Under review as a conference paper at ICLR 2026

KNOW-THE-ROPES: ALGORITHMIC BLUEPRINTS FOR
RELIABLE LLLM MULTI-AGENT SYSTEM DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

Single-agent LLMs face finite context and role overload, while unstructured multi-
agent designs can introduce ambiguous roles and coordination overhead. We
therefore introduce Know-The-Ropes (KtR), a practical methodology for project-
ing algorithmic priors and heuristics into typed, controller-mediated multi-agent
blueprints for decomposable tasks. KtR follows a multi-step process—identify
bottlenecks, refine decomposition, apply minimal augmentation (chain-of-thought,
self-check, or light fine-tuning), and verify via contracts. In two case studies,
including Knapsack (3-8 items) and Task Assignment (6—15 jobs), we find that
KtR by low-effort LLMs can show notable end-to-end accuracy gains over single-
agent zero-shot baselines. With three GPT-40-mini agents, accuracy on size-5
Knapsack instances rises from 3% to 95% after addressing a single bottleneck
agent. With six 03-mini agents, Task Assignment reaches 100% up to size 10 and
>84% on sizes 13—15, versus <11% zero-shot. These results indicate benefits in
our controlled setting; These results indicate benefits in our controlled setting; KtR
complements scaling and prompt/program-of-thought techniques in building a reli-
able multi-agent system. An anonymous code base is available at this anonymous
link

1 INTRODUCTION

Large language model (LLM) agents typically achieve strong performance in the domains for which
they are trained and optimized (Thirunavukarasu et al.} 2023} [Kasneci et al., 2023 Wu et al., 2023b),
yet their effectiveness degrades outside those boundaries. Finite context windows limit long-document
reasoning, and no single agent can simultaneously address mathematics, coding, and planning
problems (Liu et al., 2023} |Gulati et al., [2024; 'Wu et al., 2025)). Persistent challenges, including
hallucinations, topical drift, and domain-specific failures, further constrain their reliability (Zhang
et al.l 2024; [Xu et al) 2024). A natural direction is the division of labor by decomposing tasks
across specialized agents that coordinate to produce a joint solution. Current frameworks such as
Mixture-of-Agents suggest that, when properly orchestrated, a team of agents can outperform even
its strongest individual member (Wang et al.| 2024al).

Yet significant challenges remain. First, each task still demands a carefully crafted prompt, often
requiring substantial manual effort (Li et al., 2025} |Cui et al. 2025). While some multi-agent
frameworks report encouraging results, once evaluation leakage and prompt overfitting are controlled,
the apparent gains of naive agent swarms collapse to single digits, and can even turn negative when
tasks require more rounds of coordination (Pan et al.l [2025; |Zhu et al.| |2025). Post-hoc analyses
consistently reveal recurrent failure modalities: ill-posed task decompositions propagate ambiguity,
imprecisely defined roles lead to redundancy or coverage gaps, and verification mechanisms are
either predicated on brittle heuristics or become computationally prohibitive (Cao et al., 2025}
Wang et al., [2024b)). Furthermore, latency and cost tend to scale super-linearly with each round of
interaction (Ye, 2025} |Shu et al., [2024)). These findings suggest that simply adding more “brains”
does not guarantee progress. Robust and scalable improvements of multi-agent system (MAS) design
demands a principled, systems-engineering approach—the gap our work aims to close.

To address this critical need, we introduce Know-The-Ropes (KtR), a framework that reframes
MAS design as structured algorithm engineering. At its core, KtR employs a hierarchical task
decomposition, recursively partitioning problems into sub-tasks until each primitive operation is

https://anonymous.4open.science/r/KtR-codebase-5638
https://anonymous.4open.science/r/KtR-codebase-5638

Under review as a conference paper at ICLR 2026

solvable by a base model, potentially augmented with minimal augmentation (e.g., self-check
loops, Chain-of-Thought (CoT) (Wei et al. [2022), fine-tuning). Inter-agent communication is
not conversational but is instead mediated by a code-based controller that enforces explicit, typed
input/output contracts. This architectural choice ensures modularity and predictable information flow,
preventing common pathologies such as context bloat and state overwrites. This design philosophy
turns MAS construction into traditional algorithm engineering: identify bottlenecks, refine the
decomposition, and apply the most cost-effective augmentation to underperforming agents, mirroring
the optimization of classical computational graphs.

Our empirical study includes the following experiments: (i) Knapsack Problem. Starting with
GPT-40-mini, zero-shot accuracy on 3—8-item instances ranges from 60% to 0%. A naive task-level
fine-tune shows limited improvement. Under our KtR three-agent blueprint, accuracy improves to
95%—70% in our controlled setting after fine-tuning just the “trimmer” sub-task on 1200 worked
examples. (ii) Task-Assignment Problem (scalability case study). With 03-mini we build a six-
agent blueprint for problems of size 6—15. Decomposing a single weak agent into two finer leaves
yields leaf accuracies of 100% and 97%, with the overall system achieving > 84% accuracy across
all sizes in our evaluation protocol. Based on these findings, our contributions lie in three aspects.

* A New Framework for MAS Design. We present KtR, a practical framework for translating
algorithmic priors into multi-agent blueprints with typed interfaces and local verification,
applicable to decomposable tasks with known domain structure.

* Empirical Validation. Two illustrative demonstrations (Knapsack and Task-Assignment
problems) indicate that targeted decomposition can improve end-to-end accuracy versus
single-agent baselines in our settings, using modest models and minimal augmentation.

* Practices for Principled Refinement. We provide diagnostic tools (per-agent accuracy
metrics, tractability checks) and minimal augmentation strategies (CoT, self-check, light
fine-tuning) for blueprint refinement.

2 RELATED WORK

Multi-Agent Systems (MAS) have been widely employed to enhance the capabilities of LLMs to
tackle complex tasks (Qiu et al., [2024; Yan et al.l 2024; Ma et al., |2024; Lin et al., 2024} |Hua
et al} 2023; [Yu et al.| |2024). This is because MAS typically distribute tasks across agents that
collaborate to achieve a common goal, thereby improving both efficiency and adaptability. Recent
frameworks like CAMEL (Li et al., 2023)) enable role-based cooperative dialogues by assigning agents
distinct personas, while AutoGen (Wu et al., 2023a) and MetaGPT (Hong et al.,2023)) orchestrate
multi-role agent teams through structured conversation loops and predefined workflows. In math
optimization, OR-LLM-Agent can translate natural-language problem descriptions into formal Gurobi
models—achieving an 85% correct-solution rate on real-world benchmarks (Zhang & Luol 2025).

However, studies show that simply scaling up to LLM-based MAS often yields only marginal gains
over single-agent baselines (Pan et al.,2025). LLM agents still struggle with context management and
consistency, meaning that elaborate multi-agent prompts can fail to realize the intended collaboration
(Bo et al.}[2024). A recent systematic audit of popular MAS frameworks has identified 14 distinct
failure modes (Cemri et al., |2025)), which can be grouped into three categories, including flawed
design (e.g., ambiguous role definition), inter-agent misalignment (e.g., communication failures), and
quality control (e.g., no reliable check mechanism).

To address these challenges, researchers have proposed multiple strategies to make LLM-based
MAS more reliable (Zhu et al.| [2025} [Tran et al.l 2025). A key strategy is improving the agent
interaction structure (Zhu et al., [2025)). For example, the AgentDropout framework proposes a
dynamic agent-pruning strategy, which seeks to discard less critical actors during training (Wang
et al} 2025). Another effective strategy is incorporating feedback and verification loops (Hong
et al.,|2023). A recent study shows that frameworks with role specialization and iterative feedback
mechanisms can outperform those without these features (Anonymous) 2025)). In addition, systematic
evaluations suggest that the communication topology matters: a well-designed protocol between
agents can significantly improve collective performance on complex tasks (Zhu et al., 2025)).

To understand how KR relates to existing approaches, Table[I]compares our framework with both
MAS and prompting methods across three design dimensions KtR differs from frameworks that rely
on emergent coordination (e.g., CAMEL) or developer orchestration (e.g., AutoGen) by imposing

Under review as a conference paper at ICLR 2026

algorithmic blueprints with typed interfaces and local pre/post. Compared with prompting methods
(ReAct, ToT), KtR embeds domain—specific algorithmic knowledge directly into the multi-agent
architecture. This positions KtR as a reliability complement to model scaling and prompt design for
decomposable tasks.

Table 1: Comparison of MAS frameworks and prompting baselines.

