
Cost-Sensitive Freeze-thaw Bayesian Optimization
for Efficient Hyperparameter Tuning

Dong Bok Lee1 Aoxuan Silvia Zhang1∗ Byungjoo Kim1* Junhyeon Park1*

Steven Adriaensen2 Juho Lee1 Sung Ju Hwang1,3 Hae Beom Lee4

1KAIST 2University of Freiburg 3DeepAuto.ai 4Korea University

markhi@kaist.ac.kr haebeomlee@korea.ac.kr

Abstract

In this paper, we address the problem of cost-sensitive hyperparameter optimiza-
tion (HPO) built upon freeze-thaw Bayesian optimization (BO). Specifically, we
assume a scenario where users want to early-stop the HPO process when the ex-
pected performance improvement is not satisfactory with respect to the additional
computational cost. Motivated by this scenario, we introduce utility in the freeze-
thaw framework, a function describing the trade-off between the cost and perfor-
mance that can be estimated from the user’s preference data. This utility function,
combined with our novel acquisition function and stopping criterion, allows us to
dynamically continue training the configuration that we expect to maximally im-
prove the utility in the future, and also automatically stop the HPO process around
the maximum utility. Further, we improve the sample efficiency of existing freeze-
thaw methods with transfer learning to develop a specialized surrogate model for
the cost-sensitive HPO problem. We validate our algorithm on established multi-
fidelity HPO benchmarks and show that it outperforms all the previous freeze-
thaw BO and transfer-BO baselines we consider, while achieving a significantly
better trade-off between the cost and performance. Our code is publicly available
at https://github.com/db-Lee/CFBO.

1 Introduction

Hyperparameter optimization [HPO; 9, 22, 8, 48, 16, 34, 12] stands as a crucial challenge in the
domain of deep learning, given its importance in achieving optimal empirical performance. Unfor-
tunately, the field of HPO for deep learning remains relatively underexplored, with many practition-
ers resorting to simple trial-and-error methods [8, 34]. Moreover, traditional black-box Bayesian
optimization (BO) approaches for HPO [9, 48, 12] face limitations when applied to deep neural net-
works due to the impracticality of evaluating a vast number of hyperparameter configurations until
convergence, each of which may take several days.

Recently, multi-fidelity HPO [53, 34, 14, 4, 62, 3, 24, 44] has gained increasing attention to improve
the sample efficiency of traditional black-box HPO. It leverages lower-fidelity information (e.g.,
validation accuracies at fewer training epochs) to predict and optimize performance at higher or full
fidelity (e.g., validation accuracies at the last training epoch). Furthermore, unlike black-box HPO,
multi-fidelity HPO dynamically selects hyperparameter configurations even before finishing a single
training run, demonstrating its ability of finding better configurations sample-efficiently.

∗Equal Contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/db-Lee/CFBO

However, one critical limitation of the conventional multi-fidelity HPO frameworks is their lack of
awareness of the trade-off between the cost and performance. For example, given a limited amount
of total credits, customers of cloud computing services (e.g., GCP, AWS, or Azure) can heavily
penalize the cost of HPO relative to its performance to conserve credits for other tasks. A similar
scenario applies to task manager users such as Slurm, who aim to optimize their allocated time within
a computing instance. In such cases, users may prefer that the HPO process focuses on exploiting
the current belief about good hyperparameter configurations rather than exploring new ones, to
efficiently consume their limited resources. However, existing methods [53, 34, 14, 4, 62, 3, 24, 44]
generally do not consider this scenario, as they typically assume a sufficiently large budget (e.g.,
total credits or allocated time) and aim to achieve the best performance on a validation set.

BO steps
Pe

rfo
rm

an
ce

 o
f B

O

(i.
e.

, B
es

t v
al

. p
er

fo
rm

an
ce

so
 fa

r)

0.2

BO trajectory
Maximum utility

b* B

0.3

0.4

0.5

0.6

0.7
0.80.91.0

Figure 1: A concept of user utility.

