suzgun et al., 2022), which require multi-step
derivations prone to compounding errors. Finally, for instruction-following settings, we consider
TruthfulQA(Lin et al., 2022a), HaluEval(Li et al., 2023) and Natural(Wang et al., 2022),
which probe hallucinations under open-ended or adversarial prompts.

Baselines. We compare HALLUGUARD with 11 competitive detectors spanning diverse strate-
gies. Uncertainty-based methods include Perplexity(Ren et al., 2022), Length-Normalized Predic-
tive Entropy(LN-Entropy)(Malinin & Gales, 2020), Semantic Entropy(Kuhn et al., 2023), Energy
Score(Liu et al., 2020) and P(true)(Kadavath et al., 2022). Consistency-based approaches cover
SelfCheckGPT(Manakul et al., 2023), Lexical Similarity(Lin et al., 2022b), FActScore(Min et al.,
2023) and RACE(Wang et al., 2025). Internal-state methods are represented by Inside(Chen et al.,
2024a) and MIND(Su et al., 2024).

LLM Backbone Models. We evaluate 9 publicly available LLMs spanning different scales and
architectures. These include five models from the Llama family (Llama2-7B, Llama2-13B, Llama2-
70B, Llama3-8B, and Llama3.2-3B)(Touvron et al., 2023; Grattafiori et al., 2024), along with OPT-
6.7B(Zhang et al., 2022), Mistral-7B-Instruct(Jiang et al., 2023), QwQ-32B(Yang et al., 2024), and
GPT-2 (117M)(Radford et al., 2019). All models are used in their off-the-shelf form with pre-trained
weights and tokenizers provided by Hugging Face, without further fine-tuning.

Evaluation Metrics. We evaluate hallucination detection ability under two regimes following Ja-
niak et al. (2025): ROUGE-based reference evaluation (∗r) and LLM-AS-A-JUDGE (∗llm). For
performance measures, we report the area under the receiver operating characteristic curve (AU-
ROC) and the area under the precision–recall curve (AUPRC). AUROC is widely used to assess the
quality of binary classifiers and uncertainty estimators, while AUPRC highlights performance under
class imbalance. In both cases, higher values indicate better detection.

4.2 MAIN RESULTS

Q1: How does HALLUGUARD perform across different task families? To evaluate how HAL-
LUGUARD performs across different task types, we conduct experiments on all benchmarks. For
clarity, Table 2 presents representative results from three task families: data-centric (RAGTruth),
reasoning-oriented (Math-500), and instruction-following (TruthfulQA). As shown, HAL-
LUGUARD consistently outperforms all baselines across backbones. On Math-500, it reaches
81.76% AUROC and 79.76% AUPRC, improving over the second-best method by up to 8.3%.
On RAGTruth, it attains 84.59% AUROC and 81.15% AUPRC, with gains of up to 7.7%. On
TruthfulQA, it achieves 77.05% AUROC and 73.79% AUPRC, exceeding the next strongest base-
line by as much as 6.2%. Overall, HALLUGUARD establishes new state-of-the-art results across di-
verse task families, with particularly pronounced improvements on reasoning-oriented benchmarks.
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Table 2: Performance comparison on representative benchmarks: data-centric (RAGTruth),
reasoning-oriented (Math-500), and instruction-following (TruthfulQA). We highlight the first
and second best results.

GPT2 OPT-6.7B Mistral-7B QwQ-32B

AURO
C r

AUPR
C r

AU
RO

C llm
AUPR

C llm

AURO
C r

AUPR
C r

AU
RO

C llm
AUPR

C llm

AURO
C r

AUPR
C r

AU
RO

C llm
AUPR

C llm

AURO
C r

AUPR
C r

AU
RO

C llm
AUPR

C llm

R
A

G
Tr

ut
h

HALLUGUARD 75.51 73.40 62.40 56.60 80.13 76.77 71.01 63.58 82.31 80.79 64.89 67.25 84.59 81.15 71.82 66.68
Inside 73.42 73.08 61.99 56.39 79.49 71.82 66.1 62.46 75.32 73.19 64.58 61.05 77.72 73.47 66.05 64.73
MIND 58.54 54.79 43.47 41.85 63.82 62.58 51.03 44.78 73.13 71.53 58.25 58.6 64.23 63.06 47.37 51.47
Perplexity 58.07 56.68 43.84 41.53 64.47 61.57 47.12 52.98 65.42 63.63 53.28 51.36 73.91 72.92 60.81 59.77
LN-Entropy 64.42 60.79 49.41 45.04 60.81 57.91 48.76 42.27 64.22 60.92 52.24 48.41 63.81 62.26 47.52 52.17
Energy 65.53 62.42 51.8 47.22 66.54 63.28 54.21 49.19 64.36 62.26 48.64 53.93 73.26 71.21 65.43 62.32
Semantic Ent. 60.72 59.41 50.55 45.86 70.2 68.34 54.54 56.74 66.01 64.49 53.01 55.5 66.48 64.41 51.54 50.11
Lexical Sim. 64.72 63.1 55.04 48.04 67.28 64.62 52.55 54.86 64.96 61.17 52.34 45.11 70.87 67.41 61.25 51.01
SelfCheckGPT 65.4 62.79 52.85 52.43 66.64 64.89 52.69 51.17 71.19 68.45 63.13 60.23 65.79 62.45 54.76 51.29
RACE 64.83 62.84 51.8 48.44 64.26 61.03 52.74 46.22 66.34 64.54 51.88 53.86 71.13 69.96 57.58 55.54
P(true) 66.19 64.04 48.2 56.27 68.44 65.48 57.53 53.08 72.54 71.8 57.25 59.42 65.32 63.01 53.01 52.32
FActScore 65.72 64.39 51.94 47.51 61.53 58.2 51.86 45.57 63.98 60.71 53.54 49.34 66.72 64.03 58.21 49.17

B
B

H

HALLUGUARD 71.06 67.94 62.05 59.05 73.1 70.88 63.67 61.88 79.85 76.5 67.13 60.57 81.76 79.76 68.77 65.46
Inside 66.18 66.81 56.15 58.62 70.64 65.22 63.28 59.28 67.2 65.49 51.3 53.46 80.8 71.49 64.05 63.42
MIND 55.41 51.77 39.01 41.59 55.48 53.46 38.59 40.88 65.71 63.7 49.61 52.54 61.75 60.18 53.46 50.04
Perplexity 53.28 50.22 43.86 38.98 64.89 62.12 48.65 51.99 61.97 60.05 51.15 42.87 60.28 57.75 51.62 43.38
LN-Entropy 60.84 58.76 42.76 47.48 58.71 55.01 43.55 42.02 68.96 69.44 58.79 57.49 63.96 62.18 46.01 49.5
Energy 55.09 51.99 46.2 39.5 53.96 50.98 42.56 34.12 66.27 62.72 49.48 50.06 69.61 68.66 54.35 57.36
Semantic Ent. 58.16 54.81 49.61 40.39 62.63 59.52 50.14 45.02 64.99 61.33 50.11 45.53 62.76 60.95 45.77 45.75
Lexical Sim. 51.37 47.18 38.37 39.06 61.27 58.06 44.13 42.96 58.25 55.92 46.31 46.01 69.46 67.59 55.93 52.6
SelfCheckGPT 54.51 51.86 44.62 44.01 57.36 53.21 42.55 38.27 63.68 62.5 51.7 53.03 64.56 62.49 55.85 45.8
RACE 55.99 54.66 41.39 38.32 64.23 62.03 56.03 53.44 66.88 64.33 49.57 48.5 59.5 55.83 46.13 41.07
P(true) 54.57 52.88 45.45 44.74 57.02 55.49 48.81 37.84 57.11 55.21 43.93 47.05 61.49 59.03 44.37 44.69
FActScore 56.76 53.85 40.25 40.01 54.51 53.2 38.45 36.49 62.11 58.64 53.52 47.27 58.82 57.47 49.48 42.74

