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ABSTRACT

While unsupervised skill discovery has shown promise in autonomously acquir-
ing behavioral primitives, there is still a large methodological disconnect between
task-agnostic skill pretraining and downstream, task-aware finetuning. We present
Intrinsic Reward Matching (IRM), which unifies these two phases of learning
via the skill discriminator, a pretraining model component often discarded dur-
ing finetuning. Conventional approaches finetune pretrained agents directly at the
policy level, often relying on expensive environment rollouts to empirically deter-
mine the optimal skill. However, often the most concise yet complete description
of a task is the reward function itself, and skill learning methods learn an intrinsic
reward function via the discriminator that corresponds to the skill policy. We pro-
pose to leverage the skill discriminator to match the intrinsic and downstream task
rewards and determine the optimal skill for an unseen task without environment
samples, consequently finetuning with greater sample-efficiency. Furthermore, we
generalize IRM to sequence skills and solve more complex, long-horizon tasks.
We demonstrate that IRM enables us to utilize pretrained skills far more effec-
tively than previous skill selection methods on the Unsupervised Reinforcement
Learning Benchmark and on challenging tabletop manipulation tasks.

1 INTRODUCTION

Generalist agents must possess the ability to execute a diverse set of behaviors and flexibly adapt
them to complete novel tasks. Although deep reinforcement learning has proven to be a potent tool
for solving complex control and reasoning tasks such as in-hand manipulation (OpenAI et al., 2019)
and the game of Go (Silver et al., 2016), specialist deep RL agents learn each new task from scratch,
possibly collecting new data and learning to a new objective with no prior knowledge. This presents
a massive roadblock in the way of integration of RL in many real-time applications such as robotic
control where collecting data and resetting robot experiments is prohibitively costly (Kalashnikov
et al., 2018).

Recent progress in scaling multitask reinforcement learning (Reed et al., 2022; Kalashnikov et al.,
2021) has revealed the potential of multitask agents to encode vast skill repertoires, rivaling the
performance of specialist agents and even generalizing to out-of-distribution tasks. Moreover, skill-
based unsupervised RL (Laskin et al., 2022; Liu & Abbeel, 2021; Sharma et al., 2020) shows
promise of acquiring similarly useful behaviors but without the expensive per-task supervision re-
quired for conventional multitask RL. Recent skill-based RL results suggest that unsupervised RL
can distill diverse behaviors into distinguishable skill policies; however, such approaches lack a prin-
cipled framework for connecting unsupervised pretraining and downstream finetuning. The current
state-of-the-art leverages inefficient skill search methods at the policy level such as performing a
sampling-based optimization or sweeping a coarse discretization of the skill space (Laskin et al.,
2021). However, such methods still exhibit key limitations, namely they (1) rely on expensive envi-
ronment trials to evaluate which skill is optimal and (2) are likely to select suboptimal behaviors as
the continuous skill space grows due to the curse of dimensionality.

In this work, we present Intrinsic Reward Matching (IRM), a scalable algorithmic methodol-
ogy for unifying unsupervised skill pretraining and downstream task finetuning by leveraging the
learned intrinsic reward function parameterized by the skill discriminator. Centrally, we introduce
a novel approach to leveraging the intrinsic reward model as a multitask reward function that, via
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Figure 1: Intrinsic Reward Matching (IRM) Framework. IRM takes place in three stages: (1) Task-
agnostic RL pretraining learns skill primitives in conjunction with a skill discriminator. (2) With no
environment interaction, IRM minimizes the EPIC Loss between the intrinsic reward parameterized
by the discriminator and the extrinsic reward with respect to the skill vector z. (3) The skill policy
conditioned on the optimal z∗ finetunes to task reward to solve the downstream task.

interaction-free task inference, enables us to select the most optimal pretrained policy for the ex-
trinsic task reward. During pretraining, unsupervised skill discovery methods learn a discriminator-
parameterized, family of reward functions that correspond to a family of policies, or skills, through a
shared latent code. Instead of discarding the discriminator during finetuning as is done in prior work,
we observe that the discriminator is an effective task specifier for its corresponding policy that can
be matched with the extrinsic reward, allowing us to perform skill selection while bypassing brute
force environment trials. Our approach views the extrinsic reward as a distribution with measurable
proximity to a pretrained multitask reward distribution and formulates an optimization with respect
to skills over a reward distance metric called EPIC (Gleave et al., 2020).

Contributions The key contributions of this paper are summarized as follows: (1) We describe a
unifying discriminator reward matching framework and introduce a practical algorithm for selecting
skills without relying on environment samples (Section 3). (2) We demonstrate that our method
is competitive with previous finetuning approaches on the Unsupervised Reinforcement Learning
Benchmark (URLB), a suite of 12 continuous control tasks (Section 4.1). (3) We evaluate our ap-
proach on more challenging tabletop manipulation environments which underscore the limitations of
previous approaches and show that our method finetunes more efficiently (Section 4.2). (4) We gen-
eralize our method to sequence pretrained skills and solve long-horizon manipulation tasks (Section
4.3) as well as ablate key algorithmic components. (5) We provide analysis and visualizations that
yield insight into how skills are selected and further justify the generality of our method (Section 5).

2 BACKGROUND

2.1 UNSUPERVISED SKILL PRETRAINING

The skill learning literature has long sought to design agents that autonomously acquire structured
behaviors in new environments (Thrun & Schwartz, 1994; Sutton et al., 1999; Pickett & Barto,
2002). Recent work in competence-based unsupervised RL proposes generic objectives encouraging
the discovery of skills representing diverse and useful behaviors (Eysenbach et al., 2019; Sharma
et al., 2020; Laskin et al., 2022). A skill is defined as a latent code vector z ∈ Z that indexes the
conditional policy π(a|s, z). In order to learn such a policy, this class of skill pretraining algorithms
maximizes the mutual information between sampled skills and their resulting trajectories τ (Gregor
et al., 2016a; Eysenbach et al., 2018; Sharma et al., 2019) :

I(τ ; z) = H(z)−H(z|τ) = H(τ)−H(τ |z) (1)

Since the mutual information I(s; z) is intractable to calculate in practice, competence-based meth-
ods instead maximize a variational lower bound proposed in (Barber & Agakov, 2003) which is
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parameterized by a learned neural network function qϕ(τ, z) called a skill discriminator. This dis-
criminator, along with other terms independent of z, parameterizes an intrinsic reward that the skill
policy π(·|s, z) maximizes during pretraining. Given an unseen task specification, the agent needs
to infer which skill will finetune to solve the task with the fewest samples. For more detailed ex-
planations of the mutual information decompositions of various skill discovery algorithms, refer to
Appendix A.2.