Utility: trade-off between cost and performance.
Therefore, in this paper, we introduce a more sophis-
ticated notion of cost sensitivity for HPO. Specifi-
cally, we assume that users have their own prefer-
ences regarding the trade-off between the cost and
performance of HPO. We formalize this trade-off
in a utility function that represents user preferences
and can be estimated from user preference data. It
assigns higher values as costs decrease and perfor-
mance increases, and vice versa. Some users may
strongly penalize the budget spent on HPO, while
others may penalize it weakly or not at all, as in the
conventional multi-fidelity HPO. We explicitly max-
imize this utility by dynamically selecting hyperpa-
rameter configurations expected to achieve the great-
est improvement in the future and by automatically
terminating the BO around the maximum utility instead of halting at an arbitrary target budget.

Fig. 1 illustrates the concept of utility: the red line shows the BO trajectory, and the blue asterisk
marks the maximum utility (around 0.7) achieved at budget b∗. This example heavily penalizes the
additional cost, although extending the BO to the full budget B could yield better performance.

Solving this problem requires our method to have the following capabilities. Firstly, it should sup-
port freeze-thaw BO [53, 44], an advanced form of multi-fidelity BO that dynamically pauses
(freezes) and resumes (thaws) hyperparameter configuration trainings based on future performance
extrapolated from a set of partially observed learning curves (LCs) with various configurations. Such
efficient and fine-grained allocation of computational resources aligns well with the goal of achiev-
ing the best trade-off between cost and performance in multi-fidelity HPO. Secondly, freeze-thaw
BO requires that its surrogate function be capable of LC extrapolation [24, 2, 44]. In our case, this
is critical for making probabilistic inferences about future utilities, which guide the selection of the
best configuration and enable precise early stopping of the HPO. Lastly, since users are assumed
to prefer stopping HPO as early as possible when performance saturates, LC extrapolation must
be accurate even in the early stages of HPO. Therefore, it is essential to use transfer learning to
maximize the sample efficiency of BO [3] and to prevent premature stopping.

Based on these criteria, we introduce our novel Cost-sensitive Freeze-thaw BO (CFBO), which
effectively maximizes utility using the three components mentioned above. We first explain the
notation and background2 on freeze-thaw BO and Prior-Fitted Networks [PFNs; 39, 2, 44] for LC
extrapolation (§2). We define the utility function and explain how to estimate it from user pref-
erence data3 (§3.1). We describe the acquisition function and the stopping criterion specifically
developed for our problem setting, explaining how they achieve a good trade-off between cost and
performance (§3.2 and §3.3). We show how to train a PFN using existing real-world LC datasets to
create a sample-efficient in-context surrogate function for freeze-thaw BO, which effectively cap-
tures correlations between different hyperparameter configurations (§3.4). Finally, we empirically
demonstrate the superiority of CFBO on a diverse set of utility functions, three multi-fidelity HPO
benchmarks, and a real-world object detection LC dataset we collected, showing that it significantly
outperforms relevant baselines, including transfer-BO (§4).

2We defer the discussion of related work, e.g., early-stopping BO methods, to Appendix A.
3Some users may already have an exact form of their utility function, but for others, we provide a method

to quantify it based on their preference data.

2

We summarize our contributions and findings as follows:

• We propose a new problem formulation, cost-sensitive multi-fidelity HPO, which focuses on max-
imizing the trade-off between cost and performance (i.e., utility) as defined by users, rather than
optimizing asymptotic validation performance.

• We introduce a novel acquisition function and stopping criterion specifically designed for this
problem formulation, incorporating transfer learning to enhance in-context LC extrapolation.

• We extensively validate the effectiveness of our method across diverse cost-sensitive multi-fidelity
HPO scenarios using three popular LC benchmarks.

2 Background and Related Work

Notation. Let X = {x1, . . . , xN} denote the set of hyperparameter configurations, where xn ∈
Rdx and N is the number of configurations [62, 24, 44]. Let t ∈ [T] := {1, . . . , T} denote the
training epochs, with T being the last epoch, and yn,1:T := (yn,1, . . . , yn,T) ∈ [0, 1]T the measure
of model performance to be maximized, e.g., a learning curve (LC) of validation accuracies with
xn. We now introduce the notation for multi-fidelity BO. tn < T denotes the last observed epoch
of xn if the model performance of xn is partially observed (yn,1:tn). Let B denote the total budget
spent during BO, and ỹb ∈ [0, 1] the best cumulative performance achieved up to budget b ∈ [B],
respectively. See Tab. 4 in Appendix B for a summary of the notation used throughout this paper.

