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Abstract001

Recent advances in large language models002
(LLMs) have significantly improved long-chain003
reasoning in textual domains, yet extending this004
capability to visual tasks such as chart-based005
question answering (ChartQA) remains a ma-006
jor challenge. Existing multimodal approaches007
often rely on lossy image-to-text conversions008
that obscure critical structural and semantic009
information embedded in visualizations. To010
address this gap, we propose ChartReasoner,011
a code-driven, two-stage framework designed012
to enable precise, interpretable reasoning over013
charts. In the first stage, we train Chat2Code, a014
high-fidelity model that converts diverse chart015
images into structured ECharts code, preserv-016
ing both layout and data semantics. In the017
second stage, we leverage these symbolic rep-018
resentations to construct ChartReasoning, the019
first large-scale chart reasoning dataset contain-020
ing 140K multi-step samples. We then train021
the final reasoning model using a combina-022
tion of supervised fine-tuning and reinforce-023
ment learning. ChartReasoner achieves strong024
performance across four representative bench-025
marks: ChartQA, ChartBench, EvoChart-QA,026
and ChartQAPro. It performs competitively027
with state-of-the-art open-source models while028
using fewer parameters, and approaches the per-029
formance of proprietary systems like GPT-4o in030
out-of-domain setting. Our results demonstrate031
that symbolic code-driven modeling provides a032
scalable and effective path toward deep, multi-033
modal reasoning over visual data.034

1 Introduction035

LLMs have achieved remarkable success in text-036

based long-chain reasoning, generating highly ac-037

curate structured, multi-step solutions to complex038

problems, exemplified by models like o1 (OpenAI,039

2024), o3 (OpenAI, 2025), QwQ (Team, 2025) and040

DeepSeek-R1 (Guo et al., 2025). These models de-041

compose complex problems into logical sequence042

steps, each building upon previous deductions to043

reach well-justified conclusions. However, this rea- 044

soning capability remains largely confined to the 045

textual domain, creating a significant gap when 046

applied to visual chart interpretation tasks. 047

Recent advances in multimodal reasoning ex- 048

tend structured thinking from text to vision by con- 049

verting images into textual representations to en- 050

able chain-of-thought (CoT) reasoning. Methods 051

such as R1-OneVision (Chen et al., 2025) trans- 052

late visual scenes into formal text, while R1-V 053

(Chen et al., 2025) and MMEureka (Meng et al., 054

2025) leverage reinforcement learning to enhance 055

object-centric and long-chain reasoning. Despite 056

these innovations, visual content is often treated 057

as auxiliary—serialized into language at the cost 058

of losing fine-grained cues. Local structures, color 059

semantics, spatial layouts, and chart-specific en- 060

codings are frequently abstracted or compressed. 061

This lossy transformation undermines tasks that re- 062

quire precise visual grounding, such as ChartQA or 063

scientific diagram analysis. Although approaches 064

like Curr-ReFT (Deng et al., 2025) and LMM-R1 065

(Peng et al., 2025) adopt staged learning to gradu- 066

ally align visual and textual modalities, they still 067

fall short of preserving the high-fidelity semantics 068

inherent in complex visual data. 069

ChartQA aims to enable models to understand 070

and reason over structured visualizations such as 071

bar and line charts. Recent models have improved 072

visual-text alignment (Masry et al., 2023; Liu et al., 073

2023), while ChartLlama (Han et al., 2023) and 074

ChartSFT (Meng et al., 2024) introduce chain-of- 075

thought (CoT) prompting for multi-step reasoning. 076

However, most existing ChartQA models still lack 077

true reasoning capabilities. CoT prompting often 078

leads to superficial reasoning without genuine logi- 079

cal depth. A key unresolved challenge is the accu- 080

rate reconstruction of chart semantics from visual 081

input. Without faithfully extracting symbolic struc- 082

tures—such as axes, legends, groupings, and value 083

mappings—models struggle with multi-hop reason- 084
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ing and precise numerical comparison. This gap085

limits their applicability in real-world analytical086

scenarios that demand deep understanding and log-087

ical rigor.088

To address the challenges of chart-based under-089

standing and long-chain reasoning, we propose090

ChartReasoner, a code-driven, two-stage frame-091

work that enhances the reasoning capabilities of092

multimodal large language models (MLLMs). In093

the first stage, we train Chat2Code, a high-accuracy094

model that translates diverse chart images into095

structured ECharts code, faithfully preserving both096

visual layout and underlying data semantics. This097

symbolic representation serves as the foundation098

for reasoning, bridging the visual–textual modal-099

ity gap. In the second stage, we construct the100

ChartReasoning dataset by applying Chat2Code to101

various benchmarks, yielding 140K multi-step rea-102

soning samples. We then train the final ChartRea-103

soner model through supervised fine-tuning and104

reinforcement learning to improve reasoning accu-105

racy, consistency, and interpretability. This struc-106

tured pipeline enables precise, scalable, and logi-107

cally grounded ChartQA.108

Our key contributions are as follows:109

• We introduce ChartReasoning, the first large-110

scale chart reasoning dataset with over 140K111

multi-step reasoning samples. It supports sym-112

bolic and interpretable reasoning across di-113

verse chart types, addressing a key gap in114

ChartQA research.115

• We construct a high-quality Chart2Code116

dataset comprising 110K diverse synthetic117

charts generated via a prompt-based pipeline.118

This dataset serves as a critical bridge between119

visual input and symbolic structure, enabling120

accurate and interpretable reasoning in down-121

stream tasks.122

• We introduce ChartReasoner, a two-stage123

code-driven model that demonstrates robust124

performance on four representative bench-125

marks: ChartQA, ChartBench, EvoChart-QA,126

and ChartQAPro. Our model performs com-127

petitively with state-of-the-art open-source128

systems using fewer parameters, and rivals129

proprietary models like GPT-4o in out-of-130

domain settings, demonstrating its effective-131

ness and generalizability.132

2 Related Work 133

ChartQA. To improve MLLMs’ ability to un- 134

derstand charts, various ChartQA datasets have 135

been introduced, including FigureQA (Kahou 136

et al., 2017), DVQA (Kafle et al., 2018), PlotQA 137

(Methani et al., 2020), LEAF-QA (Chaudhry et al., 138

2020), and ChartQA (Masry et al., 2022), cover- 139

ing diverse chart types and visual reasoning tasks. 140

However, these datasets often limit answers to sin- 141

gle values or labels, lacking support for complex 142

multi-step reasoning. Recent efforts like ChartX 143

(Xia et al., 2024), RealCQA (Ahmed et al., 2023), 144

and UniChart (Masry et al., 2023) scale up re- 145

sources via synthetic chart generation and template- 146

based QA, while ChartSFT (Meng et al., 2024) and 147

EvoChart (Huang et al., 2025a) incorporate Chain- 148

of-Thought (CoT) annotations to promote reason- 149

ing. However, most CoTs remain shallow, whereas 150

real-world scenarios demand long, multi-hop rea- 151

soning. On the model side, compact MLLMs like 152

ChartReader (Cheng et al., 2023), MatCha (Liu 153

et al., 2023), ScreenAI (Baechler et al., 2024), and 154

UniChart (Masry et al., 2023) perform well on ear- 155

lier benchmarks. LLaVA-based models such as 156

ChartLlama (Han et al., 2023), ChartPaLI (Car- 157

bune et al., 2024), ChartInstruct (Masry et al., 158

2024), ChartAstD (Meng et al., 2024), and Tiny- 159

Chart (Zhang et al., 2024) further enhance multi- 160

modal alignment. More recently, open-source gen- 161

eralist VLMs like Phi-3 Vision and InternVL2.5 162

(Chen et al., 2024a) have achieved strong results 163

on ChartQA benchmarks. However, current mod- 164

els still struggle with long-chain reasoning, partic- 165

ularly when integrating multiple visual cues and 166

performing numerical and logical inference. 167

Chart-to-Code. Chart-to-code generation aims 168

to reconstruct charts from images via executable 169

code, demanding accurate visual and structural fi- 170

delity. Early works such as ChartMimic (Yang 171

et al., 2025a), Plot2Code (Wu et al., 2025), and 172

ChartX (Xia et al., 2024) evaluate MLLMs on 173

layout and content reconstruction. While some 174

methods enhance generation via multi-agent col- 175

laboration or preference-based tuning (Li et al., 176

2025; Zhang et al., 2025), they often rely on hand- 177

crafted prompts or costly supervision. ChartCoder 178

(Zhao et al., 2025) advances the field with a two- 179

stage SoT-based training strategy and a large-scale 180

dataset, but its reliance on fixed templates still lim- 181

its its ability to generalize to diverse, real-world 182

chart formats. 183
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Multimodal Long-Chain Reasoning. Long-184

