

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 KNOW-THE-ROPES: ALGORITHMIC BLUEPRINTS FOR RELIABLE LLM MULTI-AGENT SYSTEM DESIGN

Anonymous authors

Paper under double-blind review

ABSTRACT

Single-agent LLMs face finite context and role overload, while unstructured multi-agent designs can introduce ambiguous roles and coordination overhead. We therefore introduce Know-The-Ropes (KtR), a practical methodology for projecting algorithmic priors and heuristics into typed, controller-mediated multi-agent blueprints for decomposable tasks. KtR follows a multi-step process—identify bottlenecks, refine decomposition, apply minimal augmentation (chain-of-thought, self-check, or light fine-tuning), and verify via contracts. In two case studies, including Knapsack (3–8 items) and Task Assignment (6–15 jobs), we find that KtR by low-effort LLMs can show notable end-to-end accuracy gains over single-agent zero-shot baselines. With three GPT-4o-mini agents, accuracy on size-5 Knapsack instances rises from 3% to 95% after addressing a single bottleneck agent. With six o3-mini agents, Task Assignment reaches 100% up to size 10 and $\geq 84\%$ on sizes 13–15, versus $\leq 11\%$ zero-shot. These results indicate benefits in our controlled setting; These results indicate benefits in our controlled setting; KtR complements scaling and prompt/program-of-thought techniques in building a reliable multi-agent system. An anonymous code base is available at this anonymous link

1 INTRODUCTION

Large language model (LLM) agents typically achieve strong performance in the domains for which they are trained and optimized (Thirunavukarasu et al., 2023; Kasneci et al., 2023; Wu et al., 2023b), yet their effectiveness degrades outside those boundaries. Finite context windows limit long-document reasoning, and no single agent can simultaneously address mathematics, coding, and planning problems (Liu et al., 2023; Gulati et al., 2024; Wu et al., 2025). Persistent challenges, including hallucinations, topical drift, and domain-specific failures, further constrain their reliability (Zhang et al., 2024; Xu et al., 2024). A natural direction is the division of labor by decomposing tasks across specialized agents that coordinate to produce a joint solution. Current frameworks such as Mixture-of-Agents suggest that, when properly orchestrated, a team of agents can outperform even its strongest individual member (Wang et al., 2024a).

Yet significant challenges remain. First, each task still demands a carefully crafted prompt, often requiring substantial manual effort (Li et al., 2025; Cui et al., 2025). While some multi-agent frameworks report encouraging results, once evaluation leakage and prompt overfitting are controlled, the apparent gains of naïve agent swarms collapse to single digits, and can even turn negative when tasks require more rounds of coordination (Pan et al., 2025; Zhu et al., 2025). Post-hoc analyses consistently reveal recurrent failure modalities: ill-posed task decompositions propagate ambiguity, imprecisely defined roles lead to redundancy or coverage gaps, and verification mechanisms are either predicated on brittle heuristics or become computationally prohibitive (Cao et al., 2025; Wang et al., 2024b). Furthermore, latency and cost tend to scale super-linearly with each round of interaction (Ye, 2025; Shu et al., 2024). These findings suggest that simply adding more “brains” does not guarantee progress. Robust and scalable improvements of multi-agent system (MAS) design demands a principled, systems-engineering approach—the gap our work aims to close.

To address this critical need, we introduce Know-The-Ropes (KtR), a framework that reframes MAS design as structured algorithm engineering. At its core, KtR employs a hierarchical task decomposition, recursively partitioning problems into sub-tasks until each primitive operation is

054 solvable by a base model, potentially augmented with minimal augmentation (e.g., self-check
 055 loops, Chain-of-Thought (CoT) (Wei et al., 2022), fine-tuning). Inter-agent communication is
 056 not conversational but is instead mediated by a code-based controller that enforces explicit, typed
 057 input/output contracts. This architectural choice ensures modularity and predictable information flow,
 058 preventing common pathologies such as context bloat and state overwrites. This design philosophy
 059 turns MAS construction into traditional algorithm engineering: identify bottlenecks, refine the
 060 decomposition, and apply the most cost-effective augmentation to underperforming agents, mirroring
 061 the optimization of classical computational graphs.

062 Our empirical study includes the following experiments: **(i) Knapsack Problem.** Starting with
 063 GPT-4o-mini, zero-shot accuracy on 3–8-item instances ranges from 60% to 0%. A naïve task-level
 064 fine-tune shows limited improvement. Under our KtR three-agent blueprint, accuracy improves to
 065 95%–70% in our controlled setting after fine-tuning just the “trimmer” sub-task on 1200 worked
 066 examples. **(ii) Task-Assignment Problem (scalability case study).** With o3-mini we build a six-
 067 agent blueprint for problems of size 6–15. Decomposing a single weak agent into two finer leaves
 068 yields leaf accuracies of 100% and 97%, with the overall system achieving $\geq 84\%$ accuracy across
 069 all sizes in our evaluation protocol. Based on these findings, our contributions lie in three aspects.

- 070 • **A New Framework for MAS Design.** We present KtR, a practical framework for translating
 071 algorithmic priors into multi-agent blueprints with typed interfaces and local verification,
 072 applicable to decomposable tasks with known domain structure.
- 073 • **Empirical Validation.** Two illustrative demonstrations (Knapsack and Task-Assignment
 074 problems) indicate that targeted decomposition can improve end-to-end accuracy versus
 075 single-agent baselines in our settings, using modest models and minimal augmentation.
- 076 • **Practices for Principled Refinement.** We provide diagnostic tools (per-agent accuracy
 077 metrics, tractability checks) and minimal augmentation strategies (CoT, self-check, light
 078 fine-tuning) for blueprint refinement.

079 2 RELATED WORK

080 Multi-Agent Systems (MAS) have been widely employed to enhance the capabilities of LLMs to
 081 tackle complex tasks (Qiu et al., 2024; Yan et al., 2024; Ma et al., 2024; Lin et al., 2024; Hua
 082 et al., 2023; Yu et al., 2024). This is because MAS typically distribute tasks across agents that
 083 collaborate to achieve a common goal, thereby improving both efficiency and adaptability. Recent
 084 frameworks like CAMEL (Li et al., 2023) enable role-based cooperative dialogues by assigning agents
 085 distinct personas, while AutoGen (Wu et al., 2023a) and MetaGPT (Hong et al., 2023) orchestrate
 086 multi-role agent teams through structured conversation loops and predefined workflows. In math
 087 optimization, OR-LLM-Agent can translate natural-language problem descriptions into formal Gurobi
 088 models—achieving an 85% correct-solution rate on real-world benchmarks (Zhang & Luo, 2025).

089 However, studies show that simply scaling up to LLM-based MAS often yields only marginal gains
 090 over single-agent baselines (Pan et al., 2025). LLM agents still struggle with context management and
 091 consistency, meaning that elaborate multi-agent prompts can fail to realize the intended collaboration
 092 (Bo et al., 2024). A recent systematic audit of popular MAS frameworks has identified 14 distinct
 093 failure modes (Cemri et al., 2025), which can be grouped into three categories, including flawed
 094 design (e.g., ambiguous role definition), inter-agent misalignment (e.g., communication failures), and
 095 quality control (e.g., no reliable check mechanism).

096 To address these challenges, researchers have proposed multiple strategies to make LLM-based
 097 MAS more reliable (Zhu et al., 2025; Tran et al., 2025). A key strategy is improving the agent
 098 interaction structure (Zhu et al., 2025). For example, the AgentDropout framework proposes a
 099 dynamic agent-pruning strategy, which seeks to discard less critical actors during training (Wang
 100 et al., 2025). Another effective strategy is incorporating feedback and verification loops (Hong
 101 et al., 2023). A recent study shows that frameworks with role specialization and iterative feedback
 102 mechanisms can outperform those without these features (Anonymous, 2025). In addition, systematic
 103 evaluations suggest that the communication topology matters: a well-designed protocol between
 104 agents can significantly improve collective performance on complex tasks (Zhu et al., 2025).

105 To understand how KtR relates to existing approaches, Table 1 compares our framework with both
 106 MAS and prompting methods across three design dimensions KtR differs from frameworks that rely
 107 on emergent coordination (e.g., CAMEL) or developer orchestration (e.g., AutoGen) by imposing

108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161

algebraic blueprints with typed interfaces and local pre/post. Compared with prompting methods (ReAct, ToT), KtR embeds domain-specific algorithmic knowledge directly into the multi-agent architecture. This positions KtR as a reliability complement to model scaling and prompt design for decomposable tasks.

Table 1: Comparison of MAS frameworks and prompting baselines.

Method	Inductive Bias	Verification	Typed I/O
KtR (Ours)	Algorithmic blueprint	Local pre/post checks	JSON-schema
AutoGen (Wu et al., 2023a)	Dev. orchestration	Limited	Programmatic
MetaGPT (Hong et al., 2023)	SOPs & templates	Role-based QA	Structured
CAMEL (Li et al., 2023)	Emergent coordination	Minimal	Free-text
ReAct (Yao et al., 2023b)	Tool-use structure	Limited	Func. calls
ToT (Yao et al., 2023a)	Thought tree	Limited	Text-based
GoT (besta2024graph)	Graph reasoning	None	Text-based
DSPy (Khattab et al., 2024)	Programmatic prompting	Optimization	Signatures
PAL Gao et al. (2023)	Program synthesis	Code execution	Structured

3 METHODOLOGY-KTR FRAMEWORK DESIGN

We propose the heuristic framework ‘‘Know the Ropes’’ (KtR). KtR offers a structured methodology for designing specialized MAS leveraging LLMs. This heuristic focuses on translating known, effective procedures or algorithms into a coherent multi-agent architecture. As presented in Figure 1, the core idea is to decompose a complex overall task into its fundamental computational stages. Each stage is then mapped to a well-formulated sub-task, designed to be tractable for an individual agent. These specialized agents are subsequently orchestrated to mirror the data/control flow of the original procedure, which can effectively embed problem-solving logic into the MAS. The following definitions formalize the components of this framework.

