

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HALLUGUARD: DEMYSTIFYING DATA-DRIVEN AND REASONING-DRIVEN HALLUCINATIONS IN LLMS

Anonymous authors

Paper under double-blind review

ABSTRACT

The reliability of Large Language Models (LLMs) in high-stakes domains such as healthcare, law, and scientific discovery is often compromised by hallucinations. These failures typically stem from two sources: *data-driven hallucinations* and *reasoning-driven hallucinations*. However, existing detection methods usually address only one source and rely on task-specific heuristics, limiting their generalization to complex scenarios. To overcome these limitations, we introduce the *Hallucination Risk Bound*, a unified theoretical framework that formally decomposes hallucination risk into data-driven and reasoning-driven components, linked respectively to training-time mismatches and inference-time instabilities. This provides a principled foundation for analyzing how hallucinations emerge and evolve. Building on this foundation, we introduce HALLUGUARD, a NTK-based score that leverages the induced geometry and captured representations of the NTK to jointly identify data-driven and reasoning-driven hallucinations. We evaluate HALLUGUARD on 10 diverse benchmarks, 11 competitive baselines, and 9 popular LLM backbones, consistently achieving state-of-the-art performance in detecting diverse forms of LLM hallucinations.

1 INTRODUCTION

Large language models (LLMs) are increasingly deployed in high-stakes domains such as healthcare, law, and scientific discovery(Bommasani et al., 2021; Thirunavukarasu et al., 2023). However, adoption in these settings remains cautious, as such domains are highly regulated and demand strict compliance, interpretability, and safety guarantees(Dennstädt et al., 2025; Kattnig et al., 2024). A major barrier is the risk of *hallucinations*, generated content appears unfaithful or nonsensical. Such errors can have severe consequences(Dennstädt et al., 2025)—as the example in Figure 1, a generated incorrect medical diagnosis may delay treatment or lead to harmful interventions. Therefore, detecting hallucinations is not merely a technical challenge but a prerequisite for trustworthy deployment, as undetected errors undermine reliability, accountability, and user safety.

Generally, hallucinations in LLMs arise from two primary sources(Ji et al., 2023; Huang et al., 2023): *data-driven hallucinations*, which stem from flawed, biased, or incomplete knowledge encoded during pre-training or fine-tuning; and *reasoning-driven hallucinations*, which originate from inference-time failures such as logical inconsistencies or breakdowns in multi-step reasoning(Zhang et al., 2023; Zhong et al., 2024). Detection methods broadly split along these two dimensions. Approaches for data-driven hallucinations often compare outputs against retrieved documents or references(Shuster et al., 2021; Min et al., 2023; Ji et al., 2023), or exploit sampling consistency as in SelfCheckGPT(Manakul et al., 2023). In contrast, methods for reasoning-driven hallucinations rely on signals of inference-time instability, including probabilistic measures such as perplexity(Ren et al., 2022), length-normalized entropy(Malinin & Gales, 2020), semantic entropy(Kuhn et al., 2023), energy-based scoring(Liu et al., 2020), and RACE(Wang et al., 2025). Others probe internal representations, for example, Inside(Chen et al., 2024a), which applies eigenvalue-based covariance metrics and feature clipping, ICR Probe(Zhang et al., 2025), which tracks residual-stream updates, and Shadows in the Attention(Wei et al., 2025), which analyzes representation drift under contextual perturbations. While these methods shed light on the mechanisms underlying hallucinations, most remain tailored to a single hallucination type and fail to capture their evolution. Yet growing evidence indicates that data-driven and reasoning-driven hallucinations often evolve during multi-step generation(Liu et al., 2025; Sun et al., 2025). As shown in Figure 1, it emerges from an initial dis-

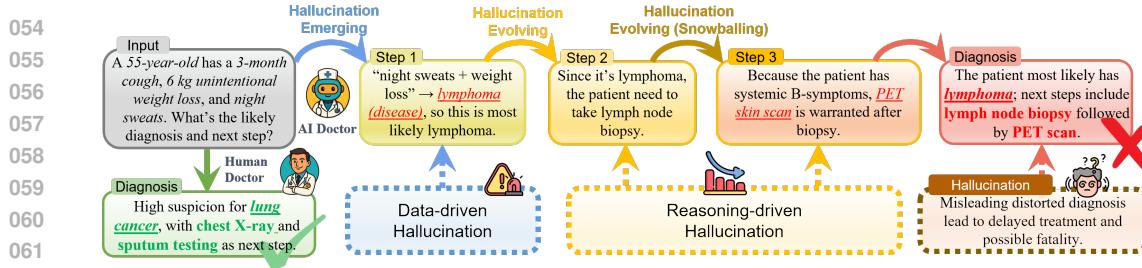


Figure 1: An illustration of hallucination emerging and evolving in the context of disease diagnosis.

ease misclassification and evolves into a distorted diagnosis, delaying treatments and risking fatality. This gap brings two central questions: (1) *How can we develop a unified theoretical understanding of how hallucinations evolve?* and (2) *How can we detect them effectively and efficiently without relying on external references or task-specific heuristics?*

To address these challenges, we propose a unified theoretical framework—*Hallucination Risk Bound*, which decomposes the overall hallucination risk into two components: a *data-driven term*, capturing semantic deviations rooted in inaccurate, imbalanced, or noisy supervision acquired during model training; and a *reasoning-driven term*, reflecting instability introduced by inference-time dynamics, such as logical missteps or temporal inconsistency. This decomposition not only elucidates the mechanism behind hallucinations but also reveals how they emerge and evolve. Specifically, our analysis shows that hallucinations originate from semantic approximation gaps—captured by representational limits of the model—and are subsequently amplified by unstable rollout dynamics, evolving across decoding steps. As such, our framework offers a unified theoretical lens for characterizing the emergence and evolution of these hallucinations.

Building on the theoretical foundation, we propose HALLUGUARD, a Neural Tangent Kernel(NTK)-based score that leverages the induced geometry and captured representations of the NTK to jointly identify data-driven and reasoning-driven hallucinations. We evaluate HALLUGUARD comprehensively across 10 diverse benchmarks, 11 competitive baselines, and 9 popular LLM backbones. HALLUGUARD consistently achieves state-of-the-art hallucination detection performance, demonstrating its efficacy.

2 PRELIMINARIES

Hallucination Detection. There are two primary sources of hallucinations in LLMs(Ji et al., 2023; Huang et al., 2023): *data-driven hallucination*, which stems from incomplete or biased knowledge encoded during pre-training or fine-tuning, and *reasoning-driven hallucination*, which arises from unstable or inconsistent inference dynamics at decoding time. This distinction has implicitly guided a broad range of detection strategies, which we examine through these two lenses.

For data-driven causes, a recurring signal is elevated predictive uncertainty. A common formulation adopts the sequence-level negative log-likelihood:

$$\mathcal{U}(\mathbf{y} \mid \mathbf{x}, \theta) = -\frac{1}{T} \sum_{t=1}^T \log p_\theta(y_t \mid y_{<t}, \mathbf{x}), \quad (1)$$

which quantifies the average uncertainty of generating a sequence $\mathbf{y} = [y_1, \dots, y_T]$ from input \mathbf{x} and θ denotes model parameters. This directly recovers *Perplexity*(Ren et al., 2022), where low scores imply confident predictions, while high scores indicate implausible generations due to weak priors. To capture more nuanced uncertainty, later methods extend this formulation to multi-sample settings. The *Length-Normalized Entropy*(Malinin & Gales, 2020) penalizes dispersion across stochastic generations $\mathcal{Y} = \{\mathbf{y}^1, \dots, \mathbf{y}^K\}$, offering a finer-grained view of model indecision. This perspective is further enriched by *Semantic Entropy*(Kuhn et al., 2023), which projects sampled responses into semantic space, and by energy-based scoring(Liu et al., 2020), which replaces log-probability with a learned confidence function. Collectively, these methods reflect a progression from token-level likelihoods to semantically grounded multi-sample uncertainty estimators.

108 In contrast, reasoning-driven hallucinations arise from brittle inference trajectories, where identical
 109 contexts may yield inconsistent or incoherent outputs. A commonly used measure of such instability
 110 is the cross-sample consistency score:

$$111 \quad 112 \quad 113 \quad \mathcal{C}(\mathcal{Y} \mid \mathbf{x}, \theta) = \frac{1}{C} \sum_{i=1}^K \sum_{j=i+1}^K \text{sim}(\mathbf{y}^i, \mathbf{y}^j), \quad (2)$$

114 where $C = K \cdot (K - 1)/2$, and $\text{sim}(\cdot, \cdot)$ is a similarity function such as ROUGE-L(Lin, 2004),
 115 cosine similarity, or BLEU(Chen et al., 2024b). Low scores reflect diverging generations and un-
 116 stable reasoning. Several reasoning-driven detection methods can be interpreted through this lens.
 117 Early approaches used surface-level lexical overlap metrics(Lin et al., 2022b), while *SelfCheck-
 118 GPT*(Manakul et al., 2023) advanced this by evaluating factual entailment across responses, and
 119 *FActScore*(Min et al., 2023) extended this further by comparing outputs to retrieved reference doc-
 120 uments. More recent efforts probe internal signals directly: *Inside*(Chen et al., 2024a) analyzes the
 121 covariance spectrum of embedding representations, and *RACE*(Wang et al., 2025) diagnoses insta-
 122 bility in multi-step reasoning.

123 **NTK in LLMs.** NTK provides a principled framework for analyzing the training dynamics in
 124 the overparameterized regime characteristic of modern LLMs(Jacot et al., 2020). Formally, for a
 125 network output $f(x, \theta)$ with input x and parameters θ , the NTK is defined as:

$$126 \quad 127 \quad \Theta(x, x', \theta) = \nabla_\theta f(x, \theta) \cdot \nabla_\theta f(x', \theta). \quad (3)$$

128 This kernel $\Theta(x, x', \theta)$ quantifies the similarity of training dynamics between inputs x and x' . In the
 129 infinite-width limit, it converges to a deterministic value at initialization and remains nearly constant
 130 throughout training(Lee et al., 2020b). This stability reduces the highly nonlinear optimization of
 131 deep networks to a tractable kernel regression problem. By examining the eigenspectrum of the
 132 NTK, one can probe how internal representations are shaped during training: which features are
 133 prioritized (e.g., syntax versus semantics), how quickly different tasks converge, and why overpa-
 134 rameterized networks generalize effectively to unseen data(Ju et al., 2022). In this way, the NTK
 135 transforms the apparent complexity of LLM optimization into a clear lens on how these models
 136 capture, process, and generalize information(Zeng et al., 2025).

138 3 METHODOLOGY

140 3.1 PROBLEM SETTING

142 Our analysis reveals that hallucination is not a unified failure mode but rather shifts with the task
 143 structure. On the instruction-following Natural benchmark(Wang et al., 2022), 88.9% of the
 144 overall 3499 errors are from logical missteps (*reasoning-driven*) while 11.1% are factual inaccura-
 145 cies (*data-driven*). By contrast, on the math-focused MATH-500(Hendrycks et al., 2021), the 1985
 146 wrong generations are dominated by 1946 reasoning errors (98.1%), with only 19 factual flaws
 147 (1.9%). This contrast highlights that, in practice, hallucinations are rarely pure but often mixtures of
 148 data-driven bias and reasoning-driven instability—motivating our formal decomposition of halluci-
 149 nation sources.

150 **Problem Definition.** Let \mathcal{Y} denote the space of textual outputs and let $\Phi : \mathcal{Y} \rightarrow U_h$ be a task-
 151 specific encoder that maps textual sequences into the hypothesis space U_h , equipped with a norm
 152 $\|\cdot\|$ (e.g., task-calibrated embedding space or structured metric). We interpret each $u \in U_h$ as
 153 a reasoning chain, composed of step-wise logical statements. For an input \mathbf{x} with ground-truth
 154 output $y^* \in \mathcal{Y}$, define the gold-standard reasoning chain as $u^* := \Phi(y^*) \in U_h$. An LLM with
 155 parameters θ emits a random sequence $Y = (Y_1, \dots, Y_T)$ via $p_\theta(y_t \mid y_{<t}, \mathbf{x})$, yielding a predicted
 156 reasoning chain $u_h := \Phi(Y) \in U_h$. Its expected value under the model’s decoding distribution is
 157 $\mathbb{E}[u_h] := \mathbb{E}_{Y \sim p_\theta(\cdot \mid \mathbf{x})}[\Phi(Y)]$.

158 We consider perturbations in a local neighborhood of the decoding process. Let $\delta \in \mathbb{R}^r$ parameterize
 159 a small perturbation (e.g., of the prefix tokens, step- t logits, or hidden state), and let $\mathcal{B}_\rho := \{\delta :
 160 \|\delta\| \leq \rho\}$. Define the perturbed decoder map $G : \mathbb{R}^r \rightarrow U_h$ by $G(\delta) := \Phi(Y(\delta))$, where $Y(\delta)$ is the
 161 sequence under perturbation. Let $J \in \mathbb{R}^{d_h \times r}$ denote the (Gauss–Newton) Jacobian of G at $\delta = 0$.
 Our goal is to formalize how hallucination emerges and evolves in LLMs.

162 3.2 HALLUCINATION RISK BOUND
163

164 To bridge the formal setup with the phenomenon of hallucination, we first disentangle the sources of
165 hallucinations. Intuitively, hallucinations may arise either from systematic biases in the knowledge
166 encoded by the model (data-driven) or from instabilities during autoregressive decoding (reasoning-
167 driven). The following proposition formalizes this idea by decomposing the total hallucination risk
168 into two components.

169 We first impose the following assumptions:
170

- 171 **A1.** $(U, \|\cdot\|)$ is a Hilbert space; Φ is measurable with unique best solution and $\|\Phi(Y)\|$ has
172 finite second moment.
- 173 **A2.** Triangle inequality holds for $\|\cdot\|$ and Φ is L_Φ -Lipschitz w.r.t. an edit distance on \mathcal{Y} .
- 174 **A3.** For $\delta \in \mathcal{B}_\rho$, the mapping G admits the local expansion $G(\delta) = G(0) + J\delta + R(\delta)$, where
175 the remainder is bounded by $\|R(\delta)\| \leq \frac{1}{2}H_\star\|\delta\|^2$ for some curvature constant $H_\star > 0$.
176

177 **Proposition 3.1 (Hallucination Risk Decomposition).** Under A1–A3, applying the triangle
178 inequality yields a natural split of the risk:

$$179 \quad \|u^* - u_h\| \leq \underbrace{\|u^* - \mathbb{E}[u_h]\|}_{\text{data-driven term}} + \underbrace{\|u_h - \mathbb{E}[u_h]\|}_{\text{reasoning-driven term}}$$

182 This decomposition distinguishes errors caused by systematic bias in the learned representation
183 from those introduced during stochastic rollout.
184

185 **Characterizing Data-Driven Hallucination.** To quantify the data-driven term, we take inspiration
186 from the NTK, which has proven effective in analyzing training dynamics of overparameterized
187 models. Here, NTK geometry provides a way to measure how well the model’s representation space
188 aligns with task generation under small perturbations.