Method Inductive Bias Verification Typed I/O
KtR (Ours) Algorithmic blueprint Local pre/post checks JSON-schema
AutoGen (Wu et al.,|2023a) Dev. orchestration Limited Programmatic
MetaGPT (Hong et al.,|2023) SOPs & templates Role-based QA Structured
CAMEL (L1 et al.,|2023) Emergent coordination Minimal Free-text
ReAct (Yao et al.,[2023b) Tool-use structure Limited Func. calls
ToT (Yao et al.|[2023a) Thought tree Limited Text-based
GoT ()besta2024graph Graph reasoning None Text-based
DSPy (Khattab et al.,2024) Programmatic prompting Optimization Signatures
PAL |Gao et al.{(2023) Program synthesis Code execution Structured

3 METHODOLOGY-KTR FRAMEWORK DESIGN

We propose the heuristic framework “Know the Ropes” (KtR). KtR offers a structured methodology
for designing specialized MAS leveraging LLLMs. This heuristic focuses on translating known,
effective procedures or algorithms into a coherent multi-agent architecture. As presented in Figure
[T] the core idea is to decompose a complex overall task into its fundamental computational stages.
Each stage is then mapped to a well-formulated sub-task, designed to be tractable for an individual
agent. These specialized agents are subsequently orchestrated to mirror the data/control flow of the
original procedure, which can effectively embed problem-solving logic into the MAS. The following
definitions formalize the components of this framework.

This approach is grounded in the No-Free-Lunch (NFL) theorem (Wolpert & Macready, [1997;
Wolpert, 2021) (see Appendix [B), which states that no algorithm performs universally better than
others across all problem distributions. Rather than seeking a universal multi-agent orchestration
strategy, KtR operationalizes the NFL insight by injecting domain-specific inductive bias through
algorithmic blueprints. By decomposing tasks according to their inherent algorithmic structure, we
concentrate the system’s “learning budget” on the specific problem distribution at hand, trading
generality for reliability within the target domain.

Input Domain I Requirement R € I X O Output Co-Domain
Workflow Blueprint /" ()~ A Oy A £
Task T, Trivial P i A o > N o) g o~-0O O-0O
0, Ho o) . OO

B, =(OC o A :PT, O--0 JA
EEN e N 3 S T OO0 OO
Ty =TT o [A 0" g0 A |
P.) ‘. @) | ©) ¢ O
Task T4: Match Color Task T,: Match Shape Output
Instantiation @) @)
MAS Design Input I oo > 7 Y — > i e Output 0
i Color Agent Shape Agent

Figure 1: Illustration of the KtR strategy: heuristic, prior-guided decomposition of a complex task
into sub-tasks, each instantiated as a coordinated LLM agent within a multi-agent architecture.

Under review as a conference paper at ICLR 2026

Definition 3.1. A well-formulated task is a ruple T' = (I, O, R), consisting of

* Input domain I: an unambiguous description of all admissible inputs.

* Qutput co-domain O: an unambiguous description of all admissible outputs.

* Requirement relation R C I x R: a relation such that for each input © € I it defines
explicitly the subset R(x) C O as the set of outputs that are considered correct.

Definition 3.2. A workflow blueprint B = (7, P) consisting of

* A finite set of well-formulated tasks T = {T1,--- , T, }.

* An orchestration protocol P that specifies: (i) The control-flow graph that determines when
each Tj is invoked. (ii) The data-dependency edges that map outputs of some tasks to inputs
of others. (iii) Any global invariants, error-handling rules, or communication channels
required to realize the end-to-end objective of B.

Definition 3.3. Given a workflow blueprint B = (T, P), a decomposition selects a task T € T and
replace it with a sub-blueprint By = (Tr, Pr) such that (1). Each task T’ € Tr is strictly simpler
than T (2). The composite protocol P’, obtained by embedding Pr in place of T inside P, preserves
all external interface of T. The result of the decomposition is a new blueprint S’ = (T',P’), where

T =(T\{T}) U Tr.

Definition 3.4. Let M be a set of LLM models. A well-formulated task T is said to be M-tractable
if a model inside M satisfies the requirement relation Ry with high, empirically verified accuracy,
after optional augmentations (e.g., chain-of-thought prompting, tool calls, self-reflection loops, or
fine-tuning).

Definition 3.5. Given a set of LLM models M and a blueprint I3, an M-tractable hierarchy is a

sequence of decompositions

Dy Dy Dy,
’\»Bl/\»/\,) n

such that each task in the terminal blueprint B,, is M-tractable in the sense of Definition[3.4}

Definition 3.6. Given a set of LLM models M and an M-tractable blueprint B = (T, P), a system
instantiation is to instantiate BB into a MAS in the following way.

* Create one agent A; per task T; € T, bundling necessary augmentations with the agent.
* We implement the orchestration protocol P as message-passing or function calls among
agents, preserving data-dependencies and control flow.

Algorithm 1 KtR Framework Pseudo-code

1: procedure KTR(T', M)
2 B < CREATEBLUEPRINT({T'}, trivial_protocol) # Start with the top-level task
3 while exists U € B.tasks and ~-MTRACTABLE(U, M) do
4: U™ <~ CHOOSETASKTODECOMPOSE(U) # Select a non-tractable task
5: Bqb < DESIGNSUBBLUEPRINT(U™) # Define its sub-tasks and protocol
6 B < EMBEDSUBBLUEPRINT(B, U, Bub) # Replace the task with its sub-blueprint
7 ASSERTINTERFACEPRESERVED(B) # Ensure communications are valid
8: end while
9: MAS < INSTANTIATESYSTEM() # Begin building the MAS
10: for all V € B.tasks do
11: aug < SELECTAUGMENTATIONS(V, M) # Select a cost-effective augmentation
12: agent < CREATEAGENT(V, M, aug) # Create a specialized agent based on the definition
13: MAS.AddAgent(agent) # Add the specialized agent to the system
14: end for
15: IMPLEMENTPROTOCOL(MAS, B.protocol) # Wire up agents based on the blueprint
16: return MAS # Return the final multi-agent system

17: end procedure

This three-step procedure—algorithmic blueprint, tractable hierarchy construction, and system
instantiation—provides a principled pathway from a complex task to a deployable MAS solution
with correctness hinges on model capabilities that have been explicitly validated. To demonstrate the
practical application and efficacy of the KtR framework, we investigate two case studies. In each
case, we use a well-understood algorithm to decompose the complex problem into an M-tractable
hierarchy and instantiated MAS.

Under review as a conference paper at ICLR 2026

4 EXPERIMENT DESIGN

4.1 PROOF-OF-CONCEPT: 0/1 KNAPSACK PROBLEM (KSP)

To furnish a clear proof-of-concept for KtR, we start with the classical NP-hard Knapsack Problem
(KSP), a staple in resource allocation, logistics, and investment planning. Using the lightweight,
general-purpose GPT-40-mini as the MAS backbone, we establish a modest baseline that allows us to
highlight how KtR MAS choreography amplifies a small model’s capability well beyond its limits.

Problem Formulation. For KSP, the input is a tuple (w0, ', W) where @ and ¥ are two N -dimensional
vectors representing the weight and value of n items, and W is the weight capacity. Then the objective
of the Knapsack problem can be formulated as finding the following (optimal) value:

Z=max{ 7 7|Fec{0, 1}, & G <W}

Here ¥ € {0, 1}" is the state vector, representing whether an item is chosen or not. This problem,
where each item can either be fully included or not at all, is commonly known as the 0/1 KSP.

Problem Solution A classic approach to the Knapsack Problem iteratively enumerates all feasible
states—a dynamic programming strategy (Bellman,|1957). Formulated in the form of mathematical
induction, the initial state is So = {(0,0)}, and we add items in inductively, with capacity being
aware: for each k, assuming that S;_; has been obtained, then we form:

Sadd = {(w + wg, v+ vg) for all (w,v) € Sk_1}.

