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Abstract: We introduce FLASH, a method for language-conditioned dexterous1

grasping that jointly models task intent and physical contact quality for robot hands.2

Unlike prior approaches, our text-conditioned grasp synthesis pipeline is explicitly3

aware of geometric information during generation. FLASH learns a single flow-4

matching model conditioned on hand and object point clouds and natural language5

instructions. Our model operates on live-updated, vectorized hand meshes and6

is trained on our improved grasp dataset, FLASH-Drive, which includes refined7

grasps, water-tight meshes and augmented text annotations. This enables FLASH8

to outperform prior work in producing physically plausible grasps that align with9

goals specified via text. We use a pre-trained large language model as the backbone10

of our architecture, enabling generalization to novel prompts and objects.11

Keywords: Dexterous Grasping, Flow Matching, Large Language Models12

1 Introduction13

Dexterous robotic grasping has advanced rapidly through differentiable simulation, large-scale14

datasets, and pre-trained generative models [1, 2, 3, 4]. Yet, most pipelines still decouple physical15

plausibility from task intent: geometry-focused methods optimize contact without semantics, while16

language-conditioned ones sample then refine grasps [5, 6, 7, 8]. This two-stage setup prevents17

end-to-end credit assignment from physical failures back to language conditioning.18

We propose FLASH, a conditional flow-matching network that jointly models language, geometry,19

and contact dynamics to produce stable, semantically aligned multi-fingered grasps. Unlike prior20

work that predicts from static hand parameters and refines post-hoc, FLASH re-meshes the evolving21

hand at every step to feed a live hand point cloud back into the model, using an efficient batched22

mesh processing pipeline that makes this geometry-aware feedback loop practical at training and23

inference scale. Our approach builds on recent datasets that pair diverse grasps with text annotations24

generated from contact data or images [9, 3, 10, 2, 11, 4].25

Generative grasp models have used autoencoders for compact latent spaces, transformers for multi-26

modal fusion, and diffusion models for diverse high-quality samples. Flow-matching offers faster27

inference than diffusion while preserving quality [12, 13, 14].28

Our framework takes language prompts and hand-object point clouds as input, using GPU-accelerated,29

vectorized meshes regenerated at inference for realism. We also post-process existing datasets to30

improve physical feasibility while preserving semantic intent. We utilize a pre-trained large language31

model [15] to introduce broad world knowledge, enabling generalization to novel prompts and32

geometries.33

In summary, this paper makes the following main contributions:34

1. FLASH: a flow-matching architecture that generates contact-quality dexterous grasps aligned with35

language commands.36

2. FLASH-Drive: a large-scale, high-fidelity, language-annotated grasp dataset with semantic point37

clouds, plus code and pre-trained weights.38
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(b) Architecture

Figure 1: FLASH is a conditional flow-matching model capable of generating semantically-aligned grasps that
are physically plausible. We first produce a dataset by improving the quality of object meshes, improving the
physical feasibility of grasps via SDF-based optimization, adding synthetic text annotations, and generating
per-point semantic object features using DINOv2. We then train FLASH on this data with a flow-matching
objective, incorporating a live updating hand point cloud for geometric awareness and per-point object features
to enable semantic generalization.

3. A mesh processing pipeline that enhances existing datasets and enables geometric awareness39

during flow-matching.40

2 Method41

We present FLASH, a conditional flow-matching approach for generating dexterous robotic grasps42

from natural language. Trained on FLASH-Drive—our dataset of refined grasps and enriched annota-43

tions—FLASH combines dataset refinement, flow-based model design, and an efficient inference44

pipeline.45

2.1 Dataset Refinement and FLASH-Drive46

We created FLASH-Drive by enhancing the MultiGraspLLM dataset [4] to be both physically47

plausible and semantically rich. For semantics, we used the OpenAI o4-mini vision-language model48

with structured JSON outputs to generate over 200 000 detailed contact-pattern descriptions from49

rendered grasps and per-finger contact labels, capturing nuanced functional intent. For physical50

quality, we built watertight object meshes via voxelization, multi-view depth-based hole filling, and51