Freeze-thaw BO. Freeze-thaw BO [53] is an advanced form of multi-fidelity BO, which aims
to maximize the best cumulative performance ỹB by efficiently allocating the limited total budget
B. Assuming that we allocate one budget unit (i.e., one epoch) for each freeze-thaw BO step,
it allows us to dynamically select and evaluate the best hyperparameter configuration xn∗ , with
n∗ ∈ [N] denoting the corresponding index, while pausing the evaluation of the previously selected
configuration. Specifically, given the context C = {(x, t, y)}, which represents a set of partial (or
full) LCs collected up to a specific BO step (i.e., history), we select one configuration xn∗ ∈ X
that maximizes a predefined acquisition function (e.g., the expected improvement [38]). We then
evaluate the selected configuration xn∗ for one additional budget unit (i.e., one epoch) and observe
yn∗,tn∗+1. Next, we update the history C with (xn∗ , tn∗ + 1, yn∗,tn∗+1). The cumulative best
validation performance ỹb is updated accordingly. This process is repeated for B steps. Please see
Alg. 1 for the pseudocode (except for the blue parts).

PFNs for LC extrapolation. Freeze-thaw BO usually requires the ability to extrapolate LCs to
compute acquisition functions [62, 24, 44]. Among many plausible options, in this paper, we use
Prior-data Fitted Networks [PFNs; 39] for the LC extrapolation. PFNs are an in-context Bayesian in-
ference method based on Transformer [54] and show good performance in LC extrapolation [2, 44]
without computationally expensive online retraining [62, 24]. Specifically, after training, they
allow us to approximate the posterior predictive distribution (PPD) with a single forward pass:
pθ(y|x, t, C) ≈ p(y|x, t, C), where pθ is the approximate PPD parameterized by θ. This is achieved
by minimizing the cross-entropy for predicting the hold-out example’s label y, given x, t, and C:

L(θ) = E(x,t,y),C∼p(D) [− log pθ(y|x, t, C)] , (1)

where p(D) is a prior from which we can sample infinitely many synthetic training data. We defer
the architectural and training details to Appendix E.

Related work. We defer the discussion of related work on (1) multi-fidelity HPO, (2) freeze-
thaw BO, (3) LC extrapolation, (4) transfer-BO, (5) cost-sensitive HPO, (6) early stopping BO,
(7) BO with user preferences, and (8) neural processes to Appendix A.

3 Method: Cost-sensitive Freeze-thaw Bayesian Optimization (CFBO)

We now introduce our method, Cost-sensitive Freeze-Thaw Bayesian Optimization (CFBO), sum-
marized in Alg. 1, where the blue components indicate the parts specific to our approach.

3.1 Utility: Trade-off between Cost and Performance

Utility function. A utility function U : (b, ỹb) ∈ [B] × [0, 1] 7→ [0, 1] describes the trade-off
between the budget b and the best cumulative performance ỹb. Its value decreases with increasing

3

b and increases with increasing ỹb. We assume that the utility is given by the users. For example,
it can be simply defined as U(b, ỹb) = ỹb − α

(
b
B

)c
, where 0 ≤ α ≤ 1 is a penalty coefficient and

c = 1, 2, or 0.5 for a linear, quadratic, or square-root utility, respectively. Furthermore, the total
budget limit can be modeled by setting U(b, ỹb) = −∞ if b > B otherwise ỹb.

Utility estimation. It is often challenging for users to quantify their preference on the trade-off.
We therefore propose to use the Bradley-Terry model [10] for utility estimation:

p(U(b, ỹb) > U(b′, ỹ′b′)) =
exp(U(b, ỹb) /τ)

exp(U(b, ỹb) /τ) + exp(U(b′, ỹ′b′) /τ)
. (2)

where U is the user utility we want to estimate, and τ is a temperature hyperparameter. Eq. 2
describes the probability that the user prefers (b, ỹb) to (b′, ỹ′b′) in terms of utility U . Following
the preference learning literature [6], we can collect user preference data by asking users which
point they prefer: (1) sampling a pair of points (b, ỹb), (b