This approach is grounded in the No-Free-Lunch (NFL) theorem (Wolpert & Macready, 1997; Wolpert, 2021) (see Appendix B), which states that no algorithm performs universally better than others across all problem distributions. Rather than seeking a universal multi-agent orchestration strategy, KtR operationalizes the NFL insight by injecting domain-specific inductive bias through algorithmic blueprints. By decomposing tasks according to their inherent algorithmic structure, we concentrate the system’s ‘‘learning budget’’ on the specific problem distribution at hand, trading generality for reliability within the target domain.

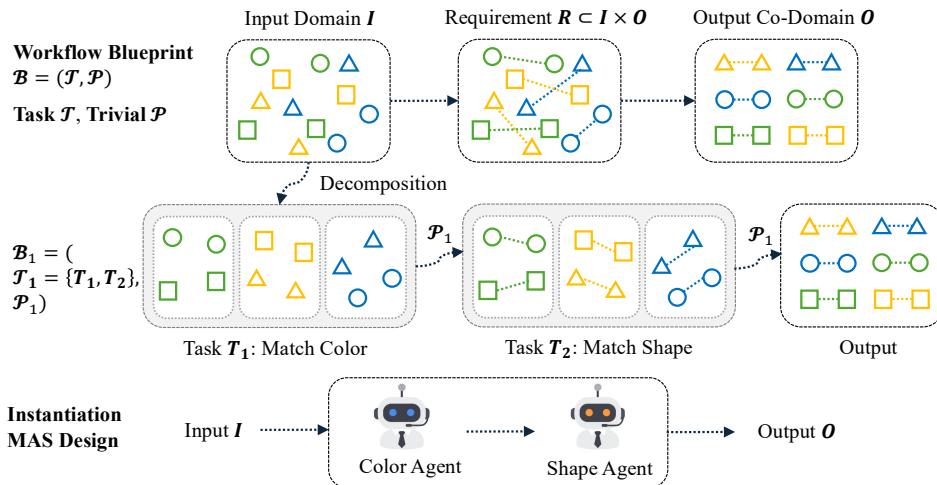


Figure 1: Illustration of the KtR strategy: heuristic, prior-guided decomposition of a complex task into sub-tasks, each instantiated as a coordinated LLM agent within a multi-agent architecture.

162

163 **Definition 3.1.** A **well-formulated task** is a tuple $T = (I, O, R)$, consisting of

164

- Input domain I : an unambiguous description of all admissible inputs.
- Output co-domain O : an unambiguous description of all admissible outputs.
- Requirement relation $R \subset I \times O$: a relation such that for each input $x \in I$ it defines explicitly the subset $R(x) \subset O$ as the set of outputs that are considered correct.

168

169 **Definition 3.2.** A **workflow blueprint** $\mathcal{B} = (\mathcal{T}, \mathcal{P})$ consisting of

170

- A finite set of well-formulated tasks $\mathcal{T} = \{T_1, \dots, T_n\}$.
- An orchestration protocol \mathcal{P} that specifies: (i) The control-flow graph that determines when each T_i is invoked. (ii) The data-dependency edges that map outputs of some tasks to inputs of others. (iii) Any global invariants, error-handling rules, or communication channels required to realize the end-to-end objective of \mathcal{B} .

174

175 **Definition 3.3.** Given a workflow blueprint $\mathcal{B} = (\mathcal{T}, \mathcal{P})$, a **decomposition** selects a task $T \in \mathcal{T}$ and
176 replace it with a sub-blueprint $\mathcal{B}_T = (\mathcal{T}_T, \mathcal{P}_T)$ such that (1). Each task $T' \in \mathcal{T}_T$ is strictly simpler
177 than T . (2). The composite protocol \mathcal{P}' , obtained by embedding \mathcal{P}_T in place of T inside \mathcal{P} , preserves
178 all external interface of T . The result of the decomposition is a new blueprint $\mathcal{S}' = (\mathcal{T}', \mathcal{P}')$, where
 $\mathcal{T}' = (\mathcal{T} \setminus \{T\}) \cup \mathcal{T}_T$.

179

180 **Definition 3.4.** Let \mathcal{M} be a set of LLM models. A well-formulated task T is said to be **\mathcal{M} -tractable**
181 if a model inside \mathcal{M} satisfies the requirement relation R_T with high, empirically verified accuracy,
182 after optional augmentations (e.g., chain-of-thought prompting, tool calls, self-reflection loops, or
183 fine-tuning).

184

185 **Definition 3.5.** Given a set of LLM models \mathcal{M} and a blueprint \mathcal{B} , an **\mathcal{M} -tractable hierarchy** is a
186 sequence of decompositions

187

$$\mathcal{B} \xrightarrow{D_1} \mathcal{B}_1 \xrightarrow{D_2} \dots \xrightarrow{D_n} \mathcal{B}_n$$

188

189 such that each task in the terminal blueprint \mathcal{B}_n is \mathcal{M} -tractable in the sense of Definition 3.4.

190

191 **Definition 3.6.** Given a set of LLM models \mathcal{M} and an \mathcal{M} -tractable blueprint $\mathcal{B} = (\mathcal{T}, \mathcal{P})$, a **system**
192 **instantiation** is to instantiate \mathcal{B} into a MAS in the following way.

193

- Create one agent A_i per task $T_i \in \mathcal{T}$, bundling necessary augmentations with the agent.
- We implement the orchestration protocol \mathcal{P} as message-passing or function calls among agents, preserving data-dependencies and control flow.

194

Algorithm 1 KtR Framework Pseudo-code

195

```

1: procedure KtR( $T, \mathcal{M}$ )
2:    $B \leftarrow \text{CREATEBLUEPRINT}(\{T\}, \text{trivial\_protocol})$                                 # Start with the top-level task
3:   while exists  $U \in B.\text{tasks}$  and  $\neg \text{MTRACTABLE}(U, \mathcal{M})$  do
4:      $U^* \leftarrow \text{CHOOSETASKTODECOMPOSE}(U)$                                          # Select a non-tractable task
5:      $B_{\text{sub}} \leftarrow \text{DESIGNSUBBLUEPRINT}(U^*)$                                          # Define its sub-tasks and protocol
6:      $B \leftarrow \text{EMBEDSUBBLUEPRINT}(B, U^*, B_{\text{sub}})$                                      # Replace the task with its sub-blueprint
7:      $\text{ASSERTINTERFACEPRESERVED}(B)$                                                  # Ensure communications are valid
8:   end while
9:    $\text{MAS} \leftarrow \text{INSTANTIATESYSTEM}()$                                          # Begin building the MAS
10:  for all  $V \in B.\text{tasks}$  do
11:     $\text{aug} \leftarrow \text{SELECTAUGMENTATIONS}(V, \mathcal{M})$                                      # Select a cost-effective augmentation
12:     $\text{agent} \leftarrow \text{CREATEAGENT}(V, \mathcal{M}, \text{aug})$                                      # Create a specialized agent based on the definition
13:     $\text{MAS}.\text{AddAgent}(\text{agent})$                                                  # Add the specialized agent to the system
14:  end for
15:   $\text{IMPLEMENTPROTOCOL}(\text{MAS}, B.\text{protocol})$                                          # Wire up agents based on the blueprint
16:  return  $\text{MAS}$                                                                # Return the final multi-agent system
17: end procedure

```

210

211

212 This three-step procedure—algorithmic blueprint, tractable hierarchy construction, and system
213 instantiation—provides a principled pathway from a complex task to a deployable MAS solution
214 with correctness hinges on model capabilities that have been explicitly validated. To demonstrate the
215 practical application and efficacy of the KtR framework, we investigate two case studies. In each
case, we use a well-understood algorithm to decompose the complex problem into an \mathcal{M} -tractable
hierarchy and instantiated MAS.

216

4 EXPERIMENT DESIGN

217

218 4.1 PROOF-OF-CONCEPT: 0/1 KNAPSACK PROBLEM (KSP)

219
 220 To furnish a clear proof-of-concept for KtR, we start with the classical NP-hard Knapsack Problem
 221 (KSP), a staple in resource allocation, logistics, and investment planning. Using the lightweight,
 222 general-purpose GPT-4o-mini as the MAS backbone, we establish a modest baseline that allows us to
 223 highlight how KtR MAS choreography amplifies a small model’s capability well beyond its limits.

224 **Problem Formulation.** For KSP, the input is a tuple (\vec{w}, \vec{v}, W) where \vec{w} and \vec{v} are two N -dimensional
 225 vectors representing the weight and value of n items, and W is the weight capacity. Then the objective
 226 of the Knapsack problem can be formulated as finding the following (optimal) value:

$$227 \quad 228 \quad Z = \max\{ \vec{x} \cdot \vec{v} \mid \vec{x} \in \{0, 1\}^N, \vec{x} \cdot \vec{w} \leq W \}.$$

229 Here $\vec{x} \in \{0, 1\}^N$ is the state vector, representing whether an item is chosen or not. This problem,
 230 where each item can either be fully included or not at all, is commonly known as the 0/1 KSP.

231 **Problem Solution** A classic approach to the Knapsack Problem iteratively enumerates all feasible
 232 states—a dynamic programming strategy (Bellman, 1957). Formulated in the form of mathematical
 233 induction, the initial state is $S_0 = \{(0, 0)\}$, and we add items inductively, with capacity being
 234 aware: for each k , assuming that S_{k-1} has been obtained, then we form:

$$235 \quad 236 \quad S_{add} = \{(w + w_k, v + v_k) \text{ for all } (w, v) \in S_{k-1}\}.$$

237 Then we trim by the capacity $S_{trimmed} = \{(w, v) \in S_{add} \mid w \leq W\}$ and union the two set of states
 238 to create S_k : $S_k = S_{k-1} \cup S_{trimmed}$. After running through all items and obtaining the set S_N , we
 239 pick the element in S_N with maximal value, as the solution to the KSP. Specific details of this method
 240 is presented in Appendix C.