Then we trim by the capacity Strimmed = {(w,v) € Saqq | w < W} and union the two set of states
to create Si: Sk = Sk—1 U Strimmed- After running through all items and obtaining the set Sy, we
pick the element in S with maximal value, as the solution to the KSP. Specific details of this method
is presented in Appendix [C}

KtR MAS Design. Following the “Know the Ropes” heuristic, the iterative dynamic programming
solution for the KSP is decomposed into tasks for three specialized agents, including: (i) Worker
Agent: Computing the set S,4q from Sy_1 and the k-th item (wy, vg).(ii) Trimmer Agent: Obtain
Strimmed from S,qq and the capacity W. (iii) Reporter Agent: Find the element with maximal
value within the final state set Spy. (iv) System Controller: The controller orchestrates the overall
process. After initialization, it controls the loop on k. For each k, it sends Si_1 and (wg, vx) to
Worker Agent, and then send the result plus W' to the Trimmer Agent. The Controller then takes the
union to obtain S%. Once all items are processed, the Controller invokes the Reporter Agent for final
result. Specific prompts for these agent design are attached in Appendix [E]

4.2 PROOF OF SCALABILITY—TASK ASSIGNMENT PROBLEM (TAP)

Building on the previous section where KtR already stretched the capabilities of the compact GPT-4o-
mini on the Knapsack baseline, we now test the framework’s scalability. We upgrade the backbone to
the larger 03-mini and tackle the more demanding Task-Assignment Problem (TAP), demonstrating
that the framework’s performance rises in lockstep with the underlying model’s capacity.

Problem Formulation. TAP seeks to optimally assign a set of IV workers to IV tasks, where each
potential assignment incurs a specific cost to minimize the total cost. The input is an N x N matrix
C representing the cost. Then the objective of the TAP is to find the optimized value:

Z = max

se6y bmtiz1 o)

Here G y represents the set of all permutations of N elements, representing arrangements that assign
different tasks to different agents.

Problem Solution. The typical solution for TAP is using the Hungarian algorithm (Kuhnl [1955]),
which provides a polynomial-time method to find the objective value Z. We summaize the algorithm
as follows. (i) Step 1. Row Reduction. For each row, we subtract each entry with the minimal value
of all entries. This create a matrix C"’. (ii) Step 2. Column Reduction. Same operation for each
column to obtain a new matrix C”. (iii) Step 3. Zero Covering. We then find the smallest collection
C of rows and columns to cover all zeroes. Let L be the size. If L = N, then we skip Step 4. (iv)
Step 4. Matrix Improvement. If L < N, we find the minimal value m of all entries that are not

Under review as a conference paper at ICLR 2026

covered by the collection C, and then subtract m from all uncovered entries and add m to all covered
entries. Let C" be the resulting matrix. (v) Step 5. Assignment Identification. If L = N, then we
attempt to find a collection of zeroes in C"” or C""” in which no two are on the same row or column.
The position of the zeroes represents the optimal task assignment. Specific details of this method is
presented in Appendix [C}

KtR MAS Design. We apply the KtR methodology to create the MAS. As explained in Section [5.2}
based on test results of the agentic tasks and heuristic argument, we further decompose step 3 into
two agents. For better presentation, let [V be the size of the original TAP problems, i.e., the number of
tasks and resources in the problem. (i)Row Reducer: Realizes Step 1 and obtain the reduced matrix
C’. (ii) Column Reducer: Realizes step 2 and obtain C”. (iii) Matcher: Find a maximal collection
of zeroes in the reduced matrix C"” in which no two are on the same row or column. Let L be the size
of the collection. (iv) Painter: Find a minimal collection of rows and columns covering all zeroes
when L < n. (v) Normalizer: Creates more zeroes outside of the selected rows and columns to get
C"". (iv) Reporter: Report the final answer when L = N. (vii) The System Controller: Arranges
task for Row Reducer and Column Reducer linearly, then controls a loop: Matcher finds a set of
zeroes and then Controller checks the size to determine whether to break the loop or not. In the loop,
Painter is then called in to find the collection of lines and Normalizer follows to create more zeroes.
Outside the loop, the Reporter is called to deduce the final answer. Specific prompts for these agent
design are attached in Appendix [E]

5 EXPERIMENT RESULT

Our experimental protocol unfolds in two stages. First, we run a uniform benchmark across a suite of
baseline models—including several GPT and Llama variants—to fix a reference point for each task.
The second stage then splits by objective: For KSP we deliver a proof of concept, while for TAP we
provide a proof of scalability. For ground truth, we use python code to randomly generate problems,
and then use the Google OR-Tools (Perron & Furnon| |2022) as in Appendix @]to generate solutions
to compare with.

5.1 EXPERIMENT RESULT FOR KSP

Baseline LLM Performance Figure

shows the baseline LLM performance 1007 ¢ 1) T

across multiple difficulty levels. The ac- 80,

curacy across difficulty levels (from3to 8 o~ GPTosmin
items) in the KSP scenario reveals substan- & 6ol e o s
tial performance variation among the tested ~ 3 = Gl s5mai
LLMs. Among those, the GPT-03-mini, 3 4| T v
as a reasoning model, consistently demon- < o s
strates superior accuracy. Model GPT- 20

4.1 outperforming its smaller counterparts,

namely GPT-4.1-mini and its primer GPT- 0

40-mini. Other LLMs, including Claude- KSP Difficulty Level

haiku, Llama, and Qwen series also show

performance degradation, with higher vari- Figure 2: KSP baseline performance from single LLMs
ability particularly evident at greater diffi- 45 well as the KtR MAS.

culty levels. Meanwhile, the performance

of final KtR MAS is also drawn in Figure 2] The comparison shows that KtR substantially boosts
performance, validating its effectiveness.

KtR MAS Performance Based on Figure [2| GPT-40-mini exhibits a pronounced performance
decline beginning at instances of 4 items, underscoring its limited scalability to more complex
scenarios; therefore, we select it as the backbone for our KtR framework design. Figure E]further
illustrates the resulting KtR MAS along with the experimental outcomes based on our strategy.

(i) Single LLM performance. We establish two baseline performances for GPT-40-mini acting as
a single agent to solve the KSP. First, the zero-shot GPT-40-mini is directly prompted with KSP
instances. As Figure s shows, its accuracy decreases from 60% for 3 items to 0% (8 items).

Under review as a conference paper at ICLR 2026

A. G.
0-1KNAPSACK PROBLEM
' Multi-Agent .
(@) Worker (Augmented) (@) Worker
] i
'?J Trimmer; “?J [Trimme
B. Performance of GPT-4o0-mini Zero-shot E. Agentic Capacity of GPT-40-mini on Tasks H. Capacity of GPT-4o-mini Trimmer Agent
100 97 100 99 100 96 100 g5 9% 94
100 100 & £ % % 100 $% %ﬁ ? -
< 9 9 67 67
SR < & o Worker < [Eh Base
§ 50 I § 50 I Reporter | ... § 50 I Fine-tuned
3 3 Trimmer 3 W Fine-tuned & Self-check
£ 18 g u 8 2t
< 25 I 25 25 s
7 7
3 5 5
0 312 o I = 0 I ols
3 4 5 6 7. 8 1-8 9-16 17-24 25-32 18 9-16 17-24 25-32
Number of Iltems : A Set of Feasible States : Set of Feasible States
Performance of Fine-tuned GPT-4o-mini F. Performance of GPT-40-mini Multi-Agent |. Performance of GPT-40-mini Fine-tuned Multi-Agent
100 9% g %
100 100 T T T 815 6 o
275 & 75 g5 h 1
3 48 > >
2 50 > 8 50 8 50
3 I 28 3 S s
e 20 19 9 18 3
< 2 I 5 < 2 I o < 2
1 32 I o 2 1
0 I 0 + T 0
3 4 5 6 7 8 3 4 5 6 7 8 3 4 5 6 7 8
Number of Items Number of Items Number of ltems

Figure 3: KSP evaluation of the KtR stategy. B: Zero-shot accuracy of the baseline model. C:
Zero-shot accuracy after a light, task-specific fine-tune of the same model. D & G: Blueprints of
the MAS without (D) and with (G) augmentations. E: Per-agent accuracies before augmentation,
revealing the system’s bottleneck. H: Boost delivered by two targeted augmentations—task-level
fine-tuning and self-check prompting—applied to the bottleneck agent. F & I: Corresponding test
accuracies for the two blueprints.

Second, we evaluate a fine-tuned GPT-40-mini (standalone). Figure 3[C indicates that fine-tuning
offers some improvement over the zero-shot, but still as low as 3% for 8-item KSP.