189 Let $U_h \subset U$ denote the hypothesis subspace accessible to the model under perturbations. By Céa’s
190 lemma (Céa, 1964) with curvature penalty, the data-driven term can be bounded as

$$191 \quad \|u^* - \mathbb{E}[u_h]\| \leq \frac{\Lambda}{\gamma} \inf_{u \in U_h} \|u^* - u\|, \quad (4)$$

193 where $\gamma = \lambda_{\min}(\mathcal{K}_\Phi)$ is the smallest eigenvalue of the NTK Gram matrix on embedded perturba-
194 tions, and $\Lambda \leq \|T\|$ reflects the operator norm of the problem/operator mapping \mathcal{T} . Intuitively, the
195 ratio $\frac{\Lambda}{\gamma}$ measures the conditioning of the feature map: well-conditioned NTK spectra allow a closer
196 approximation to the true generation.
197

198 This ratio can be further controlled in terms of pretraining–finetuning mismatch:

$$199 \quad \frac{\Lambda}{\gamma} \leq 1 + k_{\text{pt}} \log \mathcal{O}(P, L) + k \cdot \frac{\epsilon_{\text{mismatch}}}{\text{Signal}_k}, \quad (5)$$

201 where $\log \mathcal{O}(P, L)$ is a complexity term from parameter count P and prompt length L , $\epsilon_{\text{mismatch}}$
202 denotes the Wasserstein distance between prompt and query distributions, Signal_k measures task-
203 aligned energy in the top- k eigenspace. k_{pt} and k are task and model-dependent constants. Thus,
204 data-driven hallucinations grow when the mismatch is large or when the task signal is weak.
205

206 **Characterizing Reasoning-Driven Hallucination.** The reasoning-driven term captures
207 *reasoning-driven* instability that accumulates during autoregressive decoding. Here, we model gen-
208 eration as a martingale process, where deviation from the expectation is controlled by concentration
209 inequalities. Specifically, Freedman’s inequality (Geman et al., 1992) gives

$$210 \quad \|u_h - \mathbb{E}[u_h]\| \leq K \cdot \exp\left(-\frac{K\epsilon^2}{C}\right) \cdot \alpha(e^{\beta T} - 1), \quad (6)$$

211 where K is the number of rollouts averaged, β summarizes per-step growth in local Jacobians, α
212 scales the cumulative effect and C is a task and model-dependent constant. This bound shows that
213 reasoning-driven hallucinations grow exponentially with sequence length T .
214

215 We now synthesize the two components into a unified result that characterizes the overall risk of
hallucination. By combining the NTK-conditioned approximation bound for data-driven deviation

216 with the Freedman-style concentration bound for reasoning-driven instability, we obtain the following
 217 unified bound of data-driven and reasoning-driven hallucinations (detailed proof is provided in
 218 Appendix A):
 219

220 **Theorem 3.2 (Hallucination Risk Bound).** Let $u^* := \Phi(y^*)$ denote the semantic embedding
 221 of the ground-truth output and $u_h := \Phi(Y)$ that of the model-generated output. Under
 222 Assumptions A1–A3, suppose there exists $\beta \geq 0$ such that $\left\| \prod_{t=1}^T J_t \right\|_2 \leq e^{\beta T}$. Then the total
 223 hallucination risk satisfies
 224

$$225 \quad \|u^* - u_h\| \leq \underbrace{\left(1 + k_{\text{pt}} \log \mathcal{O}(P, L) + k \cdot \frac{\epsilon_{\text{mismatch}}}{\text{Signal}_k}\right) \inf_{u \in U_h} \|u^* - u\|}_{\text{data-driven term}} + \underbrace{|\mathcal{L}| \cdot \exp\left(-\frac{K\epsilon^2}{C}\right) \cdot \alpha(e^{\beta T} - 1)}_{\text{reasoning-driven term}}$$

229 3.3 HALLUCINATION QUANTIFICATION VIA HALLUGUARD

231 While Theorem 3.2 makes explicit how data-driven and reasoning-driven hallucinations emerge and
 232 evolve, applying it directly at inference is impractical since direct step-wise Jacobians for billion-
 233 parameter LLMs are intractable, so we seek a *proxy score* that is computable, stable, and faithful to
 234 our decomposition.

235 Let \mathcal{K} denote the NTK Gram matrix with eigenvalues $\lambda_1 \geq \dots \geq \lambda_r > 0$ and condition number
 236 $\kappa(\mathcal{K}) = \lambda_{\max}/\lambda_{\min}$. Let J_t be the step- t input–output Jacobian of the decoder, and define $\sigma_{\max} :=$
 237 $\sup_t \|J_t\|_2$ as the uniform spectral bound (note that σ_{\max} is independent of the spectrum of \mathcal{K}).
 238

239 Under Assumptions A1–A3, a standard NTK approximation argument yields $\inf_{u \in U_h} \|u^* - u\| \leq$
 240 $C_d \det(\mathcal{K})^{-c_d} \|u^*\|$, so that $\det(\mathcal{K})$ capture the representations in systematic bias.

241 For autoregressive rollout, based on the property of Jacobian, we have $\left\| \prod_{t=1}^T J_t \right\|_2 \leq$
 242 $\prod_{t=1}^T \|J_t\|_2 = \exp\left(\sum_{t=1}^T \log \|J_t\|_2\right)$, so that we have $\left\| \prod_{t=1}^T J_t \right\|_2 \leq e^{\beta T}$. Since
 243 $\beta \leq \log \sigma_{\max}$ with $\sigma_{\max} := \sup_t \|J_t\|_2$ thus we have the upper bound as $\left\| \prod_{t=1}^T J_t \right\|_2 \leq \sigma_{\max}^T =$
 244 $e^{(\log \sigma_{\max})T}$. Thus, $\log \sigma_{\max}$ serves as a stable and tractable proxy for the per-step amplification rate.
 245

246 Perturbation analysis of \mathcal{K} , together with classical eigenvalue sensitivity results (Trefethen & Bau,
 247 2022), yields $\text{Var}[u_h] \leq c_v \kappa(\mathcal{K})^2 \|\delta\|^2$, showing that instability grows quadratically with the
 248 condition number $\kappa(\mathcal{K})$. To temper this effect and ensure additivity, we penalize ill-conditioned
 249 representations via $-\log \kappa^2$, where \log compression brings a well-behaved dynamic range.
 250

251 In summary, $\det(\mathcal{K})$ quantifies representational adequacy, $\log \sigma_{\max}$ captures rollout amplification,
 252 and $-\log \kappa^2$ penalizes spectral instability, together
 253 forming a compact and tractable proxy consistent
 254 with the Hallucination Risk Bound. The
 255 lightweight projection layers are self-supervised
 256 spectral calibration modules, optimized offline (via
 257 AdamW) to align NTK spectral properties across heterogeneous backbones into a stable, comparable
 258 geometric space—without hallucination labels or task-specific supervision, with the backbone fully
 259 frozen and zero runtime overhead during inference. Detailed proofs are provided in Appendix B.
 260

Table 1: Correlation between NTK proxies and task families.

	SQuAD	Math-500	TruthfulQA
$\det(\mathcal{K})$	0.84	0.42	0.61
$\log \sigma_{\max} - \log \kappa^2$	0.39	0.88	0.67

261 **Empirical validation.** We empirically validate how those proxies correlate with different task
 262 families. In Table 1, $\det(\mathcal{K})$ correlates most strongly with the data-centric task SQuAD (0.84), in-
 263 dicating its role in capturing factual fidelity. In contrast, for the reasoning-oriented MATH-500, the
 264 highest correlation is observed with $\log \sigma_{\max} - \log \kappa^2$ (0.88), reflecting the importance of amplifi-
 265 cation and stability in multi-step reasoning.

266 Motivated by the above, we formally define HALLUGUARD as follows, which provides a principled
 267 and unified lens for hallucination detection:
 268

$$269 \quad \text{HALLUGUARD}(u_h) = \det(\mathcal{K}) + \log \sigma_{\max} - \log \kappa^2. \quad (7)$$

270 **4 EXPERIMENTS**
 271

272 We comprehensively evaluate HALLUGUARD across 10 diverse benchmarks, 11 competitive base-
 273 lines, and 9 popular LLM backbones. We aim to evaluate its efficacy from the following five ques-
 274 tions: **Q1**: How does HALLUGUARD perform across different task families? **Q2**: How does HAL-
 275 LUGUARD perform across LLMs of different scales? **Q3**: How does each term capture trends across
 276 task families? **Q4**: Can HALLUGUARD guide test-time inference to improve downstream reason-
 277 ing? **Q5**: How well does HALLUGUARD generalize to detecting fine-grained hallucinations beyond
 278 benchmarks?

279 Section 4.1 details the setup; Section 4.2 evaluates HALLUGUARD as a detection method(Q1–Q3),
 280 Section 4.3 applies HALLUGUARD in score-guided inference(Q4) and Section 4.4 analyzes HAL-
 281 LUGUARD on fine-grained hallucination via a case study on semantic data(Q5).
 282

283 **4.1 EVALUATION SETUP**
 284

285 **Benchmarks.** We evaluate across 10 widely used benchmarks spanning three distinct categories.
 286 For data-grounded QA, we include RAGTruth(Niu et al., 2024), NQ-Open(Kwiatkowski et al.,
 287 2019), HotpotQA(Yang et al., 2018) and SQuAD(Rajpurkar et al., 2016), which emphasize factual
 288 correctness through external evidence. For reasoning-oriented tasks, we use GSM8K(Cobbe et al.,
 289 2021), MATH-500(Hendrycks et al., 2021), and BBH(Suzgun et al., 2022), which require multi-step
 290 derivations prone to compounding errors. Finally, for instruction-following settings, we consider
 291 TruthfulQA(Lin et al., 2022a), HaluEval(Li et al., 2023) and Natural(Wang et al., 2022),
 292 which probe hallucinations under open-ended or adversarial prompts.

293 **Baselines.** We compare HALLUGUARD with 11 competitive detectors spanning diverse strate-
 294 gies. Uncertainty-based methods include Perplexity(Ren et al., 2022), Length-Normalized Predic-
 295 tive Entropy(LN-Entropy)(Malinin & Gales, 2020), Semantic Entropy(Kuhn et al., 2023), Energy
 296 Score(Liu et al., 2020) and P(true)(Kadavath et al., 2022). Consistency-based approaches cover
 297 SelfCheckGPT(Manakul et al., 2023), Lexical Similarity(Lin et al., 2022b), FActScore(Min et al.,
 298 2023) and RACE(Wang et al., 2025). Internal-state methods are represented by Inside(Chen et al.,
 299 2024a) and MIND(Su et al., 2024).

300 **LLM Backbone Models.** We evaluate 9 publicly available LLMs spanning different scales and
 301 architectures. These include five models from the Llama family (Llama2-7B, Llama2-13B, Llama2-
 302 70B, Llama3-8B, and Llama3.2-3B)(Touvron et al., 2023; Grattafiori et al., 2024), along with OPT-
 303 6.7B(Zhang et al., 2022), Mistral-7B-Instruct(Jiang et al., 2023), QwQ-32B(Yang et al., 2024), and
 304 GPT-2 (117M)(Radford et al., 2019). All models are used in their off-the-shelf form with pre-trained
 305 weights and tokenizers provided by Hugging Face, without further fine-tuning.

306 **Evaluation Metrics.** We evaluate hallucination detection ability under two regimes following Ja-
 307 niak et al. (2025): ROUGE-based reference evaluation ($*_r$) and LLM-AS-A-JUDGE ($*_{lm}$). For
 308 performance measures, we report the area under the receiver operating characteristic curve (AU-
 309 ROC) and the area under the precision-recall curve (AUPRC). AUROC is widely used to assess the
 310 quality of binary classifiers and uncertainty estimators, while AUPRC highlights performance under
 311 class imbalance. In both cases, higher values indicate better detection.

312 **4.2 MAIN RESULTS**
 313

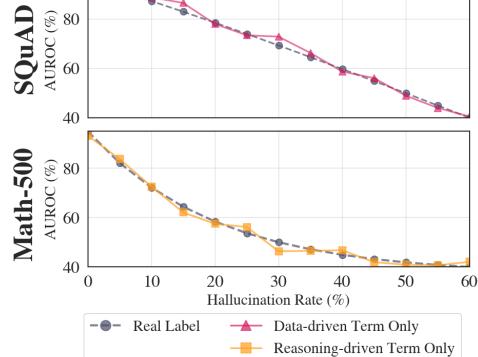
314 **Q1: How does HALLUGUARD perform across different task families?** To evaluate how HAL-
 315 LUGUARD performs across different task types, we conduct experiments on all benchmarks. For
 316 clarity, Table 2 presents representative results from three task families: data-centric (RAGTruth),
 317 reasoning-oriented (Math-500), and instruction-following (TruthfulQA). As shown, HAL-
 318 LUGUARD consistently outperforms all baselines across backbones. On Math-500, it reaches
 319 81.76% AUROC and 79.76% AUPRC, improving over the second-best method by up to 8.3%.
 320 On RAGTruth, it attains 84.59% AUROC and 81.15% AUPRC, with gains of up to 7.7%. On
 321 TruthfulQA, it achieves 77.05% AUROC and 73.79% AUPRC, exceeding the next strongest base-
 322 line by as much as 6.2%. Overall, HALLUGUARD establishes new state-of-the-art results across di-
 323 verse task families, with particularly pronounced improvements on reasoning-oriented benchmarks.

324
 325 Table 2: Performance comparison on representative benchmarks: data-centric (RAGTruth),
 326 reasoning-oriented (Math-500), and instruction-following (TruthfulQA). We highlight the **first**
 327 and **second** best results.