241 **KtR MAS Design.** Following the “Know the Ropes” heuristic, the iterative dynamic programming
 242 solution for the KSP is decomposed into tasks for three specialized agents, including: (i) **Worker**
 243 **Agent**: Computing the set S_{add} from S_{k-1} and the k -th item (w_k, v_k) . (ii) **Trimmer Agent**: Obtain
 244 $S_{trimmed}$ from S_{add} and the capacity W . (iii) **Reporter Agent**: Find the element with maximal
 245 value within the final state set S_N . (iv) **System Controller**: The controller orchestrates the overall
 246 process. After initialization, it controls the loop on k . For each k , it sends S_{k-1} and (w_k, v_k) to
 247 Worker Agent, and then send the result plus W to the Trimmer Agent. The Controller then takes the
 248 union to obtain S_k . Once all items are processed, the Controller invokes the Reporter Agent for final
 249 result. Specific prompts for these agent design are attached in Appendix E.

250

251 4.2 PROOF OF SCALABILITY—TASK ASSIGNMENT PROBLEM (TAP)

252 Building on the previous section where KtR already stretched the capabilities of the compact GPT-4o-
 253 mini on the Knapsack baseline, we now test the framework’s scalability. We upgrade the backbone to
 254 the larger o3-mini and tackle the more demanding Task-Assignment Problem (TAP), demonstrating
 255 that the framework’s performance rises in lockstep with the underlying model’s capacity.

256 **Problem Formulation.** TAP seeks to optimally assign a set of N workers to N tasks, where each
 257 potential assignment incurs a specific cost to minimize the total cost. The input is an $N \times N$ matrix
 258 C representing the cost. Then the objective of the TAP is to find the optimized value:

$$259 \quad 260 \quad Z = \max_{\sigma \in \mathfrak{S}_N} \sum_{i=1}^n C_{i\sigma(i)}.$$

262 Here \mathfrak{S}_N represents the set of all permutations of N elements, representing arrangements that assign
 263 different tasks to different agents.

264 **Problem Solution.** The typical solution for TAP is using the Hungarian algorithm (Kuhn, 1955),
 265 which provides a polynomial-time method to find the objective value Z . We summaize the algorithm
 266 as follows. (i) **Step 1. Row Reduction.** For each row, we subtract each entry with the minimal value
 267 of all entries. This create a matrix C' . (ii) **Step 2. Column Reduction.** Same operation for each
 268 column to obtain a new matrix C'' . (iii) **Step 3. Zero Covering.** We then find the smallest collection
 269 \mathcal{C} of rows and columns to cover all zeroes. Let L be the size. If $L = N$, then we skip Step 4. (iv)
Step 4. Matrix Improvement. If $L < N$, we find the minimal value m of all entries that are not

270 covered by the collection \mathcal{C} , and then subtract m from all uncovered entries and add m to all covered
 271 entries. Let \mathcal{C}''' be the resulting matrix. (v) **Step 5. Assignment Identification.** If $L = N$, then we
 272 attempt to find a collection of zeroes in \mathcal{C}'' or \mathcal{C}''' in which no two are on the same row or column.
 273 The position of the zeroes represents the optimal task assignment. Specific details of this method is
 274 presented in Appendix C.

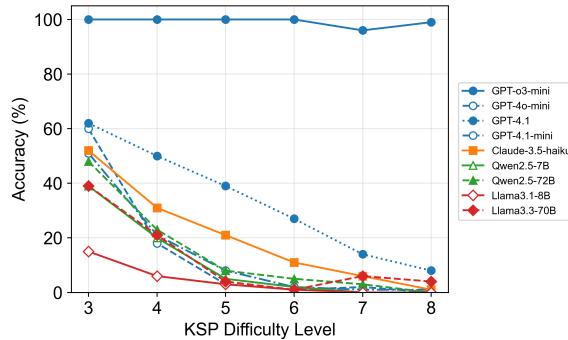
275 **KtR MAS Design.** We apply the KtR methodology to create the MAS. As explained in Section 5.2,
 276 based on test results of the agentic tasks and heuristic argument, we further decompose step 3 into
 277 two agents. For better presentation, let N be the size of the original TAP problems, i.e., the number of
 278 tasks and resources in the problem. (i) **Row Reducer:** Realizes Step 1 and obtain the reduced matrix
 279 \mathcal{C}' . (ii) **Column Reducer:** Realizes step 2 and obtain \mathcal{C}'' . (iii) **Matcher:** Find a maximal collection
 280 of zeroes in the reduced matrix \mathcal{C}'' in which no two are on the same row or column. Let L be the size
 281 of the collection. (iv) **Painter:** Find a minimal collection of rows and columns covering all zeroes
 282 when $L < n$. (v) **Normalizer:** Creates more zeroes outside of the selected rows and columns to get
 283 \mathcal{C}''' . (iv) **Reporter:** Report the final answer when $L = N$. (vii) **The System Controller:** Arranges
 284 task for Row Reducer and Column Reducer linearly, then controls a loop: Matcher finds a set of
 285 zeroes and then Controller checks the size to determine whether to break the loop or not. In the loop,
 286 Painter is then called in to find the collection of lines and Normalizer follows to create more zeroes.
 287 Outside the loop, the Reporter is called to deduce the final answer. Specific prompts for these agent
 288 design are attached in Appendix E.

289 290 5 EXPERIMENT RESULT

291 Our experimental protocol unfolds in two stages. First, we run a uniform benchmark across a suite of
 292 baseline models—including several GPT and Llama variants—to fix a reference point for each task.
 293 The second stage then splits by objective: For KSP we deliver a proof of concept, while for TAP we
 294 provide a proof of scalability. For ground truth, we use python code to randomly generate problems,
 295 and then use the Google OR-Tools (Perron & Furnon, 2022) as in Appendix D to generate solutions
 296 to compare with.

297 298 5.1 EXPERIMENT RESULT FOR KSP

300 **Baseline LLM Performance** Figure 2
 301 shows the baseline LLM performance
 302 across multiple difficulty levels. The
 303 accuracy across difficulty levels (from 3 to 8
 304 items) in the KSP scenario reveals substan-
 305 tial performance variation among the tested
 306 LLMs. Among those, the GPT-o3-mini,
 307 as a reasoning model, consistently demon-
 308 strates superior accuracy. Model GPT-
 309 4.1 outperforming its smaller counterparts,
 310 namely GPT-4.1-mini and its primer GPT-
 311 4o-mini. Other LLMs, including Claude-
 312 haiku, Llama, and Qwen series also show
 313 performance degradation, with higher vari-
 314 ability particularly evident at greater diffi-
 315 culty levels. Meanwhile, the performance
 316 of final KtR MAS is also drawn in Figure 2. The comparison shows that KtR substantially boosts
 317 performance, validating its effectiveness.



318 Figure 2: KSP baseline performance from single LLMs
 319 as well as the KtR MAS.

320 2. The comparison shows that KtR substantially boosts

321 performance, validating its effectiveness.

322 **KtR MAS Performance** Based on Figure 2, GPT-4o-mini exhibits a pronounced performance
 323 decline beginning at instances of 4 items, underscoring its limited scalability to more complex
 324 scenarios; therefore, we select it as the backbone for our KtR framework design. Figure 3 further
 325 illustrates the resulting KtR MAS along with the experimental outcomes based on our strategy.

326 **(i) Single LLM performance.** We establish two baseline performances for GPT-4o-mini acting as
 327 a single agent to solve the KSP. First, the zero-shot GPT-4o-mini is directly prompted with KSP
 328 instances. As Figure 3B shows, its accuracy decreases from 60% for 3 items to 0% (8 items).

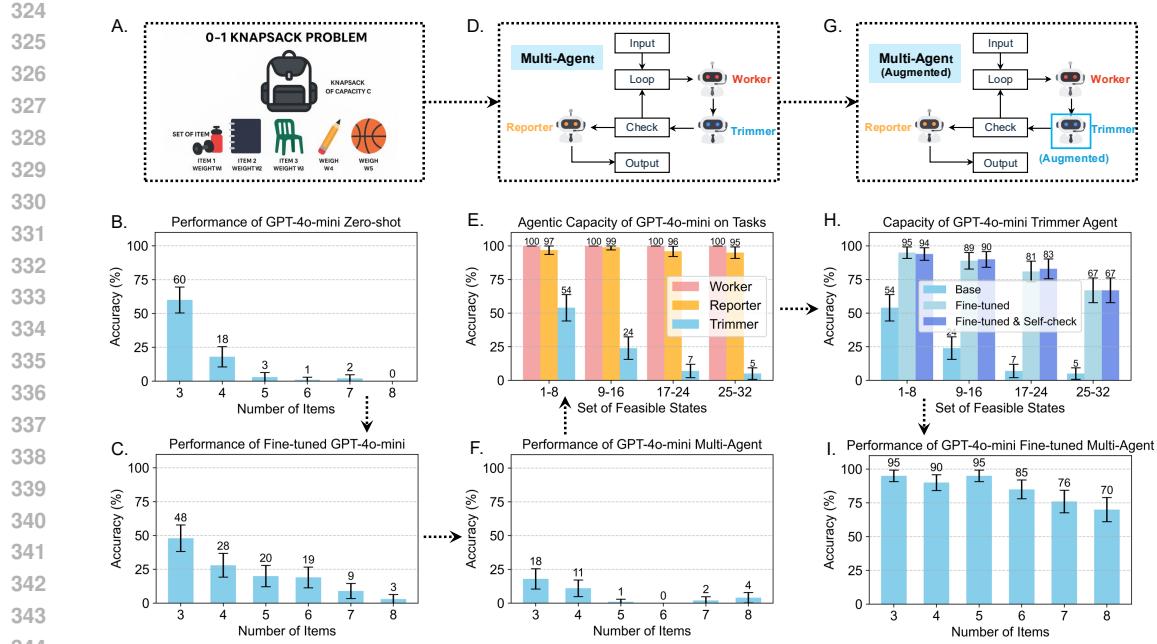


Figure 3: KSP evaluation of the KtR strategy. **B:** Zero-shot accuracy of the baseline model. **C:** Zero-shot accuracy after a light, task-specific fine-tune of the same model. **D & G:** Blueprints of the MAS without (**D**) and with (**G**) augmentations. **E:** Per-agent accuracies before augmentation, revealing the system’s bottleneck. **H:** Boost delivered by two targeted augmentations—task-level fine-tuning and self-check prompting—applied to the bottleneck agent. **F & I:** Corresponding test accuracies for the two blueprints.