Tr
ut

hf
ul

Q
A

HALLUGUARD 72.1 68.76 60.09 52.01 69.59 68.36 58.52 52.65 77.05 73.79 63.62 62.26 74.26 72.76 57.39 64.07
Inside 70.42 68.76 60.09 52.01 62.1 59.78 51.07 51.38 62.53 60.99 52.3 49.35 70.89 64.44 56.61 56.01
MIND 59.45 56.79 45.22 43.71 60.56 58.55 47.49 49.63 59.2 57.98 47.23 41.79 62.81 61.5 52.56 46.37
Perplexity 50.57 47.87 40.64 35.63 55.07 52.26 44.43 42.79 60.8 59.69 47.33 41.62 55.29 52.46 43.95 43.92
LN-Entropy 58.04 56.99 41.94 47.21 56.12 54.01 47.06 38.4 59.67 56.25 41.99 41.25 60.76 58.21 46.24 42.64
Energy 55.02 53.31 38.78 45.16 54.42 51.85 36.21 42.57 58.93 55.25 50.76 41.72 64.15 61.32 51.78 50.02
Semantic Ent. 61.01 57.08 43.35 45.2 51.48 47.81 34.15 38.16 54.44 53.33 36.62 40.35 66.75 63.85 51.11 46.71
Lexical Sim. 52.54 50.56 39.94 33.42 59.74 55.72 49.89 46.81 66.16 64.05 54.08 51.65 55.24 51.36 46.39 39.57
SelfCheckGPT 56.04 54.48 43.78 44.38 58.93 56.47 47.65 39.02 61.14 58.91 42.97 47.01 55.86 54.95 41.08 37.35
RACE 53.02 50.33 41.7 33.81 62.95 67.89 54.61 51.93 71.06 68.49 60.4 57.44 55.75 52.62 46.5 43.19
P(true) 55.52 53.41 38.33 38.38 54.88 53.1 38.22 40.96 55.8 52.01 40.88 38.72 57.18 55.16 46.19 38.21
FActScore 53.82 51.42 41.33 35.2 54.57 51.26 42.51 35.52 53.97 50.2 42.97 36.16 62.31 60.23 45.06 49.9

Q2: How does HALLUGUARD perform across LLMs of different scales? We fur-
ther investigate whether the effectiveness of HALLUGUARD depends on model scale, as
smaller backbones are typically more prone to hallucination. Table 3 reports representa-
tive results on small(Llama2-7B, Llama3-8B), mid-sized(Llama2-13B), and large-scale(Llama2-
70B) models using SQuAD, GSM8K, and HaluEval. Across all settings, HALLUGUARD
consistently surpasses baselines, with the largest margins on smaller models—for instance,

Figure 2: Ablation results comparing in-
dividual terms with ground-truth trends on
SQuAD (top) and Math-500 (bottom).

72.89% AUPRCr on HaluEval with Llama2-7B,
more than 10% above the second best. Mid-
sized models also exhibit clear gains (e.g., 79.01%
AUROCr on GSM8K), while even large-scale mod-
els like Llama2-70B see steady improvements (e.g.,
83.8% AUROCr on SQuAD). Overall, HALLU-
GUARD benefits most on small backbones while
maintaining consistent advantages across scales.

Q3: How does each term capture trends across
task families? As shown in Figure 2, each term
faithfully tracks the ground-truth trend within its re-
spective task family. On data-centric SQuAD, the
data-driven term closely follows the dashed gold
curve across the variant hallucination rate, capturing
the smooth AUROC decline. On reasoning-oriented
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Table 3: Performance comparison across backbone scales (small, mid-sized, and large) on three
benchmarks: SQuAD, GSM8K, HaluEval. We highlight the first and second best results.

Llama2-7B Llama-3-8B Llama2-13B Llama2-70B

AURO
C r

AUPR
C r

AU
RO

C llm
AUPR

C llm

AURO
C r

AUPR
C r

AU
RO

C llm
AUPR

C llm

AURO
C r

AUPR
C r

AU
RO

C llm
AUPR

C llm

AURO
C r

AUPR
C r

AU
RO

C llm
AUPR

C llm

SQ
uA

D

HALLUGUARD 81.05 77.16 71.18 64.38 79.56 78.29 67.97 63.27 81.45 78.39 64.39 65.07 83.8 81.77 70.46 73.24
Inside 73.63 75.74 65.22 59.11 76.13 72.44 65.62 62.94 74.68 74.81 61.01 59.51 81.24 75.09 69.48 62.4
MIND 64.57 61.11 52.39 53.13 62.29 59.58 44.49 48.61 68.64 66.95 54.92 52.49 73.46 71.71 57.76 56.77
Perplexity 63.93 61.77 46.97 48.2 70.51 67.51 55.71 52,68 70.19 69.22 60.33 54.82 74.23 70.88 62.24 58.05
LN-Entropy 65.96 64.22 53.43 52.84 63.7 60.4 46.19 42.85 61.66 59.16 49.05 46.27 72.44 68.91 56.77 52.63
Energy 59.83 56.11 46.19 43.18 64.41 61.02 56.17 46.21 61.02 59.73 48.26 42.08 69.01 66.19 58.44 49.82
Semantic Ent. 60.29 57.73 43.63 48.83 66.52 62.62 52.37 52.7 70.58 67.22 53.31 52.94 72.01 68.51 56.49 50.9
Lexical Sim. 70.31 69.08 53.97 53.31 66.43 63.56 53.19 50.96 68.53 67.42 50.73 54.12 68.95 67.91 60.52 56.56
SelfCheckGPT 68.26 67.09 60.06 57.31 73.99 72.15 65.26 54.02 65.47 61.65 53.12 49.89 73.07 70.49 56.59 54.65
RACE 71.35 69.23 59.18 54.73 68.17 66.02 54.65 53.06 64.19 60.45 47.53 45.66 64.05 62.39 54.38 50.07
P(true) 62.55 61.09 46.84 52.32 67.42 63.94 55.35 47.52 71.56 68.4 57.51 45.66 66.81 62.71 57.43 46.85
FActScore 70.32 68.63 58.13 53.01 71.2 69.45 61.92 54.91 66.65 63.2 56.41 53.42 68.33 65.26 56.93 48.46

G
SM

8K

HALLUGUARD 75.89 72.83 62.29 63.46 75.2 72.9 63.62 61.79 79.01 76.73 64.38 64.97 77.33 73.97 60.48 61.26
Inside 74.61 68.35 58.57 62.58 73.73 67.51 56.02 57.28 75.79 76.26 60.91 59.77 72.3 72.26 54.49 58.39
MIND 65.88 63.4 48.28 48.17 66.57 65.55 48.84 53.4 61.49 59.55 51.63 51.45 66.41 63.44 52.05 53.57
Perplexity 66.23 64.1 53.52 52.31 57.61 53.63 41.37 41.59 60.96 58.67 46.27 47.44 64.32 62.81 51.15 51.3
LN-Entropy 59.45 55.95 43.04 44.08 68.22 66.05 53.03 53.21 61.31 58.90 45.83 40.86 61.81 60.46 44.5 44.76
Energy 58.15 54.71 43.65 36.71 59.79 56.52 50.31 42.23 57.58 56.07 43.39 38.94 65.27 62.94 52.8 46.6
Semantic Ent. 57.95 54.68 42.78 41.95 66.9 64.81 50.47 55.36 62.72 59.09 49.33 44.35 60.63 57.01 46.22 40.24
Lexical Sim. 65.8 63.7 52.12 54.07 63.29 59.87 53.17 50.02 63.83 60.20 54.43 44.82 63.27 59.41 47.42 47.38
SelfCheckGPT 60.99 57.54 49.28 44.43 65.72 62.01 54.49 50.34 57.98 54.58 46.72 39.86 68.06 65.09 52.99 50.89
RACE 63.37 62.33 53.53 49.94 64.49 61.47 53.28 47.55 64.20 61.96 50.15 45.35 68.35 66.66 50.41 51.16
P(true) 65.95 63.63 54.95 48.25 62.59 58.88 47.21 42.2 67.08 65.60 53.66 55.12 60.16 58.14 47.73 49.49
FActScore 56.69 53.71 45.78 39.52 65.69 61.95 53.69 46.06 55.76 54.17 44.91 43.18 59.84 55.85 44.05 39.49