(ii) Standard MAS performance. Following our KtR heuristic, we map the algorithm for KSP into
a MAS design, illustrated in Figure[3F. Initially, each agent is driven by the standard, non-fine-tuned
GPT-40-mini. The performance of this standard MAS is presented in Figure 3F. Its performance
descreases from 18% for 3 items to 4% for § items. This initial result implies that without augmenting
the agents’ abilities, the MAS does not effectively handle the task. We profile each agent in isolation
(Figure [BE) and uncover a single choke point: Trimmer. Its accuracy collapses as the feasible-state
set S, (cf. Section@]) grows—>54 % for 1-8 states, 24 % for 9-16, 7 % for 17-24, and just 5 % for
25-32. Because the algorithm loops once per state, even small per-iteration errors compound, and
this cascading inaccuracy ultimately sinks the entire run.

(iii) Augmented MAS performance. To eliminate the bottleneck, we fine-tune the Trimmer’s
GPT-40-mini backbone (Figure 3G, highlighted as *Augmented Trimmer’). Accuracy leapt to 95 %
for 1-8 feasible states, 89 % for 9-16, 81 % for 17-24, and 67 % for 25-32 (Figure E]H). Adding
a lightweight self-check—prompting the model to audit its own answer—preserved or marginally
improved these gains. Replacing the bottleneck with the fine-tuned Trimmer lifts end-to-end KSP
accuracy to near-saturation across sizes (Figure E][): 95 % for 3-item instances, 90 % for 4, 95 % for 5,
85 % for 6, 76 % for 7, and 70 % for 8. A single targeted upgrade thus turns KtR into a consistently
high-performing solver as the problem scales.

5.2 EXPERIMENT RESULT ON TAP

Baseline LLM Performance Figure [4|illustrates the baseline performance of multiple LLMs
on the TAP task across multiple difficulty levels (from 3 to 8 tasks). The results reveal marked
differences in model capabilities. The only reasoning model, GPT-40-mini, consistently outperforms
all others, exhibiting strong accuracy at lower difficulty levels, though its performance declines as
task complexity increases. In contrast, GPT-4.1 demonstrates moderate but stable accuracy across all

Under review as a conference paper at ICLR 2026

difficulty levels, surpassing its mini-sized counterparts. Other models, including Claude-3.5-Haiku,
Qwen2.5, and Llma-3 variants, show intermediate performance with variability.

We observe that single-agent models (e.g.,
GPT-3-mini, GPT-4-mini, GPT-4.1) drop to

. 100

30-50% accuracy at TAP levels 7-8, while

KtR MAS maintains steady performance 80

near 100%, even surpassing reasoning mod- _ &= Tt

els, demonstrating its exceptional robust- < 4 ‘& P41

ness and generalization capabilities. 8 Claude3 ik
a ~/A— Qwen25-78
8 40 -k Qwen2.5-728

N < =~ Llama3.1-88

KtR MAS Performance Based on Fig- & Uamad3:708

ure @] GPT-03-mini consistently outper- 20

forms other LLMs across all evaluated

tasks, making it our choice for subsequent 0

experiments. Our goal is to assess the scal- TAP Difficulty Level

ability of our proposed strategy and inves-

tigate how its performance evolves as task Figure 4: TAP baseline performance from single LLMs
difficulty increases. Figure]illustrates the as well as the KtR mulit-agent system.

MAS design and corresponding experimen-

tal outcomes obtained using our heuristic-based approach.

At D. Normalizer G. Normpalizer Pajnter :
TASK ASSIGNMENT PROBLEM @ @) Multi- @) - @) @) Multi- i
i i Agent i i i Agent :
[mput][[Loop | [check | [ouput | [input][[Loop | [check | [output |3
MACHINET MACHINEZ MACHIN3 H
TASK1 o €, i 1 1 ‘ = 1
Ve .?_, I?} l?} n?} ‘o .?_,
ThsK2 ThSK3 Row Reducer Cover Seeker Reporter Row Reducer Reporter
B. Performance of 03-mini Zero-shot E. Yoo H. Performance of 03-mini Enhanced Multi-Agent
100 1 100 100 100 100 100 95 97 o o3
sf o Decomposition —»'?J 100 I I I SI“
3\; s I 54 ' SR
3 @) >
€ 50 I 37 [8 50
3 I 27 o4 1 5
8 21 Cover Seeker L @ 3
< 25 I I I 1non V < 25
I I 2 Painter
0 + 0
6 7 8 9 10 11 12 13 14 15 6 7,8 9 10 11 12 13 14 15
Number of Tasks 3 = Number of Tasks
R - i
C. Performance of 03-mini Multi-Agent F. Performance of Agents by 03-mini I. " Performance of Decomposed Agents by 03-mini
98 9 9% 00
100 88 91 100100 97 99 100 100 100 o7 100 98 97
IIIIIE‘EM 100 {- gt 5 22 100 _91284914_ 100 o
9 65 g =
£ 75 e :[5 56 g 75 I £ 75
§ 50]: I § row reducer é‘ o
SCs+-MEHEEEEEEED| ... 8 50l mmm column reducer - EREEE RN | S 5
5 > 5 50 column reducer)B cover Taeker
g é() cover seeker 2 h
25 25 normalizer 25 matcher
reporter Il painter
0 0 0 —
6 7 8 9 10 11 12 13 14 15 6-10 11-15 6-10 11-15
Number of Tasks Number of Tasks Number of Tasks

Figure 5: TAP evaluation of the KtR strategy. B: Zero-shot accuracy of the baseline model. D: Initial
blueprint derived from the Hungarian algorithm; its end-to-end accuracy is shown in C. F: Per-agent
accuracies within this blueprint, prompting the finer decomposition outlined in E. I: Side-by-side
comparison of per-agent accuracies before and after decomposition. G: Final, decomposed blueprint,
with overall accuracy presented in H.

(i) Single LLM performance. Again, we evaluate the baseline performance of using 03-mini as a
single agent. The 03-mini model achieves a relatively high performance (83%) but decays quickly as
in Figure [5B: 37% on problems of size 9, 21% on problems of size 12 and finally is reduced to 3%
for problems of size 15.

(ii) Standard MAS performance and further decomposition. Guided by the Hungarian algorithm
(Kuhn| [1955), our first KtR blueprint maps each step to a single agent; Step 3 from Section.2] relied
on a lone Cover Seeker rather than the later “Matcher + Painter” pair. This baseline already scored 98
% (size 6), 88 % (size 9), 78 % (size 12), and 56 % (size 15), validating the approach.

Under review as a conference paper at ICLR 2026

We then stress-test each agent on two bands, with matrix sizes 6-10 and 11-15, to pinpoint weaknesses.
One-shot agents are flawless: Row Reducer and Reporter reach 100 % on both bands, and Column
Reducer hit 100 % / 92 %. Normalizer holds 99 % / 94 %, but Cover Seeker falls to 97 % / 84
%. Because Zero Seeker operates inside the main loop, its errors accumulate, making it the clear
bottleneck for larger TAP instances.

We then perform a further decomposition of Step 3 in Section[C.2)in a two-step process: Step 3.1.
Finding a maximal collection of zero-entries, such that no two share a same row or column; Step
3.2. Finding a minimal collection of rows and columns covering all zero-entries. We believe this
decomposition is helpful due to the following reasons. First, by a mathematical argument, the size of
collections from sub-tasks 3.1 and 3.2 match. Second, a heuristic argument indicating that knowing
the maximal collection of zeroes simplifies the task to find minimal collection of rows and columns.
Last, the original Step 5 can then simply use the positions of the zeroes from Step 3.1, once optimal
check passes. Note, this also explains why we prefer a further decomposition rather than fine-tuning
the original agent, as a further decomposition improves the system flow as well. Empirical pays off,
as shown in Figure 5], Matcher reaches 100 % accuracy on both difficulty bands, while Painter climbs
to 98 % and 97 %—a sharp jump from the original Cover Seeker’s 97 % and 84 %.

(iii) Augmented MAS performance. Leveraging the refined decomposition, we deploy a six-agent
system (Figure [5H) that solves size 610 instances almost flawlessly: almost 100 % accuracy versus
83 — 27 % for 03-mini zero-shot. It sustains high performance on size-11-15 tasks (95 %, 97 %,
90 %, 93 %, 84 %); even the dip at size 15 far exceeds the 3 % zero-shot baseline, highlighting the
substantial capacity gain of our MAS.

6 DISCUSSION AND CONCLUSIONS

We present Know-the-Ropes (KtR), an engineering framework that turns algorithmic knowledge into
reliable MAS via typed, verifiable blueprints. Our approach targets common failure modes in current
MAS by enforcing structured decompositions, JSON-schema contracts, and local verification. Across
evaluations, KtR shows effectiveness along complementary axes: KSP provides proof-of-concept
by showing how a general-purpose small model (GPT-40-mini) can handle complex reasoning tasks
through structured decomposition, achieving 95% accuracy versus 3% zero-shot on our benchmark;
TAP offers proof-of-scalability by leveraging the stronger reasoning capabilities of 03-mini on more
demanding instances, reaching 100% accuracy up to size 10.