′, ỹ′b′), (2) labeling user preference la-
bel y> ∈ {0, 1} as 1 if U(b, ỹb) > U(b′, ỹ′b′) otherwise 0, and (3) constructing a dataset DU :=
{((b, ỹb), (b′, ỹ′b′), y>)}. We then optimize the parameter of the utility function (e.g., the penalty
coefficient α) by minimizing the binary cross-entropy loss ℓ(x, y) := −y log x− (1−y) log(1−x):

1

|DU |
∑

(b,ỹb),(b′,ỹ′
b′),y>∈DU

ℓ
(
p (U (b, ỹb) > U (b′, ỹ′b′)) , y>

)
. (3)

0 50 100 150 200 250 300
Total Budget Spent (b)

0.0

0.2

0.4

0.6

0.8

Cu
m

ul
at

iv
e

Be
st

 (y
b)

-0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

Figure 2: An example of utility
function estimation.

An example of utility estimation. Fig. 2 illustrates an exam-
ple of our utility estimation process. Here, we assume a sim-
ulated user who consistently favors outcomes that improve upon
the baseline freeze-thaw HPO trajectory, e.g., ifBO [44]. We first
run ifBO for up to 300 budgets and obtain ∀b ∈ [B], ỹb, where
ỹb denotes the best cumulative performance of BO up to bud-
get b. For each b ∈ {51, . . . , 300}, we then sample ỹ

(up)
b ∼

Uniform(ỹb, 1) and ỹ
(down)
b ∼ Uniform(0, ỹb), and record the

preference U(b, ỹ
(up)
b) > U(b, ỹ

(down)
b). We exclude the initial bud-

gets b ∈ {1, . . . , 50} to prevent the utility model from overfitting to
the early steep improvements. This simulates a user who always prefers outcomes above the base-
line trajectory. The solid black line in Fig. 2 represents the ifBO trajectory (ỹb), the dotted blue lines
indicate the estimated utility, and the yellow asterisk marks the maximum utility. We observe that
the utility reaches its maximum when the improvement becomes saturated.

In practice. We recommend providing a small library of functional forms—e.g., linear (c = 1),
quadratic (c = 2), square-root (c = 0.5), or staircase—and fitting the utility via preference learning
using Eqs. 2 and 3. Assuming the true utility of users follows one of these forms, Appendix C shows
that it can be recovered with only a few pairwise comparisons (e.g., 30 pairs).

3.2 Acquisition

Utility

Uprev

b1 b2 b3b
BO steps

EI

x1 x2

x3

Figure 3: An illustration of A in Eq. 4.

EI-based acquisition function. We define the acquisition
function A(n;U) for maximizing utility based on the Expected
Improvement (EI) method [38]:

A(n;U) := max
∆t∈[T−tn]

Eyn,·∼pθ

[
[U(b+∆t, ỹb+∆t)− Up]

+
]
,

(4)

where [x]+ := max(x, 0). In Eq. 4, we first extrapolate
yn,· := {yn,tn+∆t | ∆t ∈ [T − tn]}, the remaining part of
the learning curve (LC) associated with xn, using pθ. Then,
we compute the corresponding cumulative best performances
{ỹb+∆t | ∆t ∈ [T − tn]}. According to the definition in §2,
ỹb+∆t is computed by taking the maximum of the previous best performance ỹb and the newly ex-
trapolated validation performances yn,tn+1, . . . , yn,tn+T . Based on the updated budget b+∆t and
the corresponding performance ỹb+∆t, we compute the utility and its expected improvement over

4

the previous utility Up. The expectation is evaluated over the distribution of LC extrapolations (pθ),
using Monte Carlo estimation (detailed in Appendix F). Finally, the acquisition A(n;U) for each
configuration index n is determined by selecting the best increment ∆t ∈ [T − tn] that maximizes
the expected improvement. We then choose the best index over configurations n∗ that maximizes
A(n;U), i.e., n∗ = argmaxn A(n;U). Assuming three configurations x1, x2, and x3, Fig. 3 illus-
trates the selection of configuration x3.

Algorithm 1 Cost-Sensitive Freeze-thaw BO.
Blue parts correspond to specifics of our method.