H
al

uE
va

l

HALLUGUARD 75.72 72.89 66.65 63.15 73.43 71.19 64.95 54.8 78.15 74.15 65.39 61.14 80.79 79.54 67.68 68.51
Inside 71.33 67.63 59.73 53.15 67.95 64.93 60.31 52.21 72.01 71.97 56.51 60.64 74.62 68.33 62.22 64.4
MIND 54.8 51.43 44.15 43.34 64.54 60.89 49.09 45.13 55.05 53.28 39.16 45.17 57.98 56.01 45.82 41.69
Perplexity 54.02 52.53 38.76 40.51 61.31 59.36 50.62 46.01 54.99 51.39 42.64 35.64 62.85 60.59 48.29 43.85
LN-Entropy 59.47 58.33 50.2 46.91 64.89 60.72 51.78 46.39 65.18 63.53 49.70 48.09 60.16 58.89 50.29 48.42
Energy 62.29 59.6 50.68 42.24 62.74 61.61 50.17 52.01 60.54 59.04 43.53 50.37 60.13 58.44 48.79 48.01
Semantic Ent. 59.39 55.94 48.53 46.35 55.25 53.05 44.5 44.35 59.44 57.72 45.38 40.77 61.57 57.99 49.07 45.39
Lexical Sim. 63.61 61.16 55.01 44.75 56.59 55.39 44.45 45.57 53.46 52.06 41.34 40.57 64.37 60.92 54.29 50.86
SelfCheckGPT 64.29 61.83 48.4 45.49 65.44 63.13 57.02 48.23 65.24 63.52 53.71 54.33 57.12 55.26 40.5 43.06
RACE 59.78 59.14 48.1 40.47 61.98 60.32 48.08 46.29 60.65 59.11 49.92 44.51 62.11 58.24 40.5 43.06
P(true) 57.46 54.8 41.84 40.47 56.32 54.04 42.55 43.75 65.77 63.01 49.98 45.47 55.75 54.94 44.14 43.97
FActScore 63.93 61.33 46.9 51.87 61.73 57.85 49.92 42.15 65.15 63.71 55.98 54.61 62.66 60.3 53.13 46.42

MATH-500, the reasoning-driven term mirrors the
monotonic AUROC drop as reasoning drift in-
creases. These results show that each term is well
matched to its task family and faithfully tracks performance trends as hallucination rates rise.

4.3 TEST-TIME INFERENCE

Test-time reasoning remains challenging, as models need to generate coherent multi-step solu-
tions without drifting into errors. To assess whether hallucination detection can mitigate this dif-
ficulty, we integrate detectors into beam search and evaluate Qwen2.5-Math-7B on MATH-500 and
Llama3.1-8B on Natural. As shown in Table 4, HALLUGUARD achieves the strongest gains: on
MATH-500, it reaches 81.00% accuracy, around 10% higher than IO Prompt; on Natural, it at-
tains 70.96%, exceeding IO Prompt by 15.72%. These results demonstrate that HALLUGUARD not
only detects hallucinations but also strengthens test-time reasoning by guiding models toward more
reliable solutions.

Table 4: Performance of hallucination score-guided test-time inference across reasoning tasks. We
highlight the first and second best results.

Dataset IO
Prompt

Ours Inside MIND Perplexity LN-
Entropy

Energy Semantic
Ent.

SelfCheck-
GPT

RACE P(true) FActScore

MATH-500 72.70 81.00 74.90 77.10 77.10 76.20 78.00 72.50 74.00 75.10 67.10 71.60
Natural 55.24 70.96 67.42 68.32 67.51 68.04 68.59 68.10 65.68 66.90 68.16 67.74
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4.4 CASE STUDY

Fine-grained hallucinations—lexically similar yet semantically incorrect outputs—pose a particu-
lar challenge for detection. To evaluate whether HALLUGUARD can comprehensively capture such
subtle errors, we use the PAWS dataset(Zhang et al., 2019), which contrasts paraphrases with high
surface overlap but divergent meanings. Following Li et al. (2025), we adopt ROUGE-based refer-
ence signals for evaluation (Table 5). Across model scales, HALLUGUARD consistently surpasses
baselines: it achieves 90.18% AUROC and 87.64% AUPRC on Llama2-70B, and 91.24% AUROC
and 88.53% AUPRC on QwQ-32B—exceeding the next-best method by nearly five points. Even on
GPT-2, it leads with 83.27% AUROC and 80.46% AUPRC. These results confirm HALLUGUARD’s
effectiveness in capturing fine-grained semantic inconsistencies beyond benchmark settings.

Table 5: Results on PAWS measuring semantic hallucination detection with Llama-3.2-3B, Llama2-
70B, and QwQ-32B. We highlight the first and second best results.

Method Ours Inside MIND Perplexity LN-
Entropy

Energy Semantic
Ent.

Lexical
Sim.

SelfCheck-
GPT

RACE P(true) FActScore

Llama3.2 AUROC 85.63 80.46 78.93 71.27 72.19 73.05 75.11 64.58 77.82 79.47 73.56 68.44
AUPRC 82.14 77.28 75.41 67.55 68.34 70.22 72.41 59.67 73.41 76.28 70.43 63.58

Llama2 AUROC 90.18 85.47 83.92 75.68 76.23 77.14 79.06 68.35 82.71 84.26 77.39 72.62
AUPRC 87.64 82.38 81.06 71.42 72.59 74.28 76.32 63.44 78.89 81.73 74.18 67.58

QwQ AUROC 91.24 85.41 84.56 76.72 77.43 78.29 80.42 69.54 83.59 86.38 78.53 73.46
AUPRC 88.53 82.27 81.37 72.63 73.29 75.44 77.18 64.27 79.42 83.41 75.21 68.32

5 RELATED WORK

In this section, we review prior hallucination-detection methods by their detection target–Data-
driven hallucinations and reasoning-driven hallucinations.

Detecting Data-Driven Hallucinations. Recent work has shown that internal activations encode
rich indicators of such flaws. Chen et al. (2024a) proposed EIGENSCORE, which computes statis-
tics of hidden representations from the eigen matrix to estimate hallucination risk. Su et al. (2024)
introduced MIND, an unsupervised detector that models temporal dynamics of hidden states with-
out requiring labels, along with HELM benchmark to enable standardized evaluation. Azaria &
Mitchell (2023) demonstrated using linear probes on intermediate states to predict truthfulness.

Detecting Reasoning-Driven Hallucinations. There are other works targeting inference-time in-
consistencies during generation—such as logical errors, instability across decoding steps, or tem-
poral drift in extended outputs. Manakul et al. (2023) proposed SELFCHECKGPT, which assesses
self-consistency by sampling multiple candidate generations and measuring their alignment using
entailment and lexical overlap. Kalai & Vempala (2024) introduced a suite of calibration-based un-
certainty scores designed to capture hallucination risk directly from output distributions. Ding et al.
(2025) proposed REACTSCORE, which integrates entropy with intermediate reasoning traces to de-
tect failures in multi-step decision-making. FACTSCORE(Min et al., 2023) decomposes outputs into
atomic factual units and verifies each against retrieved passages using entailment-based scoring.