chain reasoning has gained traction in NLP with the185

advent of DeepSeek-R1 (Guo et al., 2025), which186

emphasizes structured intermediate reasoning. This187

paradigm has been extended to VLMs through188

works like R1-OneVision (Yang et al., 2025b) and189

Vision-R1 (Huang et al., 2025b), which convert190

images into formal textual representations to en-191

able multimodal CoT training. R1-V (Chen et al.,192

2025) leverages Group Relative Policy Optimiza-193

tion (GRPO) (Shao et al., 2024) for object count-194

ing, showing that small models can outperform195

larger ones via effective RL. VisualThinker-R1-196

Zero (Zhou et al., 2025) and MMEureka (Meng197

et al., 2025) further explore RL-driven reasoning,198

reporting “visual aha moments” where longer out-199

puts indicate stronger reasoning. Meanwhile, Curr-200

ReFT (Deng et al., 2025) and LMM-R1 (Peng et al.,201

2025) adopt staged learning strategies that progres-202

sively integrate visual and textual skills, using re-203

ward curricula or text-first pretraining followed by204

multimodal RL. However, despite these advance-205

ments, existing approaches primarily focus on nat-206

ural images or general visual inputs and fall short207

when applied to structured data representations like208

charts. In contrast, our work targets the unique209

challenges of chart-based long-chain reasoning by210

introducing a code-driven framework that explicitly211

bridges visual perception with symbolic reasoning,212

offering a specialized and scalable solution for real-213

world analytical tasks.214

3 Methodology215

Understanding charts poses a fundamental chal-216

lenge for MLLMs, stemming from the modality217

gap between raw visual inputs and the structured,218

symbolic semantics of chart elements. To bridge219

this gap and enable deep, interpretable reasoning,220

we propose a code-driven two-stage framework that221

unifies visual perception and symbolic abstraction222

via structured chart representations.223

In the first stage, we introduce Chart2Code, a224

high-fidelity translation model that converts chart225

images into executable ECharts code. By leverag-226

ing the expressive and structured syntax of ECharts,227

the model preserves both the visual layout and the228

semantic structure of charts, including axes, leg-229

ends, data groupings, and value mappings. To train230

this model, we construct a 110K-scale synthetic231

dataset using a prompt-based generation pipeline232

built on DeepSeek-R1, where chart specifications233

are rendered into images and paired with code. We 234

apply a hybrid filtering strategy to ensure data qual- 235

ity, and fine-tune a Qwen2.5-VL-based model on 236

these image–code pairs, freezing the visual encoder 237

to retain robust perception while adapting the de- 238

coder for accurate symbolic generation. 239

In the second stage, we leverage Chart2Code 240

to build ChartReasoning, a large-scale dataset 241

comprising 140K multi-step reasoning samples. 242

These samples are created by applying struc- 243

tured code extraction to existing ChartQA bench- 244

marks and prompting DeepSeek-R1 to generate 245

CoT reasoning traces directly over code. This 246

symbolic representation allows the model to rea- 247

son over explicit, lossless semantics rather than 248

lossy visual tokens. We then train our final 249

model—ChartReasoner—via a two-stage process: 250

supervised fine-tuning establishes baseline logical 251

competence, followed by GRPO-based reinforce- 252

ment learning that refines reasoning quality through 253

rule-guided reward signals. 254

Overall, our approach treats code as a composi- 255

tional and interpretable bridge between vision and 256

language, enabling precise and logically grounded 257

chart-based reasoning, as illustrated in Figure 1. 258

3.1 Chart-to-Code 259

Echarts-format Chart Generation. We start 260

with a template library T = {T1, T2, . . . , TK} cov- 261

ering K chart templates (9 major categories, 49 262

subtypes). For each template Tk ∈ T , we prompt 263

DeepSeek-R1 to generate diverse ECharts code 264

(Detailed prompt is provided in Appendix D). Let 265

pk be the prompt derived from template Tk. The 266

generated ECharts code cj for a sample j is: 267

cj = GDS-R1(pk) (1) 268

Where GDS-R1(·) denote the DeepSeek-R1. 269

Quality Filtering Pipeline. The generated 270

ECharts code is rendered into images, which are 271

subjected to a rigorous quality control process. We 272

combine automated pixel-level filtering with man- 273

ual review to enhance image quality. In the auto- 274

mated stage, each image is converted to the Hue- 275

Saturation-Value color space to extract saturation 276

and brightness features, and is downsampled to 277

reduce computational overhead. Blank and noisy 278

images are then removed using sparse content de- 279

tection and white-background noise filtering. In 280

the manual stage, we further eliminate edge cases 281

that are difficult to detect automatically. As a re- 282
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Figure 1: Overview diagram of the data construction pipeline and model training.
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Figure 2: The distribution of chart types and their corre-
sponding subtypes.

sult, we retain approximately 110K high-quality283

charts from the initial set. Detailed distribution284

statistics are provided in Figure 2, covering 9 ma-285

jor categories and 49 subcategories. Specific data286

examples are included in the Appendix E.287

Chart2Code Model. To enable high-fidelity288

chart reconstruction from images, we construct289

a large-scale chart-to-code dataset and use it to290

train a multimodal model capable of translating291

chart images into their corresponding ECharts code.292

For this purpose, we choose Qwen2.5-VL, a repre-293

sentative open-source vision-language model, and294

fine-tune it on our dataset for the chart-to-code gen-295

eration task. Given a chart image xi, the model296

predicts its corresponding ECharts code sequence297

ci = (ci,1, ci,2, . . . , ci,Li), where Li is the token298

length of the code. The model is trained to maxi-299

mize the likelihood of the target sequence condi-300

tioned on the input image. The model parameters301

are denoted as θ = {θVE, θLD}, where θVE refers302

to the visual encoder (frozen during training), and303

θLD denotes the language decoder parameters. The304

training objective is to minimize the loss function 305

LC2C, defined as: 306

LC2C(θLD) = −
NC2C∑
i=1

Li∑
t=1

logP (ci,t | xi, ci,<t; θ) (2) 307

where ci,<t represents the sequence of previously 308

generated (ground-truth) tokens (ci,1, . . . , ci,t−1) 309

for the i-th sample, NC2C denotes the total number 310

of samples in the chart-to-code dataset. 311

This training strategy enables the model to ef- 312

fectively extract both structural and semantic infor- 313

mation from visual inputs and generate accurate, 314

executable code. 315

3.2 Code-Driven Long-Chain Reasoning Data 316

Current Chart QA datasets primarily consist of 317

image-question-answer triplets, lacking explicit an- 318

notations of intermediate reasoning steps. This 319

limits their effectiveness in training models that 320

require step-by-step reasoning grounded in chart 321

content. To address this limitation, we construct 322

a code-driven reasoning dataset that extends tra- 323

ditional QA data with model-generated reasoning 324

paths anchored in chart code. The construction 325

pipeline is as follows. 326

ChartReasoning Construction. We begin by 327

consolidating existing datasets into a unified col- 328

lection DQA-orig = {(xk, qk, ak)}
Norig
k=1 , where xk 329

denotes a chart image, qk is a question posed about 330

the chart, and ak is the corresponding ground-truth 331

answer. Each question is categorized by reasoning 332

type, and each chart is labeled according to its struc- 333

tural type. To ensure broad coverage and balanced 334

representation, we perform stratified sampling over 335

both dimensions to obtain a representative subset 336

of samples. 337
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For each selected chart image xk in this subset,338

we first employ the trained Chart2Code to generate339

the corresponding ECharts specification ck. This340

generated code, combined with the original ques-341

tion qk, is then provided as input to the DeepSeek-342

R1 model. DeepSeek-R1 produces a reasoning343

path denoted as rk and a predicted answer ãk:344

(rk, ãk) = GDS-R1(Prompt(Chart2Code(xk), qk)) (3)345

To ensure data quality, we retain only those sam-346

ples where the predicted answer ãk exactly matches347

the ground-truth answer ak. The final constructed348

dataset, referred to as ChartReasoning, is defined349

as follows:350

D = {(xj , qj , rj , aj)}Nj=1 (4)351

Here, (xj , qj , rj , aj) represent the chart image,352

the corresponding question, the generated reason-353

ing path, and the verified answer for the j-th sam-354

ple, respectively. During training, the input to the355

reasoning model consists of the chart-question pair356

(xj , qj), while the target output is the concatenated357

sequence of the reasoning path rj followed by the358

final answer aj .359

Data Collection. We construct the ChartReason-360

ing dataset by aggregating and cleaning a wide361

range of existing ChartQA datasets, including362

ChartQA (Masry et al., 2022), EvoChart (Huang363

et al., 2025a), ChartBench (Xu et al., 2023), and364

PlotQA (Methani et al., 2020). These datasets365

collectively encompass diverse chart types and366

question styles commonly found in practical ap-367

plications.Following the unified code-driven data368

pipeline introduced earlier, we systematically pro-369

cess all collected data to ensure consistency and370

correctness. After filtering out low-quality or mis-371

matched samples, we obtain a high-quality sub-372

set containing over 140K examples, each paired373

with verified answers and intermediate reasoning374

traces.To better understand the dataset composition,375

we conduct a detailed analysis of the reasoning376

types and chart structures. As shown in Figure 3,377

the resulting dataset offers broad coverage across378

four main reasoning categories and seven com-379

monly used chart types, providing a strong founda-380

tion for training models on complex ChartQA.381

3.3 ChartReasoner Training382

Supervised Fine-Tuning. The reasoning model383

is first trained using SFT on the D dataset. Given384
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Figure 3: The proportion of different reasoning tasks
for each chart type.