KtR’s principled “identify — improve — verify” methodology indicates that disciplined decomposi-
tion plus targeted augmentation can substantially improve underperforming models on these tasks
where both single-agent and unstructured MAS approaches struggle. The framework’s effectiveness
follows from domain-aligned inductive bias rather than prompt tinkering, broadly consistent with
insights suggested by the No-Free-Lunch theorem. Our systematic process—bottleneck identification,
task tractability assessment, and minimal augmentation—helps turn modest models into more reliable
collaborators on decomposable problems without requiring ever-larger monoliths.

While our validation spans structured optimization and language tasks, future work should extend to
less structured domains and address real-world complexities including noisy inputs and automated
bottleneck detection. In addition, Although the per-agent inference cost is trending downward, we do
not quantify absolute wall-clock latency, energy consumption, or controller overhead for large agent.
Next, KtR positions algorithmic blueprints as a reliability-first complement to model scaling and
prompt design, offering a systematic pathway from complex problems to deployable MAS solutions
for decomposable tasks. As a limitation, our evaluation focuses on controlled, decomposable settings;
broader studies are needed to assess robustness in open-ended workflows.

Finally, we offer practical guidance on when KtR pays off and how to evaluate it operationally.
KtR is most effective when tasks admit natural subtask boundaries with local checks, stable typed
interfaces, and controller overhead small relative to model calls. When objectives are globally
entangled with sparse verification signals, a strong single agent or tool-augmented solver may be
preferable. To support fair comparisons and blueprint refinement, we recommend reporting contract-
level diagnostics alongside accuracy and cost: schema-conformance rate, controller rejection/repair
rate, and the fraction of runs requiring controller intervention, so that gains reflect stronger structure
rather than hidden prompt tuning.

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This paper proposes Know-the-Ropes (KtR), a methodology for projecting algorithmic prior knowl-
edge into typed, controller-mediated multi-agent system (MAS) blueprints, and evaluates it on
synthetic combinatorial optimization tasks: the Knapsack Subset Problem (KSP) and the Task As-
signment Problem (TAP). Our experiments do not involve human subjects, user data, or personally
identifiable information. Problem instances are programmatically generated and ground-truth solu-
tions are computed with Google OR-Tools (Apache 2.0), as described in Section [D| Experiments
use hosted large-language-model APIs (specifically GPT-40-mini and 03-mini) for inference; we
do not train or distribute any model weights. The scope of our study is limited to benign, synthetic
tasks; we do not deploy agents in real-world settings. We are not aware of conflicts of interest related
to this submission. An anonymous code repository is provided solely to facilitate inspection and
reproduction and requires users to comply with the terms of the referenced third-party tooling.

8 REPRODUCIBILITY STATEMENT

We aim to make the study reproducible within the constraints of using hosted LLM APIs. The paper
specifies the task settings, models, and orchestration details in text and figures (e.g., Figures illustrating
the KSP and TAP blueprints). The data generation protocol and use of OR-Tools for ground truth are
described in Section [D| The exact prompt templates used for the zero-shot baselines and all agent
roles are included at the end of the paper in Appendix [E](“Prompt gallery”). An anonymous code base
is available at https://anonymous.4open.science/r/KtR-codebase—-5638, which
is intended to help replicate the evaluation setup and run the reported experiments. For KSP, our
MAS includes a fine-tuned component; the corresponding training sets are included in the code base.
Reproducing our results requires access to the same API-served models (GPT-40-mini and 03-mini);
due to nondeterminism in API responses and service updates, results may exhibit small variance.

REFERENCES

Anonymous. Code in harmony: Evaluating multi-agent frameworks. In Submitted to CS598 LLM
Agent 2025 Workshop, 2025. URL https://openreview.net/forum?id=URUMBfrHFy,
under review.

Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1957.
ISBN 9780691146683.

Xiaohe Bo, Zeyu Zhang, Quanyu Dai, Xueyang Feng, Lei Wang, Rui Li, Xu Chen, and Ji-Rong
Wen. Reflective multi-agent collaboration based on large language models. Advances in Neural
Information Processing Systems, 37:138595-138631, 2024.

Pengfei Cao, Tianyi Men, Wencan Liu, Jingwen Zhang, Xuzhao Li, Xixun Lin, Dianbo Sui, Yanan
Cao, Kang Liu, and Jun Zhao. Large language models for planning: A comprehensive and
systematic survey. arXiv preprint arXiv:2505.19683, 2025.

Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt
Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, et al. Why do multi-agent IIm
systems fail? arXiv preprint arXiv:2503.13657, 2025.

Wendi Cui, Jiaxin Zhang, Zhuohang Li, Hao Sun, Damien Lopez, Kamalika Das, Bradley A Malin,
and Sricharan Kumar. Automatic prompt optimization via heuristic search: A survey. arXiv
preprint arXiv:2502.18746, 2025.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. PAL: Program-aided language models. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of
the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 10764-10799. PMLR, 23-29 Jul 2023. URL https://proceedings|
mlr.press/v202/gao23f.html.

10

https://anonymous.4open.science/r/KtR-codebase-5638
https://openreview.net/forum?id=URUMBfrHFy
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html

Under review as a conference paper at ICLR 2026

Aryan Gulati, Brando Miranda, Eric Chen, Emily Xia, Kai Fronsdal, Bruno de Moraes Dumont,
and Sanmi Koyejo. Putnam-axiom: A functional & static benchmark for measuring higher level
mathematical reasoning in llms. In Forty-second International Conference on Machine Learning,

2024.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent
collaborative framework. arXiv preprint arXiv:2308.00352, 3(4):6, 2023.

Wenyue Hua, Lizhou Fan, Lingyao Li, Kai Mei, Jianchao Ji, Yingqiang Ge, Libby Hemphill, and
Yongfeng Zhang. War and peace (waragent): Large language model-based multi-agent simulation
of world wars. arXiv preprint arXiv:2311.17227, 2023.

Enkelejda Kasneci, Kathrin SeBler, Stefan Kiichemann, Maria Bannert, Daryna Dementieva, Frank
Fischer, Urs Gasser, Georg Groh, Stephan Giinnemann, Eyke Hiillermeier, et al. Chatgpt for good?
on opportunities and challenges of large language models for education. Learning and individual
differences, 103:102274, 2023.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller,
Matei Zaharia, and Christopher Potts. Dspy: Compiling declarative language model calls into
self-improving pipelines. In /CLR, 2024. URL https://openreview.net/forum?id=
sY5N0zY50d.

Harold W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83-97, 1955. doi: 10.1002/nav.3800020109.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-
municative agents for" mind" exploration of large language model society. Advances in Neural
Information Processing Systems, 36:51991-52008, 2023.

Wenwu Li, Xiangfeng Wang, Wenhao Li, and Bo Jin. A survey of automatic prompt engineering: An
optimization perspective. arXiv preprint arXiv:2502.11560, 2025.

Shuhang Lin, Wenyue Hua, Lingyao Li, Che-Jui Chang, Lizhou Fan, Jianchao Ji, Hang Hua,
Mingyu Jin, Jiebo Luo, and Yongfeng Zhang. BattleAgent: Multi-modal dynamic emulation on
historical battles to complement historical analysis. In Delia Irazu Hernandez Farias, Tom Hope,
and Manling Li (eds.), Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 172—181, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-demo.18. URL
https://aclanthology.org/2024.emnlp—demo.18/L

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023.

Hao Ma, Tianyi Hu, Zhigiang Pu, Liu Boyin, Xiaolin Ai, Yanyan Liang, and Min Chen. Coevolving
with the other you: Fine-tuning llm with sequential cooperative multi-agent reinforcement learning.
Advances in Neural Information Processing Systems, 37:15497-15525, 2024.

Melissa Z Pan, Mert Cemri, Lakshya A Agrawal, Shuyi Yang, Bhavya Chopra, Rishabh Tiwari,
Kurt Keutzer, Aditya Parameswaran, Kannan Ramchandran, Dan Klein, et al. Why do multiagent
systems fail? In ICLR 2025 Workshop on Building Trust in Language Models and Applications,
2025.