6 CONCLUSION

The reliability of LLMs is often undermined by hallucinations, which arise from two main sources:
data-driven, caused by flawed knowledge acquired during training, and reasoning-driven, stemming
from inference-time instabilities in multi-step generation. Although these hallucinations frequently
evolve in practice, existing detectors usually target only one source and lack a solid theoretical foun-
dation. To address this gap, we propose a unified theoretical framework–a Hallucination Risk Bound,
which formally decomposes hallucination risk into data-driven and reasoning-driven components,
offering a principled view of how hallucinations emerge and evolve during generation. Building
on this foundation, we introduce HALLUGUARD, a NTK–based score that measures sensitivity
to semantic perturbations and captures internal instabilities, thereby enabling holistic detection of
both data-driven and reasoning-driven hallucinations. We evaluate HALLUGUARD across 10 di-
verse benchmarks, 11 competitive baselines, and 9 popular LLM backbones, where it consistently
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achieves state-of-the-art performance, demonstrating robustness and practical efficacy. Looking
forward, leveraging HalluGuard’s sensitivity to error propagation offers a promising pathway for
developing prognostic indicators in interactive multi-turn dialogues, enabling systems to predict and
preempt hallucinations before they fully manifest.

REPRODUCIBILITY STATEMENT

We have taken several measures to ensure the reproducibility of our work. A complete description
of the theoretical framework, including the formal assumptions and proofs of the Hallucination Risk
Bound, is provided in Section 3 and Appendix A. Detailed experimental settings and evaluation
protocols are documented in Section 4 and Appendix C.1, covering all 10 benchmarks, 11 base-
lines, and 9 LLM backbones. Together, these resources ensure that both our theoretical claims and
empirical results can be independently validated and extended by the community.
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A PROOF OF HALLUCINATION RISK BOUND

A.1 ASSUMPTIONS VALIDATION

We provide theoretical and practical justification for the assumptions adopted in Section 3.2, which
serve to ensure the well-posedness and interpretability of the proposed Hallucination Risk Bound.
These assumptions follow standard practice in NTK-based analyses and stability theory, and are
consistent with the empirical behavior observed in modern large language models.

Assumption A1 (Hilbert/RKHS structure with bounded second moment). This assumption
aligns with the classical Neural Tangent Kernel (NTK) approximation regime, where the model’s
feature mapping is embedded in a reproducing kernel Hilbert space (RKHS) and the induced kernel
admits a well-defined second moment. Such conditions are fundamental to the convergence and
generalization analyses of infinitely wide neural networks, and are widely adopted in NTK theory
(Jacot et al., 2020). In practice, bounded second-moment behavior is consistent with the hidden-
state distributions observed across all evaluated LLMs, as reflected by stable activation statistics and
NTK spectral profiles(Lee et al., 2020b).

Assumption A2 (Local Lipschitz continuity of the encoder Φ). This assumption reflects stan-
dard smoothness conditions in high-dimensional learning theory, ensuring that small perturbations
in the input space induce controlled deviations in the encoded representation (Vershynin, 2018).
Such local Lipschitz behavior is commonly invoked to guarantee stability under perturbations and
is consistent with theoretical analyses of deep representations.

Assumption A3 (Local smoothness / second-order expansion). This assumption corresponds to
the classical NTK linearization framework, which approximates the behavior of wide neural net-
works through a local second-order expansion around a set of reference points (Lee et al., 2020a;
Chizat et al., 2020). Importantly, our formulation requires this condition only locally around the
K sampled trajectories used by HalluGuard, rather than globally across the entire model parame-
ter space. This localized validity preserves theoretical soundness while avoiding unrealistic global
smoothness requirements that are known to be overly restrictive in large-scale models.

A.2 BOUND PROOF

We restate the main inequality from Section 3.2:

∥u∗−uh∥ ≤
[
1 + kpt logO(P,L) + k

ϵmismatch

Signalk

]
inf

u∈Uh

∥u∗−u∥+|L| exp
(
−Kϵ2

C

)
α
(
eβT − 1

)
.

(8)

Step 1: Triangle inequality split. We define the hallucination decomposition by writing:

∥u∗ − uh∥ = ∥u∗ − E[uh] + E[uh]− uh∥ ≤ ∥u∗ − E[uh]∥+ ∥uh − E[uh]∥.

We denote the first term as the deterministic approximation error (bias) and the second term as the
stochastic residual (variance).

Step 2: Approximation term via Céa’s lemma. Assume E[uh] is the Galerkin projection of u∗

in a coercive bilinear form a(·, ·), i.e., for all v ∈ Uh,

a(E[uh], v) = ℓ(v).

Then, by Céa’s lemma, we have:

∥u∗ − E[uh]∥ ≤ Λ

γ
inf

u∈Uh

∥u∗ − u∥,

where Λ and γ are continuity and coercivity constants of a(·, ·), respectively.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Step 3: Variance term via Bernstein concentration. Let ℓh := 1
|L|

∑|L|
i=1 ℓi be the empirical

supervision functional from finite labeled chains. Define the fluctuation:

∆ℓ := ℓh − ℓ,

and the residual:
r := uh − E[uh], so that Ahr = ∆ℓ.

Applying operator norm bounds and covering number uniformization (cf. Vershynin, 2018), we have
with high probability:

∥r∥ ≤ |L| exp
(
−Kϵ2

C

)
α(eβT − 1),

which completes the proof.

Step 4: Substitution. Combining both terms yields:

∥u∗ − uh∥ ≤ Λ

γ
inf

u∈Uh

∥u∗ − u∥+ |L| exp
(
−Kϵ2

C

)
α(eβT − 1).

We now bound Λ/γ via NTK decomposition.

A.3 DECOMPOSITION OF NTK CONTINUITY CONSTANT

Let a(·, ·) denote the bilinear form induced by the NTK in the finite-width regime. We decompose:

a = a0 + δpt + δmm,

where a0 is the infinite-width baseline kernel, δpt is the perturbation due to pre-training noise, and
δmm is the domain mismatch from fine-tuning. The continuity constant satisfies:

Λ = Λ0 +∆pt +∆mm.

Bounding ∆pt. Following Jacot et al. (2020), we apply matrix concentration to finite-width NTK:

∆pt ≤ γkpt logO(P,L).

Bounding ∆mm. Using spectral generalization bounds under data distribution shift (Lee et al.,
2020b), we have:

∆mm ≤ γk
ϵmismatch

Signalk
.

Substituting both into the bound for Λ/γ, we get:
Λ

γ
≤ 1 + kpt logO(P,L) + k

ϵmismatch

Signalk
.

B HALLUGUARD DERIVATION AND INTERPRETATION

B.1 PRELIMINARIES AND NOTATION

Let K ∈ Rr×r be the NTK Gram matrix formed on r light semantic perturbations (see Assumptions
A1–A4 in the main theory section). Denote its eigen decomposition by K = V ΛV ⊤ with

Λ = diag(λ1, . . . , λr), λ1 ≥ · · · ≥ λr > 0.

Let λmax := λ1, λmin := λr, κ(K) := λmax/λmin, and det(K) =
∏r

i=1 λi. Let Φ denote the NTK
feature matrix whose columns span the hypothesis subspace Uh, so that K = Φ⊤Φ, ∥Φ∥2 =

√
λmax,

and σmin(Φ) =
√
λmin. For the autoregressive decoder, let Jt be the step-t input–output Jacobian,

and write σmax := supt ∥Jt∥2.

We will use the following two standard inequalities repeatedly:

Maclaurin/AM −−GMoneigenvalues :
( r∏

i=1

λi

)1/r
≤ 1

r

r∑
i=1

λi =
tr(K)

r
, (9)

Submultiplicativity : ∥AB∥2 ≤ ∥A∥2 ∥B∥2. (10)
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B.2 REPRESENTATIONAL ADEQUACY VIA det(K) WITH EXPLICIT CONSTANTS

Assumptions for this subsection. Beyond A1–A3, we assume a mild source condition and a
spectral envelope:

S1 (Source condition) There exist s > 0 and Rs > 0 such that u∗ ∈ Range(Λs), i.e.,∑r
i=1

⟨u∗,vi⟩2
λ2s
i

≤ R2
s . This is standard in kernel approximation and encodes RKHS reg-

ularity.