1: Input: X : hyperparameter configuration space
2: pθ : LC extrapolator with transfer learning
3: A : acquisition function
4: B : total HPO budget
5: U : utility function
6: δ or β, γ : threshold hyperparameters
7: ỹ0 ← −∞, C ← ∅, t1, . . . , tN ← 0, Up ← 0, R̂b ← 0
8: for b = 1, . . . , B do
9: n∗ ← argmaxn A(n;U) ▷ Acquisition in Eq. 7

10: δb ← BetaCDF(pb;β, β)
γ ▷ pb in Eq. 4

11: if R̂b > δ or δb then
12: break ▷ Stopping criterion
13: end if
14: Evaluate yn∗,tn∗+1 with xn∗

15: C ← C ∪ {(xn∗ , tn∗ + 1, yn∗,tn∗+1)}
16: ỹb ← max(ỹb−1, yn∗,tn∗+1)
17: tn∗ ← tn∗ + 1
18: Up ← U(b, ỹb)

19: R̂b ← Ûmax−Up

Ûmax−Ûmin
▷ Estimated regret in Eq. 5

20: end for
21: Output: The model trained with x∗ up to the t∗-th epoch

s.t. (x∗, t∗, y∗) := argmax(x,t,y)∈C y

Differences from existing EI. The main
differences between our acquisition func-
tion in Eq. 4 and the usual EI-based acqui-
sition are twofold. First, instead of max-
imizing the expected improvement of the
validation performance y, we maximize
the EI of utility. Second, rather than fix-
ing the target epoch for evaluating the ac-
quisition to the last epoch T [24] or using
a random increment [44], we dynamically
select the best target epoch that is expected
to yield the highest improvement in utility.

These aspects enable our BO framework
to carefully select configurations at each
suggestion step, aiming to achieve the
best trade-off between the cost and per-
formance of the HPO process. Specifi-
cally, the acquisition function initially fa-
vors configurations that are expected to
yield strong asymptotic validation perfor-
mances y. However, as the BO pro-
gresses, the acquisition function gradually
becomes greedier as the performance sat-
urates and the associated cost begins to
dominate the utility function (empirically
illustrated in Figs. 8a to 8c of §4.3). Consequently, the acquisition function shifts from exploration
to exploitation—prioritizing the current configurations over selecting new ones to maximize short-
term performance.

Utility is irreversible. Note that Up in Eq. 4, the reference value for EI, is not the greatest utility
achieved so far (corresponds to f∗ in the typical EI A(x) := Ef [f − f∗]+). Instead, it is set to
the utility value achieved most recently (i.e., Up in line 18 of Alg. 1), as the computational budgets
spent are irreversible. This also contrasts with typical EI-based BO settings, where all previous
evaluations remain meaningful, allowing the reference value can be set to the maximum among
them. Consequently, Up can either increase or decrease during the BO process.

3.3 Stopping Criterion

Regret-based criterion. The next question is how to properly stop the HPO around the maximum
utility. We propose stopping when the following criterion is satisfied:

R̂b :=
Ûmax − Up

Ûmax − Ûmin
> δ. (5)

In Eq. 5, Up is the utility value at the previous step b−1, Ûmax is defined as the maximum utility value
seen up to the previous (b− 1) step, and Ûmin = U(B, ỹ1). The role of Ûmax and Ûmin is to roughly
estimate the maximum and minimum utility achievable over the course of BO, respectively. R̂b ∈
[0, 1] can be seen as roughly estimated normalized regret at the current step b. This regret-based
criterion terminates the BO process once the estimated regret exceeds a predefined threshold δ ∈
[0, 1]. The intuition is pessimistic: if the current utility regret is already high, it is unlikely that
further optimization will yield a significant improvement, and thus the BO process is terminated.

Adaptive threshold. We can fix the threshold δ as a hyperparameter in Eq. 5 (e.g., baselines);
however, this approach does not account for possibility of potential improvement in the future. To

5

address this, we propose an adaptive threshold based on the probability of improvement [PI; 38]:

δb = BetaCDF(pb;β, β)
γ , β, γ > 0, (6)

pb = max
∆t∈[T−tn]

Eyn∗,·∼pθ
[1 (U (b+∆t, ỹb+∆t) > Up)] . (7)

Here, BetaCDF is the cumulative distribution function (CDF) of the Beta distribution, and 1 is
the indicator function. The PI pb in Eq. 7 represents the probability that the selected configuration
xn∗ using Eq. 4 improves Up in some future BO step. Intuitively, we aim to defer termination as
pb increases and vice versa. This behavior is incorporated into Eq. 6—as pb increases, the adaptive
threshold δb also increases because BetaCDF(·;β, β)γ is a monotonically increasing function in
[0, 1]. Consequently, according to Eq. 5, there is less motivation to terminate the BO process when
pb is high. For our CFBO, we use the adaptive threshold δb instead of the fixed threshold δ in Eq. 5.