Laplace smoothing, enabling accurate SDF computation. We then refined grasp poses by batch-52

optimizing hand point clouds (Nrefine = 8192) against object SDFs using PyTorch3D and Kaolin53

kernels, penalizing object penetrations, large surface distances, and fingertip self-collisions, with54

independent optimization per hand. This process produced a large-scale dataset of refined grasps,55

high-fidelity meshes, and diverse language annotations forming the foundation for training FLASH.56

2.2 Flow-Based Grasp Generation57

FLASH learns a single-stage, end-to-end generative process for grasp synthesis, mapping conditioning58

information directly to stable, semantically relevant grasps. It achieves this using a conditional flow-59

matching (CFM) framework [14]. The core task is to learn a velocity field v̂(xt, t, c) that guides the60

evolution of hand parameters xt ∈ R25 = [T,R, θ], where T ∈ R3 is the wrist position, R ∈ R6 is61

the wrist rotation, and θ ∈ R16 represents the joint angles of each finger link in radians. x is predicted62

over a normalized time t ∈ [0, 1], conditioned on c.63

Training minimizes the discrepancy between the predicted velocity v̂ and the ground-truth velocity64

u = xT − x0 derived from grasp pairs (x0, xT ) sampled from FLASH-Drive. The CFM objective,65
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applied at randomly sampled times t and interpolated states xt = x0 + tu, is given by:66

LCFM(θ) = E(x0,xT ,c)∼D Et∼U [0,1] ∥fθ(xt, t, c) − (xT − x0)∥22, (1)
where fθ is the neural network parameterized by θ, and D is the FLASH-Drive dataset. To further67

enforce physical realism during generation, this objective is augmented with a penetration penalty.68

LCFM constitutes the entire loss for our model. This keeps our objective simple, while the nature of69

our data generation process allows our model to implicitly optimize for physical plausibility. In this70

way, we avoid the complexity of weighting several loss terms in order to make trade-offs between71

physical plausibility and semantic alignment with text conditioning.72

The velocity prediction v̂(xt, t, c) is conditioned on a rich set of inputs represented by c. Semantic73

intent is provided by the natural language prompt, tokenized via the unmodified tokenizer of a74

pre-trained Qwen-2.5 LLM to leverage its learned representations. Object shape information enters75

through per-point geometric features fO,geom extracted from the object point cloud PO ∈ RN×3 by76

a PointNet++ encoder [16]. To enhance generalization to unseen objects, these geometric features77

are augmented with semantic context; we extract dense visual features using DINOv2 [17] from78

renderings of the textured object mesh, project them onto PO, concatenate them with fO,geom, and79

process them through a transformer decoder attending to learned queries. This yields a compact80

sequence of combined semantic and geometric object features fO,sem ∈ RL×Dsem . Crucially, the81

model also receives information about the hand’s current geometric state during the flow trajectory.82

This is achieved by generating the hand mesh corresponding to xt on-the-fly using an efficient83

batch meshing pipeline, sampling a hand point cloud PH(xt) ∈ RM×3, and extracting its geometric84

features fH ∈ RM×Dgeom via PointNet++. This live hand geometry input allows the model to85

reason explicitly about potential collisions and contact points throughout generation, overcoming the86

information bottleneck associated with relying solely on the parameter vector xt. For ablations on87

semantic features and dynamic updates to the hand point cloud, please refer to Section 3.2.88

These conditioning inputs—text embeddings, object features fO,sem, live hand features fH , and time89

t—are processed by our network, which employs the Qwen-2.5 LLM architecture as its backbone,90

ultimately predicting the 25-dimensional velocity vector v̂ (see Figure 1b)91

2.3 Inference92

To synthesize a grasp at inference time, given a text prompt and an object point cloud (providing93

conditioning c), FLASH starts from a predefined initial hand state x0. It then simulates the learned94

dynamics by numerically integrating the predicted velocity field v̂(xt, t, c) from t = 0 to t = 1, using95

an Dopri9 ODE solver. At each integration step, the model’s prediction v̂ is conditioned not only on96

the static inputs but also on the live hand geometry PH(xt) derived from the hand state xt estimated97

for that step. This continuous feedback loop ensures the generated trajectory remains geometrically98

aware. The resulting state at t = 1, xT , is the final predicted grasp configuration x∗.99