S2 (Spectral envelope) There exist constants 0 < λ ≤ λ < ∞ and α > 1 such that λi ≤ λ for
all i and λr ≥ λ r−α. (Polynomial decay is a common stylization; other envelopes can be
treated similarly.)

Lemma B.1 (Best-approximation error under source condition). Let Uh = span{v1, . . . , vr}. Un-
der S1,

inf
u∈Uh

∥u∗ − u∥ = ∥u∗ −ΠUh
u∗∥ ≤ Rs λ

s
r+1,

where λr+1 denotes the next-eigenvalue of the infinite-dimensional kernel operator (or, equivalently,
the empirical tail eigenvalue if more perturbations are added).

Proof. Write u∗ =
∑

i≥1 civi with ci = ⟨u∗, vi⟩. Then ∥u∗ − ΠUh
u∗∥2 =

∑
i>r c

2
i ≤

∑
i>r λ

2s
i ·

c2i
λ2s
i

≤ λ2s
r+1

∑
i>r

c2i
λ2s
i

≤ λ2s
r+1R

2
s.

To connect λr+1 (or λr) to det(K), we need an explicit lower bound of the form λr ≥ c det(K) θ

with constants (c, θ) depending on the spectral envelope. The following inequality suffices.

Lemma B.2 (Lower-bounding λr by det(K)). Suppose λi ≤ λ for all i and λr > 0. Then

λr ≥ det(K)

λ
r−1 and λ s

r ≥ det(K) s

λ
s(r−1)

.

Proof. Since det(K) =
∏r

i=1 λi ≤ λ
r−1

λr, we obtain λr ≥ det(K)/λ
r−1

. Raising to power s
yields the second inequality.

Theorem B.3 (Determinant-based adequacy bound with explicit constants). Under A1–A3 and S1–
S2,

inf
u∈Uh

∥u∗ − u∥ ≤ Cd det(K)− cd ∥u∗∥,

with
cd =

s

r − 1
and Cd = λ

s Rs

∥u∗∥
.

Moreover, if the empirical spectrum satisfies λr ≥ λ r−α, one may choose

cd = min

 s

r − 1
,
s

α
· 1

log
(

λ
r

det(K)

)
 ,

which improves with slower decay (smaller α).

Proof. By Lemma B.1 with λr+1 ≤ λr, infu∈Uh
∥u∗ − u∥ ≤ Rs λ

s
r . Lemma B.2 gives λ s

r ≥
det(K) s/λ

s(r−1)
; rearranging,

inf
u∈Uh

∥u∗ − u∥ ≤ Rs λ
s(r−1)

det(K)− s.

Rescale constants relative to ∥u∗∥ by setting Cd := λ
s
(Rs/∥u∗∥) and cd := s/(r − 1) to obtain

the stated form:
inf

u∈Uh

∥u∗ − u∥ ≤
(
λ

s Rs

∥u∗∥
)
det(K)− s/(r−1) ∥u∗∥.

The variant using the envelope λr ≥ λ r−α is obtained by combining det(K) ≤ λ
r−1

λr with the
explicit lower bound on λr, yielding the alternative exponent shown.
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Numerical note (stable surrogate). In practice we use log det(K) via Cholesky and aggregate
with z-normalization across components to avoid scale domination by any single term.

B.3 ROLLOUT AMPLIFICATION VIA JACOBIAN PRODUCTS (EXACT CONSTANTS)

Theorem B.4 (Amplification bound with exact constant). Let Jt be the step-t Jacobian and σmax :=
supt ∥Jt∥2. Then ∥∥∥ T∏

t=1

Jt

∥∥∥
2

≤
T∏

t=1

∥Jt∥2 ≤ σ T
max.

Defining β := log σmax gives eβT = σT
max, hence

eβT ≤ σT
max,

with equality if and only if ∥Jt∥2 = σmax for all t and the top singular directions align across
factors.

Proof. The first inequality is equation 10 applied iteratively. The second is by definition of σmax.
Setting β = log σmax yields equality in the worst case. Alignment of top singular vectors is the
tightness condition for submultiplicativity.

Token-dependent refinement. If one defines σt := ∥Jt∥2 and βavg := 1
T

∑T
t=1 log σt, then∥∥∏T

t=1 Jt
∥∥
2
≤ exp

(∑
t log σt

)
= eβavgT , which is tighter but requires per-step measurements.

B.4 CONDITIONING-INDUCED VARIANCE WITH κ(K)2 SCALING

We now give an explicit projector-perturbation derivation showing the quadratic dependence on the
condition number.

Setup. Let P := Φ(Φ⊤Φ)†Φ⊤ be the orthogonal projector onto Uh; then the linearized output is
uh = Pu∗. Consider a feature perturbation ∆Φ induced by a prefix perturbation δ satisfying

∥∆Φ∥2 ≤ LΦ ∥δ∥ (A2/A3).

Let the perturbed projector be P̃ := (Φ + ∆Φ)
(
(Φ + ∆Φ)⊤(Φ + ∆Φ)

)†
(Φ + ∆Φ)⊤ and define

∆P := P̃ − P .
Lemma B.5 (Projector perturbation bound). There exists an absolute constant CΠ > 0 such that

∥∆P∥2 ≤ CΠ
∥Φ∥2

σmin(Φ)2
∥∆Φ∥2 = CΠ

√
λmax

λmin
∥∆Φ∥2 = CΠ κ(K)

∥∆Φ∥2√
λmin

.

Proof idea. Use standard bounds for the perturbation of orthogonal projectors onto column spaces
(e.g., Wedin’s sinΘ theorem and Stewart–Sun, Matrix Perturbation Theory, Thm 3.6). One shows

∥∆P∥2 ≤ 2 ∥(Φ⊤Φ)†∥2 ∥Φ⊤∆Φ∥2 + O(∥∆Φ∥22).

Since ∥(Φ⊤Φ)†∥2 = 1/λmin and ∥Φ⊤∆Φ∥2 ≤ ∥Φ∥2 ∥∆Φ∥2 =
√
λmax∥∆Φ∥2, the result follows

for sufficiently small ∥∆Φ∥2, absorbing lower-order terms into CΠ.

Theorem B.6 (Variance amplification with explicit constant). Let uh(Φ) = Pu∗ and uh(Φ+∆Φ) =

P̃ u∗. Then

∥uh(Φ +∆Φ)− uh(Φ)∥ ≤ CΠ κ(K)
∥∆Φ∥2√
λmin

∥u∗∥.

If ∆Φ is induced by a random prefix perturbation δ with ∥∆Φ∥2 ≤ LΦ∥δ∥ and E∥δ∥2 = σ2
δ , then

Var[uh] ≤ E∥uh(Φ +∆Φ)− uh(Φ)∥2 ≤ cv κ(K)2 ∥δ∥2,
with

cv = C2
Π

L2
Φ ∥u∗∥2

λmin
.
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Proof. By Lemma B.5, ∥uh(Φ + ∆Φ) − uh(Φ)∥ = ∥∆P u∗∥ ≤ ∥∆P∥2∥u∗∥ ≤
CΠ κ(K) ∥∆Φ∥2√

λmin
∥u∗∥. Square both sides and take expectation over δ, using ∥∆Φ∥2 ≤ LΦ∥δ∥,

to obtain the stated variance bound with the explicit constant cv .