Pretrained Multitask Reward Functions: We observe that the intrinsic reward function learned
during skill pretraining can be viewed as a multitask reward function, where the continuous skill
code z determines the task. In other words, we have some function:

Rint(τ, z) := VLB(τ, z) (2)

where VLB ≤ I(τ, z) is the variational lower bound proposed in (Barber & Agakov, 2003) (τ is a
trajectory representation such as (s, s′)). Since skill discovery algorithms aim to maximize I(τ, z),
we can view its parameterized lower bound VLB as a multitask reward function: scoring transitions
based on their alignment with a skill code (Laskin et al., 2022).

2.2 EQUIVALENT-POLICY INVARIANT COMPARISON

We can formalize a general notion of reward function similarity by equivalent-policy invariant com-
parison (EPIC) as established in (Gleave et al., 2020). EPIC defines a distance metric between two
reward functions such that similar reward functions induce similar optimal policies. We consider the
case of action-independent reward:

DEPIC(RA, RB) = EsP ,s′P∼DP ,SC ,S′
C∼DC

[Dρ(C(RA)(sP , s
′
P , SC , S

′
C), C(RB)(sP , s

′
P , SC , S

′
C))].
(3)

where Dρ(X,Y ) =
√

1−ρ(X,Y )
2 is the Pearson distance between two random variables X and Y ,

sP , s
′
P are samples from the Pearson distribution DP , and SC , S

′
C are batches sampled from the

Canonical distribution DC . We compute the Pearson distance over Pearson samples sP , s
′
P , with

additional canonicalization with batches Sc, S
′
c to ensure invariance over constant shifts and scaling.

The canonicalized reward function is defined as:

C(R)(sP , s
′
P , SC , S

′
C) = R(sP , s

′
P ) + E[γR(s′P , S

′
C)−R(sP , S

′
C)− γR(SC , S

′
C)] (4)

where R : S×S → R is a reward function. The expectation is taken over the Canonical distribution
DC ; for simplicity, we sample these batches SC , S′

C ∼ DC ahead of time. The canonicalization
ensures invariance to reward shaping such that rewards that have different shaping but induce similar
optimal policies are close in distance. In practice, the final term can be omitted as the Pearson
correlation is invariant to constant shifts and scaling.

3 INTRINSIC REWARD MATCHING

3.1 TASK INFERENCE VIA INTRINSIC REWARD MATCHING

A multitask reward function that can supervise the learning of diverse behaviors is useful in its
own right. However, in the case of skill-based RL, we have additionally learned a corresponding
π(a|s, z). Therefore, for any “task” that can be specified by our intrinsic reward function, we already
have an optimal policy, so long as we condition on the corresponding skill. If we have learned
a sufficiently diverse library of skills, we might expect that some of our skills share behavioral
similarity to the optimal policy for the downstream task. It thus also holds that the corresponding
intrinsic reward for that skill is a semantically similar task specification to the downstream task.

Given this interpretation of intrinsic reward, we posit that the task of identifying which our pretrained
skills to apply to a downstream task can be reframed as inferring which task in our multitask reward
function is most similar to the downstream task. Moreover, we should hope to find the skill code z
that produces the reward function most semantically aligned with the downstream task reward.

With this formalism, we can formulate the task inference problem as performing the following
optimization:

z∗ = argmin
z

DEPIC(R
int(τ, z), Rext(τ)) (5)
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in order to find z∗ most aligned with the task reward. Moreover, Equation 5 performs a minimization
of a novel loss we name the EPIC loss with respect to the skill parameter z. By EPIC’s equivalence
class invariance, we know that if the EPIC loss is small for some z∗, and π(a|s, z∗) is near optimal
for Rint(τ, z∗), then π(a|s, z∗) approaches the optimal policy for the task as specified by Rext.
Notably, we require access to the task reward function Rext to compute the EPIC loss. Leveraging
a known task reward function is a divergence from conventional skill selection methods.

Computing Rint during reward matching During pretraining, for some methods such as (Laskin
et al., 2022; Sharma et al., 2020), we require negative samples in order to compute the variational
objective in Equation 2 and avoid a degenerate optimization where all embedded trajectories have
high similarity with all skills. However, during selection when skills are fixed, the negative sampling
component amounts to a reward offset which does not impact the task semantics. Furthermore, since
we may not in general have access to a large amount of negative samples on a given downstream
task, we choose to simplify the objective to the following:

Rint(τ, z) := VLB(τ, z) ≡ qϕ(τ, z) (6)

where qϕ is the skill discriminator. This parameterization of the intrinsic reward preserves the align-
ment semantics of VLB without the normalization by negative samples. For more details regarding
the discriminator parameterization of the intrinsic reward for (Laskin et al., 2022; Sharma et al.,
2020) refer to Appendix A.3 and Appendix A.4.

Algorithm 1: Intrinsic Reward Matching (IRM)
Require: Downstream task T , DS , PS

Require: Pretrained policy πθ(a|s, z), intrinsic reward rint(s, s
′, z), and extrinsic reward

rext(s, s
′) for T .

Require: Optimization NOP = 5000 steps and finetune NFT = 100K steps.
/* Skill Selection of z∗ via EPIC Loss */

1 for NOP steps do
2 Sample a batch of Pearson samples SP , S

′
P ∼ DP , DP .