3 Experiments100

3.1 Experimental Setup101

Dataset and Refinement – All models are trained and evaluated on FLASH-Drive, our enhanced102

version of the MultiGraspLLM dataset [4]. As detailed in Section 2.1, FLASH-Drive addresses103

limitations in original mesh quality by providing high-fidelity watertight object meshes. Using these104

meshes and our efficient vectorized mesh processing pipeline, we refined the original grasp poses via105

SDF-based optimization to significantly reduce penetration and improve physical plausibility while106

preserving functional intent. Furthermore, we augmented the dataset by generating over 200 000107

additional structured text annotations using OpenAI’s o4-mini model, describing grasps at low, mid,108

and high levels of abstraction to improve semantic understanding and generalization. This resulted109

in FLASH-Drive, a large-scale dataset featuring refined grasps across multiple hand embodiments,110

paired with rich textual descriptions. Our refinement process demonstrably reduced grasp penetration111

and improved simulated success rates compared to the original dataset grasps, establishing a higher112

quality foundation for training.113
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Table 1: Simulation results on seen objects (metrics aggregated over test set). Lower is better for CD and Max
Pen Dist.; higher is better for Succ. Rate and GPT Score.
Method Chamfer Dist. ↓ Max Pen Dist. ↓ Succ. Rate ↑ (%) GPT Score (Align/Feas.) ↑
MultiGraspLLM [4] 0.37 1.04 31.98 – / –
DexGraspNet [2] 0.62 1.27 – – / –
FLASH (ours) 0.43 0.36* 31.34 55.2 / 79.0**

*Max Pen Dist. for FLASH measured on generated grasps, may differ slightly from dataset refinement target.
**GPT Scores are dataset averages from FLASH-Drive annotations, indicative of model target.

Table 2: Ablation study results on seen objects. Lower SDF Loss and CD indicate better geometric quality.

Variant SDF Loss (↓) Chamfer Dist. (CD) (↓)
Full FLASH 0.43 0.36

w/o Live Hand PC 0.66 0.44
w/o LLM (transformer from scratch) 0.37 0.35
w/o Refinement (Train on Orig. Data) 0.64 0.35
w/o Semantics (DINOv2 features) 0.57 0.31
w/o Lang (No text conditioning) 0.49 0.35

Figure 2: A sample flow
trajectory from FLASH when
prompted with "grasp the knife
with all fingers"

Baselines – We compare FLASH against key prior works relevant to language-conditioned dexter-114

ous grasping. MultiGraspLLM [4], the source of our initial dataset, serves as a primary baseline115

representing recent LLM-based approaches. Additionally, we compare against DexGraspNet [2],116

a large-scale generative model, representing geometry-centric methods; comparisons are based on117

geometric metrics evaluated on its generated grasps for comparable objects.118

3.2 Ablation Studies119

We conducted ablations on the seen object set (Table 2) to assess FLASH ’s design choices. Removing120

live hand point cloud feedback (w/o Live Hand PC) greatly worsened geometric quality (higher SDF121

Loss, CD), confirming the need for continuous geometric reasoning. Replacing Qwen-2.5 with a122

scratch-trained transformer (w/o LLM) mainly hurt semantic understanding. Training on unrefined123

grasps (w/o Refinement) degraded geometry, validating FLASH-Drive’s refinement. Dropping124

DINOv2 semantic features (w/o Semantics) reduced geometric performance, showing their contextual125

value. Omitting language conditioning (w/o Lang) also hurt geometry, indicating language guidance126

helps constrain generation toward valid, semantically aligned grasps.127

4 Conclusion128

In this work we present FLASH, a text-conditioned, geometry aware, robot grasping model. Alongside129

it, we also release FLASH-Drive, a multi-embodiment robot grasping dataset with contact annotations130

of varying levels of details and improved contact quality. By feeding back a reconstructed hand point131

cloud back to FLASH as its flowing the hand parameters, we are able to generate higher quality132

grasps and generalize to new object geometries while not preserving quick inference speed.133
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A Implementation and Metric Details187

Metrics – We evaluate performance using several metrics assessing both physical validity and188

semantic correctness. Physical plausibility is measured primarily by the Maximum Penetration189