		GPT2				OPT-6.7B				Mistral-7B				QwQ-32B			
		AUROC _r	AUPRC _r	AUROC _{lin}	AUPRC _{lin}	AUROC _r	AUPRC _r	AUROC _{lin}	AUPRC _{lin}	AUROC _r	AUPRC _r	AUROC _{lin}	AUPRC _{lin}	AUROC _r	AUPRC _r	AUROC _{lin}	AUPRC _{lin}
		RAGTruth				BBH				TruthfulQA							
	HALLUGUARD	75.51	73.40	62.40	56.60	80.13	76.77	71.01	63.58	82.31	80.79	64.89	67.25	84.59	81.15	71.82	66.68
	Inside	73.42	73.08	61.99	56.39	79.49	71.82	66.1	62.46	75.32	73.19	64.58	61.05	77.72	73.47	66.05	64.73
	MIND	58.54	54.79	43.47	41.85	63.82	62.58	51.03	44.78	73.13	71.53	58.25	58.6	64.23	63.06	47.37	51.47
	Perplexity	58.07	56.68	43.84	41.53	64.47	61.57	47.12	52.98	65.42	63.63	53.28	51.36	73.91	72.92	60.81	59.77
	LN-Entropy	64.42	60.79	49.41	45.04	60.81	57.91	48.76	42.27	64.22	60.92	52.24	48.41	63.81	62.26	47.52	52.17
	Energy	65.53	62.42	51.9	47.22	66.54	63.28	54.21	49.19	64.36	62.26	48.64	53.93	73.26	71.21	65.43	62.32
	Semantic Ent.	60.72	59.41	50.55	45.86	70.2	68.34	54.54	56.74	66.01	64.49	53.01	55.5	66.48	64.41	51.54	50.11
	Lexical Sim.	64.72	63.1	55.04	48.04	67.28	64.62	52.55	54.86	64.96	61.17	52.34	45.11	70.87	67.41	61.25	51.01
	SelfCheckGPT	65.4	62.79	52.85	52.43	66.64	64.89	52.69	51.17	71.19	68.45	63.13	60.23	65.79	62.45	54.76	51.29
	RACE	64.83	62.84	51.8	48.44	64.26	61.03	52.74	46.22	66.34	64.54	51.88	53.86	71.13	69.96	57.58	55.54
	P(true)	66.19	64.04	48.2	56.27	68.44	65.48	57.53	53.08	72.54	71.8	57.25	59.42	65.32	63.01	53.01	52.32
	FACTScore	65.72	64.39	51.94	47.51	61.53	58.2	51.86	45.57	63.98	60.71	53.54	49.34	66.72	64.03	58.21	49.17
	HALLUGUARD	71.06	67.94	62.05	59.05	73.1	70.88	63.67	61.88	79.85	76.5	67.13	60.57	81.76	79.76	68.77	65.46
	Inside	66.18	66.81	56.15	58.62	70.64	65.22	63.28	59.28	67.2	65.49	51.3	53.46	80.8	71.49	64.05	63.42
	MIND	55.41	51.77	39.01	41.59	55.48	53.46	38.59	40.88	65.71	63.7	49.61	52.54	61.75	60.18	53.46	50.04
	Perplexity	53.28	50.22	43.86	38.98	64.89	62.12	48.65	51.99	61.97	60.05	51.15	42.87	60.28	57.75	51.62	43.38
	LN-Entropy	60.84	58.76	42.76	47.48	58.71	55.01	43.55	42.02	68.96	69.44	58.79	57.49	63.96	62.18	46.01	49.5
	Energy	55.09	51.99	46.2	39.5	53.96	50.98	42.56	34.12	66.27	62.72	49.48	50.06	69.61	68.66	54.35	57.36
	Semantic Ent.	58.16	54.81	49.61	40.39	62.63	59.52	50.14	45.02	64.99	61.33	50.11	45.53	62.76	60.95	45.77	45.75
	Lexical Sim.	51.37	47.18	38.37	39.06	61.27	58.06	44.13	42.96	58.25	55.92	46.31	46.01	69.46	67.59	55.93	52.6
	SelfCheckGPT	54.51	51.86	44.62	44.01	57.36	53.21	42.55	38.27	63.68	62.5	51.7	53.03	64.56	62.49	55.85	45.8
	RACE	55.99	54.66	41.39	38.32	64.23	62.03	56.03	53.44	66.88	64.33	49.57	48.5	59.5	55.83	46.13	41.07
	P(true)	54.57	52.88	45.45	44.74	57.02	55.49	48.81	37.84	57.11	55.21	43.93	47.05	61.49	59.03	44.37	44.69
	FACTScore	56.76	53.85	40.25	40.01	54.51	53.2	38.45	36.49	62.11	58.64	53.52	47.27	58.82	57.47	49.48	42.74
	HALLUGUARD	72.1	68.76	60.09	52.01	69.59	68.36	58.52	52.65	77.05	73.79	63.62	62.26	74.26	72.76	57.39	64.07
	Inside	70.42	68.76	60.09	52.01	62.1	59.78	51.07	51.38	62.53	60.99	52.3	49.35	70.89	64.44	56.61	56.01
	MIND	59.45	56.79	45.22	43.71	60.56	58.55	47.49	49.63	59.2	57.98	47.23	41.79	62.81	61.5	52.56	46.37
	Perplexity	50.57	47.87	40.64	35.63	55.07	52.26	44.43	42.79	60.8	59.69	47.33	41.62	55.29	52.46	43.95	43.92
	LN-Entropy	58.04	56.99	41.94	47.21	56.12	54.01	47.06	38.4	59.67	56.25	41.99	41.25	60.76	58.21	46.24	42.64
	Energy	55.02	53.31	38.78	45.16	54.42	51.85	36.21	42.57	58.93	55.25	50.76	41.72	64.15	61.32	51.78	50.02
	Semantic Ent.	61.01	57.08	43.35	45.2	51.48	47.81	34.15	38.16	54.44	53.33	36.62	40.35	66.75	63.85	51.11	46.71
	Lexical Sim.	52.54	50.56	39.94	33.42	59.74	55.72	49.89	46.81	66.16	64.05	54.08	51.65	55.24	51.36	46.39	39.57
	SelfCheckGPT	56.04	54.48	43.78	44.38	58.93	56.47	47.65	39.02	61.14	58.91	42.97	47.01	55.86	54.95	41.08	37.35
	RACE	53.02	50.33	41.7	33.81	62.95	67.89	54.61	51.93	71.06	68.49	60.4	57.44	55.75	52.62	46.5	43.19
	P(true)	55.52	53.41	38.33	38.38	54.88	53.1	38.22	40.96	55.8	52.01	40.88	38.72	57.18	55.16	46.19	38.21
	FACTScore	53.82	51.42	41.33	35.2	54.57	51.26	42.51	35.52	53.97	50.2	42.97	36.16	62.31	60.23	45.06	49.9

359 **Q2: How does HALLUGUARD perform across LLMs of different scales?** We further 360 investigate whether the effectiveness of HALLUGUARD depends on model scale, as 361 smaller backbones are typically more prone to hallucination. Table 3 reports 362 representative results on small(Llama2-7B, Llama3-8B), mid-sized(Llama2-13B), and large-scale(Llama2-363 70B) models using SQuAD, GSM8K, and HalluEval. Across all settings, HALLUGUARD 364 consistently surpasses baselines, with the largest margins on smaller models—for instance, 365 72.89% AUROC_r on HalluEval with Llama2-7B, more than 10% above the second best. Mid- 366 sized models also exhibit clear gains (e.g., 79.01% AUROC_r on GSM8K), while even large-scale models 367 like Llama2-70B see steady improvements (e.g., 83.8% AUROC_r on SQuAD). Overall, HALLUGUARD 368 benefits most on small backbones while maintaining consistent advantages across scales.

369 **Q3: How does each term capture trends across 370 task families?** As shown in Figure 2, each term 371 faithfully tracks the ground-truth trend within its 372 respective task family. On data-centric SQuAD, the 373 *data-driven term* closely follows the dashed gold 374 curve across the variant hallucination rate, capturing 375 the smooth AUROC decline. On reasoning-oriented 376



377 Figure 2: Ablation results comparing individual terms with ground-truth trends on 378 SQuAD (top) and Math-500 (bottom).

378
379 Table 3: Performance comparison across backbone scales (small, mid-sized, and large) on three
380 benchmarks: SQuAD, GSM8K, HaluEval. We highlight the **first** and second best results.
381

		Llama2-7B				Llama3-8B				Llama2-13B				Llama2-70B			
		AUROC _f	AUPRC _f	AUROC _{lin}	AUPRC _{lin}	AUROC _f	AUPRC _f	AUROC _{lin}	AUPRC _{lin}	AUROC _f	AUPRC _f	AUROC _{lin}	AUPRC _{lin}	AUROC _f	AUPRC _f	AUROC _{lin}	AUPRC _{lin}
		SQuAD				GSM8K				HaluEval							
SQuAD	HALLUGUARD	81.05	77.16	71.18	64.38	79.56	78.29	67.97	63.27	81.45	78.39	64.39	65.07	83.8	81.77	70.46	73.24
	Inside	73.63	75.74	65.22	59.11	76.13	72.44	65.62	62.94	74.68	74.81	61.01	59.51	81.24	75.09	69.48	62.4
	MIND	64.57	61.11	52.39	53.13	62.29	59.58	44.49	48.61	68.64	66.95	54.92	52.49	73.46	71.71	57.76	56.77
	Perplexity	63.93	61.77	46.97	48.2	70.51	67.51	55.71	52.68	70.19	69.22	60.33	54.82	74.23	70.88	62.24	58.05
	LN-Entropy	65.96	64.22	53.43	52.84	63.7	60.4	46.19	42.85	61.66	59.16	49.05	46.27	72.44	68.91	56.77	52.63
	Energy	59.83	56.11	46.19	43.18	64.41	61.02	56.17	46.21	61.02	59.73	48.26	42.08	69.01	66.19	58.44	49.82
	Semantic Ent.	60.29	57.73	43.63	48.83	66.52	62.62	52.37	52.7	70.58	67.22	53.31	52.94	72.01	68.51	56.49	50.9
	Lexical Sim.	70.31	69.08	53.97	53.31	66.43	63.56	53.19	50.96	68.53	67.42	50.73	54.12	68.95	67.91	60.52	56.56
	SelfCheckGPT	68.26	67.09	60.06	57.31	73.99	72.15	65.26	54.02	65.47	61.65	53.12	49.89	73.07	70.49	56.59	54.65
	RACE	71.35	69.23	59.18	54.73	68.17	66.02	54.65	53.06	64.19	60.45	47.53	45.66	64.05	62.39	54.38	50.07
GSM8K	P(true)	62.55	61.09	46.84	52.32	67.42	63.94	55.35	47.52	71.56	68.4	57.51	51.66	66.81	62.71	57.43	46.85
	FactScore	70.32	68.63	58.13	53.01	71.2	69.45	61.92	54.91	66.65	63.2	56.41	53.42	68.33	65.26	56.93	48.46
	HALLUGUARD	75.89	72.83	62.29	63.46	75.2	72.9	63.62	61.79	79.01	76.73	64.38	64.97	77.33	73.97	60.48	61.26
	Inside	74.61	68.35	58.57	62.58	73.73	67.51	56.02	57.28	75.79	76.26	60.91	59.77	72.3	72.26	54.49	58.39
	MIND	65.88	63.4	48.28	48.17	66.57	65.55	48.84	53.4	61.49	59.55	51.63	51.45	66.41	63.44	52.05	53.57
	Perplexity	66.23	64.1	53.52	52.31	57.61	53.63	41.37	41.59	60.96	58.67	46.27	47.44	64.32	62.81	51.15	51.3
	LN-Entropy	59.45	55.95	43.04	44.08	68.22	66.05	53.03	53.21	61.31	58.90	45.83	40.86	61.81	60.46	44.5	44.76
	Energy	58.15	54.71	43.65	36.71	59.79	56.52	50.31	42.23	57.58	56.07	43.39	38.94	65.27	62.94	52.8	46.6
	Semantic Ent.	57.95	54.68	42.78	41.95	66.9	64.81	50.47	55.36	62.72	59.09	49.33	44.35	60.63	57.01	46.22	40.24
	Lexical Sim.	65.8	63.7	52.12	54.07	63.29	59.87	53.17	50.02	63.83	60.20	54.43	44.82	63.27	59.41	47.42	47.38
	SelfCheckGPT	60.99	57.54	49.28	44.43	65.72	62.01	54.49	50.34	57.98	54.58	46.72	39.86	68.06	65.09	52.99	50.89
HaluEval	RACE	63.37	62.33	53.53	49.94	64.49	61.47	53.28	47.55	64.20	61.96	50.15	45.35	68.35	66.66	50.41	51.16
	P(true)	65.95	63.63	54.95	48.25	62.59	58.88	47.21	42.2	67.08	65.60	53.66	55.12	60.16	58.14	47.73	49.49
	FactScore	56.69	53.71	45.78	39.52	65.69	61.95	53.69	46.06	55.76	54.17	44.91	43.18	59.84	55.85	44.05	39.49
	HALLUGUARD	75.72	72.89	66.65	63.15	73.43	71.19	64.95	54.8	78.15	74.15	65.39	61.14	80.79	79.54	67.68	68.51
	Inside	71.33	67.63	59.73	53.15	67.95	64.93	60.31	52.21	72.01	71.97	56.51	60.64	74.62	68.33	62.22	64.4
	MIND	54.8	51.43	44.15	43.34	64.54	60.89	49.09	45.13	55.05	53.28	39.16	45.17	57.98	56.01	45.82	41.69
	Perplexity	54.02	52.53	38.76	40.51	61.31	59.36	50.62	46.01	54.99	51.39	42.64	35.64	62.85	60.59	48.29	43.85
	LN-Entropy	59.47	58.33	50.2	46.91	64.89	60.72	51.78	46.39	65.18	63.53	49.70	48.09	60.16	58.89	50.29	48.42
	Energy	62.29	59.6	50.68	42.24	62.74	61.61	50.17	52.01	60.54	59.04	43.53	50.37	60.13	58.44	48.79	48.01
	Semantic Ent.	59.39	55.94	48.53	46.35	55.25	53.05	44.5	44.35	59.44	57.72	45.38	40.77	61.57	57.99	49.07	45.39
	Lexical Sim.	63.61	61.16	55.01	44.75	56.59	55.39	44.45	45.57	53.46	52.06	41.34	40.57	64.37	60.92	54.29	50.86
	SelfCheckGPT	64.29	61.83	48.4	45.49	65.44	63.13	57.02	48.23	65.24	63.52	53.71	54.33	57.12	55.26	40.5	43.06
416	RACE	59.78	59.14	48.1	40.47	61.98	60.32	48.08	46.29	60.65	59.11	49.92	44.51	62.11	58.24	40.5	43.06
	P(true)	57.46	54.8	41.84	40.47	56.32	54.04	42.55	43.75	65.77	63.01	49.98	45.47	55.75	54.94	44.14	43.97
	FactScore	63.93	61.33	46.9	51.87	61.73	57.85	49.92	42.15	65.15	63.71	55.98	54.61	62.66	60.3	53.13	46.42

412 MATH-500, the *reasoning-driven term* mirrors the
413 monotonic AUROC drop as reasoning drift in-
414 creases. These results show that each term is well
415 matched to its task family and faithfully tracks performance trends as hallucination rates rise.

4.3 TEST-TIME INFERENCE

418 Test-time reasoning remains challenging, as models need to generate coherent multi-step solu-
419 tions without drifting into errors. To assess whether hallucination detection can mitigate this dif-
420 ficulty, we integrate detectors into beam search and evaluate Qwen2.5-Math-7B on MATH-500 and
421 Llama3.1-8B on Natural1. As shown in Table 4, HALLUGUARD achieves the strongest gains: on
422 MATH-500, it reaches 81.00% accuracy, around 10% higher than IO Prompt; on Natural, it at-
423 tains 70.96%, exceeding IO Prompt by 15.72%. These results demonstrate that HALLUGUARD not
424 only detects hallucinations but also strengthens test-time reasoning by guiding models toward more
425 reliable solutions.

426
427 Table 4: Performance of hallucination score-guided test-time inference across reasoning tasks. We
428 highlight the **first** and second best results.

Dataset	IO Prompt	Ours	Inside	MIND	Perplexity	LN-Entropy	Energy	Semantic Ent.	SelfCheck-GPT	RACE	P(true)	FactScore
MATH-500	72.70	81.00	74.90	77.10	77.10	76.20	78.00	72.50	74.00	75.10	67.10	71.60
Natural	55.24	70.96	67.42	68.32	67.51	68.04	<u>68.59</u>	68.10	65.68	66.90	68.16	67.74

432 4.4 CASE STUDY
433

434 Fine-grained hallucinations—lexically similar yet semantically incorrect outputs—pose a particu-
435 lar challenge for detection. To evaluate whether **HALLUGUARD** can comprehensively capture such
436 subtle errors, we use the PAWS dataset(Zhang et al., 2019), which contrasts paraphrases with high
437 surface overlap but divergent meanings. Following Li et al. (2025), we adopt ROUGE-based refer-
438 ence signals for evaluation (Table 5). Across model scales, **HALLUGUARD** consistently surpasses
439 baselines: it achieves 90.18% AUROC and 87.64% AUPRC on Llama2-70B, and 91.24% AUROC
440 and 88.53% AUPRC on QwQ-32B—exceeding the next-best method by nearly five points. Even on
441 GPT-2, it leads with 83.27% AUROC and 80.46% AUPRC. These results confirm **HALLUGUARD**’s
442 effectiveness in capturing fine-grained semantic inconsistencies beyond benchmark settings.
443

444 Table 5: Results on PAWS measuring semantic hallucination detection with Llama-3.2-3B, Llama2-
445 70B, and QwQ-32B. We highlight the **first** and **second** best results.