0.0 0.2 0.4 0.6 0.8 1.0
pb

0.0

0.2

0.4

0.6

0.8

1.0

b
=

Be
ta

CD
F(

p b
;

,
)

= log0.5 0.9
= log0.5 0.8
= log0.5 0.7
= log0.5 0.6
= log0.5 0.5
= log0.5 0.4
= log0.5 0.3
= log0.5 0.2
= log0.5 0.1

pb = 0.5

(a) Varying γ

0.0 0.2 0.4 0.6 0.8 1.0
pb

0.0

0.2

0.4

0.6

0.8

1.0
= exp(10)
= exp(3)
= exp(2)
= exp(1)
= exp(0)
= exp(1)
= exp(2)
= exp(3)
= exp(10)

(b) Varying β

Figure 4: (a) δb vs. pb for varying γ with β = exp(−1).
(b) δb vs. pb for varying β with γ = log0.5 0.2.

Role of γ and β. Fig. 4a shows
that γ controls δb at pb = 0.5. For
example, if we set γ = log0.5 0.2, δb
becomes 0.2 when pb = 0.5 regard-
less of β. By controlling γ, we can
set the threshold to a proper value
when the PI is uncertain (pb = 0.5).
Fig. 4b illustrates the effect of β. As
β → 0, δb becomes horizontal, fix-
ing δb at 0.2 regardless of pb. This
results in ignoring the PI pb. In
contrast, as β → ∞, δb becomes
vertical, causing δb to take binary
values, either 0 or 1, depending on
whether pb > 0.5 or not. This corre-
sponds to a purely PI-based crite-
rion. Thus, β provides a smooth interpolation that controls the degree to which the PI pb in Eq. 7 is
incorporated into the adaptive threshold δb in Eq. 6 and the stopping criterion in Eq. 5.

3.4 Transfer Learning with LC mixup

Motivation. Since users may want to early-stop the BO process, it is crucial to ensure an accurate
LC extrapolation to prevent premature stopping during the early stages of BO. To address this, we
propose the use of transfer learning to maximize the sample efficiency of LC extrapolators.

As discussed in §2, among various plausible options, we employ PFNs [39] for LC extrapolation.
Regarding the network architecture and training objective, we primarily follow ifBO [44], with more
details deferred to Appendix E. A significant challenge in using PFNs for our purpose is that PFNs
require relatively large Transformer architectures and massive amounts of training examples for
strong generalization [2], making it risky to train them on a limited data.

LC Mixup. To overcome these challenges, we propose a novel transfer learning approach using
the mixup strategy [66]. Assume that we have M different training LC datasets and the correspond-
ing M sets of LCs collected from N hyperparameter configurations. Let l(m)

n = [y
(m)
n,1 , . . . , y

(m)
n,T]

be a T -dimensional vector representing the validation performances of the m-th dataset and the n-th
configuration, forming a complete LC of length T . Define the matrix L(m) = [l

(m)
1 ; . . . ; l

(m)
N]⊤ ∈

RN×T as the stack of these LCs. To augment LCs, we propose two consecutive mixup strategies
across datasets and configurations:

• Dataset: Sample a new LC dataset as L′ = λ1L
(m) +(1−λ1)L

(m′), where λ1 ∼ Uniform(0, 1)
and m,m′ ∈ [M].

• Configuration: Sample a new configuration x′ = λ2xn + (1− λ2)xn′ and its corresponding LC
l′ = λ2ln + (1 − λ2)ln′ , where ln and ln′ denote the n-th and n′-th rows of L′, respectively,
λ2 ∼ Uniform(0, 1), and n, n′ ∈ [N].

Using this approach, we can sample infinitely many training examples {(x′, l′)} by interpolating
between LCs, resulting in a robust LC extrapolator with reduced overfitting.