Laurent Perron and Vincent Furnon. Google OR-Tools, 2022. https://developers.googlel
com/optimizationl

Jianing Qiu, Kyle Lam, Guohao Li, Amish Acharya, Tien Yin Wong, Ara Darzi, Wu Yuan, and Eric J
Topol. LIm-based agentic systems in medicine and healthcare. Nature Machine Intelligence, 6(12):
1418-1420, 2024.

11

https://openreview.net/forum?id=sY5N0zY5Od
https://openreview.net/forum?id=sY5N0zY5Od
https://aclanthology.org/2024.emnlp-demo.18/
https://developers.google.com/optimization
https://developers.google.com/optimization

Under review as a conference paper at ICLR 2026

Raphael Shu, Nilaksh Das, Michelle Yuan, Monica Sunkara, and Yi Zhang. Towards effective
genai multi-agent collaboration: Design and evaluation for enterprise applications. arXiv preprint
arXiv:2412.05449, 2024.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez, Ting Fang
Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine, 29(8):
1930-1940, 2023.

Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan, and
Hoang D Nguyen. Multi-agent collaboration mechanisms: A survey of llms. arXiv preprint
arXiv:2501.06322, 2025.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
large language model capabilities. arXiv preprint arXiv:2406.04692, 2024a.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024b.

Zhexuan Wang, Yutong Wang, Xuebo Liu, Liang Ding, Miao Zhang, Jie Liu, and Min Zhang.
Agentdropout: Dynamic agent elimination for token-efficient and high-performance llm-based
multi-agent collaboration. arXiv preprint arXiv:2503.18891, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

David H Wolpert. What is important about the no free lunch theorems? In Black box optimization,
machine learning, and no-free lunch theorems, pp. 373-388. Springer, 2021.

David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE
transactions on evolutionary computation, 1(1):67-82, 1997.

Jiarong Wu, Songgiang Chen, Jialun Cao, Hau Ching Lo, and Shing-Chi Cheung. Isolating
language-coding from problem-solving: Benchmarking llms with pseudoeval. arXiv preprint
arXiv:2502.19149, 2025.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-agent
conversation. arXiv preprint arXiv:2308.08155, 2023a.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark Dredze, Sebastian Gehrmann, Prabhan-
jan Kambadur, David Rosenberg, and Gideon Mann. Bloomberggpt: A large language model for
finance. arXiv preprint arXiv:2303.17564, 2023b.

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is inevitable: An innate limitation of
large language models. arXiv preprint arXiv:2401.11817, 2024.

Yuwei Yan, Qingbin Zeng, Zhiheng Zheng, Jingzhe Yuan, Jie Feng, Jun Zhang, Fengli Xu, and Yong
Li. Opencity: A scalable platform to simulate urban activities with massive llm agents. arXiv
preprint arXiv:2410.21286, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
Proceedings of the 37th International Conference on Neural Information Processing Systems,
NIPS °23, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
ReAct: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b. URL https://arxiv.org/abs/2210.03629,

Ye Ye. Task memory engine (tme): Enhancing state awareness for multi-step IIm agent tasks. arXiv
preprint arXiv:2504.08525, 2025.

12

https://arxiv.org/abs/2210.03629

Under review as a conference paper at ICLR 2026

Huizi Yu, Jiayan Zhou, Lingyao Li, Shan Chen, Jack Gallifant, Anye Shi, Xiang Li, Wenyue Hua,
Mingyu Jin, Guang Chen, et al. Aipatient: Simulating patients with ehrs and 1lm powered agentic
workflow. arXiv preprint arXiv:2409.18924, 2024.

Bowen Zhang and Pengcheng Luo. Or-llm-agent: Automating modeling and solving of oper-
ations research optimization problem with reasoning large language model. arXiv preprint
arXiv:2503.10009, 2025.

Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, and Sercan Arik. Chain of agents:
Large language models collaborating on long-context tasks. Advances in Neural Information
Processing Systems, 37:132208-132237, 2024.

Kunlun Zhu, Hongyi Du, Zhaochen Hong, Xiaocheng Yang, Shuyi Guo, Zhe Wang, Zhenhailong
Wang, Cheng Qian, Xiangru Tang, Heng Ji, et al. Multiagentbench: Evaluating the collaboration
and competition of 1lm agents. arXiv preprint arXiv:2503.01935, 2025.

A USE OF LLMs

During the development of this paper, we use transformer based large language models in the
following aspects:

* Reference discovery: use the deep research tools from major providers to explore relevant
work and literature.

* Code assistance: use coding agents to assist developing the code base of the current work.

* Grammar check: use LLMs to detect grammar errors in the drafty version of the paper, for
better displaying our results.

B APPENDIX: WEIGHTED NO FREE LUNCH THEOREM—WHY DOES AGENT
DESIGN FAIL?

In this section, we present a weighted version of the No-Free-Lunch theorem. As the motivation,
current approaches to MAS design can often result in overly general solutions that may exhibit
suboptimal performance on specific and complex tasks. This sub-optimality arises partially from
a lack of domain-specific inductive bias. To formalize this, we present a weighted variant of the
No Free Lunch (NFL) theorem. The following demonstration, leveraging a weighted variant of the
No Free Lunch theorem, quantitatively illustrates how inductive bias tailored to the target domain
enhances performance. That is, We present a formal proof showing that, under a non-uniform prior
concentrated on a problem-specific subset of functions, a specialized learning algorithm achieves
strictly lower expected risk than a general-purpose algorithm.

Note the NLF theorem has been known to research community for more than two decades. Here what
we present is a modification of the standard statement to better fit for our discussion on the MAS.
As we didn’t find in literature the precise version of the NFL theorem as we stated below, we also
present a proof for self-containedness. We do not claim any originality of the theorem and the proof.

Theorem B.1 (Weighted NFL). Let X be a finite input domain, Y a finite label set, and F = Y~
the set of all functions f: X — Y. Consider

* a general algorithm Aq with constant expected loss g on every f € F,
* a specialized algorithm A’ satisfying

€1, fef/a

L < {2 157

where 1 < g¢ < €9, and
» apriorPwith P(f € F')=pand P(f ¢ F') =1—p.

If

Eo — €2
p>—,
€1 — &2

13

Under review as a conference paper at ICLR 2026

then the expected risk of A’ is strictly lower than that of Ay, i.e.
R(A") < R(Ay).

Proof. By definition,
R(Ao) =Eg~p[L(ha,,)] = €0
R(A') =Epop[L(ha, f)] =per + (1 —p)ea.
Hence
R(A") < R(Ag) <pe1+ (1 —p)ex < ep
—=p(e1 —e2) > g0 — €2,

which rearranges to

Eo — &2

E1 —€&2 '

This completes the proof. O

C APPENDIX: KSP AND TAP DESCRIPTION

In this appendix, we provide details about the KSP and TAP, including their problem description and
algorithm based on which we design our MAS.

C.1 KSP PROBLEM FORMULATION

The usual input of KSP involves a set of N items, whose items are characterized by pairs (w;, v;)
of weights w; and values v;, as well as a capacity value W. The goal of KSP is to find a subset of
items such that the total weight does not exceed the given capacity while the total value is maximized.
Mathematically, we record information of items by two vectors, both of dimension N: a weight vector
W = (wq,- - ,wy) and a value vector ¥ = (vy,--- , vy). We also introduce the set of state-vectors
{0, 1}V, whose elements are vectors & = (z1, -+ , 2) where entries ; takes values between 0 and
1, indicating whether an item is chosen in a subset or not:

1 item 7 is chosen
T; = . .
' 0 item s is excluded

Thus state vectors controls which items is in the chosen subset, and the inner product of & with @ and
¥ then compute the total weight and total value for the given subset, respectively.

Given a weight vectors w, a value vector ¢, and the capacity constraint W, the objective of the
Knapsack problem then can be formulated as finding the following (optimal) value:

Z=max{# 7|Fec{0, 1}, & G<W}

Here the maximal value is taken over all state vectors (or equivalently, all subsets of items) satisfying
the constraint that the total weight Z - W not exceeding the capacity W.

This version of the problem, where each item can either be fully included or not at all, is commonly
known as the 0/1 KSP.