Method	Ours	Inside	MIND	Perplexity	LN-Entropy	Energy	Semantic Ent.	Lexical Sim.	SelfCheck-GPT	RACE	P(true)	FActScore	
Llama3.2	AUROC AUPRC	85.63 82.14	<u>80.46</u> <u>77.28</u>	78.93 75.41	71.27 67.55	72.19 68.34	73.05 70.22	75.11 72.41	64.58 59.67	77.82 73.41	79.47 76.28	73.56 70.43	68.44 63.58
Llama2	AUROC AUPRC	90.18 87.64	<u>85.47</u> <u>82.38</u>	83.92 81.06	75.68 71.42	76.23 72.59	77.14 74.28	79.06 76.32	68.35 63.44	82.71 78.89	84.26 81.73	77.39 74.18	72.62 67.58
QwQ	AUROC AUPRC	91.24 88.53	85.41 82.27	84.56 81.37	76.72 72.63	77.43 73.29	78.29 75.44	80.42 77.18	69.54 64.27	83.59 79.42	<u>86.38</u> <u>83.41</u>	78.53 75.21	73.46 68.32

453
454 5 RELATED WORK
455

456 In this section, we review prior hallucination-detection methods by their detection target—*Data-
457 driven hallucinations* and *reasoning-driven hallucinations*.
458

459 **Detecting Data-Driven Hallucinations.** Recent work has shown that internal activations encode
460 rich indicators of such flaws. Chen et al. (2024a) proposed EIGENSCORE, which computes statis-
461 tics of hidden representations from the eigen matrix to estimate hallucination risk. Su et al. (2024)
462 introduced MIND, an unsupervised detector that models temporal dynamics of hidden states with-
463 out requiring labels, along with HELM benchmark to enable standardized evaluation. Azaria &
464 Mitchell (2023) demonstrated using linear probes on intermediate states to predict truthfulness.
465

466 **Detecting Reasoning-Driven Hallucinations.** There are other works targeting inference-time in-
467 consistencies during generation—such as logical errors, instability across decoding steps, or tem-
468 poral drift in extended outputs. Manakul et al. (2023) proposed SELFCHECKGPT, which assesses
469 self-consistency by sampling multiple candidate generations and measuring their alignment using
470 entailment and lexical overlap. Kalai & Vempala (2024) introduced a suite of calibration-based un-
471 certainty scores designed to capture hallucination risk directly from output distributions. Ding et al.
472 (2025) proposed REACTSCORE, which integrates entropy with intermediate reasoning traces to de-
473 tect failures in multi-step decision-making. FActSCORE(Min et al., 2023) decomposes outputs into
474 atomic factual units and verifies each against retrieved passages using entailment-based scoring.
475

476 6 CONCLUSION
477

478 The reliability of LLMs is often undermined by hallucinations, which arise from two main sources:
479 *data-driven*, caused by flawed knowledge acquired during training, and *reasoning-driven*, stemming
480 from inference-time instabilities in multi-step generation. Although these hallucinations frequently
481 evolve in practice, existing detectors usually target only one source and lack a solid theoretical foun-
482 dation. To address this gap, we propose a unified theoretical framework—a *Hallucination Risk Bound*,
483 which formally decomposes hallucination risk into data-driven and reasoning-driven components,
484 offering a principled view of how hallucinations emerge and evolve during generation. Building
485 on this foundation, we introduce **HALLUGUARD**, a NTK-based score that measures sensitivity
486 to semantic perturbations and captures internal instabilities, thereby enabling holistic detection of
487 both data-driven and reasoning-driven hallucinations. We evaluate **HALLUGUARD** across 10 di-
488 verse benchmarks, 11 competitive baselines, and 9 popular LLM backbones, where it consistently
489

486 achieves state-of-the-art performance, demonstrating robustness and practical efficacy. Looking
 487 forward, leveraging HalluGuard’s sensitivity to error propagation offers a promising pathway for
 488 developing prognostic indicators in interactive multi-turn dialogues, enabling systems to predict and
 489 preempt hallucinations before they fully manifest.

491 REPRODUCIBILITY STATEMENT

493 We have taken several measures to ensure the reproducibility of our work. A complete description
 494 of the theoretical framework, including the formal assumptions and proofs of the Hallucination Risk
 495 Bound, is provided in Section 3 and Appendix A. Detailed experimental settings and evaluation
 496 protocols are documented in Section 4 and Appendix C.1, covering all 10 benchmarks, 11 base-
 497 lines, and 9 LLM backbones. Together, these resources ensure that both our theoretical claims and
 498 empirical results can be independently validated and extended by the community.

500 ETHICS STATEMENT

502 This study is based exclusively on publicly available datasets and open-source large language mod-
 503 els, and does not involve human subjects or the use of private data. All scientific concepts, method-
 504 ological designs, experimental implementations, and resulting conclusions remain entirely the re-
 505 sponsibility of the authors.

507 REFERENCES

509 Amos Azaria and Tom Mitchell. The internal state of an llm knows when it’s lying. In *Findings of*
 510 *the Association for Computational Linguistics: EMNLP*, 2023.

511 Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
 512 Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
 513 Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel,
 514 Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Ste-
 515 fano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
 516 Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Pe-
 517 ter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard,
 518 Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte
 519 Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya
 520 Kumar, Faisal Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li,
 521 Xuechen Li, Ece Kamar, Michal Kosinski, Ryan Chi-Ying Hsieh, Drew A. Linsley, Long O. Mai,
 522 Nikolay Manchev, Christopher D. Manning, Yian Yin, Christopher J. N. de M. L. Matthews, Lu-
 523 cia Mondragon, Ognjen Oreskovic, Mark Sabini, Yusuf Sahin, Clark Barrett, Christopher Potts,
 524 James Y. Zou, Jiajun Wu, and Percy Liang. On the opportunities and risks of foundation models,
 2021.

525 Jean Céa. Approximation variationnelle des problèmes aux limites. In *Annales de l’institut Fourier*,
 526 volume 14, pp. 345–444, 1964.

528 Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu, Mingyuan Tao, Zhihang Fu, and Jieping Ye. In-
 529 side: Llms’ internal states retain the power of hallucination detection, 2024a. URL <https://arxiv.org/abs/2402.03744>.

531 Yuyan Chen, Qiang Fu, Yichen Yuan, Zhihao Wen, Ge Fan, Dayiheng Liu, Dongmei Zhang, Zhixu
 532 Li, and Yanghua Xiao. Hallucination detection: Robustly discerning reliable answers in large
 533 language models, 2024b. URL <https://arxiv.org/abs/2407.04121>.

534 Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programing,
 535 2020. URL <https://arxiv.org/abs/1812.07956>.

537 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 538 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 539 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.

540 Fabio Dennstädt, Janna Hastings, Paul Martin Putora, Max Schmerder, and Nikola Cihoric. Implementing large language models in healthcare while balancing control, collaboration, costs and
541 542 543 544 545 546 547 548 549
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 990 991 992 993 994 995 996 997 998 999 1000
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1

Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegen, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghatham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021. URL <https://arxiv.org/abs/2103.03874>.

Lei Huang, Weijiang Yu, Weitao Wang, Yujia Wang, Shi-Qi Chen, and Ju-Hua Wang. A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions, 2023.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization in neural networks, 2020. URL <https://arxiv.org/abs/1806.07572>.

Denis Janiak, Jakub Binkowski, Albert Sawczyn, Bogdan Gabrys, Ravid Schwartz-Ziv, and Tomasz Kajdanowicz. The illusion of progress: Re-evaluating hallucination detection in llms, 2025.

648 Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
 649 Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. *ACM*
 650 *Computing Surveys*, 55(12):1–38, March 2023. ISSN 1557-7341. doi: 10.1145/3571730. URL
 651 <http://dx.doi.org/10.1145/3571730>.

652 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
 653 lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 654 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
 655 Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.

656 Peizhong Ju, Xiaojun Lin, and Ness B. Shroff. On the generalization power of the overfitted three-
 657 layer neural tangent kernel model, 2022. URL <https://arxiv.org/abs/2206.02047>.

658 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
 659 Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott Johnston, Sheer
 660 El-Showk, Andy Jones, Nelson Elhage, Tristan Hume, Anna Chen, Yuntao Bai, Sam Bow-
 661 man, Stanislav Fort, Deep Ganguli, Danny Hernandez, Josh Jacobson, Jackson Kernion, Shauna
 662 Kravec, Liane Lovitt, Kamal Ndousse, Catherine Olsson, Sam Ringer, Dario Amodei, Tom
 663 Brown, Jack Clark, Nicholas Joseph, Ben Mann, Sam McCandlish, Chris Olah, and Jared Ka-
 664 plan. Language models (mostly) know what they know, 2022.

665 Adam Tauman Kalai and Santosh S. Vempala. Calibrated language models must hallucinate, 2024.
 666 URL <https://arxiv.org/abs/2311.14648>.

667 Markus Kattnig, Alessa Angerschmid, Thomas Reichel, and Roman Kern. Assessing trustworthy ai:
 668 Technical and legal perspectives of fairness in ai. *Computer Law & Security Review*, 55:106053,
 669 2024.

670 Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
 671 uncertainty estimation in natural language generation, 2023.

672 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 673 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
 674 Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
 675 Petrov. Natural questions: A benchmark for question answering research. *Transactions of the*
 676 *Association for Computational Linguistics*, 7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL
 677 <https://aclanthology.org/Q19-1026/>.

678 Jaehoon Lee, Samuel S. Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman Novak,
 679 and Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical study, 2020a.
 680 URL <https://arxiv.org/abs/2007.15801>.

681 Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
 682 Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
 683 under gradient descent *. *Journal of Statistical Mechanics: Theory and Experiment*, 2020(12):
 684 124002, December 2020b. ISSN 1742-5468. doi: 10.1088/1742-5468/abc62b. URL <http://dx.doi.org/10.1088/1742-5468/abc62b>.

685 Jiawei Li, Akshayaa Magesh, and Venugopal V. Veeravalli. Principled detection of hallucinations in
 686 large language models via multiple testing, 2025. URL <https://arxiv.org/abs/2508.18473>.

687 Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Halueval: A large-
 688 scale hallucination evaluation benchmark for large language models, 2023. URL <https://arxiv.org/abs/2305.11747>.

689 Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization
 690 branches out*, pp. 74–81, 2004.

691 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 692 falsehoods, 2022a. URL <https://arxiv.org/abs/2109.07958>.

702 Zi Lin, Jeremiah Zhe Liu, and Jingbo Shang. Towards collaborative neural-symbolic graph se-
 703 mantic parsing via uncertainty. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio
 704 (eds.), *Findings of the Association for Computational Linguistics: ACL 2022*, pp. 4160–4173,
 705 Dublin, Ireland, May 2022b. Association for Computational Linguistics. doi: 10.18653/v1/2022.
 706 *findings-acl.328*. URL <https://aclanthology.org/2022.findings-acl.328/>.

707 Chengzhi Liu, Zhongxing Xu, Qingyue Wei, Juncheng Wu, James Zou, Xin Eric Wang, Yuyin Zhou,
 708 and Sheng Liu. More thinking, less seeing? assessing amplified hallucination in multimodal
 709 reasoning models, 2025. URL <https://arxiv.org/abs/2505.21523>.

710 Weitang Liu, Xiaoyun Wang, John D. Owens, and Yixuan Li. Energy-based out-of-distribution
 711 detection, 2020.

712 Andrey Malinin and Mark Gales. Uncertainty estimation in autoregressive structured prediction,
 713 2020.

714 Potsawee Manakul, Adian Liusie, and Mark J. F. Gales. Selfcheckgpt: Zero-resource black-box
 715 hallucination detection for generative large language models, 2023. URL <https://arxiv.org/abs/2303.08896>.

716 Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen tau Yih, Pang Wei Koh, Mohit Iyyer,
 717 Luke Zettlemoyer, and Hannaneh Hajishirzi. Factscore: Fine-grained atomic evaluation of fac-
 718 tual precision in long form text generation, 2023. URL <https://arxiv.org/abs/2305.14251>.

719 Cheng Niu, Yuanhao Wu, Juno Zhu, Siliang Xu, Kashun Shum, Randy Zhong, Junlong Song, and
 720 Tong Zhang. Ragtruth: A hallucination corpus for developing trustworthy retrieval-augmented
 721 language models, 2024. URL <https://arxiv.org/abs/2401.00396>.

722 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 723 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

724 Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
 725 for machine comprehension of text, 2016. URL <https://arxiv.org/abs/1606.05250>.

726 Jie Ren, Jiaming Luo, Yao Zhao, Kundan Krishna, Mohammad Saleh, Balaji Lakshminarayanan,
 727 and Peter J. Liu. Out-of-distribution detection and selective generation for conditional language
 728 models, 2022.

729 Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela, and Jason Weston. Retrieval augmentation
 730 reduces hallucination in conversation. In *EMNLP*, 2021.

731 Weihang Su, Changyue Wang, Qingyao Ai, Yiran HU, Zhijing Wu, Yujia Zhou, and Yiqun Liu. Un-
 732 supervised real-time hallucination detection based on the internal states of large language models,
 733 2024. URL <https://arxiv.org/abs/2403.06448>.

734 Zhongxiang Sun, Qipeng Wang, Haoyu Wang, Xiao Zhang, and Jun Xu. Detection and mitigation
 735 of hallucination in large reasoning models: A mechanistic perspective, 2025. URL <https://arxiv.org/abs/2505.12886>.

736 Mirac Suzgun, Nathan Scales, Nathanael Schärlí, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 737 Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-
 738 bench tasks and whether chain-of-thought can solve them, 2022. URL <https://arxiv.org/abs/2210.09261>.

739 Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kavya Elangovan, Lio Gutierrez, Teng Fong
 740 Tan, and Daniel Shu Wei Ting. Large language models in medicine. *Nature Medicine*, 29(8):
 741 1930–1940, 2023.

742 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 743 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
 744 Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
 745 Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,

756 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 757 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 758 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 759 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 760 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 761 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 762 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 763 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
 764 2023. URL <https://arxiv.org/abs/2307.09288>.

765 Lloyd N Trefethen and David Bau. *Numerical linear algebra*. SIAM, 2022.
 766

767 Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*,
 768 volume 47. Cambridge university press, 2018.

769 Changyue Wang, Weihang Su, Qingyao Ai, and Yiqun Liu. Joint evaluation of answer and reasoning
 770 consistency for hallucination detection in large reasoning models, 2025.
 771

772 Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei, An-
 773 jana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, Eshaan
 774 Pathak, Giannis Karamanolakis, Haizhi Gary Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson,
 775 Kirby Kuznia, Krima Doshi, Maitreya Patel, Kuntal Kumar Pal, Mehrad Moradshahi, Mihir Par-
 776 mar, Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri,
 777 Rushang Karia, Shailaja Keyur Sampat, Savan Doshi, Siddhartha Mishra, Sujan Reddy, Sumanta
 778 Patro, Tanay Dixit, Xudong Shen, Chitta Baral, Yejin Choi, Noah A. Smith, Hannaneh Hajishirzi,
 779 and Daniel Khashabi. Super-naturalinstructions: Generalization via declarative instructions on
 780 1600+ nlp tasks, 2022. URL <https://arxiv.org/abs/2204.07705>.