a chart image xj and a question qj , the model 385

is trained to generate a target output sequence 386

yj = (yj,1, yj,2, . . . , yj,Kj ), which consists of a 387

reasoning path followed by the final answer, and 388

contains Kj tokens. The model parameters are 389

denoted as θ = {θVE, θLD}, where θVE refers to 390

the visual encoder (kept frozen during training), 391

and θLD denotes the parameters of the language 392

decoder. The SFT objective is to minimize the loss 393

function LSFT, defined as: 394

LSFT(θLD) = −
N∑

j=1

Kj∑
t=1

logP (yj,t | xj , qj ,yj,<t; θ) (5) 395

where yj,<t represents the sequence of previously 396

generated (ground-truth) tokens (yj,1, . . . , yj,t−1) 397

for the j-th sample. 398

This approach improves response uniformity and 399

provides a stable foundation for the subsequent 400

reinforcement learning stage. 401

Reinforcement Learning with GRPO. While 402

supervised fine-tuning equips the model with fun- 403

damental chart understanding, it also reveals a com- 404

mon failure mode: over-generation of verbose rea- 405

soning chains, even when the input lacks sufficient 406

information. This over-reasoning behavior com- 407

promises answer reliability. To mitigate this, we 408

adopt a reinforcement learning phase using GRPO. 409

Unlike standard policy optimization methods such 410

as PPO (Schulman et al., 2017), GRPO generates 411

multiple candidate responses per input and opti- 412

mizes them jointly via intra-group normalization. 413

This stabilizes training and encourages the model 414

to favor concise and accurate outputs. 415

We design structured, rule-based reward func- 416

tions that explicitly measure answer quality across 417

multiple dimensions—factual accuracy, formatting 418

correctness, and response length. These reward sig- 419

nals guide the model to suppress hallucinations and 420

5



over-reasoning, promoting disciplined and general-421

izable reasoning behavior. Overall, this RL phase422

aligns the model’s outputs with practical expecta-423

tions and user preferences, significantly enhancing424

robustness across diverse ChartQA scenarios.425

4 Experiments426

4.1 Experimental Setup427

Datasets. To evaluate the performance of our428

proposed ChartReasoner on ChartQA and multi-429

modal reasoning, we conducted experiments on430

four representative benchmarks: ChartQA (Masry431

et al., 2022), EvoChart-QA (Huang et al., 2025a),432

ChartQAPro (Masry et al., 2025a), and Chart-433

Bench (Xu et al., 2023). These datasets cover a434

broad range of chart types and reasoning tasks,435

from simple visualizations to complex real-world436

settings involving dashboards, infographics, and437

multi-chart compositions. ChartQA and EvoChart-438

QA emphasize real-world chart understanding with439

fine-grained reasoning and retrieval tasks, while440

ChartQAPro focuses on challenging scenarios such441

as multi-turn, hypothetical, and unanswerable ques-442

tions. ChartBench provides large-scale evaluation443

across diverse chart types. We also assessed the444

Chart2Code on EvoChart-QA to evaluate its capa-445

bility in reconstructing complex charts.446

Evaluation Metrics & Baselines. For ChartQA,447

we follow the official protocol for each benchmark.448

For Chart-to-Code, we adopt execution success449

rate and GPT-4V 1 visual similarity scoring (1–10),450

following Plot2Code (Wu et al., 2025). The spe-451

cific prompt is provided in Appendix C We bench-452

mark our model against a wide range of MLLMs,453

including proprietary models such as Claude-3.5-454

Sonnet (Anthropic, 2024), Gemini-Flash-1.5/2.0455

(Team et al., 2024), GPT-4-turbo, and GPT-4o456

(Achiam et al., 2023), as well as open-source mod-457

els like InternVL2 (Chen et al., 2024b), Phi-3-458

Vision (Abdin et al., 2024), LLaVA-V1.5 (Liu et al.,459

2024), InternLM-XComposer (Dong et al., 2024),460

Qwen-VL (Bai et al., 2025; Wang et al., 2024),461

and CogVLM2 (Hong et al., 2024). We also in-462

clude domain-specific baselines such as ChartL-463

lama (Han et al., 2023), ChartAst (Meng et al.,464

2024), ChartIns (Masry et al., 2024), ChartGemma465

(Masry et al., 2025b), TinyChart (Zhang et al.,466

2024), and EvoChart (Huang et al., 2025a). For467

1The version is gpt-4-vision-preview, and the URL is
https://openai.com/index/gpt-4v-system-card.

Chart-to-Code evaluation, we adopt ChartCoder 468

(Zhao et al., 2025) as the primary baseline. To 469

further validate the structural richness of our Chart- 470

to-Code dataset, we conduct controlled training ex- 471

periments using Qwen2.5-VL-7B (Bai et al., 2025) 472

on both EvoChart and our dataset. Further imple- 473

mentation details in Appendix A. 474

4.2 Main Results 475

ChartQA Results. We comprehensively evalu- 476

ate our ChartReasoner model and a wide range of 477

baseline models, including both general-purpose 478

MLLMs and chart-specialized models, across four 479

benchmark datasets. Among them, ChartQA 480

and ChartBench are in-domain datasets, while 481

ChartQAPro and EvoChart-QA serve as out-of- 482

domain evaluations to test generalization perfor- 483

mance. The results are shown in Table 1. 484

In the ChartQA benchmark, the proprietary 485

Claude-3.5-Sonnet model achieves top-tier perfor- 486

mance. However, our ChartReasoner significantly 487

outperforms all open-source 7B models and sur- 488

passes the majority of chart-specialized baselines, 489

demonstrating its strong reasoning capability in 490

structured visual tasks. A similar trend is observed 491

in ChartBench, where GPT-4o leads among propri- 492

etary models, yet our model achieves state-of-the- 493

art results among open-source and domain-specific 494

competitors. These findings confirm that while pro- 495

prietary models still retain an edge on in-domain 496

datasets, strengthening reasoning and analysis abil- 497

ity can bridge this gap and yield competitive re- 498

sults. In the EvoChart-QA benchmark, which con- 499

tains long and complex real-world charts, GPT- 500

4o shows relatively weaker performance. In con- 501

trast, EvoChart, a chart-specialized model trained 502

on similar data, performs better but shows clear 503

limitations on ChartQA, indicating limited cross- 504

domain generalization due to data-specific over- 505

fitting and smaller model scale. Notably, our 506

ChartReasoner matches GPT-4o’s performance and 507

outperforms its own base model Qwen2.5-VL, con- 508

firming its enhanced capacity for long-chain vi- 509

sual reasoning and data adaptation.Lastly, in the 510

ChartQAPro benchmark, Gemini-Flash-2.0 stands 511

out among proprietary models. Still, ChartRea- 512

soner surpasses even GPT-4o in this domain-shifted 513

setting. This reveals that many proprietary mod- 514

els struggle with domain transfer in chart under- 515

standing, whereas ChartReasoner’s consistent per- 516

formance under both in-domain and out-of-domain 517

conditions underscores the importance of improv- 518
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Model Name Size Evochart-QA ChartQA ChartBench ChartQAPro

Closed-source

Claude-3.5-Sonnet (Anthropic, 2024) – – 90.80 – 43.58
Gemini-Flash-2.0 (Team et al., 2024) – – – – 46.85
Gemini-1.5-Flash (Team et al., 2024) – 27.90 79.00 – 42.96
Gemini-1.5-Pro (Team et al., 2024) – 32.20 87.20 – –
GPT-4-turbo (Achiam et al., 2023) – 40.30 62.30 – –
GPT-4o (Achiam et al., 2023) – 49.80 85.70 59.45 37.67

Open-source

InternVL2-Llama3 (Chen et al., 2024b) 76B – 88.40 – –
Qwen2-VL (Wang et al., 2024) 72B – 88.30 – –
Intern-VL2 (Chen et al., 2024b) 40B 49.00 86.20 – –
CogVLM2 (Hong et al., 2024) 19B 21.90 81.00 – –
Intern-VL2 (Chen et al., 2024b) 8B 38.60 81.50 – –
Intern-VL2.5 (Chen et al., 2024a) 8B – 84.80 – 35.67
LLaVA-v1.5 (Liu et al., 2024) 7B – 55.32 23.39 –
Internlm-XComp.-v2 (Dong et al., 2024) 7B – 72.64 47.78 –
QwenVL-Chat (Bai et al., 2023) 7B 19.70 83.00 26.98 35.59
Qwen2.5-VL (Bai et al., 2025) 7B 46.80 85.00 54.06 36.61
Phi3-Vision (Abdin et al., 2024) 4B 39.50 81.40 – 24.73

Chart Expert

ChartLlama (Han et al., 2023) 13B 9.50 69.66 21.71 –
ChartAst-S (Meng et al., 2024) 13B 12.90 79.90 – –
ChartIns-Llama2 (Masry et al., 2024) 7B 16.80 66.64 – 4.88
EvoChart (Huang et al., 2025a) 4B 54.20 81.50 – –
ChartIns-FlanT5 (Masry et al., 2024) 3B 24.30 64.20 – –
ChartGemma (Masry et al., 2025b) 3B 30.60 80.16 – 6.84
TinyChart (Abdin et al., 2024) 3B 25.50 83.60 – 13.25
ChartReasoner-SFT(Ours) 7B 47.04 86.76 55.10 37.94
ChartReasoner-GRPO(Ours) 7B 48.10 86.93 55.20 39.97

Table 1: Comparisons of ChartReasoner and Baselines on Four ChartQA Benchmarks.