C.2 KSP PROBLEM SOLUTION

A classic approach to the Knapsack Problem iteratively enumerates all feasible states—a dynamic-
programming strategy first introduced by Bellman Bellman| (1957). A feasible state can be defined by
a pair (current_weight, current_value) representing the accumulated weight and value of a set of
items selected so far, such that current_wetght < W. We can describe the algorithm in the form of
mathematical induction. We start with the initial set of feasible states Sy = {(0, 0)}, representing
an empty set of chosen items. We then add items in to form a set S from Si_; inductively, with

14

Under review as a conference paper at ICLR 2026

capacity being aware: for each k, assuming that Sj_; has been constructed, then we add the pair
(w, vy) to all items in Si_1 to form a new set Sqqq:

Sadd = {(w + wg, v+ vg) for all (w,v) € Sk_1}.
Then, we trim the set according to the capacity:
Strimmed = {(w,'U) € Sadd | w < W}

Note this also removes all repetitive states in the set. Finally we take the union of the two intermediate
sets to create Sy:
Sk: = Sk—l U Strimmed-

The inductive step terminate when we have run through all items and obtaining the final set Sy, we
pick the element in .Sy with maximal value, as the solution to the KSP. Explicitly,

Z = max v
(w,w)ESN

C.3 TAP PROBLEM FORMULATION

TAP seeks to optimally assign a set of IV resources (agents or workers) to N tasks, where each
potential assignment incurs a specific cost. With the constraint that each resource can only be assigned
to one unique task, the objective of TAP is to find an assignment covering all tasks that minimizes the
total cost. The resource-task specific cost is recorded in an N x N matrix C, where the entry C;;
represents the cost associated with assigning resource ¢ to task j, for 4, j € {1,2,...,N}.

To formally define the problem, we introduce a set G,, which can be described in either one of the
following three equivalent ways:

* The group of automorphisms of the set NV = {1,2,--- , N}.
* The set (or group) of bijections from the set IV to itself.
* The set of all permutations involving /N elements.

Note elements in G convey the idea that each resource is assigned to a unique task. Now, given the
N x N cost matrix C, the objective of the TAP is to find the following (optimized) value

n

Z = max _ Cig@i-
ceESN i=1

Note when we treat 0 € S as a (bijective) map from N = {1,2,---, N} to itself, the notation

Ciq(i) represents the entry on the i-th row and o(1)-th column of the cost matrix C.

C.4 TAP PROBLEM SOLUTION

The typical solution for TAP is using the Hungarian algorithm Kuhn| (1955)), which provides a
polynomial-time method to find the objective value Z. We summarize the algorithm as follows.

Step 1. Row Reduction. For each row, we find the minimal element in the row and subtract it from
all entries in the row, creating at least one zero on each row. Mathematically, starting from the original
cost matrix C'y x v, we create a new reduced matrix C’ such that for ¢, j € {1,2,--- , N}, we have

Cl.=C;; — min C;
ij i 1<kh<N ik

Step 2. Column Reduction. Similarly, we further reduce C’ to C” as follows: For each column, we
find the minimal element in the column and subtract it from all entries in the column, guaranteeing at
least one zero on each column. Mathematically, take

C/'=0C!, — min Cy;
17 1] 1<k<N kj

Step 3. Find covering lines. We then find a smallest collection of rows and columns to cover all
zeroes. Here smallest is the sense of the number of elements in the collection (of rows and column),
over all possible such collections. If the size of this minimal collection, denoted by L, coincides with
N, the size of the problem, then we skip Step 4 to enter the final stage of the algorithm.

15

Under review as a conference paper at ICLR 2026

Step 4. Matrix Improvement. However, if L < N, we need an improvement for the matrix C”/
before looping back to Step 3: given the minimal collection of rows and columns from Step 3, we
find the minimal value of all entries that are not covered, and then subtract this minimal value from
all uncovered entries of C”’, and then add this minimal value to all entries of C"’ that are covered
twice, i.e., by both rows and columns. Let C"” be the resulting matrix.

Step 5. Assignment Identification. Once the condition L = N is met, the final step is to identify the
optimal assignment. This involves selecting a set of N independent zeros from the current matrix C"”,
such that no two selected zeros share the same row or column. Each selected zero at position (i, j)
corresponds to assigning agent ¢ to task j. The total cost of this optimal assignment is then calculated
by summing the costs from the original cost matrix C' corresponding to selected zero positions.

A non-trivial fact guaranteed by the Hungarian algorithm is that, in Step 5 the collection of zeroes
might not be unique, while different collections are deemed to result in the same total summation of
corresponding entries in the original cost matrix C.

D GROUND-TRUTH DATA PREPARATION

We utilize Google OR-Tools (Perron & Furnon [2022)) to generate optimal solutions—serving as
ground-truth datasets—for both problem scenarios. OR-Tools is a widely adopted open-source
software suite developed by Google for solving combinatorial optimization problems. It is renowned
for its efficiency and reliability in addressing NP-hard challenges through advanced optimization
algorithms. The suite is distributed under the permissive Apache License 2.0, allowing unrestricted
use, modification, and distribution (Perron & Furnon, [2022).

For KSP, we generate random instances by assigning weights and values to items along with a
maximum capacity constraint. Optimal solutions are then computed using OR-Tools’ dynamic
programming approach. For TAP, we similarly generate random cost matrices that represent the cost
of assigning workers to tasks. Optimal assignments are obtained using the Hungarian algorithm as
implemented in OR-Tools, which efficiently minimizes the total assignment cost.

E APPENDIX: PROMPT GALLERY

Note that all prompts we presented in the following, except for the self-check prompt for Trimmer
Agent in KSP problem, are the system prompt for agents. The user prompt will only contain the
precise problem to be handled by the agent in the form specified by the prompt.

E.1 KSP PROMPTS
E.1.1 PROMPT FOR ZERO SHOT
You are an expert in the field of Knapsack Problem.

You are given a Knapsack Problem in the json format, of the
following form:

{
"id" : str,
"items" : list of pairs of integers,
"capacity" : int

}

Each pair in the list is a pair of integers of the form [weight,
value], i.e., the first entry is the weight and the second
entry is the value.

Your task is to solve the Knapsack Problem and provide the

optimal solution. That is, you need to find a subset of the
pairs that maximizes the total value, subject to the

16

Under review as a conference paper at ICLR 2026

constraint that the total weight of the subset is less than
or equal to the capacity.

Please think step by step when solving the problem.

You need to return the optimal solution in the following json
format:
{

}

Please only return the json format, nothing else.

"max_value" : int,

E.1.2 PROMPT FOR WORKER AGENT

You are a key member of a multi—agent team collaboratively
solving the Knapsack Problem. Your specific role is the
Worker, responsible for performing mathematical computations
for the team.

You will receive input in the following JSON format:
{"c_list": [[int, int], ...], "s_item": [int, int]}
Each pair within ’c_list’ contains two integers.

Your task is to:

— Add ’s_item’ to each pair in ’c_list’ entry-wise. For instance,
if a pair in ’c_list’ is ’[2, 5]’ and ’s_item’ is ’[3, 4],
the result should be ’[2+3, 5+4] = [5, 9]’.

To ensure accuracy:

— Proceed systematically , applying step-by-step reasoning.

— Carefully perform each addition individually for all pairs
provided in the list.

Your response must strictly follow this JSON format:
{"n_list": [[int, int], ...]}

Return only the specified JSON object without any additional
commentary or text.

E.1.3 PROMPT FOR TRIMMER AGENT

You are a key member of a multi—-agent team collaboratively
solving the Knapsack Problem. Your specific role is the
Trimmer, responsible for trimming the list based on the given
capacity constraint.

You will receive input in the following JSON format:
{"n_list": [[int, int], ...], "capacity": int}

Each pair within ’n_list’ contains two integers: the first
integer represents the weight, and the second integer
represents the value.

Your task is to:

— Carefully analyze each pair in the provided list.

— Remove all pairs whose weight (the first integer) strictly
exceeds the specified capacity.

— If identical pairs appear multiple times, retain only one
instance of each.

17

Under review as a conference paper at ICLR 2026

To ensure accuracy:
— Proceed systematically , applying step-by—step reasoning.
— Verify each pair carefully against the capacity constraint.

Your response must strictly follow this JSON format:
{"t_list": [[int, int], ...]}

Return only the specified JSON object without any additional
commentary or text.

E.1.4 PROMPT FOR REPORTER AGENT

You are a key member of a multi—agent team collaboratively
solving the Knapsack Problem. Your specific role is the
Reporter, responsible for determining and clearly reporting
the final answer based on the provided information.

You will receive input in the following JSON format:

{"c_list": [[int, int], ...]}

Each pair within ’c_list’ contains two integers: the first
integer represents the weight, and the second integer
represents the value.