781 Zeyu Wei, Shuo Wang, Xiaohui Rong, Xuemin Liu, and He Li. Shadows in the attention: Contextual
 782 perturbation and representation drift in the dynamics of hallucination in llms, 2025. URL <https://arxiv.org/abs/2505.16894>.
 783

784 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 785 Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
 786 Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jin-
 787 gren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Kepin Chen, Kexin
 788 Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao,
 789 Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wen-
 790 bin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
 791 Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu,
 792 Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024. URL
 793 <https://arxiv.org/abs/2407.10671>.
 794

795 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
 796 and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 797 answering, 2018. URL <https://arxiv.org/abs/1809.09600>.

798 Xinyue Zeng, Haohui Wang, Junhong Lin, Jun Wu, Tyler Cody, and Dawei Zhou. Lensllm: Unveil-
 799 ing fine-tuning dynamics for llm selection. *ICML*, 2025. arXiv preprint arXiv:2505.03793.
 800

801 Muru Zhang, Ofir Press, William Merrill, Alisa Liu, and Noah A. Smith. How language model
 802 hallucinations can snowball, 2023.

803 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuhui Chen, Christo-
 804 pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer,
 805 Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettle-
 806 moyer. Opt: Open pre-trained transformer language models, 2022. URL <https://arxiv.org/abs/2205.01068>.
 807

808 Yuan Zhang, Jason Baldridge, and Luheng He. Paws: Paraphrase adversaries from word scrambling,
 809 2019. URL <https://arxiv.org/abs/1904.01130>.

810 Zhenliang Zhang, Xinyu Hu, Huixuan Zhang, Junzhe Zhang, and Xiaojun Wan. Icr probe: Track-
811 ing hidden state dynamics for reliable hallucination detection in llms, 2025. URL <https://arxiv.org/abs/2507.16488>.
812

813 Weihong Zhong, Xiaocheng Feng, Liang Zhao, Qiming Li, Lei Huang, Yuxuan Gu, Weitao Ma,
814 Yuan Xu, and Bing Qin. Investigating and mitigating the multimodal hallucination snowballing
815 in large vision-language models, 2024.
816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 **A PROOF OF HALLUCINATION RISK BOUND**
865866 **A.1 ASSUMPTIONS VALIDATION**
867868 We provide theoretical and practical justification for the assumptions adopted in Section 3.2, which
869 serve to ensure the well-posedness and interpretability of the proposed Hallucination Risk Bound.
870 These assumptions follow standard practice in NTK-based analyses and stability theory, and are
871 consistent with the empirical behavior observed in modern large language models.
872873 **Assumption A1 (Hilbert/RKHS structure with bounded second moment).** This assumption
874 aligns with the classical Neural Tangent Kernel (NTK) approximation regime, where the model’s
875 feature mapping is embedded in a reproducing kernel Hilbert space (RKHS) and the induced kernel
876 admits a well-defined second moment. Such conditions are fundamental to the convergence and
877 generalization analyses of infinitely wide neural networks, and are widely adopted in NTK theory
878 (Jacot et al., 2020). In practice, bounded second-moment behavior is consistent with the hidden-
879 state distributions observed across all evaluated LLMs, as reflected by stable activation statistics and
880 NTK spectral profiles(Lee et al., 2020b).
881882 **Assumption A2 (Local Lipschitz continuity of the encoder Φ).** This assumption reflects stan-
883 dard smoothness conditions in high-dimensional learning theory, ensuring that small perturbations
884 in the input space induce controlled deviations in the encoded representation (Vershynin, 2018).
885 Such local Lipschitz behavior is commonly invoked to guarantee stability under perturbations and
886 is consistent with theoretical analyses of deep representations.
887888 **Assumption A3 (Local smoothness / second-order expansion).** This assumption corresponds to
889 the classical NTK linearization framework, which approximates the behavior of wide neural net-
890 works through a local second-order expansion around a set of reference points (Lee et al., 2020a;
891 Chizat et al., 2020). Importantly, our formulation requires this condition only locally around the
892 K sampled trajectories used by HalluGuard, rather than globally across the entire model parame-
893 ter space. This localized validity preserves theoretical soundness while avoiding unrealistic global
894 smoothness requirements that are known to be overly restrictive in large-scale models.
895896 **A.2 BOUND PROOF**
897898 We restate the main inequality from Section 3.2:
899

900
$$\|u^* - u_h\| \leq \left[1 + k_{\text{pt}} \log \mathcal{O}(P, L) + k \frac{\epsilon_{\text{mismatch}}}{\text{Signal}_k} \right] \inf_{u \in U_h} \|u^* - u\| + |\mathcal{L}| \exp \left(- \frac{K\epsilon^2}{C} \right) \alpha (e^{\beta T} - 1). \quad (8)$$

901

902 **Step 1: Triangle inequality split.** We define the hallucination decomposition by writing:
903

904
$$\|u^* - u_h\| = \|u^* - \mathbb{E}[u_h] + \mathbb{E}[u_h] - u_h\| \leq \|u^* - \mathbb{E}[u_h]\| + \|u_h - \mathbb{E}[u_h]\|.$$

905

906 We denote the first term as the deterministic approximation error (bias) and the second term as the
907 stochastic residual (variance).
908909 **Step 2: Approximation term via Céa’s lemma.** Assume $\mathbb{E}[u_h]$ is the Galerkin projection of u^*
910 in a coercive bilinear form $a(\cdot, \cdot)$, i.e., for all $v \in U_h$,
911

912
$$a(\mathbb{E}[u_h], v) = \ell(v).$$

913

914 Then, by Céa’s lemma, we have:
915

916
$$\|u^* - \mathbb{E}[u_h]\| \leq \frac{\Lambda}{\gamma} \inf_{u \in U_h} \|u^* - u\|,$$

917

918 where Λ and γ are continuity and coercivity constants of $a(\cdot, \cdot)$, respectively.
919

918 **Step 3: Variance term via Bernstein concentration.** Let $\ell_h := \frac{1}{|\mathcal{L}|} \sum_{i=1}^{|\mathcal{L}|} \ell_i$ be the empirical
 919 supervision functional from finite labeled chains. Define the fluctuation:
 920

$$921 \quad \Delta\ell := \ell_h - \ell,$$

922 and the residual:
 923

$$923 \quad r := u_h - \mathbb{E}[u_h], \quad \text{so that} \quad A_h r = \Delta\ell.$$

924 Applying operator norm bounds and covering number uniformization (cf. Vershynin, 2018), we have
 925 with high probability:
 926

$$926 \quad \|r\| \leq |\mathcal{L}| \exp\left(-\frac{K\epsilon^2}{C}\right) \alpha(e^{\beta T} - 1),$$

927 which completes the proof.
 928

930 **Step 4: Substitution.** Combining both terms yields:
 931

$$932 \quad \|u^* - u_h\| \leq \frac{\Lambda}{\gamma} \inf_{u \in U_h} \|u^* - u\| + |\mathcal{L}| \exp\left(-\frac{K\epsilon^2}{C}\right) \alpha(e^{\beta T} - 1).$$

933 We now bound Λ/γ via NTK decomposition.
 934

936 A.3 DECOMPOSITION OF NTK CONTINUITY CONSTANT

937 Let $a(\cdot, \cdot)$ denote the bilinear form induced by the NTK in the finite-width regime. We decompose:
 938

$$939 \quad a = a_0 + \delta_{\text{pt}} + \delta_{\text{mm}},$$

940 where a_0 is the infinite-width baseline kernel, δ_{pt} is the perturbation due to pre-training noise, and
 941 δ_{mm} is the domain mismatch from fine-tuning. The continuity constant satisfies:
 942

$$943 \quad \Lambda = \Lambda_0 + \Delta_{\text{pt}} + \Delta_{\text{mm}}.$$

944 **Bounding Δ_{pt} .** Following Jacot et al. (2020), we apply matrix concentration to finite-width NTK:
 945

$$946 \quad \Delta_{\text{pt}} \leq \gamma k_{\text{pt}} \log \mathcal{O}(P, L).$$

947 **Bounding Δ_{mm} .** Using spectral generalization bounds under data distribution shift (Lee et al.,
 948 2020b), we have:
 949

$$950 \quad \Delta_{\text{mm}} \leq \gamma k \frac{\epsilon_{\text{mismatch}}}{\text{Signal}_k}.$$

951 Substituting both into the bound for Λ/γ , we get:
 952

$$953 \quad \frac{\Lambda}{\gamma} \leq 1 + k_{\text{pt}} \log \mathcal{O}(P, L) + k \frac{\epsilon_{\text{mismatch}}}{\text{Signal}_k}.$$

956 B HALLUGUARD DERIVATION AND INTERPRETATION

957 B.1 PRELIMINARIES AND NOTATION

959 Let $\mathcal{K} \in \mathbb{R}^{r \times r}$ be the NTK Gram matrix formed on r light semantic perturbations (see Assumptions
 960 A1–A4 in the main theory section). Denote its eigen decomposition by $\mathcal{K} = V\Lambda V^\top$ with
 961

$$962 \quad \Lambda = \text{diag}(\lambda_1, \dots, \lambda_r), \quad \lambda_1 \geq \dots \geq \lambda_r > 0.$$

963 Let $\lambda_{\max} := \lambda_1$, $\lambda_{\min} := \lambda_r$, $\kappa(\mathcal{K}) := \lambda_{\max}/\lambda_{\min}$, and $\det(\mathcal{K}) = \prod_{i=1}^r \lambda_i$. Let Φ denote the NTK
 964 feature matrix whose columns span the hypothesis subspace U_h , so that $\mathcal{K} = \Phi^\top \Phi$, $\|\Phi\|_2 = \sqrt{\lambda_{\max}}$,
 965 and $\sigma_{\min}(\Phi) = \sqrt{\lambda_{\min}}$. For the autoregressive decoder, let J_t be the step- t input–output Jacobian,
 966 and write $\sigma_{\max} := \sup_t \|J_t\|_2$.
 967

968 We will use the following two standard inequalities repeatedly:
 969

$$970 \quad \text{Maclaurin/AM} - \text{GMoneigenvalues} : \quad \left(\prod_{i=1}^r \lambda_i \right)^{1/r} \leq \frac{1}{r} \sum_{i=1}^r \lambda_i = \frac{\text{tr}(\mathcal{K})}{r}, \quad (9)$$

$$971 \quad \text{Submultiplicativity} : \quad \|AB\|_2 \leq \|A\|_2 \|B\|_2. \quad (10)$$

972 B.2 REPRESENTATIONAL ADEQUACY VIA $\det(\mathcal{K})$ WITH EXPLICIT CONSTANTS
973974 **Assumptions for this subsection.** Beyond A1–A3, we assume a mild *source condition* and a
975 *spectral envelope*:976 **S1 (Source condition)** There exist $s > 0$ and $R_s > 0$ such that $u^* \in \text{Range}(\Lambda^s)$, i.e.,
977 $\sum_{i=1}^r \frac{\langle u^*, v_i \rangle^2}{\lambda_i^{2s}} \leq R_s^2$. This is standard in kernel approximation and encodes RKHS reg-
978 ularity.979 **S2 (Spectral envelope)** There exist constants $0 < \underline{\lambda} \leq \bar{\lambda} < \infty$ and $\alpha > 1$ such that $\lambda_i \leq \bar{\lambda}$ for
980 all i and $\lambda_r \geq \underline{\lambda} r^{-\alpha}$. (Polynomial decay is a common stylization; other envelopes can be
981 treated similarly.)982 **Lemma B.1** (Best-approximation error under source condition). *Let $U_h = \text{span}\{v_1, \dots, v_r\}$. Under S1,*

983
$$\inf_{u \in U_h} \|u^* - u\| = \|u^* - \Pi_{U_h} u^*\| \leq R_s \lambda_{r+1}^s,$$

984 where λ_{r+1} denotes the next-eigenvalue of the infinite-dimensional kernel operator (or, equivalently,
985 the empirical tail eigenvalue if more perturbations are added).986 *Proof.* Write $u^* = \sum_{i \geq 1} c_i v_i$ with $c_i = \langle u^*, v_i \rangle$. Then $\|u^* - \Pi_{U_h} u^*\|^2 = \sum_{i > r} c_i^2 \leq \sum_{i > r} \lambda_i^{2s} \cdot$
987 $\frac{c_i^2}{\lambda_i^{2s}} \leq \lambda_{r+1}^{2s} \sum_{i > r} \frac{c_i^2}{\lambda_i^{2s}} \leq \lambda_{r+1}^{2s} R_s^2$. \square 988 To connect λ_{r+1} (or λ_r) to $\det(\mathcal{K})$, we need an explicit lower bound of the form $\lambda_r \geq \underline{c} \det(\mathcal{K})^\theta$ with constants (\underline{c}, θ) depending on the spectral envelope. The following inequality suffices.989 **Lemma B.2** (Lower-bounding λ_r by $\det(\mathcal{K})$). *Suppose $\lambda_i \leq \bar{\lambda}$ for all i and $\lambda_r > 0$. Then*

990
$$\lambda_r \geq \frac{\det(\mathcal{K})}{\bar{\lambda}^{r-1}} \quad \text{and} \quad \lambda_r^s \geq \frac{\det(\mathcal{K})^s}{\bar{\lambda}^{s(r-1)}}.$$

991 *Proof.* Since $\det(\mathcal{K}) = \prod_{i=1}^r \lambda_i \leq \bar{\lambda}^{r-1} \lambda_r$, we obtain $\lambda_r \geq \det(\mathcal{K})/\bar{\lambda}^{r-1}$. Raising to power s yields the second inequality. \square 992 **Theorem B.3** (Determinant-based adequacy bound with explicit constants). *Under A1–A3 and S1–S2,*

993
$$\inf_{u \in U_h} \|u^* - u\| \leq C_d \det(\mathcal{K})^{-c_d} \|u^*\|,$$

994 with

995
$$c_d = \frac{s}{r-1} \quad \text{and} \quad C_d = \bar{\lambda}^s \frac{R_s}{\|u^*\|}.$$

996 Moreover, if the empirical spectrum satisfies $\lambda_r \geq \underline{\lambda} r^{-\alpha}$, one may choose

997
$$c_d = \min \left\{ \frac{s}{r-1}, \frac{s}{\alpha} \cdot \frac{1}{\log(\frac{\bar{\lambda}^r}{\det(\mathcal{K})})} \right\},$$

998 which improves with slower decay (smaller α).1000 *Proof.* By Lemma B.1 with $\lambda_{r+1} \leq \lambda_r$, $\inf_{u \in U_h} \|u^* - u\| \leq R_s \lambda_r^s$. Lemma B.2 gives $\lambda_r^s \geq \det(\mathcal{K})^s / \bar{\lambda}^{s(r-1)}$; rearranging,

1001
$$\inf_{u \in U_h} \|u^* - u\| \leq R_s \bar{\lambda}^{s(r-1)} \det(\mathcal{K})^{-s}.$$

1002 Rescale constants relative to $\|u^*\|$ by setting $C_d := \bar{\lambda}^s (R_s / \|u^*\|)$ and $c_d := s / (r-1)$ to obtain
1003 the stated form:

1004
$$\inf_{u \in U_h} \|u^* - u\| \leq (\bar{\lambda}^s \frac{R_s}{\|u^*\|}) \det(\mathcal{K})^{-s/(r-1)} \|u^*\|.$$

1005 The variant using the envelope $\lambda_r \geq \underline{\lambda} r^{-\alpha}$ is obtained by combining $\det(\mathcal{K}) \leq \bar{\lambda}^{r-1} \lambda_r$ with the
1006 explicit lower bound on λ_r , yielding the alternative exponent shown. \square

1026 **Numerical note (stable surrogate).** In practice we use $\log \det(\mathcal{K})$ via Cholesky and aggregate
 1027 with z -normalization across components to avoid scale domination by any single term.
 1028

1029 **B.3 ROLLOUT AMPLIFICATION VIA JACOBIAN PRODUCTS (EXACT CONSTANTS)**
 1030

1031 **Theorem B.4** (Amplification bound with exact constant). *Let J_t be the step- t Jacobian and $\sigma_{\max} :=$
 1032 $\sup_t \|J_t\|_2$. Then*

$$1033 \quad \left\| \prod_{t=1}^T J_t \right\|_2 \leq \prod_{t=1}^T \|J_t\|_2 \leq \sigma_{\max}^T.$$

1036 Defining $\beta := \log \sigma_{\max}$ gives $e^{\beta T} = \sigma_{\max}^T$, hence

$$1037 \quad e^{\beta T} \leq \sigma_{\max}^T,$$

1039 with equality if and only if $\|J_t\|_2 = \sigma_{\max}$ for all t and the top singular directions align across
 1040 factors.