ing reasoning and abstraction abilities to enhance519

chart-centric generalization.520

Comparing models trained with SFT alone to521

those further refined with GRPO reveals consis-522

tent gains across all benchmarks. GRPO improves523

reasoning quality and reduces over-explanation524

and encourages more structured, precise out-525

puts—highlighting its effectiveness in enhancing526

visual reasoning.527

4.3 Ablation Experiment528

Chart-to-Code Performance Evaluation. To529

comprehensively evaluate the effectiveness of our530

Chart2Code, we present the results in Table 2,531

which consolidates comparisons across different532

datasets and training scales. Specifically, we assess533

model performance on a real-world test set derived534

from EvoChart-QA, using GPT-4V visual similar-535

ity scores and pass rates as evaluation metrics.536

Our Chart2Code, trained on the proposed537

ECharts-based dataset, significantly outperforms538

models trained on the EvoChart dataset under com-539

parable training sizes. The results highlight notable540

improvements in both visual fidelity and pass rate,541

demonstrating the higher quality and diversity of542

our data. This suggests that our dataset enables543

better generalization and more accurate chart re-544

construction, even for complex and diverse chart 545

types encountered in practice. 546

In addition, our model trained on ECharts-based 547

data exhibits superior performance compared to 548

those trained on large-scale, Python-generated 549

chart datasets. Despite the latter having access 550

to more training examples, their performance lags 551

behind in both robustness and reconstruction accu- 552

racy. This underscores the importance of data real- 553

ism and expressiveness—qualities more inherently 554

present in ECharts specifications—for effectively 555

training chart generation models. 556

We also analyze the impact of data volume by 557

training models on subsets of 30k, 50k, 70k, and 558

110k chart–code pairs. Results show that while 559

increasing the dataset size generally improves per- 560

formance, the gains begin to plateau beyond 70k 561

examples. This saturation effect suggests that 110k 562

samples are sufficient to maximize the model’s re- 563

construction capability. 564

Sensitivity Analysis We conduct a sensitivity 565

analysis to evaluate how chart type affects both 566

chart reconstruction and downstream reasoning per- 567

formance. As shown in Table 2, the Chart2Code 568

module exhibits strong performance on bar and 569

pie charts, while its accuracy declines for scatter 570
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Model Data Similarity bar line pie scatter Rate Types

ChartCoder 160k 3.64 4.18 3.91 3.25 3.22 82.40% 27
Chart2Code-Evo. 70k 3.84 4.63 4.16 3.94 2.63 89.10% 4
Chart2Code(Ours) 30k 2.39 3.12 2.24 2.81 1.39 88.20% 49
Chart2Code(Ours) 50k 3.62 4.37 3.81 4.17 2.13 90.60% 49
Chart2Code(Ours) 70k 4.21 5.17 4.20 4.23 3.24 91.00% 49
Chart2Code(Ours) 110k 4.34 5.26 4.21 5.12 3.77 92.40% 49

Table 2: A performance comparison of Chart2Code
models trained on different datasets in terms of GPT-4V
similarity (including specific chart types) and EvoChart-
QA pass rates.
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Figure 4: ChartBench Performance Across Chart Types.

and line charts. Scatter plots often contain dense,571

overlapping points that hinder precise encoding,572

whereas many line charts in EvoChart are multi-573

series or include complex visual encodings, mak-574

ing them particularly challenging to parse. These575

characteristics, along with their relative scarcity576

in the training data, contribute to consistently577

lower reconstruction accuracy—especially for line578

charts—across all models.579

This reconstruction quality directly influences580

reasoning performance in the ChartReasoner mod-581

ule. As shown in Figure 4 and Figure 5, ChartRea-582

soner achieves competitive results on bar and pie583

charts but underperforms on scatter, line, and box584

plots. Notably, the stronger results on bar, line,585

and pie charts within ChartBench align with their586

higher frequency in our training data, which en-587

hances reconstruction robustness and, in turn, im-588

proves reasoning accuracy. These observations589

highlight a strong correlation between reconstruc-590

tion reliability and downstream performance, un-591

derscoring the importance of both visual complex-592

ity and data distribution in building effective chart593

reasoning systems.594

Impact of Different Dataset Sources. We595

further investigate how different ChartQA-style596

datasets affect downstream reasoning performance597

when used to construct CoT-style training data.598

Specifically, we sample 20k instances from599

ChartQA, EvoChart, ChartBench, and PlotQA, and600

convert them into reasoning examples via our chart-601

to-code distillation pipeline. Results in Table 3 602

reveal that training data sourced from the same dis- 603

tribution as the evaluation benchmark yields the 604

best performance, confirming the impact of dataset 605

alignment. Notably, PlotQA-based training per- 606

forms poorly across all benchmarks. This is likely 607

due to its synthetic nature, limited visual diversity, 608

and narrow chart type coverage—restricted to bar, 609

line, and dot—making it less representative of real- 610

world charts. In contrast, EvoChart-derived data 611

achieve stronger generalization, particularly on 612

EvoChart-QA and ChartQAPro. EvoChart charts 613

better resemble real-world styles and include a 614

broader set of chart types, such as pie and scat- 615

ter, enhancing their cross-domain utility. While 616

ChartBench data yield strong in-domain results, 617

their performance on other benchmarks is less com- 618

petitive, suggesting limited transferability. Overall, 619

these findings underscore the importance of dataset 620

diversity and visual-semantic complexity in train- 621

ing robust chart reasoning models. 622

DataSet Evochart-QA ChartQA ChartBench ChartQAPro

ChartQA 41.3 86.56 51.43 35.64
EvoChart 42.8 85.48 52.38 36.05
ChartBench 40.5 81.56 54.76 32.36
PlotQA 40.2 83.00 47.80 34.69

Table 3: Impact of Different Dataset Sources on Down-
stream Chart Reasoning Performance.

5 Conclusion 623

We present ChartReasoner, a code-driven, two- 624

stage framework that bridges the gap between vi- 625

sual chart understanding and long-chain reasoning 626

in multimodal large language models. By intro- 627

ducing Chat2Code, which converts chart images 628

into high-fidelity ECharts code, and constructing 629

the ChartReasoning dataset with over 140K multi- 630

step reasoning samples, our approach enables pre- 631

cise, interpretable, and scalable ChartQA. Exten- 632

sive evaluations across four benchmarks demon- 633

strate that ChartReasoner achieves strong general- 634

ization and reasoning performance, outperforming 635

open-source baselines and approaching proprietary 636

models like GPT-4o. Our work highlights the im- 637

portance of symbolic representation and structured 638

reasoning for advancing chart-based visual under- 639

standing.By tightly coupling visual parsing with 640

logical reasoning, ChartReasoner offers a unified 641

paradigm for complex analytical tasks. Future work 642

may explore extending this framework to broader 643

domains such as scientific visualization. 644
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Limitations645

Our study is comprehensive but has certain limita-646

tions that we aim to address in future research.First,647

due to computational constraints, we conduct all ex-648

periments using a 7B-parameter model. Although649

this setting yields promising results, scaling to650

larger models may further enhance performance651

and generalization capabilities. Second, the current652

evaluation focuses primarily on benchmark-style653

synthetic and semi-structured charts. The general-654

ization of our method to more complex, real-world655

visualizations remains an open challenge.656

References657

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed658
Awadallah, Ammar Ahmad Awan, Nguyen Bach,659
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat660
Behl, and 1 others. 2024. Phi-3 technical report: A661
highly capable language model locally on your phone.662
arXiv preprint arXiv:2404.14219.663

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama664
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,665
Diogo Almeida, Janko Altenschmidt, Sam Altman,666
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-667
cal report. arXiv preprint arXiv:2303.08774.668

Saleem Ahmed, Bhavin Jawade, Shubham Pandey, Sri-669
rangaraj Setlur, and Venu Govindaraju. 2023. Real-670
cqa: Scientific chart question answering as a test-bed671
for first-order logic. In Proceedings of the ICDAR.672

Anthropic. 2024. Introducing the next generation of673
claude. Accessed: 2025-05-18.674

Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir675
Zubach, Hassan Mansoor, Vincent Etter, Victor676
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A Implementation Details.900

We use Qwen2.5-VL-7B (Bai et al., 2025) as the901

backbone and perform supervised fine-tuning on 8902

A100 80GB GPUs. The vision tower and projec-903

tion layers are frozen, while the language model is904

fully trainable. Training runs for 4 epochs with an905

effective batch size of 8, using BF16 precision. We906

apply the AdamW (Loshchilov and Hutter, 2019)907

optimizer with learning rate 1e-5. The maximum908

sequence length is 4096 tokens, and images are909

resized to 512×512 pixels. We further apply GRPO910

for 2 epochs starting from the SFT checkpoint.911

The model generates 8 completions per input, with912

reward-weighted selection based on accuracy, for-913

mat correctness, and length suitability.914

B Qualitative Analysis 915

To further illustrate the performance improvements 916

brought by our model in chart-based multimodal 917

reasoning, we conduct a qualitative analysis us- 918

ing representative examples. These cases help 919

demonstrate how enhanced reasoning capabilities 920

can effectively assist visual understanding, espe- 921

cially when direct visual recognition is ambiguous 922

or when the question requires complex logical in- 923

terpretation. As illustrated in Figures 6–9, these 924

examples further demonstrate the effectiveness of 925

our method. 926

Visual-Aided Reasoning. One core strength of 927

our ChartReasoner lies in its ability to perform 928

visual reasoning that supplements and corrects po- 929

tentially uncertain visual recognition. As shown 930

in Figure 6, the example question is: "What is the 931

label of the highest bar of February?" This task 932

requires the model to first locate February on the x- 933

axis and then identify the label corresponding to its 934

highest bar—thus constituting a visual reasoning 935

problem. 936

While baseline models such as Qwen2.5VL fail 937

to correctly locate "February" and incorrectly iden- 938

tify "Sales" as the highest category, ChartReasoner 939

demonstrates a more accurate analysis by first rea- 940

soning through the axis structure: "The x-axis data 941

is [January, February, March, ..., December], so 942

February is the second month." This allows it to 943

correctly localize the February column and extract 944

the corresponding bar label, thereby arriving at the 945

correct answer. 946

This example highlights that reasoning capabil- 947

ities can effectively compensate for limitations in 948

visual recognition, particularly when axis elements 949

or data labels are densely packed, occluded, or am- 950

biguously rendered. 951

Complex Semantic Reasoning. In addition to 952

visual grounding, ChartReasoner also excels in han- 953

dling complex semantic questions that require pre- 954

cise logical understanding. As shown in Figure 7, 955

the example question is: "How many percent of 956

U.S. coffee drinkers drink less than 2 cups of cof- 957

fee at home on a weekday?" The key to this ques- 958

tion lies in correctly interpreting the condition "less 959

than 2 cups." However, Qwen2.5VL incorrectly in- 960

cludes the "2 cups" category in its calculation, lead- 961

ing to a wrong answer. In contrast, ChartReasoner 962

demonstrates its advanced reasoning by recogniz- 963

ing the logical boundary of the query and explicitly 964
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excluding the 2-cups group from its aggregation,965