3 Sample Canonical samples SC , S
′
C ∼ DC , DC .

4 for si, s
′
i in SP , S

′
P do

5 Calculate EPIC Loss as DEPIC(rint(si, s
′
i, z), rext(si, s

′
i)) =

Dρ(CDS
(RA)(si, s

′
i, SC , S

′
C), CDS

(RB)(si, s
′
i, SC , S

′
C)) as in Equation 3

6 end for
7 Take optimization step on batch with respect to z (gradient descent, CEM step, etc.) as in

Equation 5.
8 end for
9 Evaluate zero-shot performance and finetune RL agent for NFT steps with z∗ on downstream

task T

3.2 EPIC SAMPLE-BASED APPROXIMATION

We make a number of sample-based approximations of various unknown quantities in order to con-
cretize the continuous optimization Equation 5 as a tractable loss minimization problem.

Canonical State Distribution Approximation: In order to canonicalize our reward functions, we
estimate the expectation over the state and next state distributions with a sample-based average over
1024 samples. These distributions can be entirely arbitrary, though using heavily out-of-distribution
samples with respect to pretraining can weaken the accuracy of the approximation. We choose
to instantiate a uniform distribution bounded by known workspace constraints for both of these
distributions.

Sampling Distribution for Pearson Correlation: We find that generating samples uniformly
roughly within the environment workspace bounds, just as with the reward canonicalization, often
leads to strong approximations. Furthermore, as both sample generation and relatively inexpensive
function evaluation are independent of the online-finetuning phase, we can perform the full skill op-
timization as a self-contained preprocess to downstream policy adaptation without any environment
samples. Rough knowledge of workspace bounds represents some amount of prior environment
knowledge. We leave more general options such as sampling from a learned generative model over
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trajectories encountered during pretraining or sampling from saved pretraining data to future work.
We ablate various sampling distribution choices in Table 6 and present the full algorithm in detail in
Algorithm 1.

3.3 GENERALIZATION TO SKILL SEQUENCING

Many realistic downstream tasks derive additional complexity from temporally extended planning
horizons. In contrast to hierarchical reinforcement learning (HRL) approaches, which aim to stitch
together pretrained skills at the policy level with a higher-level manager policy, we can extend the
task matching framework of IRM to efficiently solve the problem of skill sequencing, entirely do-
ing away with the manager policy. Consider the long-horizon setting where we have a sequence of
reward functions to optimize over some task horizon H . Central to the finetuning problem is de-
termining over what time intervals should potentially different pretrained skills be selected. In this
work we predetermine a fixed skill horizon ⌊H/N⌋ where N is the number of rewards. This skill
horizon could in principle be specified as a parameter and learned from the task reward signal.

Next, in order to perform skill selection over each time interval, we perform the IRM algorithm
in parallel for each reward. We note the key assumption that IRM requires access to the reward
functions for each of the subtasks. For example, for a sequential goal reaching task, we divide the
episode into N segments for each of the N goals and corresponding goal-reaching rewards. We
then perform the IRM skill selection algorithm for each reward to select the optimal skill over each
interval. After selecting the skills, we freeze our selections and finetune the skill policies jointly.

4 EXPERIMENTS

In this section we aim to experimentally evaluate whether IRM improves the adaptation sample-
efficiency of skill finetuning on a downstream reinforcement learning task as compared to baselines.
For pretraining skills, we experiment with both the CIC (Laskin et al., 2022) and DADS (Sharma
et al., 2020) algorithms. We consider IRM Random a version of IRM that randomly samples skills
and picks the one with the lowest EPIC loss, IRM CEM which selects elites as those skills with
the lowest EPIC loss, and IRM Gradient Descent which minimizes the EPIC loss using the Adam
optimizer and uses backpropagation through the discriminator to regress the optimal skill.

Fetch Environment

Figure 2: In our Fetch Push environment, we dis-
cover skills that move the block in different di-
rections. Downstream tasks may involve simple
goals or more distant goals that require compo-
sition of multiple skills across an extended time
horizon and around obstacles.

Environments We evaluate IRM on URLB
(Laskin et al., 2021), which consists of twelve
downstream tasks in three challenging contin-
uous control domains in the DMControl suite:
Walker, Quadruped, and Jaco. We also design
a reaching and a tabletop pushing environment
in the OpenAI Gym Fetch environment (Brock-
man et al., 2016) with further details in Ap-
pendix A.5.

Baselines We benchmark many conventional
finetuning approaches after a single skill pre-
training phase of Contrastive Intrinsic Control
(CIC) (Laskin et al., 2022). The Grid Search
(GS) baseline coarsely sweeps each of 10 skills
evenly from the all 0’s skill vector to the all
1’s skill vector and finetunes the skill which
achieves the best evaluation reward over an
episode. Env Rollout randomly samples 10 skills to evaluate with a rollout and Env Rollout CEM
uses the episode reward as the metric by which to select elites. Random Skill selects a skill at ran-
dom. Relabel relabels saved skill rollouts obtained during pretraining with the task reward function,
and selects the skill that achieved the highest reward. All baselines use the TD3 (Fujimoto et al.,
2018) RL algorithm.

Evaluation We follow an identical evaluation to the 2M pre-training setup in URLB. First, we
pretrain each RL agent with the intrinsic rewards for 2M steps. Then, we finetune each agent to
the downstream task with extrinsic rewards for 100k steps. Since our primary contribution involves
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Task IRM CEM IRM GD IRM Rand Env Roll. Env CEM GS Relabel Rand
Jaco Top Left 0.000 ± 0.00 0.000 ± 0.00 0.000 ± 0.00 0.186 ± 0.11 0.770 ± 0.28 1.84 ± 0.00 0.000 ± 0.00 0.000 ± 0.00

Jaco Top Right 0.0860 ± 0.040 0.640 ± 0.24 0.120 ± 0.097 7.34 ± 3.4 9.82 ± 5.3 16.1 ± 0.00 0.000 ± 0.00 3.50 ± 2.5

Jaco Bot. Left 0.0520 ± 0.030 0.000 ± 0.00 0.000 ± 0.00 0.175 ± 0.16 0.408 ± 0.22 0.102 ± 0.00 0.000 ± 0.00 0.000 ± 0.00

Jaco Bot. Right 2.48 ± 2.2 0.000 ± 0.00 0.360 ± 0.31 0.086 ± 0.073 9.07 ± 3.3 0.191 ± 0.00 0.000 ± 0.00 0.00100 ± 0.0010