1041 *Proof.* The first inequality is equation 10 applied iteratively. The second is by definition of σ_{\max} .
 1042 Setting $\beta = \log \sigma_{\max}$ yields equality in the worst case. Alignment of top singular vectors is the
 1043 tightness condition for submultiplicativity. \square

1045 **Token-dependent refinement.** If one defines $\sigma_t := \|J_t\|_2$ and $\beta_{\text{avg}} := \frac{1}{T} \sum_{t=1}^T \log \sigma_t$, then
 1046 $\left\| \prod_{t=1}^T J_t \right\|_2 \leq \exp\left(\sum_t \log \sigma_t\right) = e^{\beta_{\text{avg}} T}$, which is tighter but requires per-step measurements.
 1047

1049 **B.4 CONDITIONING-INDUCED VARIANCE WITH $\kappa(\mathcal{K})^2$ SCALING**
 1050

1051 We now give an explicit projector-perturbation derivation showing the quadratic dependence on the
 1052 condition number.

1053 **Setup.** Let $P := \Phi(\Phi^\top \Phi)^\dagger \Phi^\top$ be the orthogonal projector onto U_h ; then the linearized output is
 1054 $u_h = P u^*$. Consider a feature perturbation $\Delta \Phi$ induced by a prefix perturbation δ satisfying

$$1056 \quad \|\Delta \Phi\|_2 \leq L_\Phi \|\delta\| \quad (\text{A2/A3}).$$

1057 Let the perturbed projector be $\tilde{P} := (\Phi + \Delta \Phi)((\Phi + \Delta \Phi)^\top (\Phi + \Delta \Phi))^\dagger (\Phi + \Delta \Phi)^\top$ and define
 1058 $\Delta P := \tilde{P} - P$.

1059 **Lemma B.5** (Projector perturbation bound). *There exists an absolute constant $C_\Pi > 0$ such that*

$$1062 \quad \|\Delta P\|_2 \leq C_\Pi \frac{\|\Phi\|_2}{\sigma_{\min}(\Phi)^2} \|\Delta \Phi\|_2 = C_\Pi \frac{\sqrt{\lambda_{\max}}}{\lambda_{\min}} \|\Delta \Phi\|_2 = C_\Pi \kappa(\mathcal{K}) \frac{\|\Delta \Phi\|_2}{\sqrt{\lambda_{\min}}}.$$

1064 *Proof idea.* Use standard bounds for the perturbation of orthogonal projectors onto column spaces
 1065 (e.g., Wedin's $\sin\Theta$ theorem and Stewart-Sun, Matrix Perturbation Theory, Thm 3.6). One shows

$$1067 \quad \|\Delta P\|_2 \leq 2 \|\Phi^\top \Phi\|_2 \|\Phi^\top \Delta \Phi\|_2 + \mathcal{O}(\|\Delta \Phi\|_2^2).$$

1068 Since $\|\Phi^\top \Phi\|_2 = 1/\lambda_{\min}$ and $\|\Phi^\top \Delta \Phi\|_2 \leq \|\Phi\|_2 \|\Delta \Phi\|_2 = \sqrt{\lambda_{\max}} \|\Delta \Phi\|_2$, the result follows
 1069 for sufficiently small $\|\Delta \Phi\|_2$, absorbing lower-order terms into C_Π . \square

1070 **Theorem B.6** (Variance amplification with explicit constant). *Let $u_h(\Phi) = P u^*$ and $u_h(\Phi + \Delta \Phi) =$
 1071 $\tilde{P} u^*$. Then*

$$1073 \quad \|u_h(\Phi + \Delta \Phi) - u_h(\Phi)\| \leq C_\Pi \kappa(\mathcal{K}) \frac{\|\Delta \Phi\|_2}{\sqrt{\lambda_{\min}}} \|u^*\|.$$

1075 If $\Delta \Phi$ is induced by a random prefix perturbation δ with $\|\Delta \Phi\|_2 \leq L_\Phi \|\delta\|$ and $\mathbb{E} \|\delta\|^2 = \sigma_\delta^2$, then

$$1077 \quad \text{Var}[u_h] \leq \mathbb{E} \|u_h(\Phi + \Delta \Phi) - u_h(\Phi)\|^2 \leq c_v \kappa(\mathcal{K})^2 \|\delta\|^2,$$

1078 with

$$1079 \quad c_v = C_\Pi^2 \frac{L_\Phi^2 \|u^*\|^2}{\lambda_{\min}}.$$

1080 *Proof.* By Lemma B.5, $\|u_h(\Phi + \Delta\Phi) - u_h(\Phi)\| = \|\Delta P u^*\| \leq \|\Delta P\|_2 \|u^*\| \leq$
 1081 $C_\Pi \kappa(\mathcal{K}) \frac{\|\Delta\Phi\|_2}{\sqrt{\lambda_{\min}}} \|u^*\|$. Square both sides and take expectation over δ , using $\|\Delta\Phi\|_2 \leq L_\Phi \|\delta\|$,
 1082 to obtain the stated variance bound with the explicit constant c_v . \square
 1083

1084 **Interpretation.** The $\kappa(\mathcal{K})^2$ factor arises from two sources: (i) $\kappa(\mathcal{K})$ from the projector sensitivity
 1085 (Lemma B.5), and (ii) $1/\lambda_{\min}$ from converting $\|\Delta P\|_2$ to a mean-squared bound after squaring and
 1086 averaging, yielding an overall κ^2 -scaling in the variance constant.
 1087

1088 **B.5 CONSOLIDATION: COMPACT SURROGATE CONSISTENT WITH THE RISK
 1089 DECOMPOSITION**

1091 Combining Theorem B.3, Theorem B.4, and Theorem B.6, we obtain a computable surrogate aligned
 1092 with the Hallucination Risk Bound:
 1093

1094 Adequacy: $\det(\mathcal{K})$ Amplification: $\log \sigma_{\max}$ Conditioning penalty: $-\log \kappa(\mathcal{K})^2$.

1095 This motivates the score
 1096

$$1097 \boxed{\text{HALLUGUARD}(u_h) = \det(\mathcal{K}) + \log \sigma_{\max} - \log \kappa(\mathcal{K})^2}$$

1099 with the following explicit, implementation-ready notes:
 1100

- 1101 • Use $\log \det(\mathcal{K})$ via Cholesky for stability; replace \det in the score with $\log \det$ if desired
 (monotone equivalent).
- 1103 • Estimate σ_{\max} either as $\sup_t \|J_t\|_2$ or its tighter average form $\beta_{\text{avg}} = \frac{1}{T} \sum_t \log \|J_t\|_2$
 (then use β_{avg} in place of $\log \sigma_{\max}$).
- 1105 • z -normalize each component across a validation set before summation to avoid scale dom-
 1106 inance; optionally fit task-specific weights if permitted.

1108 **C EXPERIMENT**

1110 **C.1 SETUP**

1112 **Implementation Framework.** All experiments use PyTorch and HuggingFace
 1113 Transformers with a fixed random seed for reproducibility. Unless otherwise noted,
 1114 computations run in mixed precision (fp16). Hardware details (A100/H200) are reported once in
 1115 the main setup section.

1116 **Generation Configuration.** For *default evaluation of detectors*, we use nucleus sampling with
 1117 temperature = 0.5, top-p = 0.95, and top-k = 10, decoding $K=10$ candidate responses
 1118 per input (unless otherwise specified). These decoding trajectories also operationalize semantic
 1119 perturbations as natural variations within the model’s local predictive distribution, thereby instantiating
 1120 a semantically proximate neighborhood around the primary response and capturing the local geom-
 1121 etry of the reasoning manifold required for NTK construction. For *score-guided test-time inference*
 1122 (Section 4.3), we use beam search (beam size = 10) and score candidate trajectories at each step
 1123 with the chosen detector. For stability analysis, HALLUGUARD extracts sentence representations
 1124 from the final token at the middle transformer layer ($L/2$), which empirically preserves semantics
 1125 relevant to truthfulness.

1126 **NTK-Based Score Computation.** For each set of generations, we form a task-specific NTK fea-
 1127 ture matrix and compute the semantic stability score from its eigenspectrum. We add a small ridge
 1128 $\alpha = 10^{-3}$ for numerical stability and compute singular values via SVD.

1129 **Perturbation Regularization.** To prevent pathological activations that amplify instability, HAL-
 1130 LUGUARD clips hidden features using an adaptive scheme. We maintain a memory bank of $N=3000$
 1131 token embeddings and set thresholds at the top and bottom 0.2% percentiles of neuron activations;
 1132 out-of-range values are truncated to attenuate overconfident hallucinations.

1134 **Optimization.** Backbone language models are *not* fine-tuned. We train only HALLUGUARD’s
 1135 lightweight projection layers using AdamW with learning rate selected from $\{1 \times 10^{-5}, 5 \times$
 1136 $10^{-5}, 1 \times 10^{-4}\}$ and weight decay from $\{0.0, 0.01\}$. The best setting is chosen on a held-out
 1137 validation split.

1138

1139 **Implementation Details.** For score-guided inference we apply beam search with beam size 10,
 1140 rescoring candidates stepwise with different hallucination detectors.

1141

1142 **Ablation Setup.** All ablations reuse the main paper’s splits, prompts, and decoding; we vary only
 1143 HALLUGUARD internals and explicitly control the hallucination *base rate*. On the *generation* side,
 1144 we modulate prevalence by adjusting temperature/top- p and beam size; to stress the two families,
 1145 we increase the prefix perturbation budget ρ and rollout horizon T to amplify reasoning drift, and
 1146 (when applicable) toggle retrieval masking to induce data-driven errors. On the *detection* side, AU-
 1147 ROC/AUPRC are threshold-free; when a fixed operating point is needed, we set a decision threshold
 1148 τ on the validation set by (i) matching a target predicted-positive rate π_{target} via score quantiles or
 1149 (ii) fixing a desired FPR (e.g., 1%, 5%, 10%); a cost-sensitive Bayes rule $\tau = \frac{c_{\text{FN}}}{c_{\text{FP}} + c_{\text{FN}}} \cdot \frac{1 - \pi}{\pi}$ is
 1150 optional when misclassification costs are specified. Unless noted, we toggle one factor at a time and
 1151 sweep $\rho \in \{0.75, 1.0, 1.5\}$, $T \in \{12, 16, 24\}$, and the number of semantic probes $m \in \{2, 4, 8\}$;
 1152 no additional training is performed beyond optional temperature/z-score calibration on the training
 1153 split. We report mean \pm std over 5 seeds.

1154

1155

C.2 ABLATION STUDY ON $-\log \kappa^2$

1156

1157

To empirically validate the necessity of the stability term $-\log \kappa^2$, we performed a controlled ablation on MATH-500. We systematized the reasoning drift (d) by progressively increasing the perturbation budget ρ and rollout horizon T . As shown in Figure 3, the absence of this term leads to severe instability. While the ablated model (orange dashed line) performs competitively in low-drift regimes ($d < 0.15$), it exhibits significant performance volatility as the reasoning task becomes more complex. In contrast, the full HALLUGUARD score (green solid line) effectively penalizes these ill-conditioned regimes, maintaining a smooth and robust detection profile. This confirms that $-\log \kappa^2$ functions as an essential spectral regularizer, preventing the score from becoming unreliable under high-entropy inference states.

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

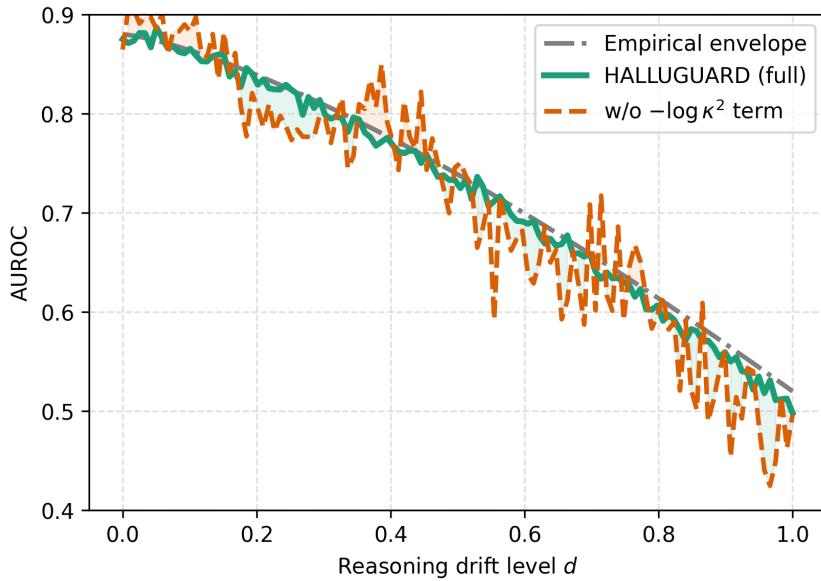


Figure 3: Ablation study of the stability term ($-\log \kappa^2$) on MATH500.

1188
1189

C.3 COMPUTATIONAL EFFICIENCY ANALYSIS

1190
1191
1192
1193
1194

To assess practical deployment feasibility, we measured inference latency on an NVIDIA A100/H200 GPU. Our setup utilizes batched parallel sampling to generate $K = 10$ trajectories, ensuring sub-linear scaling of the computational cost. The core HALLUGUARD operations—specifically feature clipping and computing the NTK score via the Gram matrix—add minimal latency, requiring less than 1 ms of post-processing time per query.

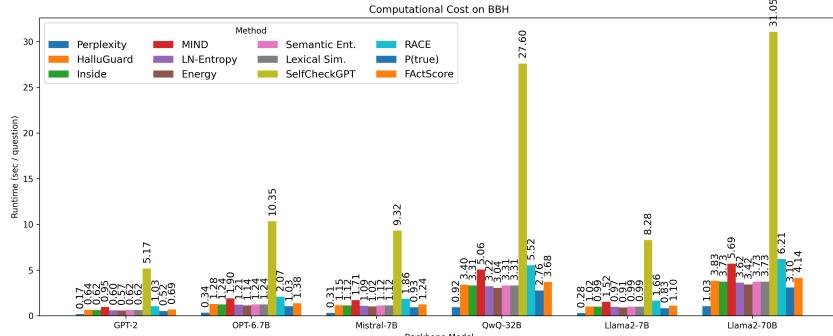
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207

Figure 4: Per-Question Inference Time (Seconds) on BBH Across Hallucination Detection Methods.