yielding the correct answer. This indicates that rea-966

soning ability is critical for precise comprehension967

of quantitative and conditional logic, which is often968

required in real-world ChartQA scenarios.969

C Prompt Design for Visual Evaluation970

with GPT-4V971

To comprehensively assess the visual quality of972

generated charts, we adopt a structured prompt-973

based evaluation approach using GPT-4V. The974

prompt instructs the model to compare a gener-975

ated chart with its corresponding ground-truth ver-976

sion and assign a similarity score ranging from 1977

to 10. The scoring is based on four key criteria:978

Colors (accuracy of color schemes), Axes & Scale979

(consistency of axis ranges and units), Data Points980

Position (placement and alignment of bars, lines, or981

markers), and Overall Layout (correctness of titles,982

labels, legends, etc.).983

This prompt enables GPT-4V to produce fine-984

grained visual judgments that go beyond traditional985

execution-based metrics (e.g., code correctness),986

capturing layout-level discrepancies that impact987

real-world interpretability. An example of such988

a prompt is illustrated in Figure 10. This evalu-989

ation method bridges the gap between syntactic990

correctness and perceptual fidelity in chart genera-991

tion tasks.992

D Prompt Engineering for ECharts Code993

Generation994

To enable effective chart generation, we employ995

domain-specific prompt engineering tailored to the996

ECharts visualization framework. The prompts are997

constructed to cover 18 thematic domains and 111998

subtopics, spanning social, economic, technologi-999

cal, and environmental dimensions. This ensures1000

diverse coverage of chart types and semantic con-1001

texts.1002

Each prompt clearly specifies the chart topic, the1003

intended visual form (e.g., bar chart, line chart, scat-1004

ter plot), and any constraints on layout or data en-1005

coding. As demonstrated in Figure 11, this guided1006

prompting allows models like DeepSeek R1 to1007

leverage their strong reasoning abilities to produce1008

structurally varied and semantically rich visualiza-1009

tions. These prompts are essential to ensure that1010

the generated charts are not only syntactically valid1011

but also meaningful and domain-relevant.1012

E Chart-to-Code Dataset Detailed Case 1013

To further illustrate the design of our Chart-to-Code 1014

Dataset, we present selected examples that directly 1015

show the generated ECharts HTML code along- 1016

side the corresponding rendered chart. These ex- 1017

amples also highlight the flexibility of the chart 1018

template system and the reasoning capability of 1019

the DeepSeek R1 model in generating structurally 1020

complex and thematically rich charts. By showcas- 1021

ing a range of chart types—including bar, line, and 1022

pie charts—these cases reflect the robustness of 1023

our prompt engineering approach and the effective- 1024

ness of the multi-stage quality filtering pipeline de- 1025

scribed in the methodology. Figures 12–15 present 1026

more detailed examples from the Chart2Code 1027

dataset. 1028
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Figure 5: EvoChart Performance Across Chart Types.

<think> Okay, let's try to figure out the answer to this question. The user is asking for the label of the highest bar in February. The chart
provided has three series: Production Cost, Sales, and Revenue. Each month has bars for these three categories. \n\nFirst, I need to look 

at the data for February. The x-axis data is ['January', 'February', 'March', ..., 'December'], so February is the second month. Now, 
checking each series' data array:\n\n- Production Cost data: [25000, 35000, 40000, ...]. February is the second value, which is 35,000.\n-
Sales data: [35000, 28000, 48000, ...]. February's value here is 28,000.\n- Revenue data: [15000, -8000, 12000, ...]. February's value is -

8,000.\n\nWait, but the question is about the highest bar. So among these three values for February, which is the highest? Production Cost 
is 35k, Sales is 28k, Revenue is -8k. The highest among these is 35,000 from Production Cost. \n\nBut wait, the chart might have stacked 
bars. The series for Sales and Revenue are part of the 'total' stack. So the total height for February would be the sum of Production Cost, 

Sales, and Revenue? Or maybe just the stacked ones? Let me check the series configuration. \n\nLooking at the series, Production Cost is
a regular bar, while Sales and Revenue are stacked under 'total'. That means Sales and Revenue are stacked on top of each other, but 

Production Cost is a separate bar. So in February, there are three separate bars: one for Production Cost (35k), one for Sales (28k), and 
one for Revenue (-8k). The highest among these three is Production Cost at 35,000. \n\nBut the user is asking for the label of the highest 
bar. The label would correspond to the series name. So the highest bar in February is Production Cost. Therefore, the label is Production

Cost.\n</think> \n\n <answer>\n\nThe highest bar in February corresponds to the **Production Cost** with a value of $35,000. 
\n\nAnswer: \\boxed{Production Cost}</answer>

To determine the label of the highest bar for February, I need to identify which category (Production Cost, Sales, or Revenue ) 
has the tallest bar for that month. Observing the chart, the tallest bar for February appears to be the orange one, which 

represents Sales.\n\nThe height of this bar is above the 40,000 mark on the y-axis, indicating it's the highest among the three 
categories for February.The answer is Sales.

Q:What is the label of the highest bar of Febuary?
A:Production Cost

ChartReasoner

Qwen2.5VL

Figure 6: Comparison of Model Responses in ChartQA (Example 1).
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<think> Okay, let's try to figure out this question. The user is asking about the percentage of U.S. coffee drinkers who drink less than 2 
cups of coffee at home on a weekday. The data provided is from a chart titled \"How Many Cups of Coffee Do Americans Drink Each

Day?\" with two pie charts. \n\nFirst, I need to understand the structure of the chart. The left pie chart is labeled \"At home on a 
weekday\" and the right one is \"To go\". Each pie chart has different categories: for \"At home on a weekday\", the categories are 1 cup 

(21%), 2 cups (27%), 3 cups (20%), 4 to 5 cups (18%), and 6 or more cups (13%). The \"To go\" chart has categories Daily (20%), 
Several times per week (24%), Once per week (21%), Less often (25%), and Never (13%).\n\nThe question specifically asks about those
who drink less than 2 cups. So, looking at the \"At home on a weekday\" data, the relevant categories would be \"1 cup\" and \"2 cups\". 

Wait, but \"2 cups\" is exactly 2 cups. The user is asking for less than 2 cups, so maybe only the \"1 cup\" category. But I need to check if 
the question considers \"1 cup\" as less than 2. \n\nWait, the question says \"less than 2 cups\". So \"1 cup\" is less than 2, but \"2 cups\" is 

exactly 2. So the total percentage would be the sum of the \"1 cup\" percentage plus the \"2 cups\" percentage? Wait, but that might not
be correct. Let me think again. \n\nWait, the question is about \"how many percent drink less than 2 cups\". So that would include anyone 

who drinks 1 cup or less. But in the chart, \"2 cups\" is exactly 2, so that's not less than 2. So only the \"1 cup\" category is included. 
Therefore, the answer would be 21% (from the \"At home on a weekday\" pie chart). \n</think> \n\n <answer>\n\nThe chart shows that 
among U.S. coffee drinkers who consume coffee at home on a weekday, **21%** drink **1 cup**, and **27%** drink **2 cups**.

Since \"less than 2 cups\" strictly excludes those who drink exactly 2 cups, only the **21%** who consume **1 cup** qualify. 
\n\n**Answer:** \\boxed{21\\%}</answer>

To determine how many percent of U.S. coffee drinkers drink less than 2 cups of coffee at home on a weekday, we need to 
look at the data provided in the pie chart for \"At home on a weekday. \" The chart shows percentages for different quantities 
of coffee consumed: 1 cup, 2 cups, 3 cups, 4 to 5 cups, and 6 or more cups. \n\n- 1 cup: 21%\n- 2 cups: 27%\n\nAdding these 
two percentages together gives us the total percentage of U.S. coffee drinkers who drink less than 2 cups of coffee at home o n 
a weekday:\n\n21% (1 cup) + 27% (2 cups) = 48%\n\nTherefore, 48% of U.S. coffee drinkers drink less than 2 cups of coffee 

at home on a weekday. The answer is 48%.

Q:How many percent of U.S. coffee drinkers drink 
less than 2 cups of coffee at home on a weekday?

A:21

ChartReasoner

Qwen2.5VL

Figure 7: Comparison of Model Responses in ChartQA (Example 2).