Second, we evaluate a fine-tuned GPT-4o-mini (standalone). Figure 3C indicates that fine-tuning offers some improvement over the zero-shot, but still as low as 3% for 8-item KSP.

(ii) Standard MAS performance. Following our KtR heuristic, we map the algorithm for KSP into a MAS design, illustrated in Figure 3F. Initially, each agent is driven by the standard, non-fine-tuned GPT-4o-mini. The performance of this standard MAS is presented in Figure 3F. Its performance decreases from 18% for 3 items to 4% for 8 items. This initial result implies that without augmenting the agents’ abilities, the MAS does not effectively handle the task. We profile each agent in isolation (Figure 3E) and uncover a single choke point: Trimmer. Its accuracy collapses as the feasible-state set S_k (cf. Section C.2) grows—54 % for 1–8 states, 24 % for 9–16, 7 % for 17–24, and just 5 % for 25–32. Because the algorithm loops once per state, even small per-iteration errors compound, and this cascading inaccuracy ultimately sinks the entire run.

(iii) Augmented MAS performance. To eliminate the bottleneck, we fine-tune the Trimmer’s GPT-4o-mini backbone (Figure 3G, highlighted as ‘Augmented Trimmer’). Accuracy leapt to 95 % for 1–8 feasible states, 89 % for 9–16, 81 % for 17–24, and 67 % for 25–32 (Figure 3H). Adding a lightweight self-check—prompting the model to audit its own answer—preserved or marginally improved these gains. Replacing the bottleneck with the fine-tuned Trimmer lifts end-to-end KSP accuracy to near-saturation across sizes (Figure 3I): 95 % for 3-item instances, 90 % for 4, 95 % for 5, 85 % for 6, 76 % for 7, and 70 % for 8. A single targeted upgrade thus turns KtR into a consistently high-performing solver as the problem scales.

5.2 EXPERIMENT RESULT ON TAP

Baseline LLM Performance Figure 4 illustrates the baseline performance of multiple LLMs on the TAP task across multiple difficulty levels (from 3 to 8 tasks). The results reveal marked differences in model capabilities. The only reasoning model, GPT-4o-mini, consistently outperforms all others, exhibiting strong accuracy at lower difficulty levels, though its performance declines as task complexity increases. In contrast, GPT-4.1 demonstrates moderate but stable accuracy across all

378 difficulty levels, surpassing its mini-sized counterparts. Other models, including Claude-3.5-Haiku,
 379 Qwen2.5, and Llma-3 variants, show intermediate performance with variability.
 380

381 We observe that single-agent models (e.g.,
 382 GPT-3-mini, GPT-4-mini, GPT-4.1) drop to
 383 30-50% accuracy at TAP levels 7-8, while
 384 KtR MAS maintains steady performance
 385 near 100%, even surpassing reasoning mod-
 386 els, demonstrating its exceptional robust-
 387 ness and generalization capabilities.
 388

389 **KtR MAS Performance** Based on Figure
 390 4, GPT-o3-mini consistently outperforms
 391 other LLMs across all evaluated tasks,
 392 making it our choice for subsequent
 393 experiments. Our goal is to assess the
 394 scalability of our proposed strategy and
 395 investigate how its performance evolves as task
 396 difficulty increases. Figure 5 illustrates the
 397 MAS design and corresponding experimen-
 398 tal outcomes obtained using our heuristic-based approach.
 399

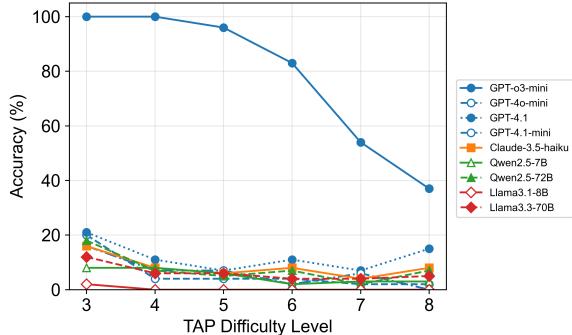


Figure 4: TAP baseline performance from single LLMs as well as the KtR multi-agent system.

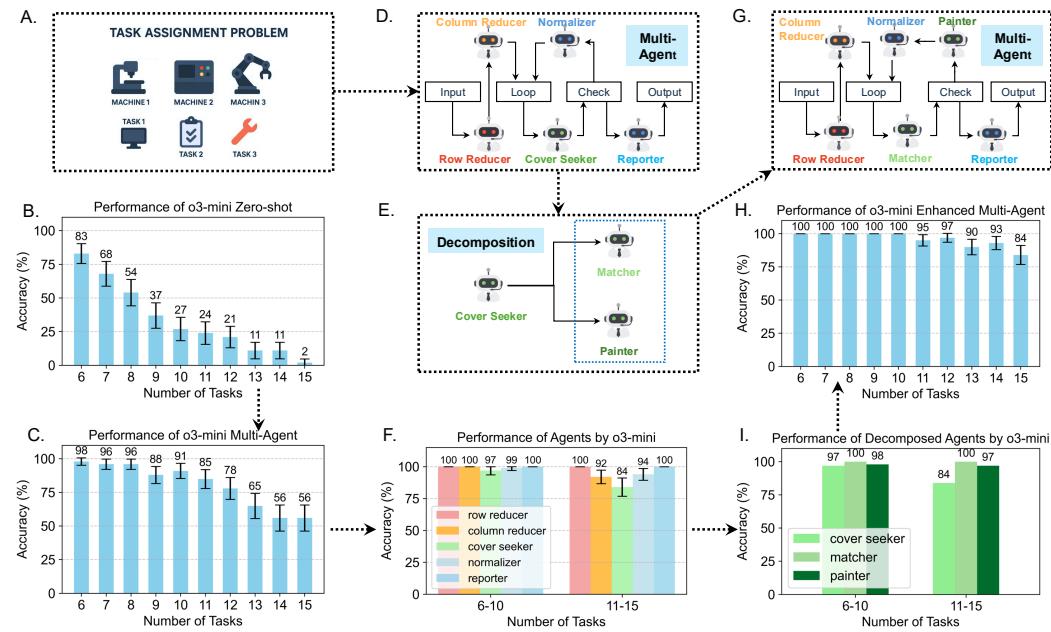


Figure 5: TAP evaluation of the KtR strategy. **B:** Zero-shot accuracy of the baseline model. **D:** Initial blueprint derived from the Hungarian algorithm; its end-to-end accuracy is shown in **C**. **F:** Per-agent accuracies within this blueprint, prompting the finer decomposition outlined in **E**. **I:** Side-by-side comparison of per-agent accuracies before and after decomposition. **G:** Final, decomposed blueprint, with overall accuracy presented in **H**.

(i) Single LLM performance. Again, we evaluate the baseline performance of using o3-mini as a single agent. The o3-mini model achieves a relatively high performance (83%) but decays quickly as in Figure 5B: 37% on problems of size 9, 21% on problems of size 12 and finally is reduced to 3% for problems of size 15.

(ii) Standard MAS performance and further decomposition. Guided by the Hungarian algorithm (Kuhn, 1955), our first KtR blueprint maps each step to a single agent; Step 3 from Section 4.2 relied on a lone Cover Seeker rather than the later “Matcher + Painter” pair. This baseline already scored 98% (size 6), 88% (size 9), 78% (size 12), and 56% (size 15), validating the approach.

432 We then stress-test each agent on two bands, with matrix sizes 6-10 and 11-15, to pinpoint weaknesses.
 433 One-shot agents are flawless: Row Reducer and Reporter reach 100 % on both bands, and Column
 434 Reducer hit 100 % / 92 %. Normalizer holds 99 % / 94 %, but Cover Seeker falls to 97 % / 84
 435 %. Because Zero Seeker operates inside the main loop, its errors accumulate, making it the clear
 436 bottleneck for larger TAP instances.

437 We then perform a further decomposition of Step 3 in Section C.2 in a two-step process: Step 3.1.
 438 Finding a **maximal** collection of zero-entries, such that no two share a same row or column; Step
 439 3.2. Finding a **minimal** collection of rows and columns covering all zero-entries. We believe this
 440 decomposition is helpful due to the following reasons. First, by a mathematical argument, the size of
 441 collections from sub-tasks 3.1 and 3.2 match. Second, a heuristic argument indicating that knowing
 442 the maximal collection of zeroes simplifies the task to find minimal collection of rows and columns.
 443 Last, the original Step 5 can then simply use the positions of the zeroes from Step 3.1, once optimal
 444 check passes. Note, this also explains why we prefer a further decomposition rather than fine-tuning
 445 the original agent, as a further decomposition improves the system flow as well. Empirical pays off,
 446 as shown in Figure 5I, Matcher reaches 100 % accuracy on both difficulty bands, while Painter climbs
 447 to 98 % and 97 %—a sharp jump from the original Cover Seeker’s 97 % and 84 %.

448 **(iii) Augmented MAS performance.** Leveraging the refined decomposition, we deploy a six-agent
 449 system (Figure 5H) that solves size 6–10 instances almost flawlessly: almost 100 % accuracy versus
 450 83 – 27 % for o3-mini zero-shot. It sustains high performance on size-11–15 tasks (95 %, 97 %,
 451 90 %, 93 %, 84 %); even the dip at size 15 far exceeds the 3 % zero-shot baseline, highlighting the
 452 substantial capacity gain of our MAS.