Interpretation. The κ(K)2 factor arises from two sources: (i) κ(K) from the projector sensitivity
(Lemma B.5), and (ii) 1/λmin from converting ∥∆P∥2 to a mean-squared bound after squaring and
averaging, yielding an overall κ2-scaling in the variance constant.

B.5 CONSOLIDATION: COMPACT SURROGATE CONSISTENT WITH THE RISK
DECOMPOSITION

Combining Theorem B.3, Theorem B.4, and Theorem B.6, we obtain a computable surrogate aligned
with the Hallucination Risk Bound:

Adequacy: det(K) Amplification: log σmax Conditioning penalty: − log κ(K)2.

This motivates the score

HALLUGUARD(uh) = det(K) + log σmax − log κ(K)2

with the following explicit, implementation-ready notes:

• Use log det(K) via Cholesky for stability; replace det in the score with log det if desired
(monotone equivalent).

• Estimate σmax either as supt ∥Jt∥2 or its tighter average form βavg = 1
T

∑
t log ∥Jt∥2

(then use βavg in place of log σmax).

• z-normalize each component across a validation set before summation to avoid scale dom-
inance; optionally fit task-specific weights if permitted.

C EXPERIMENT

C.1 SETUP

Implementation Framework. All experiments use PyTorch and HuggingFace
Transformers with a fixed random seed for reproducibility. Unless otherwise noted,
computations run in mixed precision (fp16). Hardware details (A100/H200) are reported once in
the main setup section.

Generation Configuration. For default evaluation of detectors, we use nucleus sampling with
temperature = 0.5, top-p = 0.95, and top-k = 10, decoding K=10 candidate responses
per input (unless otherwise specified). These decoding trajectories also operationalize semantic per-
turbations as natural variations within the model’s local predictive distribution, thereby instantiating
a semantically proximate neighborhood around the primary response and capturing the local geom-
etry of the reasoning manifold required for NTK construction. For score-guided test-time inference
(Section 4.3), we use beam search (beam size = 10) and score candidate trajectories at each step
with the chosen detector. For stability analysis, HALLUGUARD extracts sentence representations
from the final token at the middle transformer layer (L/2), which empirically preserves semantics
relevant to truthfulness.

NTK-Based Score Computation. For each set of generations, we form a task-specific NTK fea-
ture matrix and compute the semantic stability score from its eigenspectrum. We add a small ridge
α = 10−3 for numerical stability and compute singular values via SVD.

Perturbation Regularization. To prevent pathological activations that amplify instability, HAL-
LUGUARD clips hidden features using an adaptive scheme. We maintain a memory bank of N=3000
token embeddings and set thresholds at the top and bottom 0.2% percentiles of neuron activations;
out-of-range values are truncated to attenuate overconfident hallucinations.
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Optimization. Backbone language models are not fine-tuned. We train only HALLUGUARD’s
lightweight projection layers using AdamW with learning rate selected from {1 × 10−5, 5 ×
10−5, 1 × 10−4} and weight decay from {0.0, 0.01}. The best setting is chosen on a held-out
validation split.

Implementation Details. For score-guided inference we apply beam search with beam size 10,
rescoring candidates stepwise with different hallucination detectors.

Ablation Setup. All ablations reuse the main paper’s splits, prompts, and decoding; we vary only
HALLUGUARD internals and explicitly control the hallucination base rate. On the generation side,
we modulate prevalence by adjusting temperature/top-p and beam size; to stress the two families,
we increase the prefix perturbation budget ρ and rollout horizon T to amplify reasoning drift, and
(when applicable) toggle retrieval masking to induce data-driven errors. On the detection side, AU-
ROC/AUPRC are threshold-free; when a fixed operating point is needed, we set a decision threshold
τ on the validation set by (i) matching a target predicted-positive rate πtarget via score quantiles or

(ii) fixing a desired FPR (e.g., 1%, 5%, 10%); a cost-sensitive Bayes rule τ =
cFN

cFP + cFN
· 1− π

π
is

optional when misclassification costs are specified. Unless noted, we toggle one factor at a time and
sweep ρ ∈ {0.75, 1.0, 1.5}, T ∈ {12, 16, 24}, and the number of semantic probes m ∈ {2, 4, 8};
no additional training is performed beyond optional temperature/z-score calibration on the training
split. We report mean±std over 5 seeds.

C.2 ABLATION STUDY ON − log κ2

To empirically validate the necessity of the stability term − log κ2, we performed a controlled ab-
lation on MATH-500. We systematized the reasoning drift (d) by progressively increasing the per-
turbation budget ρ and rollout horizon T . As shown in Figure 3, the absence of this term leads to
severe instability. While the ablated model (orange dashed line) performs competitively in low-drift
regimes (d < 0.15), it exhibits significant performance volatility as the reasoning task becomes more
complex. In contrast, the full HALLUGUARD score (green solid line) effectively penalizes these ill-
conditioned regimes, maintaining a smooth and robust detection profile. This confirms that − log κ2

functions as an essential spectral regularizer, preventing the score from becoming unreliable under
high-entropy inference states.

Figure 3: Ablation study of the stability term (− log κ2) on MATH500.
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C.3 COMPUTATIONAL EFFICIENCY ANALYSIS

To assess practical deployment feasibility, we measured inference latency on an NVIDIA
A100/H200 GPU. Our setup utilizes batched parallel sampling to generate K = 10 trajecto-
ries, ensuring sub-linear scaling of the computational cost. The core HALLUGUARD opera-
tions—specifically feature clipping and computing the NTK score via the Gram matrix—add mini-
mal latency, requiring less than 1 ms of post-processing time per query.

Figure 4: Per-Question Inference Time (Seconds) on BBH Across Hallucination Detection Methods.

Figure 5: Per-Question Inference Time (Seconds) on HaluEval Across Hallucination Detection
Methods.

Figure 6: Per-Question Inference Time (Seconds) on Math500 Across Hallucination Detection
Methods.
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Figure 7: Per-Question Inference Time (Seconds) on RAGTruth Across Hallucination Detection
Methods.

Figure 8: Per-Question Inference Time (Seconds) on SQuaD Across Hallucination Detection Meth-
ods.

Figure 9: Per-Question Inference Time (Seconds) on TruthfulQA Across Hallucination Detection
Methods.

C.4 DETECTION PERFORMANCE ANALYSIS

Across all five model families and three benchmark regimes, HALLUGUARD consistently achieves
state-of-the-art detection performance, particularly in the safety-critical low-FPR regions as shown
in Table 6.

We additionally expanded our evaluation to include SAPLMA, LLM-Check, and ITI. As shown
in Table 7, HALLUGUARD delivers the strongest performance not only on AUROC/AUPRC but
also on deployment-critical, low-FPR operating points, including F1 and TPR at 5% and 10% FPR.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 6: Performance comparison on representative benchmarks: data-centric (RAGTruth),
reasoning-oriented (BBH), and instruction-following (TruthfulQA).