<think> Okay, let's try to figure out the answer to this question. The user is asking about the percentage of British adults who have a 
favorable view of reforming UK between 2019 and 2020. \n\nFirst, I need to look at the data provided. The chart lists different years

from 2016 to 2024, with corresponding values for different political parties. The parties listed are the Labour Party, Reform UK, Liberal 
Democrats, and the Conservative Party. The question specifically mentions \"reforming UK,\" which I assume refers to the Reform UK 
party.\n\nThe time frame given is between 2019 and 2020. So I need to check the data for these two years. Let me look at the data rows 

for 2019 and 2020. \n\nFor 2019, the values are: 31 (Labour), 26 (Reform UK), 45 (Liberal Democrats), 30 (Conservative). Then for
2020, the values are: 39 (Labour), 26 (Reform UK), 41 (Liberal Democrats), 39 (Conservative). Wait, the years in the data are listed as 
'16, '17, '18, '19, '20, etc. So '19 is 2019 and '20 is 2020. \n\nThe question is about the period between 2019 and 2020. But the data for 

Reform UK in 2019 is 26 and in 2020 is 26 as well. So both years have the same value. But the user is asking for the percentage of 
favorable views during that period. However, the data here seems to be annual data, not monthly or quarterly. The chart's data points are
for each year, so 2019 and 2020 each have a single value. \n\nWait, maybe the question is phrased a bit confusingly. It says \"between 

year 2019 to year 2020,\" which could mean the two years inclusive. But the data for Reform UK in both 2019 and 2020 is 26. So if the 
question is asking for the percentage in those two years combined, but the data is annual, then the answer would be 26% for both years. 

\n</think> \n\n <answer>\n\nThe chart shows the percentage of British adults with a favorable view of \"Reform UK\" for each year. For
**2019**, the value is **26**, and for **2020**, it is also **26**. Since the question asks for the percentage **between 2019 and 

2020**, and the data is annual, the answer remains consistent for both years. \n\n**Answer:** \\boxed{26}</answer>

To determine the percentage of British adults who have a favorable view of reforming UK between the years 2019 and 2020, 
we need to look at the data for the \"Reform UK\" line on the graph.\n\nThe graph shows that in 2019, the percentage was 

26%, and in 2020, it increased to 30%.\n\nTo find the average percentage over these two years: \n(26% + 30%) / 2 = 56% / 2
= 28%\n\nTherefore, the average percentage of British adults who have a favorable view of reforming UK between 2019 and

2020 is 28%. The answer is 28.

Q:How many percent of British adults say they
have a favorable view of reforming UK between

year 2019 to year 2020?
A:26

ChartReasoner

Qwen2.5VL

Figure 8: Comparison of Model Responses in ChartQA (Example 3).
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<think> Okay, let's see. The user is asking about the value of the circle with the second smallest area in the provided chart. First, I need 
to understand the data presented here. The chart shows average CO₂ emissions per capita in different regions, with each region 

represented by a circle whose size corresponds to the emissions. The data points are given as pairs: [emissions value, region
name].\n\nLooking at the data:\n\n- World: 6.6\n- North America: 20.8\n- Middle East: 7.4\n- Europe: 9.7\n- Central Asia & Russia:

9.9\n- East Asia: 8.6\n- South & Southeast Asia: 2.6\n- Sub-Saharan Africa: 1.6\n\nThe question is about the second smallest area. Since 
the circles' sizes are determined by their emissions values, the smallest area would correspond to the smallest emissions value. Let's list 

the values in order from smallest to largest:\n\n1. Sub-Saharan Africa: 1.6\n2. South & Southeast Asia: 2.6\n3. Europe: 9.7\n4. East Asia: 
8.6\n5. Central Asia & Russia: 9.9\n6. Middle East: 7.4\n7. World: 6.6\n8. North America: 20.8\n\nSo the smallest area is Sub-Saharan
Africa at 1.6, and the second smallest would be South & Southeast Asia at 2.6. Therefore, the value they're asking for is 2.6.\n</think> 
\n\n <answer>\n\nThe second smallest area corresponds to the second lowest emissions value. Sorting the data:\n\n1. **Sub-Saharan 

Africa**: 1.6 (smallest)\n2. **South & Southeast Asia**: 2.6 (second smallest)\n3. **Europe**: 9.7\n4. **East Asia**: 8.6\n5. 
**Central Asia & Russia**: 9.9\n6. **Middle East**: 7.4\n7. **World**: 6.6\n8. **North America**: 20.8\n\nThe value of the circle

with the second smallest area is \\boxed{2.6}.</answer>

To determine the value of the circle with the second smallest area, we need to compare the areas represented by each circle 
on the map. The areas are proportional to the CO2 emissions per capita for each region. \n\nThe areas from largest to smallest 

are:\n1. North America: 20.8 \n2. Central Asia & Russia: 9.9 \n3. Europe: 9.7\n4. East Asia: 8.6\n5. Middle East: 7.4\n6.
South & Southeast Asia: 2.6 \n7. Latin America: 4.8 \n8. Sub-Saharan Africa: 1.6\n9. World: 6.6 \n\nThe second smallest area

is that of Sub-Saharan Africa, which is 1.6 tons.The answer is 1.6.

Q:What is the value of the circle with the second 
smallest area?

A:2.6

ChartReasoner

Qwen2.5VL

Figure 9: Comparison of Model Responses in ChartQA (Example 4).

Please evaluate the similarity between a reference image created using matplotlib and an image generated by code provided by an
AI assistant. Consider factors such as the overall appearance, colors, shapes, positions, and other visual elements of the im ages.
Begin your evaluation by providing a short explanation. Be as objective as possible.
After providing your explanation, you must rate the response on a scale of 1 to 10 by strictly following this format: Rating: [[5]]

Figure 10: GPT-4V Visual Evaluation Prompt.
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You are a web chart generation assistant. Please emulate the structure, style, and configuration of the ECharts chart in the following 
HTML:
(Original chart HTML below)
{echarts_template}

Modify it according to these requirements and generate a complete HTML page with the chart (ready to run in a browser). Choos e 
**one** theme and dataset from the list below, or combine multiple for richer context, but feel free to create your own varia tion:
Pay attention to keep the data distribution reasonable and diverse when drawing the graph, consider the rendering effect, and conform to 
the real chart
Note that the scatter plot distribution is random and should not be concentrated together

- **Climate & Environment**: global temperature anomalies, CO2 emissions by sector, deforestation rates, sea level rise, ocean acidity,
renewable energy adoption, air quality index, water scarcity index, glacier retreat
- **Population & Demographics**: world population growth, urban vs rural distribution, age pyramids by country, migration patte rns,
household income distribution, gender ratio statistics, life expectancy trends
- **Economics & Finance**: stock market indices (e.g., S&P 500, FTSE 100), GDP per capita, inflation rates, foreign direct inve stment, 
income inequality (Gini coefficient), cryptocurrency market capitalization, commodity prices (oil, gold, agriculture)
- **Energy & Resources**: solar and wind power capacity, oil & gas production, nuclear energy share, water consumption per capi ta, 
mineral extraction volumes, waste recycling rates, renewable vs non -renewable energy mix
- **Technology & Internet**: global internet penetration, mobile phone subscriptions, social media user growth, e -commerce sales, 
cybersecurity incidents, data center energy usage, AI investments, open source contribution trends
- **Health & Society**: pandemic case numbers, vaccination rollout rates, healthcare expenditure per capita, mental health surv ey scores, 
hospital bed availability, disease incidence rates, life satisfaction index
- **Retail & Sales**: monthly retail sales by sector, online vs offline revenue, average basket size, foot traffic in malls, cu stomer churn 
rate, loyalty program engagement
- **Education & Employment**: enrollment rates in primary/secondary/tertiary, literacy rates, graduation rates by discipline, j ob vacancy 
data, unemployment rates, average salary by industry, remote work adoption, skill shortage indices
- **Tourism & Transportation**: tourist arrivals by region, airline passenger miles, ride -sharing usage, public transit ridership, port 
container throughput, traffic congestion index, vehicle electrification adoption
- **Sports & Entertainment**: sports league attendance, athlete medal counts, box office revenue by genre, music streaming hour s, video 
game sales figures, award show winners stats, TV viewership ratings
- **Media & Communication**: newspaper circulation, podcast listenership, YouTube subscriber growth, mobile app usage time, onl ine 
news article shares, media trust index
- **Automotive & Mobility**: vehicle sales by type (EV, ICE, hybrid), autonomous vehicle tests, public bike -share usage, traffic accident
statistics, fuel efficiency trends, ride-hailing market share
- **Agriculture & Food**: crop yield per hectare, food price index, livestock population, organic farming acreage, seafood harv est
volumes, global hunger index
- **Science & Research**: scientific publication counts by field, research funding allocation, patent filings, R&D expenditure, Nobel
prize distribution, clinical trial numbers
- **Real Estate & Construction**: housing price index, construction starts by region, mortgage interest rates, commercial real estate 
vacancies, smart city projects
- **Government & Public Policy**: budget deficit/surplus, tax revenue breakdown, public debt levels, policy approval ratings, c rime rates 
by category, election turnout statistics
- **Space & Aeronautics**: satellite launches, ISS research hours, space tourism bookings, Mars rover milestones, asteroid dete ction 
counts
- **Miscellaneous**: cryptocurrency price volatility, earthquake frequency and magnitude, festival attendance, book publication counts, 
open source project activity

Use your imagination and knowledge to create different data distributions based on the topic.
Pay attention to keep the data distribution reasonable and diverse when drawing the graph, consider the rendering effect, and conform to 
the real chart
Note that the scatter plot distribution is random and should not be concentrated together
1. Replace the chart data with a different but coherent dataset.
2. The data distribution and trends should be as complex as possible and not too monotonous.
3. Change the topic or theme accordingly.
4. Add the main title and subtitle related to the new topic and let your imagination run wild.
5. Keep the original chart type.
6. You can use your imagination to change the style and color at will.
7. Return only the full HTML code —no explanations or comments.