453 6 DISCUSSION AND CONCLUSIONS

454 We present Know-the-Ropes (KtR), an engineering framework that turns algorithmic knowledge into
 455 reliable MAS via typed, verifiable blueprints. Our approach targets common failure modes in current
 456 MAS by enforcing structured decompositions, JSON-schema contracts, and local verification. Across
 457 evaluations, KtR shows effectiveness along complementary axes: KSP provides proof-of-concept
 458 by showing how a general-purpose small model (GPT-4o-mini) can handle complex reasoning tasks
 459 through structured decomposition, achieving 95% accuracy versus 3% zero-shot on our benchmark;
 460 TAP offers proof-of-scalability by leveraging the stronger reasoning capabilities of o3-mini on more
 461 demanding instances, reaching 100% accuracy up to size 10.

462 KtR’s principled “**identify** → **improve** → **verify**” methodology indicates that disciplined decomposition
 463 plus targeted augmentation can substantially improve underperforming models on these tasks
 464 where both single-agent and unstructured MAS approaches struggle. The framework’s effectiveness
 465 follows from domain-aligned inductive bias rather than prompt tinkering, broadly consistent with
 466 insights suggested by the No-Free-Lunch theorem. Our systematic process—bottleneck identification,
 467 task tractability assessment, and minimal augmentation—helps turn modest models into more reliable
 468 collaborators on decomposable problems without requiring ever-larger monoliths.

469 While our validation spans structured optimization and language tasks, future work should extend to
 470 less structured domains and address real-world complexities including noisy inputs and automated
 471 bottleneck detection. In addition, Although the per-agent inference cost is trending downward, we do
 472 not quantify absolute wall-clock latency, energy consumption, or controller overhead for large agent.
 473 Next, KtR positions algorithmic blueprints as a reliability-first complement to model scaling and
 474 prompt design, offering a systematic pathway from complex problems to deployable MAS solutions
 475 for decomposable tasks. As a limitation, our evaluation focuses on controlled, decomposable settings;
 476 broader studies are needed to assess robustness in open-ended workflows.

477 Finally, we offer practical guidance on when KtR pays off and how to evaluate it operationally.
 478 KtR is most effective when tasks admit natural subtask boundaries with local checks, stable typed
 479 interfaces, and controller overhead small relative to model calls. When objectives are globally
 480 entangled with sparse verification signals, a strong single agent or tool-augmented solver may be
 481 preferable. To support fair comparisons and blueprint refinement, we recommend reporting contract-
 482 level diagnostics alongside accuracy and cost: schema-conformance rate, controller rejection/repair
 483 rate, and the fraction of runs requiring controller intervention, so that gains reflect stronger structure
 484 rather than hidden prompt tuning.

486 **7 ETHICS STATEMENT**
 487

488 This paper proposes Know-the-Ropes (KtR), a methodology for projecting algorithmic prior knowl-
 489 edge into typed, controller-mediated multi-agent system (MAS) blueprints, and evaluates it on
 490 synthetic combinatorial optimization tasks: the Knapsack Subset Problem (KSP) and the Task As-
 491 signment Problem (TAP). Our experiments do not involve human subjects, user data, or personally
 492 identifiable information. Problem instances are programmatically generated and ground-truth solu-
 493 tions are computed with Google OR-Tools (Apache 2.0), as described in Section D. Experiments
 494 use hosted large-language-model APIs (specifically GPT-4o-mini and o3-mini) for inference; we
 495 do not train or distribute any model weights. The scope of our study is limited to benign, synthetic
 496 tasks; we do not deploy agents in real-world settings. We are not aware of conflicts of interest related
 497 to this submission. An anonymous code repository is provided solely to facilitate inspection and
 498 reproduction and requires users to comply with the terms of the referenced third-party tooling.

499 **500 8 REPRODUCIBILITY STATEMENT**
 501

502 We aim to make the study reproducible within the constraints of using hosted LLM APIs. The paper
 503 specifies the task settings, models, and orchestration details in text and figures (e.g., Figures illustrating
 504 the KSP and TAP blueprints). The data generation protocol and use of OR-Tools for ground truth are
 505 described in Section D. The exact prompt templates used for the zero-shot baselines and all agent
 506 roles are included at the end of the paper in Appendix E (“Prompt gallery”). An anonymous code base
 507 is available at <https://anonymous.4open.science/r/KtR-codebase-5638>, which
 508 is intended to help replicate the evaluation setup and run the reported experiments. For KSP, our
 509 MAS includes a fine-tuned component; the corresponding training sets are included in the code base.
 510 Reproducing our results requires access to the same API-served models (GPT-4o-mini and o3-mini);
 511 due to nondeterminism in API responses and service updates, results may exhibit small variance.

512 **513 REFERENCES**

514 Anonymous. Code in harmony: Evaluating multi-agent frameworks. In *Submitted to CS598 LLM*
 515 *Agent 2025 Workshop*, 2025. URL <https://openreview.net/forum?id=URUMBfrHFy>.
 516 under review.

517 Richard Bellman. *Dynamic Programming*. Princeton University Press, Princeton, NJ, USA, 1957.
 518 ISBN 9780691146683.

519 Xiaohe Bo, Zeyu Zhang, Quanyu Dai, Xueyang Feng, Lei Wang, Rui Li, Xu Chen, and Ji-Rong
 520 Wen. Reflective multi-agent collaboration based on large language models. *Advances in Neural*
 521 *Information Processing Systems*, 37:138595–138631, 2024.

522 Pengfei Cao, Tianyi Men, Wencan Liu, Jingwen Zhang, Xuzhao Li, Xixun Lin, Dianbo Sui, Yanan
 523 Cao, Kang Liu, and Jun Zhao. Large language models for planning: A comprehensive and
 524 systematic survey. *arXiv preprint arXiv:2505.19683*, 2025.

525 Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt
 526 Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, et al. Why do multi-agent llm
 527 systems fail? *arXiv preprint arXiv:2503.13657*, 2025.

528 Wendi Cui, Jiaxin Zhang, Zhuohang Li, Hao Sun, Damien Lopez, Kamalika Das, Bradley A Malin,
 529 and Sriharan Kumar. Automatic prompt optimization via heuristic search: A survey. *arXiv*
 530 *preprint arXiv:2502.18746*, 2025.

531 Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
 532 Graham Neubig. PAL: Program-aided language models. In Andreas Krause, Emma Brunskill,
 533 Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of*
 534 *the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine*
 535 *Learning Research*, pp. 10764–10799. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/gao23f.html>.

540 Aryan Gulati, Brando Miranda, Eric Chen, Emily Xia, Kai Fronsdal, Bruno de Moraes Dumont,
 541 and Sanmi Koyejo. Putnam-axiom: A functional & static benchmark for measuring higher level
 542 mathematical reasoning in llms. In *Forty-second International Conference on Machine Learning*,
 543 2024.

544 Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
 545 Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent
 546 collaborative framework. *arXiv preprint arXiv:2308.00352*, 3(4):6, 2023.

548 Wenyue Hua, Lizhou Fan, Lingyao Li, Kai Mei, Jianchao Ji, Yingqiang Ge, Libby Hemphill, and
 549 Yongfeng Zhang. War and peace (waragent): Large language model-based multi-agent simulation
 550 of world wars. *arXiv preprint arXiv:2311.17227*, 2023.

552 Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank
 553 Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, et al. Chatgpt for good?
 554 on opportunities and challenges of large language models for education. *Learning and individual*
 555 *differences*, 103:102274, 2023.

556 Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
 557 hamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller,
 558 Matei Zaharia, and Christopher Potts. Dspy: Compiling declarative language model calls into
 559 self-improving pipelines. In *ICLR*, 2024. URL <https://openreview.net/forum?id=sY5N0zY5Od>.

561 Harold W. Kuhn. The hungarian method for the assignment problem. *Naval Research Logistics*
 562 *Quarterly*, 2(1-2):83–97, 1955. doi: 10.1002/nav.3800020109.

564 Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbulin, and Bernard Ghanem. Camel: Com-
 565 municative agents for "mind" exploration of large language model society. *Advances in Neural*
 566 *Information Processing Systems*, 36:51991–52008, 2023.

568 Wewu Li, Xiangfeng Wang, Wenhao Li, and Bo Jin. A survey of automatic prompt engineering: An
 569 optimization perspective. *arXiv preprint arXiv:2502.11560*, 2025.

570 Shuhang Lin, Wenyue Hua, Lingyao Li, Che-Jui Chang, Lizhou Fan, Jianchao Ji, Hang Hua,
 571 Mingyu Jin, Jiebo Luo, and Yongfeng Zhang. BattleAgent: Multi-modal dynamic emulation on
 572 historical battles to complement historical analysis. In Delia Irazu Hernandez Farias, Tom Hope,
 573 and Manling Li (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural*
 574 *Language Processing: System Demonstrations*, pp. 172–181, Miami, Florida, USA, November
 575 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-demo.18. URL
 576 <https://aclanthology.org/2024.emnlp-demo.18/>.

577 Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
 578 and Percy Liang. Lost in the middle: How language models use long contexts. *arXiv preprint*
 579 *arXiv:2307.03172*, 2023.

581 Hao Ma, Tianyi Hu, Zhiqiang Pu, Liu Boyin, Xiaolin Ai, Yanyan Liang, and Min Chen. Coevolving
 582 with the other you: Fine-tuning llm with sequential cooperative multi-agent reinforcement learning.
 583 *Advances in Neural Information Processing Systems*, 37:15497–15525, 2024.

585 Melissa Z Pan, Mert Cemri, Lakshya A Agrawal, Shuyi Yang, Bhavya Chopra, Rishabh Tiwari,
 586 Kurt Keutzer, Aditya Parameswaran, Kannan Ramchandran, Dan Klein, et al. Why do multiagent
 587 systems fail? In *ICLR 2025 Workshop on Building Trust in Language Models and Applications*,
 588 2025.