Walker Stand 19.9 ± 9.3 9.75 ± 1.4 12.5 ± 3.0 18.9 ± 3.7 22.4 ± 4.3 13.9 ± 4.4 3.00 ± 0.18 20.8 ± 7.6

Walker Walk 5.86 ± 0.34 7.48 ± 0.55 15.5 ± 5.5 14.9 ± 2.9 13.3 ± 3.2 9.40 ± 2.8 4.99 ± 1.3 15.6 ± 4.9
Walker Run 6.82 ± 0.66 7.17 ± 0.28 8.10 ± 0.97 7.92 ± 0.69 5.87 ± 1.2 6.56 ± 1.2 2.67 ± 0.25 8.81 ± 1.2
Walker Flip 20.6 ± 1.2 14.8 ± 1.1 17.3 ± 2.3 23.8 ± 1.9 17.3 ± 2.8 21.8 ± 0.00 3.29 ± 0.00 14.4 ± 1.8

Quadr. Stand 51.5 ± 12 40.3 ± 11 40.2 ± 13 40.6 ± 9.7 47.5 ± 8.7 37.4 ± 12 56.1 ± 11 44.6 ± 13

Quadr. Run 23.9 ± 5.5 24.4 ± 4.8 20.2 ± 6.5 20.6 ± 4.4 24.2 ± 4.1 17.3 ± 5.5 24.9 ± 6.5 21.7 ± 6.2

Quadr. Jump 38.1 ± 8.5 41.1 ± 9.4 35.9 ± 11 30.5 ± 7.0 36.8 ± 6.3 29.7 ± 9.8 35.5 ± 9.0 33.3 ± 9.5

Quadr. Walk 17.5 ± 6.2 11.5 ± 3.7 17.1 ± 6.2 19.3 ± 2.7 25.5 ± 4.0 9.21 ± 2.0 31.3 ± 8.2 16.4 ± 5.8

Fetch Reach 95.9 ± 1.0 87.5 ± 0.20 92.5 ± 1.1 85.0 ± 6.2 87.8 ± 1.9 97.3 ± 0.00 43.9 ± 0.00 16.7 ± 19

Fetch Push 80.2 ± 2.5 73.1 ± 0.48 77.6 ± 2.7 74.3 ± 0.92 75.4 ± 2.6 72.1 ± 0.00 23.6 ± 0.023 51.5 ± 12.5

Table 1: IRM with various optimization methods compared to environment rollout-based skill se-
lection, reward relabelling of pretraining data, and random skill selection. IRM based methods rival
or exceed skill selection baselines that are reliant on expensive environment trials.

skill selection, we especially focus on zero-shot episode rewards: rewards achieved by a selected
skill policy but without any RL updates on the task reward. We report results averaged over 5 seeds
with standard error bars.

4.1 UNSUPERVISED REINFORCEMENT LEARNING BENCHMARK

In Table 1, we display the zero-shot performance of IRM-based methods compared to interaction-
based methods over all 12 URLB tasks. On most of the Walker and Quadruped tasks IRM is either
comparable to or outperforms the interaction baselines. Reward relabelling fails to consistently se-
lect optimal skills across the benchmark, likely because its options are limited to the finite set of
skills sampled during pretraining. IRM by contrast leverages continuous optimization in the skill
space to find the best skill for the task. An important insight is that IRM uses the environment in-
teractions to immediately begin finetuning the selected skill policy instead of spending significant
amounts of samples on skill selection. This allows IRM-based methods to obtain greater sample-
efficiency than rollout-based methods, even when both initial skill selections obtain similar perfor-
mance as demonstrated in Figure 7. Unsurprisingly, methods like IRM GD and IRM CEM tend to
perform better than IRM Random which does not have the luxury of iterative refinement on a smooth
EPIC loss manifold as shown in Figure 5. We find that neither our method nor the baselines are
well-suited for skill selection on the Jaco tasks. This is likely because these tasks are very sparsely
rewarded, making it unlikely that many samples, either randomly generated as in IRM or rolled out,
will consistently result in high rewards. We provide analysis demonstrating the relationship between
task reward sparsity and the smoothness of the EPIC loss manifold in Appendix A.12.3.

4.2 TABLETOP MANIPULATION

Reach Target We evaluate IRM on the Reach Target task, where the Fetch robot is rewarded for
reaching a target position. IRM outperforms or closely matches environment-rollout methods while
requiring no environment samples to perform skill selection. As shown in Table 1, the random skill
policy performs particularly poorly and with very high variance relative to the IRM and environment-
rollout based methods. Moreover, appropriate skill selection is required for strong zero-shot perfor-
mance as certain skills obtain much higher rewards than others. Figure 3 shows the finetuning
performance of the methods on the downstream task reward. IRM-based methods are more sam-
ple efficient in reaching the optimal performance than environment-rollout-based methods due to
improved skill selection.

Push Block to Goal Next, we evaluate IRM on a more complex manipulation task involving
pushing a block to a goal position. We report the zero-shot IRM skill selection performance in
Table 1 and finetuning performance in Figure 3. This more complex task similarly benefits from
bootstrapping the appropriate pretrained skill policy as evidenced by the performance gap of the
selection based methods over random skill selection. We remark that even for more complex
manipulation tasks, IRM is robust in consistently guiding optimal skill selection without requiring
any interaction with the environment. Although Env Rollout CEM is one of the stronger baselines
in terms of zero-shot reward, it exceeds the computational budget of 100k interactions entirely on
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Finetuning Performance on Fetch

Figure 3: The performance gap between the IRM skill selection methods and random skill selec-
tion evidences the sample efficiency gains to be had from bootstrapping a pretrained policy with
task-level semantics similar to the task reward. IRM-based methods select optimal skills with no
environment interaction and consequently finetune efficiently. Top: Fetch Reach and Block Push
tasks. Bottom: Long-horizon Fetch Reach and Block Push with obstacles tasks.

skill selection. For illustrative purposes, we show the plot starting at 50k.