Figure 11: ECharts Code Generation Prompt.
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<html>
<head>

<meta charset="utf-8" />
<title>Climate Change Analysis</title>
<script src="https://cdn.jsdelivr.net/npm/echarts@5.6.0/dist/echarts.min.js"></script>
<style>

html, body { width: 100%; height: 100%; margin: 0; padding: 0; }
#main { width: 100%; height: 100%; }

</style>
</head>
<body>

<div id="main"></div>
<script>

var chartDom = document.getElementById('main');
var myChart = echarts.init(chartDom);
var option;

option = {
title: {

text: 'Global Temperature Anomalies',
subtext: 'Deviation from pre-industrial baseline (1880-1900)\nEarth\'s fever chart shows 

accelerating crisis',
left: 'center',
textStyle: { color: '#d74b14', fontSize: 22 },
subtextStyle: { color: '#666', fontSize: 14 }

},
xAxis: {

type: 'category',
boundaryGap: false,
data: ['1990', '1995', '2000', '2005', '2010', '2015', '2020'],
axisLabel: { color: '#333' }

},
yAxis: {

type: 'value',
name: 'Temperature Deviation (°C)',
min: 0,
axisLabel: { formatter: '{value}°C' }

},
series: [{

data: [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.1],
type: 'line',
smooth: true,
symbolSize: 12,
lineStyle: { color: '#e36209', width: 3 },
areaStyle: {

color: new echarts.graphic.LinearGradient(0, 0, 0, 1, [
{ offset: 0, color: 'rgba(255,165,0,0.4)' },
{ offset: 1, color: 'rgba(255,69,0,0.1)' }

])
},
label: {

show: true,
formatter: '{c}°C',
color: '#d74b14',
fontSize: 12,
position: 'top'

},
markPoint: {

data: [
{ type: 'max', name: 'Record High' },
{ type: 'min', name: 'Coolest Year' }

]
}

}],
tooltip: { trigger: 'axis' },
grid: { containLabel: true, left: '10%' }

};

option && myChart.setOption(option);
window.addEventListener('resize', function() { myChart.resize(); });

</script>
</body>
</html>

<html>
<head>

<meta charset="utf-8" />
<title>Energy Transition Dashboard</title>
<script src="https://cdn.jsdelivr.net/npm/echarts@5.6.0/dist/echarts.min.js"></script>
<style>

html, body { width: 100%; height: 100%; margin: 0; padding: 0; }
#main { width: 100%; height: 100%; }

</style>
</head>
<body>

<div id="main"></div>
<script>

var chartDom = document.getElementById('main');
var myChart = echarts.init(chartDom);

var option = {
title: {

text: 'Global Energy Transition Progress',
subtext: 'Renewable Energy Adoption vs Fossil Fuel Dependency (2015 -2023)',
left: 'center',
textStyle: { color: '#2c343c', fontSize: 22 },
subtextStyle: { color: '#666', fontSize: 14 }

},
tooltip: { trigger: 'axis' },
xAxis: {

type: 'category',
data: ['2015','2016','2017','2018','2019','2020','2021','2022','2023'],
axisLabel: { rotate: 45, color: '#555' }

},
yAxis: {

type: 'value',
name: 'Energy Share (%)',
axisLine: { lineStyle: { color: '#999' } }

},
legend: {

data: ['Renewable Energy', 'Fossil Fuels'],
bottom: 10

},
series: [{

name: 'Renewable Energy',
type: 'bar',
data: [18.2, 19.5, 21.8, 23.4, 25.1, 28.7, 31.4, 34.8, 38.3],
itemStyle: {

color: new echarts.graphic.LinearGradient(0, 0, 0, 1, [
{ offset: 0, color: '#2ecc71' },
{ offset: 1, color: '#27ae60' }

])
},
label: { show: true, position: 'top', color: '#27ae60' }

},{
name: 'Fossil Fuels',
type: 'bar',
data: [81.8, 80.5, 78.2, 76.6, 74.9, 71.3, 68.6, 65.2, 61.7],
itemStyle: {

color: new echarts.graphic.LinearGradient(0, 0, 0, 1, [
{ offset: 0, color: '#e74c3c' },
{ offset: 1, color: '#c0392b' }

])
},
label: { show: true, position: 'top', color: '#c0392b' }

}],
grid: { top: 100, bottom: 100 }

};

myChart.setOption(option);
window.addEventListener('resize', function() { myChart.resize(); });

</script>
</body>
</html>

Figure 12: Example 1 from the Chart-to-Code Dataset.
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<html>
<head>

<meta charset="utf-8" />
<title>ECharts</title>
<script src="https://cdn.jsdelivr.net/npm/echarts@5.6.0/dist/echarts.min.js"></script>
<style>

html, body { width: 100%; height: 100%; margin: 0; padding: 0; }
#main { width: 100%; height: 100%; }

</style>
</head>
<body>

<div id="main"></div>
<script>

var chartDom = document.getElementById('main');
var myChart = echarts.init(chartDom);
var option;

option = {
title: [

{ text: 'Global Vaccine Rollout Efficiency (2020 -2023)', subtext: 'Distribution of monthly 
vaccination rates by continent', left: 'center' },

{ text: 'Upper boundary: Q3 + 1.5*IQR\nLower boundary: Q1 - 1.5*IQR', borderColor: '#666', 
borderWidth: 1, textStyle: { fontSize: 12 }, left: '10%', top: '90%' }

],
dataset: [

{
source: [

[82, 75, 88, 92, 85, 78, 95, 98, 91, 87, 89, 93, 84, 79, 96, 102, 105, 98, 88, 81],
[65, 58, 72, 68, 63, 70, 75, 82, 79, 66, 61, 57, 64, 71, 69, 74, 63, 59, 55, 62],
[45, 38, 52, 49, 57, 61, 55, 63, 66, 58, 42, 39, 48, 53, 60, 65, 59, 51, 47, 44],
[88, 92, 95, 97, 89, 85, 91, 99, 101, 93, 87, 84, 90, 94, 96, 103, 98, 89, 86, 82],
[72, 68, 75, 79, 81, 77, 83, 85, 88, 79, 74, 70, 76, 80, 82, 87, 84, 78, 73, 69]

]
},
{ transform: { type: 'boxplot', config: { itemNameFormatter: ['Europe', 'Asia', 'Africa', 

'N.America', 'S.America'] } } },
{ fromDatasetIndex: 1, fromTransformResult: 1 }

],
tooltip: { trigger: 'item', axisPointer: { type: 'shadow' }, formatter: '{b}<br/>{a}: {c}%' },
grid: { left: '12%', right: '10%', bottom: '18%' },
xAxis: { type: 'category', boundaryGap: true, axisLabel: { rotate: 45 } },
yAxis: { type: 'value', name: 'Vaccination Rate (%)', splitArea: { show: true } },
series: [

{ name: 'Vaccination', type: 'boxplot', datasetIndex: 1, itemStyle: { color: '#5470C6', 
borderWidth: 2 }, 

label: { show: true, position: 'top', formatter: 'Median: {c}' } },
{ name: 'Outliers', type: 'scatter', datasetIndex: 2, symbolSize: 8, itemStyle: { color: 

'#EE6666' } }
],
visualMap: { show: false, dimension: 1, min: 40, max: 110, inRange: { colorLightness: [0.5,

0.8] } }
};

option && myChart.setOption(option);
window.addEventListener('resize', function() { myChart.resize(); });

</script>
</body>
</html>

<html>
<head>

<meta charset="utf-8" />
<title>Renewable Energy Adoption Funnel</title>
<script src="https://cdn.jsdelivr.net/npm/echarts@5.6.0/dist/echarts.min.js"></script>
<style>

html, body { width: 100%; height: 100%; margin: 0; padding: 0; }
#main { width: 100%; height: 100%; }

</style>
</head>
<body>

<div id="main"></div>
<script>

var chartDom = document.getElementById('main');
var myChart = echarts.init(chartDom);
var option;

option = {
title: {

text: 'Global Renewable Energy Transition',
subtext: 'From Policy Commitment to Operational Projects (2020 -2023)',
left: 'center'},

tooltip: {
trigger: 'item',
formatter: '{a} <br/>{b} : {c}%'},

toolbox: {
feature: {

dataView: { readOnly: false },
restore: {},
saveAsImage: {}}},

legend: {
data: ['Policy Commitment', 'Feasibility Study', 'Funding Secured', 'Construction Started',

'Operational'],
bottom: 10},

series: [{
name: 'Project Pipeline',
type: 'funnel',
left: '15%',
top: 100,
bottom: 100,
width: '70%',
min: 0,
max: 100,
sort: 'descending',
gap: 2,
label: {

show: true,
position: 'inside',
formatter: '{c}%'

},
itemStyle: {

borderColor: '#fff',
borderWidth: 2,
color: params => ['#c6e48b', '#7bc96f', '#49afc9', '#2fa6aa', '#19692d'][ params.dataIndex]