589 Laurent Perron and Vincent Furnon. Google OR-Tools, 2022. <https://developers.google.com/optimization>.

592 Jianing Qiu, Kyle Lam, Guohao Li, Amish Acharya, Tien Yin Wong, Ara Darzi, Wu Yuan, and Eric J
 593 Topol. Llm-based agentic systems in medicine and healthcare. *Nature Machine Intelligence*, 6(12):
 1418–1420, 2024.

594 Raphael Shu, Nilaksh Das, Michelle Yuan, Monica Sunkara, and Yi Zhang. Towards effective
 595 genai multi-agent collaboration: Design and evaluation for enterprise applications. *arXiv preprint*
 596 *arXiv:2412.05449*, 2024.

597 Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez, Ting Fang
 598 Tan, and Daniel Shu Wei Ting. Large language models in medicine. *Nature medicine*, 29(8):
 599 1930–1940, 2023.

600 Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan, and
 601 Hoang D Nguyen. Multi-agent collaboration mechanisms: A survey of llms. *arXiv preprint*
 602 *arXiv:2501.06322*, 2025.

603 Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
 604 large language model capabilities. *arXiv preprint arXiv:2406.04692*, 2024a.

605 Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
 606 Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
 607 *Frontiers of Computer Science*, 18(6):186345, 2024b.

608 Zhexuan Wang, Yutong Wang, Xuebo Liu, Liang Ding, Miao Zhang, Jie Liu, and Min Zhang.
 609 Agentdropout: Dynamic agent elimination for token-efficient and high-performance llm-based
 610 multi-agent collaboration. *arXiv preprint arXiv:2503.18891*, 2025.

611 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 612 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 613 *neural information processing systems*, 35:24824–24837, 2022.

614 David H Wolpert. What is important about the no free lunch theorems? In *Black box optimization,*
 615 *machine learning, and no-free lunch theorems*, pp. 373–388. Springer, 2021.

616 David H Wolpert and William G Macready. No free lunch theorems for optimization. *IEEE*
 617 *transactions on evolutionary computation*, 1(1):67–82, 1997.

618 Jiarong Wu, Songqiang Chen, Jialun Cao, Hau Ching Lo, and Shing-Chi Cheung. Isolating
 619 language-coding from problem-solving: Benchmarking llms with pseudoeval. *arXiv preprint*
 620 *arXiv:2502.19149*, 2025.

621 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
 622 Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-agent
 623 conversation. *arXiv preprint arXiv:2308.08155*, 2023a.

624 Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabrowski, Mark Dredze, Sebastian Gehrmann, Prabhan-
 625 jan Kambadur, David Rosenberg, and Gideon Mann. Bloomberggpt: A large language model for
 626 finance. *arXiv preprint arXiv:2303.17564*, 2023b.

627 Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is inevitable: An innate limitation of
 628 large language models. *arXiv preprint arXiv:2401.11817*, 2024.

629 Yuwei Yan, Qingbin Zeng, Zhiheng Zheng, Jingzhe Yuan, Jie Feng, Jun Zhang, Fengli Xu, and Yong
 630 Li. Opencity: A scalable platform to simulate urban activities with massive llm agents. *arXiv*
 631 *preprint arXiv:2410.21286*, 2024.

632 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
 633 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
 634 *Proceedings of the 37th International Conference on Neural Information Processing Systems*,
 635 NIPS ’23, 2023a.

636 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 637 ReAct: Synergizing reasoning and acting in language models. In *International Conference on*
 638 *Learning Representations (ICLR)*, 2023b. URL <https://arxiv.org/abs/2210.03629>.

639 Ye Ye. Task memory engine (tme): Enhancing state awareness for multi-step llm agent tasks. *arXiv*
 640 *preprint arXiv:2504.08525*, 2025.

648 Huizi Yu, Jiayan Zhou, Lingyao Li, Shan Chen, Jack Gallifant, Anye Shi, Xiang Li, Wenyue Hua,
 649 Mingyu Jin, Guang Chen, et al. Aipatient: Simulating patients with ehrs and llm powered agentic
 650 workflow. *arXiv preprint arXiv:2409.18924*, 2024.

651
 652 Bowen Zhang and Pengcheng Luo. Or-llm-agent: Automating modeling and solving of oper-
 653 ations research optimization problem with reasoning large language model. *arXiv preprint*
 654 *arXiv:2503.10009*, 2025.

655 Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, and Sercan Arik. Chain of agents:
 656 Large language models collaborating on long-context tasks. *Advances in Neural Information*
 657 *Processing Systems*, 37:132208–132237, 2024.

658 Kunlun Zhu, Hongyi Du, Zhaochen Hong, Xiaocheng Yang, Shuyi Guo, Zhe Wang, Zhenhailong
 659 Wang, Cheng Qian, Xiangru Tang, Heng Ji, et al. Multiagentbench: Evaluating the collaboration
 660 and competition of llm agents. *arXiv preprint arXiv:2503.01935*, 2025.

663 A USE OF LLMs

664 During the development of this paper, we use transformer based large language models in the
 665 following aspects:

- 666 • Reference discovery: use the deep research tools from major providers to explore relevant
 667 work and literature.
- 668 • Code assistance: use coding agents to assist developing the code base of the current work.
- 669 • Grammar check: use LLMs to detect grammar errors in the drafty version of the paper, for
 670 better displaying our results.

674 B APPENDIX: WEIGHTED NO FREE LUNCH THEOREM—WHY DOES AGENT 675 DESIGN FAIL?

676 In this section, we present a weighted version of the No-Free-Lunch theorem. As the motivation,
 677 current approaches to MAS design can often result in overly general solutions that may exhibit
 678 suboptimal performance on specific and complex tasks. This sub-optimality arises partially from
 679 a lack of domain-specific inductive bias. To formalize this, we present a weighted variant of the
 680 No Free Lunch (NFL) theorem. The following demonstration, leveraging a weighted variant of the
 681 No Free Lunch theorem, quantitatively illustrates how inductive bias tailored to the target domain
 682 enhances performance. That is, We present a formal proof showing that, under a non-uniform prior
 683 concentrated on a problem-specific subset of functions, a specialized learning algorithm achieves
 684 strictly lower expected risk than a general-purpose algorithm.

685 Note the NFL theorem has been known to research community for more than two decades. Here what
 686 we present is a modification of the standard statement to better fit for our discussion on the MAS.
 687 As we didn't find in literature the precise version of the NFL theorem as we stated below, we also
 688 present a proof for self-containedness. We do not claim any originality of the theorem and the proof.

689 **Theorem B.1** (Weighted NFL). *Let X be a finite input domain, Y a finite label set, and $\mathcal{F} = Y^X$
 690 the set of all functions $f: X \rightarrow Y$. Consider*

- 691 • a general algorithm A_0 with constant expected loss ε_0 on every $f \in \mathcal{F}$,
- 692 • a specialized algorithm A' satisfying

$$693 L(h_{A'}, f) \leq \begin{cases} \varepsilon_1, & f \in \mathcal{F}', \\ \varepsilon_2, & f \notin \mathcal{F}', \end{cases}$$

694 where $\varepsilon_1 < \varepsilon_0 < \varepsilon_2$, and

- 695 • a prior P with $P(f \in \mathcal{F}') = p$ and $P(f \notin \mathcal{F}') = 1 - p$.

696 If

$$697 698 699 700 701 p > \frac{\varepsilon_0 - \varepsilon_2}{\varepsilon_1 - \varepsilon_2},$$

702 then the expected risk of A' is strictly lower than that of A_0 , i.e.
 703

$$704 \quad R(A') < R(A_0).$$

705 *Proof.* By definition,

$$707 \quad R(A_0) = \mathbb{E}_{f \sim P}[L(h_{A_0}, f)] = \varepsilon_0$$

$$708 \quad R(A') = \mathbb{E}_{f \sim P}[L(h_{A'}, f)] = p\varepsilon_1 + (1-p)\varepsilon_2.$$

709 Hence

$$710 \quad R(A') < R(A_0) \iff p\varepsilon_1 + (1-p)\varepsilon_2 < \varepsilon_0$$

$$711 \quad \iff p(\varepsilon_1 - \varepsilon_2) > \varepsilon_0 - \varepsilon_2,$$

712 which rearranges to

$$713 \quad p > \frac{\varepsilon_0 - \varepsilon_2}{\varepsilon_1 - \varepsilon_2}.$$

714 This completes the proof. \square

715 C APPENDIX: KSP AND TAP DESCRIPTION

716 In this appendix, we provide details about the KSP and TAP, including their problem description and
 717 algorithm based on which we design our MAS.

718 C.1 KSP PROBLEM FORMULATION

719 The usual input of KSP involves a set of N items, whose items are characterized by pairs (w_i, v_i)
 720 of weights w_i and values v_i , as well as a capacity value W . The goal of KSP is to find a subset of
 721 items such that the total weight does not exceed the given capacity while the total value is maximized.
 722 Mathematically, we record information of items by two vectors, both of dimension N : a weight vector
 723 $\vec{w} = (w_1, \dots, w_N)$ and a value vector $\vec{v} = (v_1, \dots, v_N)$. We also introduce the set of state-vectors
 724 $\{0, 1\}^N$, whose elements are vectors $\vec{x} = (x_1, \dots, x_N)$ where entries x_i takes values between 0 and
 725 1, indicating whether an item is chosen in a subset or not:

$$726 \quad x_i = \begin{cases} 1 & \text{item } i \text{ is chosen} \\ 0 & \text{item } i \text{ is excluded} \end{cases}$$

727 Thus state vectors controls which items is in the chosen subset, and the inner product of \vec{x} with \vec{w} and
 728 \vec{v} then compute the total weight and total value for the given subset, respectively.