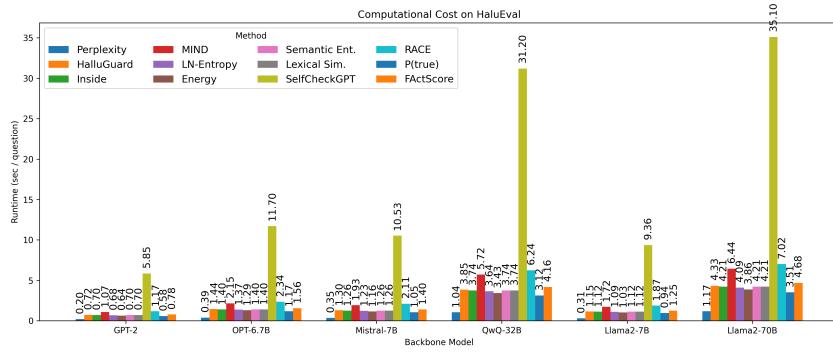
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222

Figure 5: Per-Question Inference Time (Seconds) on HalluEval Across Hallucination Detection Methods.

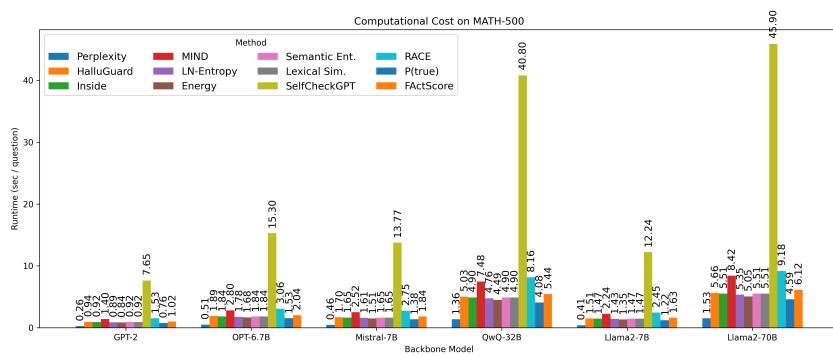
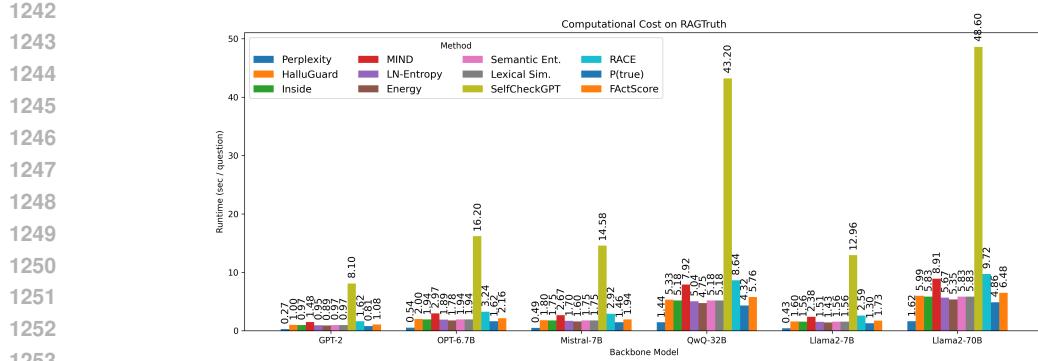
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239

Figure 6: Per-Question Inference Time (Seconds) on Math500 Across Hallucination Detection Methods.



1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Figure 7: Per-Question Inference Time (Seconds) on RAGTruth Across Hallucination Detection Methods.

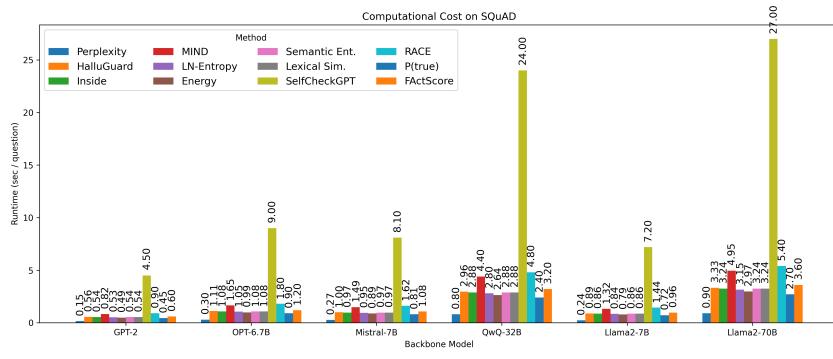


Figure 8: Per-Question Inference Time (Seconds) on SQuAD Across Hallucination Detection Methods.

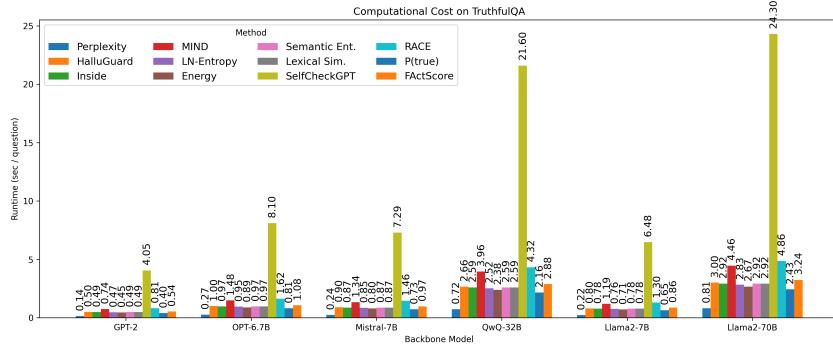


Figure 9: Per-Question Inference Time (Seconds) on TruthfulQA Across Hallucination Detection Methods.

C.4 DETECTION PERFORMANCE ANALYSIS

Across all five model families and three benchmark regimes, HALLUGUARD consistently achieves state-of-the-art detection performance, particularly in the safety-critical low-FPR regions as shown in Table 6.

We additionally expanded our evaluation to include SAPLMA, LLM-Check, and ITI. As shown in Table 7, HALLUGUARD delivers the strongest performance not only on AUROC/AUPRC but also on deployment-critical, low-FPR operating points, including F1 and TPR at 5% and 10% FPR.

1296 Table 6: Performance comparison on representative benchmarks: data-centric (RAGTruth),
1297 reasoning-oriented (BBH), and instruction-following (TruthfulQA).

		GPT2			OPT-6.7B			Mistral-7B			QwQ-32B			LLaMA2-13B		
		<i>F1</i>	<i>TPR@10%</i>	<i>TPR@5%</i>												
RAGTruth	HALLUGUARD	81.22	74.86	61.41	77.03	73.52	59.12	83.19	79.44	69.21	85.91	80.13	63.52	74.66	68.91	57.42
	Inside	66.12	59.72	48.31	72.91	70.25	60.37	70.45	68.12	52.41	79.03	74.66	61.09	73.08	70.11	55.26
	MIND	58.33	54.11	38.72	62.55	57.81	47.65	71.91	66.74	54.39	64.02	59.12	45.63	68.55	63.50	48.78
	Perplexity	55.42	51.20	40.51	63.72	60.13	49.14	69.74	66.51	52.18	70.42	65.41	55.32	60.18	57.01	44.75
	LN-Entropy	62.17	57.52	46.44	58.33	52.99	43.28	65.30	61.27	49.92	67.15	62.42	51.33	63.28	59.07	46.14
	Energy	59.71	56.23	44.81	60.44	57.18	45.03	63.54	59.42	48.62	72.09	68.15	58.42	66.10	61.33	49.41
	Semantic Ent.	57.28	53.42	41.92	69.61	64.81	52.01	67.10	62.44	50.66	66.12	62.15	49.31	64.55	60.18	47.75
	Lexical Sim.	61.41	57.09	45.03	65.81	61.44	49.51	62.50	59.12	50.92	70.91	67.53	55.21	66.29	59.88	51.03
	SelfCheckGPT	56.22	52.84	40.63	60.79	55.68	45.72	63.12	59.47	48.33	66.54	62.92	51.41	68.21	65.12	53.60
	RACE	60.12	56.50	44.90	64.12	59.77	49.22	65.44	61.55	52.73	69.61	66.31	53.92	62.55	59.42	45.66
BBH	P(true)	58.91	55.47	42.13	67.44	63.20	51.43	71.22	66.91	54.10	63.44	60.33	49.27	70.18	65.77	52.78
	FActScore	62.10	58.21	46.33	59.22	54.14	44.32	63.87	60.77	47.98	68.33	64.02	53.41	65.92	61.37	49.84
	HALLUGUARD	78.33	74.11	65.42	74.91	69.14	62.10	80.22	76.88	68.21	82.55	78.91	70.45	79.10	74.25	67.92
	Inside	65.41	61.22	52.83	71.02	67.10	60.21	68.17	64.75	53.92	79.17	72.33	64.22	67.10	63.52	55.91
	MIND	54.12	50.22	40.11	57.21	53.44	41.52	63.92	59.88	47.01	61.55	57.14	48.83	65.11	60.22	49.52
	Perplexity	52.91	49.33	40.44	61.88	58.12	49.22	62.91	59.42	50.11	59.91	55.72	49.03	60.88	57.41	48.62
	LN-Entropy	59.12	55.44	44.92	54.61	51.75	43.18	66.44	63.21	54.09	62.75	59.12	47.52	68.20	64.88	55.41
	Energy	53.94	51.22	45.03	56.12	52.14	44.61	64.55	60.11	49.99	68.21	65.12	52.84	66.41	62.77	50.22
	Semantic Ent.	57.41	54.32	47.21	61.22	58.42	49.74	63.21	59.10	48.62	63.55	60.24	48.88	64.91	61.44	50.72
	Lexical Sim.	50.41	46.77	38.92	60.71	57.11	45.55	59.42	56.88	48.91	70.33	67.10	55.32	58.33	55.42	47.41
	SelfCheckGPT	55.21	52.14	43.92	58.10	55.78	46.22	62.82	59.90	50.44	65.22	62.44	54.21	63.44	60.77	52.33
TruthfulQA	RACE	56.14	53.72	43.88	63.11	59.71	52.81	65.77	62.55	50.72	58.88	55.14	46.18	66.10	62.41	49.81
	P(true)	54.31	52.22	44.10	58.22	56.10	48.52	56.91	53.55	43.92	61.40	58.21	46.77	57.33	54.88	45.91
	FActScore	56.20	52.42	41.77	55.44	52.12	41.14	61.62	58.22	51.33	59.33	56.42	49.14	63.44	60.22	52.44
	HALLUGUARD	75.11	71.20	63.21	70.44	67.55	58.12	78.92	74.22	65.33	76.44	72.01	59.92	79.33	75.11	66.08
	Inside	71.10	68.55	60.77	61.77	59.44	50.10	63.88	61.33	53.41	69.22	65.10	55.14	62.14	59.94	52.80
	MIND	57.44	54.91	45.33	59.92	56.88	48.33	58.72	56.14	47.21	61.21	58.88	52.02	60.44	58.20	49.03
	Perplexity	49.52	46.71	38.84	54.12	51.74	43.90	59.72	57.55	46.88	54.44	51.72	42.55	60.33	57.21	47.41
	LN-Entropy	57.11	54.88	42.98	55.33	52.41	45.91	59.66	56.22	43.10	60.44	58.02	46.22	61.41	57.17	43.88
	Energy	54.11	52.17	38.91	53.44	51.14	36.88	58.21	54.77	49.92	63.02	60.44	51.33	58.41	55.33	50.42
	Semantic Ent.	60.08	56.44	44.15	50.14	47.33	35.92	53.74	52.11	37.02	65.33	63.20	50.77	55.02	53.11	38.44
ITI	Lexical Sim.	51.22	49.20	39.03	58.72	54.71	48.77	65.71	63.50	53.10	54.77	51.44	45.88	66.41	64.14	54.88
	SelfCheckGPT	55.72	53.44	42.78	58.33	55.72	47.14	60.88	57.44	43.91	55.42	54.44	40.77	61.72	59.51	44.10
	RACE	52.22	49.88	41.44	63.14	66.88	54.05	70.55	67.11	59.77	55.44	52.11	45.33	71.33	68.22	60.02
	P(true)	55.54	52.11	38.82	55.72	52.33	39.22	57.41	53.10	41.22	56.88	54.77	45.55	57.12	53.33	41.88
	FActScore	52.91	50.14	40.44	54.11	50.22	41.33	52.88	49.91	42.55	61.55	59.22	44.72	53.41	50.71	43.10

1329 Across all three benchmarks (RAGTruth, GSM8K, HaluEval) and all backbones (GPT-2 through
1330 QwQ-32B and LLaMA2-13B), HALLUGUARD consistently achieves the highest F1 and the highest
1331 or near-highest TPR under fixed low-FPR constraints. In contrast, SAPLMA and LLM-Check ex-
1332 hibit noticeably lower recall in the stringent 5% FPR regime. These results demonstrate that HAL-
1333 LUGUARD is better aligned with maintaining high detection sensitivity under tight false-positive
1334 budgets, a requirement that is central to reliable hallucination detection in real-world systems.

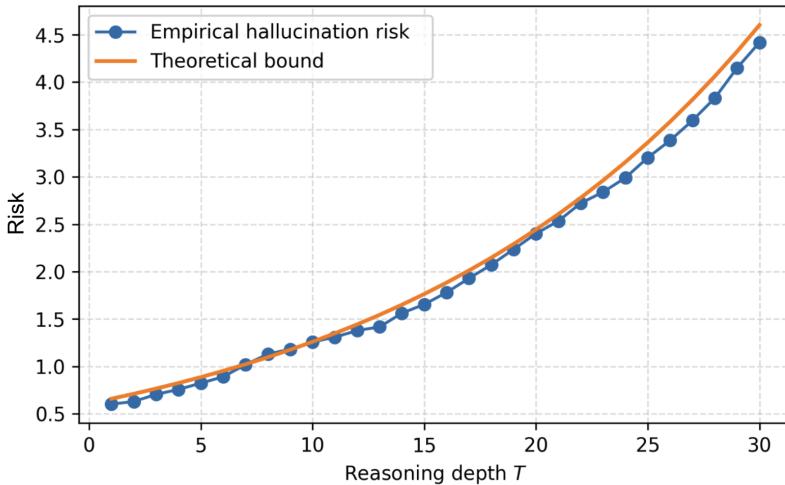
1336 Table 7: Comparison with SAPLMA, LLM-Check and ITI across benchmarks and backbones.