Task IRM Rand Seq IRM CEM Seq IRM GD Seq Env Seq HRL
Fetch Reach Seq 88.1 ± 1.5 89.5 ± 0.34 86.7 ± 0.64 80.7 ± 4.7 28.4 ± 31.0

Fetch Push Seq 84.9 ± 0.12 84.9 ± 0.12 81.4 ± 1.9 83.7 ± 0.30 78.9 ± 3.1

Table 2: Zero-shot rewards on long-horizon manipulation tasks

4.3 EXTENSIONS AND ABLATIONS

Long-Horizon Manipulation Building on the results in Section 4.2, we demonstrate that IRM
fully generalizes to solving long-horizon tasks in the setting of tabletop manipulation. During the
unsupervised pretraining phase, skill discovery methods can acquire useful skills such as directional
block pushing or pushing the block to certain spatial locations. We show that IRM can intelligently
select a sequence of such skills to finetune via reward matching, avoiding learning a hierarchical
manager policy that finetunes at the policy level.

For the Fetch Reach environment, we consider an extended horizon where the agent is tasked with
reaching a sequence of goals in a particular order. For the Fetch Push task, we consider the en-
vironment depicted in Figure 2, where the agent must navigate around a barrier introduced during
the finetuning phase in order to reach the goal. We compare IRM methods to an environment roll-
out baseline (Env Seq) and a hierarchical RL baseline (HRL). The ‘IRM Seq’ methods select skills
based on each defined sub-task’s reward function according to the IRM optimization scheme. ‘Env
Seq’ chooses the best combination of skills based on extrinsic reward from rollouts. ‘HRL’ is ini-
tialized with random skills and simultaneously optimizes a manager policy over skills and the skill
policies themselves. In both settings and across optimization methods, IRM outperforms the envi-
ronment rollout and HRL method in identifying (Table 2) and finetuning skills (Figure 4.3 Row 2).
Implementation details are provided in Appendix A.10

Matching Metric Ablations We validate the importance of employing the EPIC pseudometric for
formulating the matching loss by ablating its contribution against more naive selections in Table 4.
L1 and L2 losses are common metrics in supervised regression problems but are poor choices for
comparing task similarity with rewards. Moreover, rewards can have arbitrary differences in scaling
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EPIC Loss and Extrinsic Reward are Negatively Correlated

Figure 4: (a) Scatter plot of extrinsic reward vs. EPIC loss. (b) Trajectories with low and high EPIC
losses for planar goal-reaching. (c) Trajectories for sequential goal-reaching. (d) Trajectories for
Fetch Reach.

and shaping that L1 and L2 are not invariant to. To strengthen these comparisons, we include
a learned reward scaling parameter for L1 and L2 and similarly observe that EPIC is a superior
matching metric.

Reward Matching IRM CEM
IRM 21.0 ± 0.75
L1 8.71 ± 0.70

L2 7.87 ± 0.86

L1 + Learn Scale 5.51 ± 1.9

L2 + Learn Scale 3.95 ± 2.2

Table 4: Reward matching metric ablation

Skill Discovery Algorithm Ablations IRM is fully
general to any mutual information maximization
based, RL pretraining algorithm as shown in Table 3.
We validate on the Fetch Reach task that IRM CEM
and IRM Rand convincingly outperform all episode
rollout baselines in zero-shot episode reward.

5 ANALYSIS

EPIC Loss Visualizations

Figure 5: We examine EPIC losses between extrin-
sic rewards and intrinsic rewards conditioned on the
skill vector. We sweep across the 2D skill vector for
a pretrained planar agent.

Does optimizing the EPIC loss lead to ef-
fective skill selection? In Figure 4, we ver-
ify that EPIC loss is strongly negatively cor-
related with extrinsic reward on a Planar Goal
Reaching task detailed in Appendix A.8.
Thus, optimizing for a low EPIC loss is an ef-
fective substitute for optimizing the environ-
ment reward, and crucially, it forgoes collect-
ing expensive environment samples.

How can we understand skills through
EPIC losses? In Figure 5, we plot EPIC
losses between intrinsic rewards and goal-
reaching rewards across the 2D continuous
skill space. Not only is the loss landscape
smooth, which motivates optimization meth-
ods like gradient descent, but there is also a
banded partitioning of the manifold. Further-
more, the latent skill space is well-structured
as different darker-colored partitions of the skill space correspond to the group of skills with low
EPIC loss from each task reward. EPIC losses concisely represent desirability of skills with respect

Intr. Rew. IRM CEM IRM GD IRM Rand Env Roll. Env CEM GS Rand
DADS 83.4 ± 2.19 69.9 ± 2.22 77.2 ± 3.83 74.6 ± 5.15 70.3 ± 5.38 68.9 ± 2.81 28.3 ± 13.5

Table 3: Zero-shot rewards for DADS skill discovery algorithm.
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to a downstream reward function, so skills that achieve a low EPIC loss for the Top Left goal will
achieve high EPIC losses for the opposite reward, Bottom Right goal.

We include a scatter plot and trajectory visualizations in Figure 4. As Figure 4 suggests, skills with
the lowest EPIC loss receive high extrinsic reward, reaching the goal with high spatial precision.
Skills with the highest losses produce the opposite behavior: moving in the direct opposite direc-
tion of the goal. In the sequential case, low-EPIC loss skills attempt to reach the 1st goal then the
2nd goal, while high-EPIC loss skills perform the behavior in the inverse order. The intrinsic re-
ward module provides a much deeper insight into the semantics of skills than the extrinsic rewards
obtained by skill policy rollouts.

6 RELATED WORK

Several works including (Sharma et al., 2020; Eysenbach et al., 2019; Achiam et al., 2018; Gregor
et al., 2016b; Baumli et al., 2020; Florensa et al., 2017; Laskin et al., 2022) employ mutual infor-
mation maximization for skill pretraining. While (Laskin et al., 2022) leverages coarse grid search
to select skills for downstream RL, methods such as (Sharma et al., 2020) instead plan through a
learned skill dynamics model at finetuning time. Our approach is similar in that it leverages pre-
training model components other than the policy to guide skill selection. However, rather than
generating a reward maximizing plan through possibly complex, learned environment dynamics, we
instead look to match a policy to the task reward directly through a pretrained discriminator.