729 Given a weight vectors \vec{w} , a value vector \vec{v} , and the capacity constraint W , the objective of the
 730 Knapsack problem then can be formulated as finding the following (optimal) value:

$$731 \quad Z = \max\{ \vec{x} \cdot \vec{v} \mid \vec{x} \in \{0, 1\}^N, \vec{x} \cdot \vec{w} \leq W \}.$$

732 Here the maximal value is taken over all state vectors (or equivalently, all subsets of items) satisfying
 733 the constraint that the total weight $\vec{x} \cdot \vec{w}$ not exceeding the capacity W .

734 This version of the problem, where each item can either be fully included or not at all, is commonly
 735 known as the 0/1 KSP.

736 C.2 KSP PROBLEM SOLUTION

737 A classic approach to the Knapsack Problem iteratively enumerates all feasible states—a dynamic-
 738 programming strategy first introduced by Bellman (1957). A feasible state can be defined by
 739 a pair $(\text{current_weight}, \text{current_value})$ representing the accumulated weight and value of a set of
 740 items selected so far, such that $\text{current_weight} \leq W$. We can describe the algorithm in the form of
 741 mathematical induction. We start with the initial set of feasible states $S_0 = \{(0, 0)\}$, representing
 742 an empty set of chosen items. We then add items in to form a set S_k from S_{k-1} inductively, with

capacity being aware: for each k , assuming that S_{k-1} has been constructed, then we add the pair (w_k, v_k) to all items in S_{k-1} to form a new set S_{add} :

$$S_{add} = \{(w + w_k, v + v_k) \text{ for all } (w, v) \in S_{k-1}\}.$$

Then, we trim the set according to the capacity:

$$S_{trimmed} = \{(w, v) \in S_{add} \mid w \leq W\}.$$

Note this also removes all repetitive states in the set. Finally we take the union of the two intermediate sets to create S_k :

$$S_k = S_{k-1} \cup S_{trimmed}.$$

The inductive step terminate when we have run through all items and obtaining the final set S_N , we pick the element in S_N with maximal value, as the solution to the KSP. Explicitly,

$$Z = \max_{(w, v) \in S_N} v$$

C.3 TAP PROBLEM FORMULATION

TAP seeks to optimally assign a set of N resources (agents or workers) to N tasks, where each potential assignment incurs a specific cost. With the constraint that each resource can only be assigned to one unique task, the objective of TAP is to find an assignment covering all tasks that minimizes the total cost. The resource-task specific cost is recorded in an $N \times N$ matrix C , where the entry C_{ij} represents the cost associated with assigning resource i to task j , for $i, j \in \{1, 2, \dots, N\}$.

To formally define the problem, we introduce a set \mathfrak{S}_N which can be described in either one of the following three equivalent ways:

- The group of automorphisms of the set $\underline{N} = \{1, 2, \dots, N\}$.
- The set (or group) of bijections from the set \underline{N} to itself.
- The set of all permutations involving N elements.

Note elements in \mathfrak{S}_N convey the idea that each resource is assigned to a unique task. Now, given the $N \times N$ cost matrix C , the objective of the TAP is to find the following (optimized) value

$$Z = \max_{\sigma \in \mathfrak{S}_N} \sum_{i=1}^n C_{i\sigma(i)}.$$

Note when we treat $\sigma \in \mathfrak{S}_N$ as a (bijective) map from $\underline{N} = \{1, 2, \dots, N\}$ to itself, the notation $C_{i\sigma(i)}$ represents the entry on the i -th row and $\sigma(i)$ -th column of the cost matrix C .

C.4 TAP PROBLEM SOLUTION

The typical solution for TAP is using the Hungarian algorithm Kuhn (1955), which provides a polynomial-time method to find the objective value Z . We summarize the algorithm as follows.

Step 1. Row Reduction. For each row, we find the minimal element in the row and subtract it from all entries in the row, creating at least one zero on each row. Mathematically, starting from the original cost matrix $C_{N \times N}$, we create a new reduced matrix C' such that for $i, j \in \{1, 2, \dots, N\}$, we have

$$C'_{ij} = C_{ij} - \min_{1 \leq k \leq N} C_{ik}$$

Step 2. Column Reduction. Similarly, we further reduce C' to C'' as follows: For each column, we find the minimal element in the column and subtract it from all entries in the column, guaranteeing at least one zero on each column. Mathematically, take

$$C''_{ij} = C'_{ij} - \min_{1 \leq k \leq N} C_{kj}$$

Step 3. Find covering lines. We then find a smallest collection of rows and columns to cover all zeroes. Here smallest is the sense of the number of elements in the collection (of rows and column), over all possible such collections. If the size of this minimal collection, denoted by L , coincides with N , the size of the problem, then we skip Step 4 to enter the final stage of the algorithm.

810
Step 4. Matrix Improvement. However, if $L < N$, we need an improvement for the matrix C''
 811 before looping back to Step 3: given the minimal collection of rows and columns from Step 3, we
 812 find the minimal value of all entries that are not covered, and then subtract this minimal value from
 813 all uncovered entries of C'' , and then add this minimal value to all entries of C'' that are covered
 814 twice, i.e., by both rows and columns. Let C''' be the resulting matrix.

815
Step 5. Assignment Identification. Once the condition $L = N$ is met, the final step is to identify the
 816 optimal assignment. This involves selecting a set of N independent zeros from the current matrix C''' ,
 817 such that no two selected zeros share the same row or column. Each selected zero at position (i, j)
 818 corresponds to assigning agent i to task j . The total cost of this optimal assignment is then calculated
 819 by summing the costs from the original cost matrix C corresponding to selected zero positions.

820 A non-trivial fact guaranteed by the Hungarian algorithm is that, in Step 5 the collection of zeroes
 821 might not be unique, while different collections are deemed to result in the same total summation of
 822 corresponding entries in the original cost matrix C .
 823

824 D GROUND-TRUTH DATA PREPARATION

825 We utilize Google OR-Tools (Perron & Furnon, 2022) to generate optimal solutions—serving as
 826 ground-truth datasets—for both problem scenarios. OR-Tools is a widely adopted open-source
 827 software suite developed by Google for solving combinatorial optimization problems. It is renowned
 828 for its efficiency and reliability in addressing NP-hard challenges through advanced optimization
 829 algorithms. The suite is distributed under the permissive Apache License 2.0, allowing unrestricted
 830 use, modification, and distribution (Perron & Furnon, 2022).

831 For KSP, we generate random instances by assigning weights and values to items along with a
 832 maximum capacity constraint. Optimal solutions are then computed using OR-Tools’ dynamic
 833 programming approach. For TAP, we similarly generate random cost matrices that represent the cost
 834 of assigning workers to tasks. Optimal assignments are obtained using the Hungarian algorithm as
 835 implemented in OR-Tools, which efficiently minimizes the total assignment cost.
 836

837 E APPENDIX: PROMPT GALLERY

838 Note that all prompts we presented in the following, except for the self-check prompt for Trimmer
 839 Agent in KSP problem, are the system prompt for agents. The user prompt will only contain the
 840 precise problem to be handled by the agent in the form specified by the prompt.
 841

842 E.1 KSP PROMPTS

843 E.1.1 PROMPT FOR ZERO SHOT

844 You are an expert in the field of Knapsack Problem.

845 You are given a Knapsack Problem in the json format, of the
 846 following form:

```
847 {  

  848   "id" : str,  

  849   "items" : list of pairs of integers,  

  850   "capacity" : int  

  851 }
```

852 Each pair in the list is a pair of integers of the form [weight,
 853 value], i.e., the first entry is the weight and the second
 854 entry is the value.

855 Your task is to solve the Knapsack Problem and provide the
 856 optimal solution. That is, you need to find a subset of the
 857 pairs that maximizes the total value, subject to the

864 constraint that the total weight of the subset is less than
 865 or equal to the capacity.
 866

867 Please think step by step when solving the problem.
 868

869 You need to return the optimal solution in the following json
 870 format:
 871 {
 872 "max_value" : int,
 873 }

874 Please only return the json format, nothing else.
 875

876 E.1.2 PROMPT FOR WORKER AGENT

877 You are a key member of a multi-agent team collaboratively
 878 solving the Knapsack Problem. Your specific role is the
 879 Worker, responsible for performing mathematical computations
 880 for the team.
 881

882 You will receive input in the following JSON format:
 883 { "c_list": [[int, int], ...], "s_item": [int, int]}
 884 Each pair within 'c_list' contains two integers.

885 Your task is to:
 886

- Add 's_item' to each pair in 'c_list' entry-wise. For instance, if a pair in 'c_list' is '[2, 5]' and 's_item' is '[3, 4]', the result should be '[2+3, 5+4] = [5, 9]'.

890 To ensure accuracy:

- Proceed systematically, applying step-by-step reasoning.
- Carefully perform each addition individually for all pairs provided in the list.

894 Your response must strictly follow this JSON format:
 895 { "n_list": [[int, int], ...]}

897 Return only the specified JSON object without any additional
 898 commentary or text.
 899

900 E.1.3 PROMPT FOR TRIMMER AGENT

902 You are a key member of a multi-agent team collaboratively
 903 solving the Knapsack Problem. Your specific role is the
 904 Trimmer, responsible for trimming the list based on the given
 905 capacity constraint.
 906

907 You will receive input in the following JSON format:
 908 { "n_list": [[int, int], ...], "capacity": int}

909 Each pair within 'n_list' contains two integers: the first
 910 integer represents the weight, and the second integer
 911 represents the value.
 912

913 Your task is to:

- Carefully analyze each pair in the provided list.
- Remove all pairs whose weight (the first integer) strictly exceeds the specified capacity.
- If identical pairs appear multiple times, retain only one instance of each.

918
 919 To ensure accuracy:
 920 - Proceed systematically, applying step-by-step reasoning.
 921 - Verify each pair carefully against the capacity constraint.
 922
 923 Your response must strictly follow this JSON format:
 924 {"t_list": [[int, int], ...]}
 925
 926 Return only the specified JSON object without any additional
 927 commentary or text.