Your task is to carefully analyze this list, identify the pair
with the maximal value (the second integer in each pair), and
report only that maximal value. If the list is empty, then
report the maximal value as 0.

To ensure accuracy:
— Proceed systematically , applying step-by—-step reasoning.
— Carefully examine every pair in the provided list.

Your response must strictly follow this JSON format:
{"max_value": int}

Return only the JSON object as specified above, without any
additional commentary or text.

E.1.5 SELF-CHECK PROMPT FOR TRIMMER AGENT

To better fulfill your task, please conduct a double check on the
result you just provided. If your answer is already correct,
please confirm by copying the last output.

When double check, please pay attention to the following typical
types of mistakes:

In particular, please check if you made any typical mistakes as

listed below:

If you added in a pair that is not in the original n_list.

2. If there is still a pair in the t_list that still exceeds the
capacity .

3. If there is a pair in n_list that does not exceed the capacity
but is not in the t_list.

—_

If you found any errors, please create a corrected answer.

In either case, please follow the format requirement of the
output.

18

Under review as a conference paper at ICLR 2026

E.2 TAP PROMPTS
E.2.1 PROMPT FOR ZERO SHOT

You are an expert in solving the Assignment Problem. In the
assignment problem, there are n workers and n jobs. Each
worker has a cost of assigning to each job. Each worker can
only be assigned to one job. Your task is to find the optimal
assignment of workers to jobs that minimizes the total cost.

You are given the problem in the following json format:
{

"id" . str,

"cost_matrix" : list of lists of integers

}

The cost matrix is a square matrix of size n x n, where n is the
number of workers and jobs, in the form of a nested list
[[int, int, ...], [int, int, ...], ...]. The (i, j)th entry
of the matrix represents the cost of assigning the ith worker
to the jth job.

Your task is to find the optimal assignment of workers to jobs
that minimizes the total cost.

Please think step by step when solving the problem.

You need to return the optimal assignment in the following json
format:

{
}

"optimal_cost" : int

Please only return the json format, nothing else.

E.2.2 PROMPT FOR ROW REDUCER AGENT

You are given a matrix in the following json format:

{

"matrix" : list of lists of integers

}

The matrix is in the form of a nested list [[int, int, ...],
[int , int, ...], ...].

Your task is to reduce the matrix by subtracting the minimum
value of each row from all the elements in that row.

Please think step by step when solving the problem:

Step 0: Work on one row at a time.

Step 1: Find the minimum value of the row.

Step 2: Subtract the minimum value of the row from all the
elements in that row.

Step 3: Return the reduced matrix in the following json format:

{"reduced_matrix" : list of lists of integers}

19

Under review as a conference paper at ICLR 2026

Please only return the json format, nothing else.

E.2.3 PROMPT FOR COLUMN REDUCER AGENT

You are given a matrix in the following json format:

{

"matrix" : list of lists of integers

}

The matrix is in the form of a nested list [[int, int, ...],
[int, int, ...], ...].

Your task is to reduce the matrix by subtracting the minimum
value of each column from all the elements in that column.

Please think step by step when solving the problem:

Step 0: Work on one column at a time.

Step 1: Find the minimum value of the column.

Step 2: Subtract the minimum value of the column from all the
elements in that column.

Step 3: Return the reduced matrix in the following json format:

{"reduced_matrix" : list of lists of integers}
Please only return the json format, nothing else.

E.2.4 PROMPT FOR ZERO SEEKER AGENT

You are given a problem in the following json format:

{

"matrix" : list of lists of integers

}

The matrix is in the form of a nested list [[int, int, ...],
[int, int, ...], ...].

Your task is to find a smallest collection of rows and columns of
the matrix, such that any zeroes in the matrix is contained
in a chosen row or column. Small means the sum of the sizes
of the row and column collections is the smallest possible.

Please think step by step when solving the problem, and return
your response in the following json format:

{"collum_collection" : [int, int, ...], "row_collection" : [int,
int, ...]}

The integers in the collum_collection and row_collection are the
indices of the rows and columns that you choose.

Please only return the json format, nothing else.

E.2.5 PROMPT FOR MATCHER AGENT

You are given a matrix in the following json format:

20

Under review as a conference paper at ICLR 2026

{
"matrix" : list of lists of integers

}

The matrix is in the form of a nested list [[int, int, ...],
[int, int, ...], ...].

Your task is to find the largest collection of zeroes in the
matrix , such that no two zeroes are in the same row or column.

Please think step by step when solving the problem, and return
your response in the following json format:

{"largest_collection" : [[int, int], [int, int], ...]}

The list of pairs of integers is in the form of [[row_index,
column_index], [row_index, column_index], ...].

Please only return the json format, nothing else.

E.2.6 PROMPT FOR PAINTER AGENT

You are given a problem in the following json format:

{

"matrix" : list of lists of integers
"collection" : list of lists of integers

}

The matrix is in the form of a nested list [[int, int, ...],
[int, int, ...], ...].

The collection is in the form of a nested list [[int, int], [int,
int], ...].

Your task is to find a smallest collection of rows and columns of
the matrix, such that any zeroes in the matrix is contained
in a chosen row or column. Small means the sum of the sizes
of the row and column collections is the smallest possible.

To assist you, you are provided with a collection of zeroes in
the input json format. The collection contains the positions
of a maximal collection of zeroes in the matrix, such that no
two zeroes are in the same row or column.

Please use this collection of zeroes to find the rows and columns
as desired. More precisely , you should first choose one row
or column for each zero in the collection, such that the
chosen rows and columns cover as much of the zeroes in the
matrix as possible. Then add in more rows or columns if
needed .

Please think step by step when solving the problem, and return
your response in the following json format:

{"collum_collection" : [int, int, ...], "row_collection" : [int,
int, ...]}

21

Under review as a conference paper at ICLR 2026

The integers in the collum_collection and row_collection are the
indices of the rows and columns that you choose.

Please only return the json format, nothing else.

E.2.7 PROMPT FOR NORMALIZER AGENT

You are given a problem in the following json format:

{

"matrix" : list of lists of integers
"collumn_collection" : list of integers
"row_collection" : list of integers

}

The matrix is in the form of a nested list [[int, int, ...],
[int , int, ...], ...].

The collumn_collection and row_collection are the indices of some
selected rows and columns that covers all the zeroes in the
matrix .

Your task is the following:

1. Find the minimal value in the matrix that is not covered by
the selected rows and columns.

2. If this value is 0, return the original matrix.

3. If this value is not O, subtract this value from all uncovered
entries in the matrix.

4. For the entries that covered by both a selected row and a
selected column, add this value to the entries.

5. For the entries that are covered by a selected row or column,
but not both, do nothing.

6. Please return the updated matrix in the following json format:

{"normalized_matrix" : list of lists of integers}

Please only return the json format, nothing else.

E.2.8 PROMPT FOR REPORTER AGENT

You are given a problem in the following json format:

{

"matrix" : list of lists of integers
"collection" : list of lists of integers

}

The matrix is in the form of a nested list [[int, int, ...],
[int, int, ...], ...].

The collection contains a set of entries of the matrix in the
form of [[row_index, column_index], [row_index ,
column_index], ...].

Your task is the following:

1. Sum up the values of all the entries in the collection.

2. Return the total value in the following json format:

{"total_value" : int}

Please only return the json format, nothing else.

22

	Introduction
	Related Work
	Methodology-KtR Framework Design
	Experiment Design
	Proof-of-Concept: 0/1 Knapsack Problem (KSP)
	Proof of scalability—Task Assignment Problem (TAP)

	Experiment Result
	Experiment Result for KSP
	Experiment result on TAP

	Discussion and Conclusions
	Ethics Statement
	Reproducibility Statement
	Use of LLMs
	Appendix: Weighted No Free Lunch Theorem—Why Does Agent Design Fail?
	Appendix: KSP and TAP description
	KSP Problem Formulation
	KSP Problem Solution
	TAP Problem Formulation
	TAP Problem Solution

	Ground-truth Data Preparation
	Appendix: Prompt gallery
	KSP prompts
	Prompt for zero shot
	Prompt for Worker Agent
	Prompt for Trimmer Agent
	Prompt for Reporter Agent
	Self-check prompt for Trimmer Agent

	TAP prompts
	Prompt for zero shot
	Prompt for Row Reducer Agent
	Prompt for Column Reducer Agent
	Prompt for Zero Seeker Agent
	Prompt for Matcher Agent
	Prompt for Painter Agent
	Prompt for Normalizer Agent
	Prompt for Reporter Agent