In the context of sequential finetuning, (Baumli et al., 2020; Eysenbach et al., 2019) employ hi-
erarchical RL to chain pretrained skills with a manager policy requiring additional environment
interactions. Works on such HRL methods include (Nachum et al., 2018; Frans et al., 2017; Vezh-
nevets et al., 2017; Springenberg et al., 2018) and more classically (Sutton et al., 1999; Stolle &
Precup, 2002). By contrast, we demonstrate that the intrinsic reward matching framework can be
extended to choose skill sequences without reliance on environment samples. The successor fea-
tures line of work also adopts a unified view of skill-based RL. Such work relies on the assumption
that arbitrary rewards can be parameterized linearly in some learned features and some task vector
as in (Liu & Abbeel, 2021; Barreto et al., 2016). Our approach relaxes this assumption to the fully
general setting by instead searching for a pretrained task with minimal proximity to an arbitrarily
parameterized task reward.

7 DISCUSSION

We present Intrinsic Reward Matching (IRM), a framework for algorithmically unifying information
maximization unsupervised reinforcement learning with downstream task adaptation. We instanti-
ate a practical algorithm for implementing this framework and demonstrate that IRM outperforms
current methods on a continuous control benchmark and tabletop manipulation tasks. IRM diverges
from past works in leveraging the discriminator for downstream task inference and consequently
performing skill selection without environment interactions in the short horizon setting. We also
show that IRM can be readily extended to the general skill sequencing setting to solve more realistic
long-horizon tasks as an alternative to hierarchical methods. Central to our contribution is a novel
loss function, the EPIC loss, which serves as both a skill selection utility as well as a new way to
interpret the task-level semantics of pretrained skills.

We acknowledge a number of limitations of our approach. IRM relies on samples of the state,
roughly within workspace boundaries as well as access to an external reward function, ideally well-
shaped, which trades off with IRM’s reduced reliance on environment interactions. In order to
obtain realistic image samples to compute the EPIC loss, an agent could learn an expressive gener-
ative model such as a VAE over the image states obtained during pretraining and sample from the
model to generate diverse and realistic sampled states. For learning unknown state-based rewards,
the agent could additionally learn an image-reward model by regressing the rewards encountered
during exploration (Hafner et al., 2019). This further relaxes some of the assumptions made in this
contribution and represents an exciting direction for future work.
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A APPENDIX

A.1 BACKGROUND AND NOTATION

Markov Decision Process: The goal of reinforcement learning is to maximize cumulative reward
in an uncertain environment it interacts with. The problem can be modelled as a Markov Decision
Process (MDP) defined by (S,A,P, r, γ), where S is the set of states, A is the set of actions, P is
the transition probability distribution, r is the reward function and γ is the discount factor.

Unsupervised Skill Discovery: In competence-based unsupervised RL the aim is to learn skills that
generate diverse and useful behaviors (Eysenbach et al., 2019). The broad aim is to learn policies
that are skill-conditioned and generalizable. Formally, we also learn skills z ∈ Z and take actions
according to a ∼ π(·|s, z). As an illustrative example, applying this formalism to the Mujoco Walker
domain, we might hope to find a skill-conditioned policy and skills zwalk, zrun such that π(·|s, zwalk)
makes the agent walk, while π(·|s, zrun) makes it run. Further, if we allow for continuous skills, we
can also imagine being able to use the policy to “jog” at different speeds by interpolation the zwalk

and zrun skills. That is, taking zαjog = α · zwalk + (1 − α) · zrun should, intuitively, yield a policy
π(·|s, zαjog) that makes the agent jog at speed dictated by the parameter α.

Finetuning Pretrained Skills: With a skill-conditioned policy π(·|s, z), an agent needs to infer
which skill to index for a downstream task (e.g. identifying if it needs to use zwalk or zrun) dur-
ing finetuning. This is a relatively under-explored area, with the most universal approach being a
coarse, discretized grid search. Least squares regression has also been investigated in the context of
successor features (Liu & Abbeel, 2021).

A.2 COMPETENCE-BASED SKILL DISCOVERY

Competence-based skill discovery algorithms aim to maximize the mutual information between
trajectories and skills:

I(τ ; z) = H(z)−H(z|τ) = H(τ)−H(τ |z) (7)

Since the mutual information I(s; z) is intractable to calculate in practice, competence-based meth-
ods maximize a variational lower bound. Many mutual information maximization algorithms, such
as Variational Intrinsic Control (Gregor et al., 2016a) and Diversity is All You Need (Eysenbach
et al., 2018), use the estimate I(τ ; z) = H(z)−H(z|τ). Other competence-based methods, such as
Dynamics-Aware Unsupervised Discovery of Skills (Sharma et al., 2019), Active Pretraining with
Successor Features (Liu & Abbeel, 2021), and Contrastive Intrinsic Control (CIC) (Laskin et al.,
2022), maximize a lower bound for H(τ)−H(τ |z).
While the decompositions of the mutual information objective are equivalent, algorithms make dif-
ferent design choices regarding how to approximate entropy, represent trajectories, and embed skills.
These choices affect the distillation of skills: for instance, without explicit maximization of H(τ)
in the decomposition of mutual information, behavioral diversity may not be guaranteed when the
state space is much larger than the skill space (Laskin et al., 2022).

A.3 CIC

Contrastive Intrinsic Control (CIC) (Laskin et al., 2022) is a state of the art algorithm for
competence-based skill discovery. CIC maximizes a lower bound for I(τ ; z) = H(τ) − H(τ |z)
through a particle estimator for H(τ) and a contrastive loss from Contrastive Predictive Coding
(CPC) (van den Oord et al., 2019) for H(τ |z). The lower bound for I(τ ; z) is:

I(τ ; z) ≥ FCIC(τ ; z) := Hparticle(τi) + E

qϕ(τi, zi)− log
1

N

N∑
j=1

exp(qϕ(τj , zi))

 (8)

where Hparticle(τ) ∝
∑n

i=1 log ||hi − h∗
i ||, h∗

i is the k-Nearest Neighbors embedding, Nk is the
number of k-NNs used to approximate entropy, and N − 1 is the number of negative samples.
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A.4 DADS

We additionally use Dynamics-Aware Unsupervised Discovery of Skills(DADS) (Sharma et al.,
2020) for skill discovery, as it is one of the few skill discovery algorithms to successfully scale
up to continuous skills. DADS maximizes a lower bound for I(τ ; z) = H(τ) − H(τ |z) through
learning skill-conditioned transition distributions. The lower bound for I(τ ; z) is:

I(τ ; z) ≥ FDADS(τ ; z) := log
qϕ(s

′|s, z)∑L
i=1 qϕ(s

′|s, zi)
+ logL (9)

For our experiments, we reimplement the on-policy DADS algorithm in PyTorch. We follow the
default hyperparameters and train for 20 million environment steps, per (Sharma et al., 2020).