GPT2 OPT-6.7B Mistral-7B QwQ-32B LLaMA2-13B

F1 TP
R@

10
%

TP
R@

5%

F1 TP
R@

10
%

TP
R@

5%

F1 TP
R@

10
%

TP
R@

5%

F1 TP
R@

10
%

TP
R@

5%

F1 TP
R@

10
%

TP
R@

5%

R
A

G
Tr

ut
h

HALLUGUARD 81.22 74.86 61.41 77.03 73.52 59.12 83.19 79.44 69.21 85.91 80.13 63.52 74.66 68.91 57.42
Inside 66.12 59.72 48.31 72.91 70.25 60.37 70.45 68.12 52.41 79.03 74.66 61.09 73.08 70.11 55.26
MIND 58.33 54.11 38.72 62.55 57.81 47.65 71.91 66.74 54.39 64.02 59.12 45.63 68.55 63.50 48.78
Perplexity 55.42 51.20 40.51 63.72 60.13 49.14 69.74 66.51 52.18 70.42 65.41 55.32 60.18 57.01 44.75
LN-Entropy 62.17 57.52 46.44 58.33 52.99 43.28 65.30 61.27 49.92 67.15 62.42 51.33 63.28 59.07 46.14
Energy 59.71 56.23 44.81 60.44 57.18 45.03 63.54 59.42 48.62 72.09 68.15 58.42 66.10 61.33 49.41
Semantic Ent. 57.28 53.42 41.92 69.61 64.81 52.01 67.10 62.44 50.66 66.12 62.15 49.31 64.55 60.18 47.75
Lexical Sim. 61.41 57.09 45.03 65.81 61.44 49.51 62.50 59.12 50.92 70.91 67.53 55.21 66.29 59.88 51.03
SelfCheckGPT 56.22 52.84 40.63 60.79 55.68 45.72 63.12 59.47 48.33 66.54 62.92 51.41 68.21 65.12 53.60
RACE 60.12 56.50 44.90 64.12 59.77 49.22 65.44 61.55 52.73 69.61 66.31 53.92 62.55 59.42 45.66
P(true) 58.91 55.47 42.13 67.44 63.20 51.43 71.22 66.91 54.10 63.44 60.33 49.27 70.18 65.77 52.78
FActScore 62.10 58.21 46.33 59.22 54.14 44.32 63.87 60.77 47.98 68.33 64.02 53.41 65.92 61.37 49.84

B
B

H

HALLUGUARD 78.33 74.11 65.42 74.91 69.14 62.10 80.22 76.88 68.21 82.55 78.91 70.45 79.10 74.25 67.92
Inside 65.41 61.22 52.83 71.02 67.10 60.21 68.17 64.75 53.92 79.17 72.33 64.22 67.10 63.52 55.91
MIND 54.12 50.22 40.11 57.21 53.44 41.52 63.92 59.88 47.01 61.55 57.14 48.83 65.11 60.22 49.52
Perplexity 52.91 49.33 40.44 61.88 58.12 49.22 62.91 59.42 50.11 59.91 55.72 49.03 60.88 57.41 48.62
LN-Entropy 59.12 55.44 44.92 54.61 51.75 43.18 66.44 63.21 54.09 62.75 59.12 47.52 68.20 64.88 55.41
Energy 53.94 51.22 45.03 56.12 52.14 44.61 64.55 60.11 49.99 68.21 65.12 52.84 66.41 62.77 50.22
Semantic Ent. 57.41 54.32 47.21 61.22 58.42 49.74 63.21 59.10 48.62 63.55 60.24 48.88 64.91 61.44 50.72
Lexical Sim. 50.41 46.77 38.92 60.71 57.11 45.55 59.42 56.88 48.91 70.33 67.10 55.32 58.33 55.42 47.41
SelfCheckGPT 55.21 52.14 43.92 58.10 55.78 46.22 62.82 59.90 50.44 65.22 62.44 54.21 63.44 60.77 52.33
RACE 56.14 53.72 43.88 63.11 59.71 52.81 65.77 62.55 50.72 58.88 55.14 46.18 66.10 62.41 49.81
P(true) 54.31 52.22 44.10 58.22 56.10 48.52 56.91 53.55 43.92 61.40 58.21 46.77 57.33 54.88 45.91
FActScore 56.20 52.42 41.77 55.44 52.12 41.14 61.62 58.22 51.33 59.33 56.42 49.14 63.44 60.22 52.44

Tr
ut

hf
ul

Q
A

HALLUGUARD 75.11 71.20 63.21 70.44 67.55 58.12 78.92 74.22 65.33 76.44 72.01 59.92 79.33 75.11 66.08
Inside 71.10 68.55 60.77 61.77 59.44 50.10 63.88 61.33 53.41 69.22 65.10 55.14 62.14 59.94 52.80
MIND 57.44 54.91 45.33 59.92 56.88 48.33 58.72 56.14 47.21 61.21 58.88 52.02 60.44 58.20 49.03
Perplexity 49.52 46.71 38.84 54.12 51.74 43.90 59.72 57.55 46.88 54.44 51.72 42.55 60.33 57.21 47.41
LN-Entropy 57.11 54.88 42.98 55.33 52.41 45.91 59.66 56.22 43.10 60.44 58.02 46.22 61.41 57.17 43.88
Energy 54.11 52.17 38.91 53.44 51.14 36.88 58.21 54.77 49.92 63.02 60.44 51.33 58.41 55.33 50.42
Semantic Ent. 60.08 56.44 44.15 50.14 47.33 35.92 53.74 52.11 37.02 65.33 63.20 50.77 55.02 53.11 38.44
Lexical Sim. 51.22 49.20 39.03 58.72 54.71 48.77 65.71 63.50 53.10 54.77 51.44 45.88 66.41 64.14 54.88
SelfCheckGPT 55.72 53.44 42.78 58.33 55.72 47.14 60.88 57.44 43.91 55.42 54.44 40.77 61.72 59.51 44.10
RACE 52.22 49.88 41.44 63.14 66.88 54.05 70.55 67.11 59.77 55.44 52.11 45.33 71.33 68.22 60.02
P(true) 55.54 52.11 38.82 55.72 52.33 39.22 57.41 53.10 41.22 56.88 54.77 45.55 57.12 53.33 41.88
FActScore 52.91 50.14 40.44 54.11 50.22 41.33 52.88 49.91 42.55 61.55 59.22 44.72 53.41 50.71 43.10

Across all three benchmarks (RAGTruth, GSM8K, HaluEval) and all backbones (GPT-2 through
QwQ-32B and LLaMA2-13B), HALLUGUARD consistently achieves the highest F1 and the highest
or near-highest TPR under fixed low-FPR constraints. In contrast, SAPLMA and LLM-Check ex-
hibit noticeably lower recall in the stringent 5% FPR regime. These results demonstrate that HAL-
LUGUARD is better aligned with maintaining high detection sensitivity under tight false-positive
budgets, a requirement that is central to reliable hallucination detection in real-world systems.

Table 7: Comparison with SAPLMA, LLM-Check and ITI across benchmarks and backbones.

Benchmark Method GPT2 OPT-6.7B Mistral-7B QwQ-32B LLaMA2-13B

AUROC AUPRC F1 TPR@10% TPR@5% AUROC AUPRC F1 TPR@10% TPR@5% AUROC AUPRC F1 TPR@10% TPR@5% AUROC AUPRC F1 TPR@10% TPR@5% AUROC AUPRC F1 TPR@10% TPR@5%

RAGTruth HALLUGUARD 75.51 73.40 81.22 74.86 61.41 80.13 76.77 77.03 73.52 59.12 82.31 80.79 83.19 79.44 69.21 84.59 81.15 85.91 80.13 63.52 77.51 75.30 74.66 68.91 57.42
RAGTruth SAPLMA 72.80 70.10 72.20 63.50 55.10 78.90 74.20 74.10 68.00 58.20 79.40 77.30 79.00 72.10 60.50 81.00 78.20 79.44 72.80 61.30 74.20 72.10 70.50 61.80 55.90
RAGTruth LLM-Check 68.10 64.50 63.90 55.20 44.80 72.30 68.40 66.50 57.90 46.30 75.20 71.60 67.40 60.30 48.70 76.10 73.20 68.90 61.10 49.50 71.60 68.90 63.20 55.40 46.10
RAGTruth ITI 69.30 65.80 66.10 57.90 47.90 73.10 69.20 68.20 59.80 49.10 76.00 72.50 69.40 61.80 50.90 77.20 74.10 70.50 62.40 51.70 72.80 70.10 65.40 57.10 47.80