Distance (Max Pen Dist., ↓) derived from SDFs (Table 1) and an aggregate SDF Loss (↓) used in190

ablations (Table 2), where lower values indicate less interpenetration. Geometric similarity to ground191

truth is assessed using Chamfer Distance (CD, ↓) (Table 1, Table 2). Functional success is quantified192

by the Simulation Success Rate (Succ. Rate, ↑), the percentage of grasps successfully lifting and193

holding objects in simulation via a standardized heuristic.194

Simulation Evaluation Heuristic – Our grasp evaluation approach leverages the IsaacLab simulator,195

employing a heuristic similar to that of DexGraspNet [2]. This procedure begins with the hand196

in a pre-grasp pose (flat hand), then moves the hand towards the object based on predicted wrist197

pose (T,R). Subsequently, a motion plan brings the hand joints towards the target configuration198

θ. Finally, the hand attempts to lift the object vertically. Grasp success is determined by checking199

if the object is lifted above a threshold height and remains stable (minimal velocity) after a short200

duration. This evaluation heuristic allows for scalable testing of numerous grasp candidates efficiently.201

Implementation Details – We primarily use the Allegro Hand within the IsaacLab simulator for202

simulation results presented in the main paper, and the LEAP hand for real-world demonstrations.203

Our FLASH architecture utilizes the Qwen-2.5 (0.5B) LLM backbone and a PointNet++ [16] encoder204

pre-trained for part segmentation on ShapeNet [18]. Semantic features are derived from DINOv2205

[17]. Models were trained on a single NVIDIA H200 GPU for approximately 6 hours.206

B Real world experiments207

MUG WATER BOTTLE

Figure 3: Real-world demonstration setup using a LEAP hand mounted on a Kinova Gen 3 arm in a laboratory
environment, used for qualitative validation.

B.1 Real-World Robotic Demonstration208

Finally, to assess FLASH’s applicability in the real world, we conducted qualitative experiments using209

a Kinova Gen3 robot arm equipped with a LEAP hand [19], shown in Figure 3. We selected several210

common household objects (e.g., mug, water bottle, drill) and provided text prompts representing211

typical functional intents (e.g., "grasp the handle to lift", "pick up the bottle by the body"). Grasps212

were generated offline by FLASH, assuming access to the object mesh, and then executed open-loop213

on the robot system by moving to the predicted pose and closing fingers to the predicted joint angles.214

Qualitatively, FLASH successfully generated functionally appropriate and physically stable grasps215

across the tested objects and prompts. The robot was observed to securely grasp items according to216

the instructions, for example, correctly using a power grasp for the drill handle when prompted versus217

attempting a different grasp if only asked to ’pick up’. While these demonstrations are qualitative218

and do not involve closed-loop control, they strongly suggest that grasps generated by FLASH can219

transfer effectively to physical hardware and follow nuanced language instructions in practice. We220

also observed qualitatively that language conditioning significantly influenced the grasp strategy221

towards the intended function compared to a non-conditioned variant which often defaulted to more222

generic grasps.223
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C Limitations224

Despite promising results, FLASH has limitations reflecting the challenges in conditional grasp225

synthesis. First, geometric accuracy and input requirements pose difficulties. Performance degrades226

on thin structures due to Signed Distance Function (SDF) limitations, and the current reliance on227

complete object point clouds hinders application with partial sensor data or vision-only inputs.228

Second, inference speed is a constraint. Generating grasps via iterative ODE solving is computation-229

ally intensive, currently limiting real-time use and involving a trade-off between generation speed230

and final grasp quality. Third, generalization capabilities are bounded by the training data. While231

FLASH-Drive is large, its object diversity primarily covers a limited set of roughly 40 semantic232

categories, potentially restricting generalization to truly novel object types. Similarly, robustness to233

natural language commands significantly diverging from the structured prompts seen during training234

requires further investigation.235

Finally, the focus on static grasp generation means limited consideration of the broader task context.236

Robust sim-to-real transfer needs further development beyond current qualitative demonstrations,237

and factors like post-grasp stability under load or suitability for subsequent manipulation steps are238

not explicitly modeled. Addressing these challenges—improving geometric handling, accelerating in-239

ference, broadening generalization, bridging the sim-to-real gap, and incorporating task context—are240

key directions for future work.241
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