A.5 ENVIRONMENT DETAILS

The URLB domains are Walker, Quadruped, and Jaco. Walker requires a bipedal agent to perform
a variety of navigation based tasks on a 2D-plane while preserving its balance. Quadruped, a more
challenging domain due to a higher-dimensional state-action space, requires a quadrupedal agent
to perform navigation tasks in a 3D environment. Jaco robot arm is a 6-DOF manipulator with a
three-finger gripper which contains a variety of directional reaching tasks

For URLB (Laskin et al., 2021) environments, we follow default environment settings. Like many
skill-discovery methods (Sharma et al., 2020) (Eysenbach et al., 2019), we restrict the discriminator
input. For Quadruped, we use the x, y, z velocity, which is included in the environment’s state
space. For Walker, we use the x, y, z world-position, which we add to the environment’s state space
but remove from the policy input. For Jaco, we use the x, y, z world position.

For our fetch reaching environment, we use the Gym Robotics Fetch environment (Brockman et al.,
2016). We set the time limit to 200. For the fetch push environment, we partition the continuous
action space into 4 actions, which involve pushing the block forward, backward, left, and right. We
set the time limit to 10 for skill learning.

We evaluate sequential skill selection on 2 environments: Fetch Reach and Fetch Push. For the
Fetch Push task, we fix 3 waypoints, depicted in Figure 2 and fix a time horizon of 15 pushes per
waypoint. For Fetch Reach, we consider 2 waypoints and a time horizon of 25 for each waypoint.

Our plane environment is a 2D world with observations in [-128, 128] x [-128, 128] and continuous
actions in [-10, 10] x [-10, 10].

A.6 PRETRAINING HYPERPARAMETERS

For the Jaco domain we use a skill dimension of 2 and a discriminator MLP hidden dimension of
64. We use an alpha value of 0 for the entropy weighting as in (Laskin et al., 2022). We input the
3D position of the end-effector of the Jaco arm to the discriminator. For the Walker domain we use a
skill dimension of 2 and a discriminator MLP hidden dimension of 256. We use an alpha value of 0.7
for the entropy weighting. We input the displacement in the 3D position of the torso of the walker
to the discriminator. For the Quadruped domain we use a skill dimension of 16 and a discriminator
MLP hidden dimension of 128. We use an alpha value of 0.5 for the entropy weighting. We input
the 3D velocity of the body of the quadruped to the discriminator. We use a learning rate of 1e-4,
a critic target tau parameter of 0.01, and a constant standard deviation exploration schedule of 0.2.
The rest of the RL hyperparameters are as in (Laskin et al., 2021).

For the Fetch Push environment, we use a skill dimension of 16 and a discriminator MLP hidden
dimension of 16. We use an alpha value of 0 for entropy weighting. For the Fetch Reach environ-
ment, we use a skill dimension of 8 and a discriminator MLP hidden dimension of 64. We use an
alpha value of 0 for entropy weighting. For all environments, we use a replay buffer size of 100k.

A.7 INTRINSIC REWARD MATCHING AND ENVIRONMENT ROLLOUT BASELINE
HYPERPARAMETERS

IRM CEM and Env Rollout CEM are trained for 5 iterations with 1000 samples at each iteration
and 100 elites selected each iteration. Env Rollout CEM consumes the entire downstream finetuning
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Zero-Shot Performance for Planar Goal Reaching

(a) Skill dimension 2 (b) Skill dimension 8 (c) Skill dimension 16

Figure 6: Zero-Shot Returns for Planar Goal Reaching averaged over 5 seeds

budget on just skill selection. For illustrative purposes, we start its plot at 50k steps to show that
finetuning still occurs, however, sample-inefficiency suffers due to excessive rollouts for skill selec-
tion. This problem only worsens for long time horizons. IRM Gradient Descent is trained for 5000
steps with a learning rate of 5e-3 and initialized at the skill vector of all 0.5s. IRM Random selects
100 random skills. Env Rollout trials 10 random skills for a fully episode. Grid Search coarsely
trials 10 skills from the skill of all 0s to the skill of all 1s as in (Laskin et al., 2021).

A.8 PLANAR GOAL REACHING

The planar goal reaching task consists of a simple 2D plane with a point with a 2D Cartesian state
space that can displace in the x and y coordinates with a 2D action space. Skills learned tend to span
the 2D space reaching to diverse locations distributed broadly across the environment. We show
some sample zero-shot skill selection results over three different skill dimensions in Figure 6.

A.9 FINETUNING PERFORMANCE ON URLB

In Figure 7 we compare the finetuning sample-efficiency of IRM methods against environment
rollout-baselines on the URLB Walker tasks. IRM performs skill selection with 0 environment
interactions. The episode length of the URLB environments is 1000, meaning that in order to eval-
uate a single skill, rollout based methods must exhaust 1000 environment steps (i.e. grid search
spends 1000 * 10 = 10,000 environment steps - 10 percent of the available finetuning budget). By
contrast, our method immediately uses new environment steps for improving the policy. As a result,
the IRM based approaches generally achieve greater sample efficiency, even when initial skill se-
lection obtains similar performance to the rollout based methods. For illustrative purposes we have
shown Env CEM starting at 50k steps even though it far exceeds the 100k sample budget to select a
skill before making any RL updates due to having to execute full episode rollouts in the inner loop
of optimization. This issue worsens with increasing episode lengths. We plot results over 3 seeds
with standard error shading.