GSM8K HALLUGUARD 72.04 69.88 78.33 74.11 65.42 72.57 70.31 74.91 69.14 62.10 80.62 77.30 80.22 76.88 68.21 75.81 74.68 82.55 78.91 70.45 79.01 76.73 79.10 74.25 67.92
GSM8K SAPLMA 69.20 66.10 70.10 62.00 54.40 70.80 67.20 71.80 64.10 56.30 77.10 74.00 76.20 69.50 59.80 73.90 71.20 76.50 70.10 60.70 75.40 72.30 74.00 67.10 59.10
GSM8K LLM-Check 65.40 61.50 62.40 54.10 46.20 68.10 64.30 67.50 59.20 49.80 73.40 69.80 64.90 57.90 48.30 71.20 67.90 67.80 60.30 50.40 72.10 68.50 64.20 56.60 48.00
GSM8K ITI 66.80 63.00 64.50 56.20 48.70 69.00 65.40 69.20 61.50 51.90 74.20 70.60 67.10 60.80 50.10 72.50 69.20 69.40 62.50 52.30 73.00 69.10 66.10 58.40 49.50

HaluEval HALLUGUARD 70.42 67.71 75.11 71.20 63.21 71.62 67.88 70.44 67.55 58.12 74.91 72.74 78.92 74.22 65.33 73.93 70.87 76.44 72.01 59.92 78.15 74.15 79.33 75.11 66.08
HaluEval SAPLMA 67.10 63.20 69.20 62.10 54.00 69.50 65.70 68.30 61.60 53.20 72.00 68.40 75.10 69.30 58.90 71.20 68.10 75.40 70.30 58.50 76.10 72.20 76.80 70.60 60.90
HaluEval LLM-Check 63.50 59.40 61.10 53.00 44.50 66.80 62.90 65.40 57.50 47.50 70.10 66.30 63.80 57.20 47.10 69.30 65.40 66.20 59.50 49.00 71.50 67.60 63.50 55.90 47.40
HaluEval ITI 64.80 60.70 63.40 55.20 46.80 67.40 63.50 66.90 58.60 49.40 71.00 67.20 66.10 59.10 48.60 70.20 66.30 68.10 61.10 50.60 72.30 68.20 65.20 57.50 48.70

C.5 TIGHTNESS OF BOUND

Evaluation of bound tightness. To rigorously stress-test the Hallucination Risk Bound of The-
orem 3.2, we conducted a controlled synthetic study grounded in the empirical reasoning-depth
distribution of the Snowballing dataset (Zhang et al., 2023). We instantiated empirical hallucination
trajectories by injecting low-variance Gaussian noise into the base components D(T ) and R(T ),
comparing them against the closed-form theoretical prediction. As illustrated in Figure 10, while
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the theoretical curve acts as a conservative upper envelope, it exhibits a nearly parallel growth trajec-
tory to the empirical risk. Crucially, it faithfully captures the exponential curvature and compound-
ing dynamics of the Snowballing Effect. This confirms that the bound possesses high structural
fidelity: it correctly models the scaling law of error propagation across depth ranges, validating its
effectiveness as a ranking proxy despite the absolute numerical offset.

Figure 10: Empirical hallucination risk versus our theoretical bound

Evaluation of NTK proxy tightness. To quantitatively validate that our NTK-based proxy faith-
fully captures the amplification behavior of stepwise Jacobians, we conduct a diagnostic experiment
on GPT-2-small (117M), where per-step Jacobian norms are fully tractable. For a held-out set of
GSM8K prompts and decoding steps t ≤ 18, we compute:

• the empirical stepwise Jacobian magnitude ∥Jt∥2, obtained via automatic differentiation
on the next-token logits, and

• our reasoning-driven NTK proxy, log σmax − log κ2, as defined in Eq. (7), which upper-
bounds the per-step amplification rate and penalizes spectral ill-conditioning of the NTK
Gram matrix.

Figure 11 reports the scatter plot comparing the NTK proxy against empirical ∥Jt∥2 across all
prompts and steps.

Validation of Term Decomposition To validate the architectural premise of our Hallucination
Risk Bound Section 3.2, we visualize the evolution of the decomposed risk components across rea-
soning depth T on the Snowballing dataset (Zhang et al., 2023). As shown in Figure Figure 12,
the total risk is driven by two distinct dynamic behaviors. The data-driven term (green dotted line)
exhibits linear or near-constant progression, reflecting static retrieval or knowledge-encoding errors
that persist regardless of depth. In contrast, the reasoning-driven term (purple dotted line) demon-
strates exponential amplification consistent with the Snowballing Effect, remaining negligible at
shallow depths but rapidly dominating the total risk as T increases.Crucially, this reveals a phase
transition in hallucination dynamics: at lower depths (T < 15), errors are primarily data-driven,
whereas at higher depths, reasoning instability becomes the governing factor. This dichotomy em-
pirically justifies our hybrid scoring mechanism, confirming that a unified detector must account
for both the static semantic bias and the dynamic rollout instability to be effective across varying
generation lengths.
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Figure 11: The NTK proxy closely tracks empirical Jacobian amplification on GPT-2-small, showing
near-perfect monotonic alignment and a consistent conservative envelope across decoding depth.

Figure 12: Risk decomposition across reasoning depth T on Snowballing dataset.

C.6 CORRELATION OF REASONING-DRIVEN AND DATA-DRIVEN TERMS WITH DIFFERENT
TYPES OF DATASETS

To empirically verify the independence of the proposed risk components, we analyzed their cor-
relation with detection performance across distinct task families. As illustrated in Figure 14 and
Figure 13, we observe a sharp geometric decoupling: the data-driven term aligns strongly with data-
centric benchmarks (e.g., RAGTruth) while showing negligible correlation with reasoning tasks.
Conversely, the reasoning-driven term dominates on reasoning-oriented datasets (e.g., MATH-500).
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This double dissociation reinforces the structural validity and orthogonality of our decomposition,
confirming that each term captures a distinct, non-redundant failure mode.

Figure 13: Correlation Between data-driven and reasoning-driven terms and AUROC on Reasoning-
Centric MATH500.

Figure 14: Correlation Between data-driven and reasoning-driven terms and AUROC on Data-
Centric RAGTruth.
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C.7 CASE STUDY

Case Study 1 — GSM8K (Multi-step Arithmetic): Bias → Drift → Snowballing. Task: “John
saves $3/day for four weeks and buys a $12 toy. How much money does he have left?”
Ground truth: $72.

Length (T) Model Behavior HalluGuard Response
T=1–8 Stable setup Correct restatement and arithmetic planning Data-driven term dominant; risk flat
T=9–14 Seed error “4 weeks” → “40 days” Slight rise in data-driven signal
T=15–22 Propagation “3 × 40 = 120” Reasoning-driven share begins to rise
T=23–40 Amplification Final answer: $108 Reasoning-driven dominates (snowballing)

Table 8: Evolution of hallucination in GSM8K arithmetic reasoning.

Case Study 2 — Long-Document Summarization: Misalignment → Overreach → Fabrication.
Task: Summarize a 5,000-token policy document
Ground truth: Security audit exception applies only to specific log types.

Length (T) Model Behavior HalluGuard Response
T=1–20 Accurate extraction Correct recovery of retention rules Low risk; strong alignment
T=21–40 Misbinding Incorrect merge of distant sections Data-driven signal increases
T=41–95 Drift Overgeneralized suspension claim Reasoning-driven share rises
T=96–170 Fabrication New false rule introduced Reasoning-driven dominates

Table 9: Evolution of hallucination in long-document summarization.

D USAGE OF LLM

Large language models (LLMs) were employed in a limited and transparent manner during the
preparation of this manuscript. Specifically, LLMs were used to assist with linguistic refinement,
style adjustments, and minor text editing to improve clarity and readability. They were not involved
in formulating the research questions, designing the theoretical framework, conducting experiments,
or interpreting results. All scientific contributions—including conceptual development, methodol-
ogy, analyses, and conclusions—are the sole responsibility of the authors.
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