Benchmark	Method	GPT2			OPT-6.7B			Mistral-7B			QwQ-32B			LLaMA2-13B				
		AUROC	AUPRC	F1	TPR@10%	TPR@5%	AUROC	AUPRC	F1	TPR@10%	TPR@5%	AUROC	AUPRC	F1	TPR@10%	TPR@5%		
RAGTruth	HALLUGUARD	75.51	74.40	81.22	74.86	61.41	80.13	76.77	77.03	73.52	59.12	82.12	80.79	83.19	74.44	75.11	75.30	
	BBH	72.89	71.20	69.20	68.55	60.77	70.33	72.42	72.70	70.20	68.90	70.30	74.30	75.40	75.72	75.72	75.72	
	LLM-Check	68.10	64.50	63.90	55.20	44.80	72.30	68.20	66.50	57.90	46.30	75.20	71.60	67.40	60.30	48.70	76.10	
	ITI	69.30	65.20	66.10	57.90	47.00	73.10	69.20	68.20	59.80	49.10	76.60	72.50	69.40	61.30	50.90	77.20	
GSM8K	HALLUGUARD	72.00	71.20	71.41	72.00	71.41	70.80	71.80	64.10	56.30	77.10	74.00	76.20	70.60	65.90	74.41	74.41	
	BBH	69.20	66.10	70.10	62.00	54.40	70.80	67.20	71.80	64.10	56.30	77.10	74.00	76.20	60.70	75.40	72.30	74.41
	LLM-Check	65.40	61.50	62.40	54.10	46.20	68.10	64.30	67.50	59.20	49.80	73.40	69.80	64.90	57.90	48.30	71.20	68.50
	ITI	66.40	64.30	65.20	55.20	46.80	67.40	63.60	66.90	58.60	49.40	71.20	67.20	66.10	59.30	52.50	72.30	68.50
HaluEval	HALLUGUARD	70.42	67.71	75.11	72.20	63.21	71.62	67.68	70.44	67.55	58.12	74.91	72.74	79.92	74.22	75.33	75.30	76.08
	BBH	67.10	63.20	69.20	62.10	54.00	69.50	65.75	68.30	61.60	53.20	72.00	68.40	75.10	67.30	65.30	72.20	68.50
	LLM-Check	65.30	63.20	64.10	54.10	46.30	67.80	64.30	67.50	59.20	49.80	73.40	69.80	64.90	57.90	48.30	71.20	68.50
	ITI	64.80	66.70	63.40	55.20	46.80	67.40	63.60	66.90	58.60	49.40	71.20	67.20	66.10	59.30	48.60	72.30	68.50

C.5 TIGHTNESS OF BOUND

1346 **Evaluation of bound tightness.** To rigorously stress-test the Hallucination Risk Bound of The-
1347 oreom 3.2, we conducted a controlled synthetic study grounded in the empirical reasoning-depth
1348 distribution of the Snowballing dataset (Zhang et al., 2023). We instantiated empirical hallucination
1349 trajectories by injecting low-variance Gaussian noise into the base components $D(T)$ and $R(T)$,
comparing them against the closed-form theoretical prediction. As illustrated in Figure 10, while

1350
 1351 the theoretical curve acts as a conservative upper envelope, it exhibits a nearly parallel growth trajectory
 1352 to the empirical risk. Crucially, it faithfully captures the exponential curvature and compounding
 1353 dynamics of the Snowballing Effect. This confirms that the bound possesses high structural
 1354 fidelity: it correctly models the scaling law of error propagation across depth ranges, validating its
 1355 effectiveness as a ranking proxy despite the absolute numerical offset.
 1356



1373 Figure 10: Empirical hallucination risk versus our theoretical bound
 1374
 1375
 1376

1377 **Evaluation of NTK proxy tightness.** To quantitatively validate that our NTK-based proxy faithfully
 1378 captures the amplification behavior of stepwise Jacobians, we conduct a diagnostic experiment
 1379 on GPT-2-small (117M), where per-step Jacobian norms are fully tractable. For a held-out set of
 1380 GSM8K prompts and decoding steps $t \leq 18$, we compute:
 1381

- 1382 • the *empirical* stepwise Jacobian magnitude $\|J_t\|_2$, obtained via automatic differentiation
 1383 on the next-token logits, and
 1384
- 1385 • our *reasoning-driven NTK proxy*, $\log \sigma_{\max} - \log \kappa^2$, as defined in Eq. (7), which upper-
 1386 bounds the per-step amplification rate and penalizes spectral ill-conditioning of the NTK
 1387 Gram matrix.
 1388

1389 Figure 11 reports the scatter plot comparing the NTK proxy against empirical $\|J_t\|_2$ across all
 1390 prompts and steps.
 1391

1392 **Validation of Term Decomposition** To validate the architectural premise of our Hallucination
 1393 Risk Bound Section 3.2, we visualize the evolution of the decomposed risk components across
 1394 reasoning depth T on the Snowballing dataset (Zhang et al., 2023). As shown in Figure Figure 12,
 1395 the total risk is driven by two distinct dynamic behaviors. The data-driven term (green dotted line)
 1396 exhibits linear or near-constant progression, reflecting static retrieval or knowledge-encoding errors
 1397 that persist regardless of depth. In contrast, the reasoning-driven term (purple dotted line) demon-
 1398 strates exponential amplification consistent with the Snowballing Effect, remaining negligible at
 1399 shallow depths but rapidly dominating the total risk as T increases. Crucially, this reveals a phase
 1400 transition in hallucination dynamics: at lower depths ($T < 15$), errors are primarily data-driven,
 1401 whereas at higher depths, reasoning instability becomes the governing factor. This dichotomy em-
 1402 pirically justifies our hybrid scoring mechanism, confirming that a unified detector must account
 1403 for both the static semantic bias and the dynamic rollout instability to be effective across varying
 1404 generation lengths.

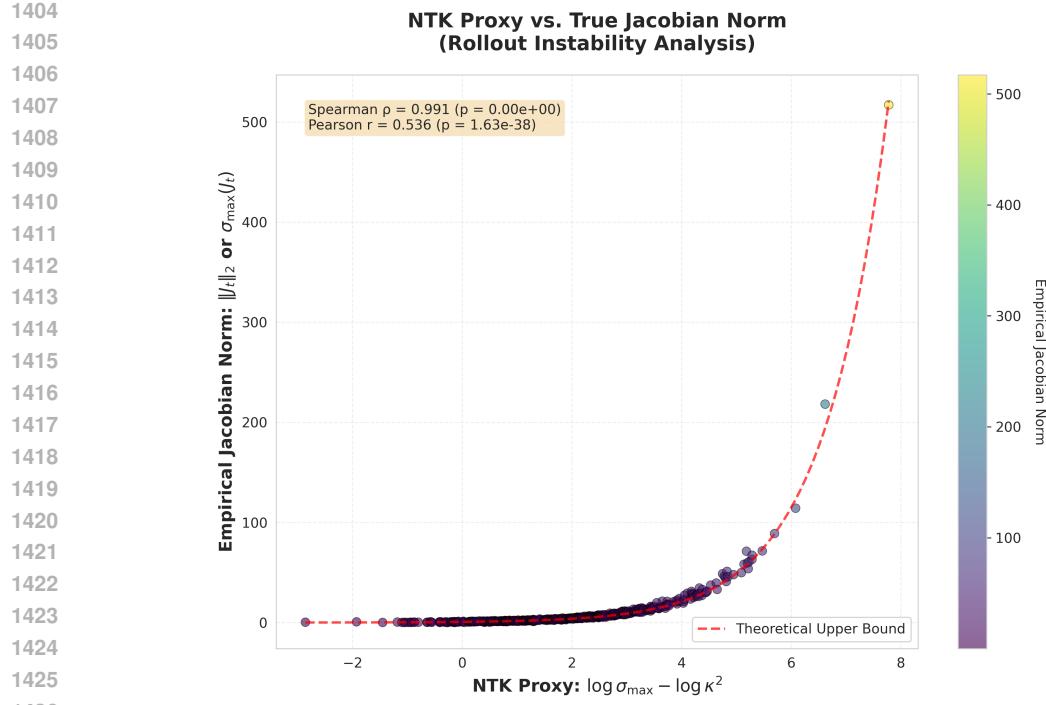


Figure 11: The NTK proxy closely tracks empirical Jacobian amplification on GPT-2-small, showing near-perfect monotonic alignment and a consistent conservative envelope across decoding depth.

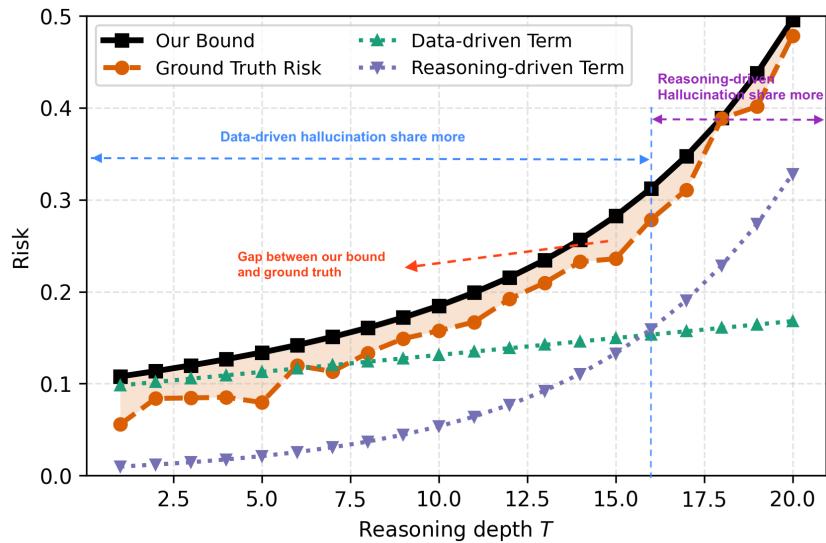
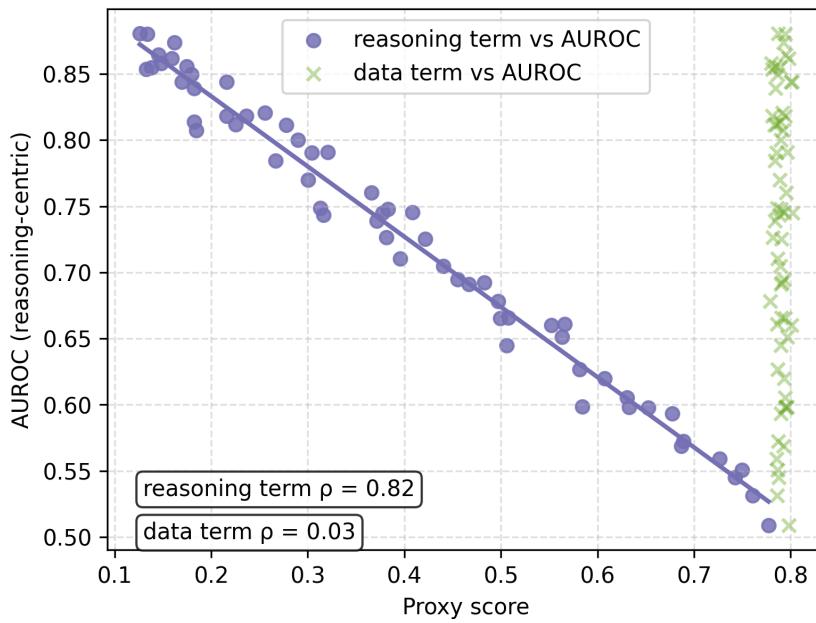


Figure 12: Risk decomposition across reasoning depth T on Snowballing dataset.

C.6 CORRELATION OF REASONING-DRIVEN AND DATA-DRIVEN TERMS WITH DIFFERENT TYPES OF DATASETS

To empirically verify the independence of the proposed risk components, we analyzed their correlation with detection performance across distinct task families. As illustrated in Figure 14 and Figure 13, we observe a sharp geometric decoupling: the data-driven term aligns strongly with data-centric benchmarks (e.g., RAGTruth) while showing negligible correlation with reasoning tasks. Conversely, the reasoning-driven term dominates on reasoning-oriented datasets (e.g., MATH-500).

1458
 1459 This double dissociation reinforces the structural validity and orthogonality of our decomposition,
 1460 confirming that each term captures a distinct, non-redundant failure mode.
 1461
 1462



1483 Figure 13: Correlation Between data-driven and reasoning-driven terms and AUROC on Reasoning-
 1484 Centric MATH500.

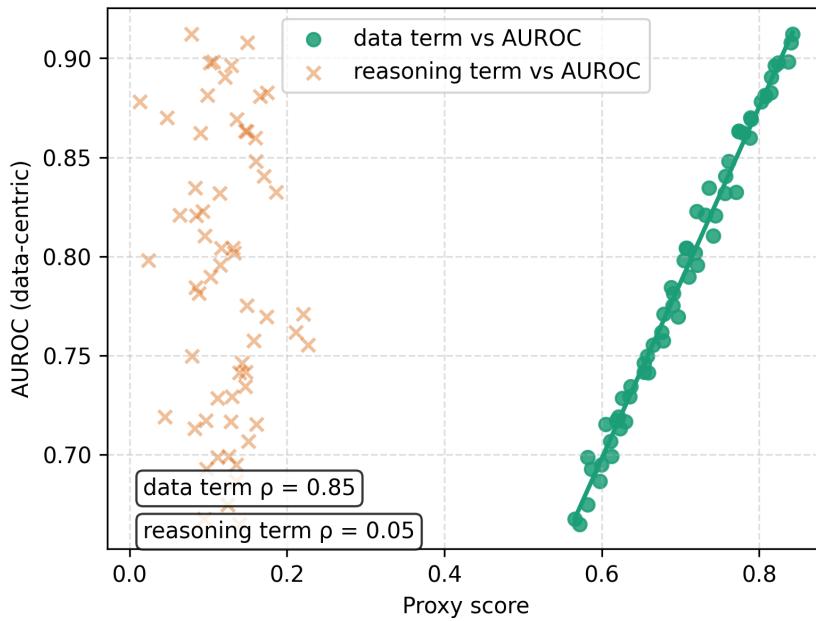


Figure 14: Correlation Between data-driven and reasoning-driven terms and AUROC on Data-Centric RAGTruth.

1512 C.7 CASE STUDY
15131514 **Case Study 1 — GSM8K (Multi-step Arithmetic): Bias → Drift → Snowballing.** *Task:* “John
1515 saves \$3/day for four weeks and buys a \$12 toy. How much money does he have left?”
1516 *Ground truth:* \$72.

Length (T)	Model Behavior	HalluGuard Response
T=1–8 Stable setup	Correct restatement and arithmetic planning	Data-driven term dominant; risk flat
T=9–14 Seed error	“4 weeks” → “ 40 days ”	Slight rise in data-driven signal
T=15–22 Propagation	“ $3 \times 40 = 120$ ”	Reasoning-driven share begins to rise
T=23–40 Amplification	Final answer: \$108	Reasoning-driven dominates (snowballing)

1523 Table 8: Evolution of hallucination in GSM8K arithmetic reasoning.
15241525 **Case Study 2 — Long-Document Summarization: Misalignment → Overreach → Fabrication.**
1526 *Task:* Summarize a 5,000-token policy document
1527 *Ground truth:* Security audit exception applies only to specific log types.

Length (T)	Model Behavior	HalluGuard Response
T=1–20 Accurate extraction	Correct recovery of retention rules	Low risk; strong alignment
T=21–40 Misbinding	Incorrect merge of distant sections	Data-driven signal increases
T=41–95 Drift	Overgeneralized suspension claim	Reasoning-driven share rises
T=96–170 Fabrication	New false rule introduced	Reasoning-driven dominates

1535 Table 9: Evolution of hallucination in long-document summarization.
15361537

D USAGE OF LLM

1539 Large language models (LLMs) were employed in a limited and transparent manner during the
1540 preparation of this manuscript. Specifically, LLMs were used to assist with linguistic refinement,
1541 style adjustments, and minor text editing to improve clarity and readability. They were not involved
1542 in formulating the research questions, designing the theoretical framework, conducting experiments,
1543 or interpreting results. All scientific contributions—including conceptual development, methodol-
1544 ogy, analyses, and conclusions—are the sole responsibility of the authors.
15451546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565