A.10 SEQUENTIAL SKILL SELECTION

For sequential skill selection, we compare IRM Sequential and Environment Sequential skill se-
lection. IRM Sequential consists of an iterative process. The first skill is chosen entirely free of
environment samples, exactly identical to the single-skill tasks. Once the first skill is chosen, we
roll out a trajectory with the skills we have chosen so far and use the latter half of the trajectory as
the Pearson samples for our EPIC loss. We use Gaussian noise with variance 1 for our Canonical
samples as described in Appendix A.12.2. At each step of the skill selection process, we use the
corresponding IRM optimization methods.

For our Environment Sequential skill selection method, we select skills iteratively as well. For
each waypoint or subtask, we randomly sample N skills and commit to the best, where N =
10/n subtasks.
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Finetuning Performance on URLB

Figure 7: IRM finetuning results compared to rollout-based baselines on Walker URLB tasks.

Skill Dim IRM CEM IRM GD IRM Rand Env Roll. Env CEM GS Rand
8 21.1 ± 0.51 15.7 ± 1.61 18.9 ± 0.18 18.4 ± 0.18 18.8 ± 0.48 17.9 ± 0.101 13.5 ± 1.85

16 17.4 ± 1.30 14.6 ± 0.63 18.8 ± 0.26 22.7 ± 0.83 23.1 ± 0.36 14.0 ± 0.19 11.2 ± 2.32

32 20.1 ± 0.54 22.537 ± 0.25 19.8 ± 0.14 22.2 ± 0.58 21.5 ± 0.67 24.0 ± 0.12 19.9 ± 0.67

64 21.9 ± 0.48 1.68 ± 0.069 20.9 ± 0.74 22.5 ± 0.70 21.6 ± 0.89 18.2 ± 0.059 13.3 ± 2.15

Table 5: IRM methods and environment rollout methods ablated over multiple skill dimensions on
Fetch Push

A.11 HIERARCHICAL REINFORCEMENT LEARNING BASELINE

In order to validate the benefits of IRM’s offline skill selection, we compare against a baseline
that leverages a conventional hierarchical RL algorithm to solve long-horizon, sequential tasks. We
instantiate a TD3 manager agent that outputs into a skill action space from state input at a temporally
abstract timescale. As in the IRM setup, this timescale is fixed to align with the changes in reward to
encourage the manager to change its skill prediction according to the change in the reward semantics.
The manager’s is then inputted to the low-level pretrained skill policy which is rolled out over many
steps with the skill fixed. Both the manager policy and the low-level policy weights are updated
during finetuning. The manager agent is randomly initialized such that its initial skill prediction is
random.

A.12 ADDITIONAL ABLATIONS

A.12.1 SKILL DIMENSION

We ablate skill dimension and evaluate the zero-shot performance of all skill selection methods.
IRM’s performance generally increases with increased skill dimension despite discriminator over-
fitting issues associated with larger skill spaces. The IRM GD learning rate is chosen as 5e-3 for
all experiments in this work and is not tuned at all. Such likely explains the divergence of the 64
dimensional result.

A.12.2 PEARSON & CANONICAL DISTRIBUTIONS

We experiment with many ways to approximate the Pearson and Canonical distributions. We defined
Full Random to be our uniform samples from a reasonable estimate of the upper and lower bounds
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for each dimension of the state. For our planar environment, the bounds are defined explicitly and
thus known; for more complex environments, we estimate the bounds. For example, for a tabletop
manipulation workspace, we sample 2-dimensional block positions uniformly within the rectangular
plane of the table surface. In practice, IRM is fairly robust to the distributions, though there are sub-
tleties that emerge in the various choices for the Pearson and Canonical distributions. For instance,
we also ablate a Uniform(0,1) distribution, which generally performs much worse, due to lack of
state coverage for most environments. For the Canonical distribution, we also approximate samples
by perturbing the Pearson samples by ϵ sampled from a Gaussian distribution. We experiment with
hyperparameters of variance, which may be adjusted based on the environment. For our sequential
IRM method, we use this Canonical distribution to ablate on-policy samples.

Pearson Distribution Canonical Distribution IRM CEM
Full Random Full Random 20.341 ± 0.306

Full Random Uniform(0,1) 16.343 ± 0.708

Full Random ϵ ∼ N (0, 1) 21.191 ± 0.629

Full Random ϵ ∼ N (0, 0.1) 21.027 ± 0.419

Uniform(0,1) ϵ ∼ N (0, 1) 5.905 ± 3.157

Uniform(0,1) ϵ ∼ N (0, 0.1) 2.851 ± 0.605

Table 6: EPIC Loss Sampling Distribution Ablations.

None of the distributions ablated above require on-policy environment samples. It is possible to use
on-policy samples for the state distributions, and we choose to do so for our sequential IRM method,
as previous skill rollouts may provide useful Pearson samples for the subsequent skill selection.
Note that while on-policy Canonical samples are possible, they are incredibly expensive and require
access to the environment simulator, so we focus on other choices of distributions.

A.12.3 SPARSE REWARD ABLATION

We ablate our planar EPIC Loss visualizations with sparse rewards. Instead of a well-shaped goal-
reaching reward, we use sparse rewards based on the tolerance to the goal. We define the tolerance
as the radius the agent must be within if our 2d planar environment is scaled to [0, 1] x [0, 1]. With
a very sparse reward, we show that EPIC losses are largely uninformative. However, by slightly
relaxing the tolerance, we show a much better shaped EPIC loss landscape that bears similarity to
that of Figure 5. Thus, while our method is dependent on access to extrinsic rewards, and ideally,
shaped rewards, we show that the EPIC loss landscape over sparse reward landscapes with sufficient
tolerance can be optimized.

EPIC Loss Visualizations

Figure 8: We examine EPIC losses between extrinsic rewards and intrinsic rewards conditioned on
the skill vector. We sweep across the 2D skill vector for a pretrained planar agent. Left: Sparse
goal-reaching reward with tolerance of 0.03. Right: Sparse goal-reaching reward with tolerance of
of 0.07.
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