},
emphasis: {

label: {
fontSize: 18,
fontWeight: 'bold'

}
},
data: [

{ value: 95, name: 'Policy Commitment' },
{ value: 78, name: 'Feasibility Study' },
{ value: 63, name: 'Funding Secured' },
{ value: 45, name: 'Construction Started' },
{ value: 28, name: 'Operational' }

]
}]

};

option && myChart.setOption(option);
window.addEventListener('resize', function() { myChart.resize(); });

</script>
</body>
</html>

Figure 13: Example 2 from the Chart-to-Code Dataset.
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<html>
<head>

<meta charset="utf-8" />
<title>Energy Production Mix</title>
<script src="https://cdn.jsdelivr.net/npm/echarts@5.6.0/dist/echarts.min.js"></script>
<style>

html, body { width: 100%; height: 100%; margin: 0; padding: 0; }
#main { width: 100%; height: 100%; }

</style>
</head>
<body>

<div id="main"></div>
<script>

var chartDom = document.getElementById('main');
var myChart = echarts.init(chartDom);

var option = {
title: {

text: 'Global Energy Production 2023',
subtext: 'Source: International Energy Agency (IEA) Estimates',
left: 'center',
textStyle: { color: '#2c3e50', fontSize: 22 }

},
tooltip: { trigger: 'item', formatter: '{b}: {c} TWh ({d}%)' },
legend: { orient: 'vertical', left: 'left', top: 'middle' },
series: [{

name: 'Energy Source',
type: 'pie',
radius: ['30%', '60%'],
avoidLabelOverlap: false,
itemStyle: { borderRadius: 8, borderColor: '#fff', borderWidth: 2 },
label: { 

show: true, 
formatter: '{b|{b}}\n{d}%',
rich: { b: { fontWeight: 'bold', fontSize: 14 } }

},
data: [

{ value: 15900, name: 'Coal', itemStyle: { color: '#7f8c8d' } },
{ value: 13200, name: 'Crude Oil', itemStyle: { color: '#2d3436' } },
{ value: 12800, name: 'Natural Gas', itemStyle: { color: '#e67e22' } },
{ value: 8900, name: 'Nuclear', itemStyle: { color: '#f1c40f' } },
{ value: 7200, name: 'Hydro', itemStyle: { color: '#3498db' } },
{ value: 5100, name: 'Wind', itemStyle: { color: '#7f8c8d' } },
{ value: 3800, name: 'Solar', itemStyle: { color: '#f39c12' } },
{ value: 2100, name: 'Biomass', itemStyle: { color: '#27ae60' } }

],
emphasis: {

label: { show: true, fontSize: 18 },
itemStyle: { shadowBlur: 20, shadowColor: 'rgba(0, 0, 0, 0.3)' }

}
}]

};

myChart.setOption(option);
window.addEventListener('resize', () => myChart.resize());

</script>
</body>
</html>

<html>
<head>

<meta charset="utf-8" />
<title>Energy Mix Radar</title>
<script src="https://cdn.jsdelivr.net/npm/echarts@5.6.0/dist/echarts.min.js"></script>
<style>

html, body { width: 100%; height: 100%; margin: 0; padding: 0; }
#main { width: 100%; height: 100%; }

</style>
</head>
<body>

<div id="main"></div>
<script>

var chartDom = document.getElementById('main');
var myChart = echarts.init(chartDom);

var option = {
title: {

text: 'Global Energy Production Mix Analysis',
subtext: '2023 Sectoral Contribution to Power Generation with Projected Capacity Limits',
left: 'center'

},
legend: {

data: ['Fossil Fuels', 'Renewables'],
bottom: 10

},
radar: {

shape: 'polygon',
splitNumber: 5,
axisLine: { lineStyle: { color: 'rgba(100, 100, 100, 0.8)' } },
splitArea: { show: false },
indicator: [

{ name: 'Coal', max: 3500 },
{ name: 'Natural Gas', max: 2800 },
{ name: 'Nuclear', max: 1200 },
{ name: 'Hydropower', max: 1800 },
{ name: 'Wind', max: 1500 },
{ name: 'Solar', max: 2500 }

]
},
series: [{

type: 'radar',
color: ['#FF6B6B', '#4ECDC4'],
areaStyle: { opacity: 0.4 },
label: { show: true, formatter: '{c} TWh' },
data: [

{
value: [2800, 2200, 800, 600, 450, 900],
name: 'Fossil Fuels',
symbol: 'rect',
lineStyle: { width: 3 }

},
{

value: [300, 850, 400, 1200, 900, 1700],
name: 'Renewables',
symbol: 'roundRect',
lineStyle: { type: 'dashed', width: 3 }

}
]

}],
tooltip: { trigger: 'item' }

};

myChart.setOption(option);
window.addEventListener('resize', myChart.resize);

</script>
</body>
</html>

Figure 14: Example 3 from the Chart-to-Code Dataset.
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<html lang="en">
<head>

<meta charset="UTF-8">
<title>Climate Anomalies Heatmap</title>
<style>

#main {
width: 100%;
max-width: 1200px;
height: 700px;
margin: 20px auto;
box-shadow: 0 0 15px rgba(0,0,0,0.1);

}
</style>

</head>
<body>

<div id="main"></div>
<script src="https://cdn.jsdelivr.net/npm/echarts@5/dist/echarts.min.js"></script>
<script>

const chart = echarts.init(document.getElementById('main'));
// prettier-ignore
const months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'];
const decades = ['1960s', '1970s', '1980s', '1990s', '2000s', '2010s', '2020s'];
// Generate synthetic temperature anomaly data ( -0.5 to +2.5°C)
const data = [];
for (let decade = 0; decade < 7; decade++) {

for (let month = 0; month < 12; month++) {
const base = decade * 0.35 + Math.sin(month * 0.5) * 0.4;
const anomaly = (base + Math.random() * 0.3 - 0.15).toFixed(1);
data.push([month, decade, anomaly > 2.5 ? 2.5 : anomaly]);

}
}
const option = {

title: {
text: 'Global Temperature Anomalies (1960 -2020)',
subtext: 'Monthly deviations from 20th century average (°C)',
left: 'center',
textStyle: { fontSize: 22, color: '#2c3e50' },
subtextStyle: { fontSize: 14, color: '#7f8c8d' }

},
grid: { height: '45%', top: '18%' },
xAxis: {

type: 'category',
data: months,
splitArea: { show: true },
axisLabel: { rotate: 45 } },

yAxis: {
type: 'category',
data: decades,
splitArea: { show: true }},

visualMap: {
min: -0.5,
max: 2.5,
calculable: true,
orient: 'horizontal',
left: 'center',
bottom: '12%',
inRange: { color: ['#2166ac', '#4393c3', '#92c5de', '#d1e5f0', '#fddbc7', '#f4a582', '#d6604d', 

'#b2182b'] }
},
series: [{

type: 'heatmap',
data: data,
label: { show: true, color: '#2c3e50', fontSize: 11 },
itemStyle: { borderRadius: 3 },
emphasis: {

itemStyle: { shadowBlur: 12, shadowColor: 'rgba(0,0,0,0.3)' }
}

}]
};
chart.setOption(option);
window.addEventListener('resize', () => chart.resize());

</script>
</body>
</html>

<html>
<head>

<meta charset="utf-8" />
<title>Climate Energy Analysis</title>
<script src="https://cdn.jsdelivr.net/npm/echarts@5.6.0/dist/echarts.min.js"></script>
<style>

html, body { width: 100%; height: 100%; margin: 0; padding: 0 }
#main { width: 100%; height: 100% }

</style>
</head>
<body>

<div id="main"></div>
<script>

var chartDom = document.getElementById('main');
var myChart = echarts.init(chartDom);

var option = {
title: {

text: 'Global Climate Resilience Analysis',
subtext: 'CO2 Emissions vs Renewable Energy Adoption (2023) \nCorrelation Matrix for 50 

Nations',
left: 'center',
textStyle: { fontSize: 22, color: '#2c3436' },
subtextStyle: { fontSize: 16, color: '#666' }

},
xAxis: {

name: 'CO2 Emissions per Capita (tons)',
nameLocation: 'center',
nameGap: 30,
nameTextStyle: { fontSize: 14 },
axisLabel: { color: '#555' }

},
yAxis: {

name: 'Renewable Energy Adoption (%)',
nameLocation: 'center',
nameGap: 30,
nameTextStyle: { fontSize: 14 },
axisLabel: { color: '#555' }

},
visualMap: {

min: 0,
max: 60,
dimension: 1,
orient: 'vertical',
right: 10,
top: 'center',
textStyle: { color: '#666' },
inRange: { color: ['#ff6b6b', '#4ecdc4'] }

},
series: [{

type: 'scatter',
symbolSize: 18,
data: Array.from({length: 50}, () => [

Math.random() * 25 + 0.5,
Math.random() * 60 + 5

]).map(point => [
Number(point[0].toFixed(1)), 
Number(point[1].toFixed(1))

]),
itemStyle: {

opacity: 0.8,
borderColor: '#2c3e50',
borderWidth: 1

},
emphasis: {

itemStyle: { shadowBlur: 10, shadowColor: 'rgba(0,0,0,0.3)' }
}

}],
grid: { containLabel: true, top: 100 }

};

myChart.setOption(option);
window.addEventListener('resize', function() { myChart.resize() });

</script>
</body>
</html>

Figure 15: Example 4 from the Chart-to-Code Dataset.
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