928 E.1.4 PROMPT FOR REPORTER AGENT
 929
 930 You are a key member of a multi-agent team collaboratively
 931 solving the Knapsack Problem. Your specific role is the
 932 Reporter, responsible for determining and clearly reporting
 933 the final answer based on the provided information.

934 You will receive input in the following JSON format:
 935 {"c_list": [[int, int], ...]}
 936 Each pair within 'c_list' contains two integers: the first
 937 integer represents the weight, and the second integer
 938 represents the value.

939 Your task is to carefully analyze this list, identify the pair
 940 with the maximal value (the second integer in each pair), and
 941 report only that maximal value. If the list is empty, then
 942 report the maximal value as 0.

943
 944 To ensure accuracy:
 945 - Proceed systematically, applying step-by-step reasoning.
 946 - Carefully examine every pair in the provided list.

947
 948 Your response must strictly follow this JSON format:
 949 {"max_value": int}
 950
 951 Return only the JSON object as specified above, without any
 952 additional commentary or text.

953 E.1.5 SELF-CHECK PROMPT FOR TRIMMER AGENT
 954
 955 To better fulfill your task, please conduct a double check on the
 956 result you just provided. If your answer is already correct,
 957 please confirm by copying the last output.

958
 959 When double check, please pay attention to the following typical
 960 types of mistakes:

961 In particular, please check if you made any typical mistakes as
 962 listed below:
 963 1. If you added in a pair that is not in the original n_list.
 964 2. If there is still a pair in the t_list that still exceeds the
 965 capacity.
 966 3. If there is a pair in n_list that does not exceed the capacity
 967 but is not in the t_list.

968
 969 If you found any errors, please create a corrected answer.

970
 971 In either case, please follow the format requirement of the
 972 output.

972 E.2 TAP PROMPTS
 973
 974 E.2.1 PROMPT FOR ZERO SHOT
 975
 976 You are an expert in solving the Assignment Problem. In the
 977 assignment problem, there are n workers and n jobs. Each
 978 worker has a cost of assigning to each job. Each worker can
 979 only be assigned to one job. Your task is to find the optimal
 980 assignment of workers to jobs that minimizes the total cost.
 981
 982 You are given the problem in the following json format:
 983
 984 {
 985 "id" : str,
 986 "cost_matrix" : list of lists of integers
 987 }
 988
 989 The cost matrix is a square matrix of size $n \times n$, where n is the
 990 number of workers and jobs, in the form of a nested list
 991 $[[\text{int}, \text{int}, \dots], [\text{int}, \text{int}, \dots], \dots]$. The (i, j) th entry
 992 of the matrix represents the cost of assigning the i th worker
 993 to the j th job.
 994
 995 Your task is to find the optimal assignment of workers to jobs
 996 that minimizes the total cost.
 997
 998 Please think step by step when solving the problem.
 999
 1000 You need to return the optimal assignment in the following json
 1001 format:
 1002
 1003 {
 1004 "optimal_cost" : int
 1005 }
 1006
 1007 Please only return the json format, nothing else.
 1008
 1009 E.2.2 PROMPT FOR ROW REDUCER AGENT
 1010
 1011 You are given a matrix in the following json format:
 1012
 1013 {
 1014 "matrix" : list of lists of integers
 1015 }
 1016
 1017 The matrix is in the form of a nested list $[[\text{int}, \text{int}, \dots],$
 1018 $[\text{int}, \text{int}, \dots], \dots]$.
 1019
 1020 Your task is to reduce the matrix by subtracting the minimum
 1021 value of each row from all the elements in that row.
 1022
 1023 Please think step by step when solving the problem:
 1024 Step 0: Work on one row at a time.
 1025 Step 1: Find the minimum value of the row.
 1026 Step 2: Subtract the minimum value of the row from all the
 1027 elements in that row.
 1028 Step 3: Return the reduced matrix in the following json format:
 1029
 1030 {"reduced_matrix" : list of lists of integers}

```

1026
1027 Please only return the json format, nothing else.
1028
1029 E.2.3 PROMPT FOR COLUMN REDUCER AGENT
1030
1031 You are given a matrix in the following json format:
1032
1033 {
1034     "matrix" : list of lists of integers
1035 }
1036
1037 The matrix is in the form of a nested list [[int, int, ...], [int, int, ...], ...].
1038
1039 Your task is to reduce the matrix by subtracting the minimum
1040 value of each column from all the elements in that column.
1041
1042 Please think step by step when solving the problem:
1043 Step 0: Work on one column at a time.
1044 Step 1: Find the minimum value of the column.
1045 Step 2: Subtract the minimum value of the column from all the
1046 elements in that column.
1047 Step 3: Return the reduced matrix in the following json format:
1048
1049 {"reduced_matrix" : list of lists of integers}
1050
1051 Please only return the json format, nothing else.
1052
1053 E.2.4 PROMPT FOR ZERO SEEKER AGENT
1054
1055 You are given a problem in the following json format:
1056
1057 {
1058     "matrix" : list of lists of integers
1059 }
1060
1061 The matrix is in the form of a nested list [[int, int, ...], [int, int, ...], ...].
1062
1063 Your task is to find a smallest collection of rows and columns of
1064 the matrix, such that any zeroes in the matrix is contained
1065 in a chosen row or column. Small means the sum of the sizes
1066 of the row and column collections is the smallest possible.
1067
1068 Please think step by step when solving the problem, and return
1069 your response in the following json format:
1070
1071 {"collum_collection" : [int, int, ...], "row_collection" : [int,
1072 int, ...]}
1073
1074 The integers in the collum_collection and row_collection are the
1075 indices of the rows and columns that you choose.
1076
1077 Please only return the json format, nothing else.
1078
1079 E.2.5 PROMPT FOR MATCHER AGENT
1080
1081 You are given a matrix in the following json format:

```

```

1080
1081 {
1082     "matrix" : list of lists of integers
1083 }
1084 The matrix is in the form of a nested list [[int, int, ...],
1085 [int, int, ...], ...].
1086 Your task is to find the largest collection of zeroes in the
1087 matrix, such that no two zeroes are in the same row or column.
1088 Please think step by step when solving the problem, and return
1089 your response in the following json format:
1090
1091 {"largest_collection" : [[int, int], [int, int], ...]}
1092
1093 The list of pairs of integers is in the form of [[row_index,
1094 column_index], [row_index, column_index], ...].
1095
1096 Please only return the json format, nothing else.
1097
1098
1099
1100 E.2.6 PROMPT FOR PAINTER AGENT
1101
1102 You are given a problem in the following json format:
1103
1104 {
1105     "matrix" : list of lists of integers
1106     "collection" : list of lists of integers
1107 }
1108 The matrix is in the form of a nested list [[int, int, ...],
1109 [int, int, ...], ...].
1110 The collection is in the form of a nested list [[int, int], [int,
1111 int], ...].
1112 Your task is to find a smallest collection of rows and columns of
1113 the matrix, such that any zeroes in the matrix is contained
1114 in a chosen row or column. Small means the sum of the sizes
1115 of the row and column collections is the smallest possible.
1116
1117 To assist you, you are provided with a collection of zeroes in
1118 the input json format. The collection contains the positions
1119 of a maximal collection of zeroes in the matrix, such that no
1120 two zeroes are in the same row or column.
1121
1122 Please use this collection of zeroes to find the rows and columns
1123 as desired. More precisely, you should first choose one row
1124 or column for each zero in the collection, such that the
1125 chosen rows and columns cover as much of the zeroes in the
1126 matrix as possible. Then add in more rows or columns if
1127 needed.
1128
1129 Please think step by step when solving the problem, and return
1130 your response in the following json format:
1131
1132 {"collum_collection" : [int, int, ...], "row_collection" : [int,
1133 int, ...]}

```

1134 The integers in the `collum_collection` and `row_collection` are the
 1135 indices of the rows and columns that you choose.
 1136

1137 Please only return the json format, nothing else.
 1138

1139 **E.2.7 PROMPT FOR NORMALIZER AGENT**
 1140

1141 You are given a problem in the following json format:
 1142

```
1143 {
  1144   "matrix" : list of lists of integers
  1145   "column_collection" : list of integers
  1146   "row_collection" : list of integers
  1147 }
```

1148 The matrix is in the form of a nested list `[[int, int, ...],`
 1149 `[int, int, ...], ...]`.
 1150 The `column_collection` and `row_collection` are the indices of some
 1151 selected rows and columns that covers all the zeroes in the
 1152 matrix.

1153 Your task is the following:
 1154 1. Find the minimal value in the matrix that is not covered by
 1155 the selected rows and columns.
 1156 2. If this value is 0, return the original matrix.
 1157 3. If this value is not 0, subtract this value from all uncovered
 1158 entries in the matrix.
 1159 4. For the entries that covered by both a selected row and a
 1160 selected column, add this value to the entries.
 1161 5. For the entries that are covered by a selected row or column,
 1162 but not both, do nothing.
 1163 6. Please return the updated matrix in the following json format:
 1164

```
1165 {"normalized_matrix" : list of lists of integers}
```

1166 Please only return the json format, nothing else.
 1167

1168 **E.2.8 PROMPT FOR REPORTER AGENT**
 1169

1170 You are given a problem in the following json format:
 1171

```
1172 {
  1173   "matrix" : list of lists of integers
  1174   "collection" : list of lists of integers
  1175 }
```

1176 The matrix is in the form of a nested list `[[int, int, ...],`
 1177 `[int, int, ...], ...]`.
 1178 The collection contains a set of entries of the matrix in the
 1179 form of `[[row_index, column_index], [row_index,`
 1180 `column_index], ...]`.

1181 Your task is the following:
 1182 1. Sum up the values of all the entries in the collection.
 1183 2. Return the total value in the following json format:
 1184

```
1185 {"total_value" : int}
```

1186 Please only return the json format, nothing else.
 1187