6

4 Experiments

We next empirically validate the proposed method on various cost-sensitive multi-fidelity HPO set-
tings. Our code is publicly available at https://github.com/db-Lee/CFBO.

4.1 Experimental Setups

Table 1: Dataset overview.
Dataset dx |X | T Train Test

LCBench [67] 7 2,000 51 20 datasets 15 datasets
TaskSet [37] 8 1,000 50 21 tasks 9 tasks
PD1 [56] 4 240 50 16 tasks 7 tasks

Datasets. We evaluate CFBO on three
standard LC benchmarks. LCBench [67]:
contains learning curves of MLPs trained
on multiple tabular datasets, TaskSet [37]:
provides diverse optimization tasks across
domains; we focus on 30 NLP tasks (text
classification and language modeling), and PD1 [56]: includes learning curves of modern neu-
ral architectures, such as Transformers, trained on large-scale datasets (CIFAR-10/100 [31], Ima-
geNet [45], and bioinformatics corpora). We split each benchmark into disjoint training and test
tasks for transfer learning of LC extrapolators pθ. Detailed dataset statistics are summarized in
Tab. 1, and additional descriptions are provided in Appendix D.

Baselines without transfer learning. We compare CFBO with a wide range of multi-fidelity HPO
methods. Random Search [8] sequentially samples configurations at random. We also evaluate two
Hyperband [34] variants: BOHB [14], which replaces random sampling with BO, and DEHB [4],
which integrates evolutionary strategies for knowledge transfer. Among recent multi-fidelity BO
methods, we include DyHPO [62], which combines a deep kernel Gaussian Process [GP; 58] with
greedy short-horizon LC extrapolation; DPL [24], which fits power-law functions with ensemble
modeling; and ifBO [44], a PFN-based [39] freeze-thaw BO method using PI acquisition at random
future epochs. For a fair comparison, we use a non-transfer (NT) variant, CFBO-NT, with the
LC extrapolator of ifBO: excludes transfer-learning with LC mixup in §3.4, but retains A(·;U)
(cf. Eq. 4 in §3.2) and stopping criterion with the adaptive threshold δb (cf. Eqs. 5–7 in §3.3).

Baselines with transfer learning. Quick-Tune†[3] corresponds to the transfer-learning version of
DyHPO, trained on the same LC datasets as our extrapolator. FSBO [60] is a black-box transfer-BO
method that uses the same LC datasets to train a deep kernel GP surrogate. The both do not use the
LC mixup in §3.4. The key difference from Quick-Tune† lies in the prediction target: FSBO predicts
the final-epoch performance, whereas Quick-Tune† extrapolates the next-epoch performance.

Implementation details for CFBO and the baselines are provided in Appendix F.

Utility function. It is possible to manually collect user preference data and estimate the corre-
sponding utility function (§3.1). In our experiments, however, we simplify this process by using a
linear, quadratic or square root function, i.e., U(b, ỹb) = ỹb − α

(
b
B

)c
, where c ∈ {1, 2, 0.5}, with

α ∈ {0, 2−6, 2−5, 2−4, 2−3, 2−2}. Notably, setting α = 0 removes any penalty associated with the
budget b spent during HPO, causing the HPO process to continue until the final step B, as in the
conventional multi-fidelity HPO setup.

Threshold hyperparameters δ, γ, and β. For the baselines, we set the threshold δ = 0.2 in Eq. 5,
as it performs well on the training split. For CFBO, we also use γ = log0.5 0.2, which corresponds
to the adaptive threshold δb = 0.2 when pb = 0.5, to ensure a fair comparison with the baselines.
We use β = exp(−1) for all experiments in this paper, except for the ablation study in Fig. 8d.

Evaluation protocol. We set the maximum budget4 as B = 300 and report:

R :=
Umax − Up

Umax − Umin
∈ [0, 1], where Umax := max

n,t
U(t, yn,t) and Umin ≈ min

n
U(B, yn,1), (8)

which is similar to Eq. 5, but uses the true Umax and Umin. Here, Up is the utility at termination (e.g.,
after break in line 12 of Alg. 1). Umax := maxn,t U(t, yn,t) denotes the maximum utility achievable
by a single optimal configuration. Since exact computation of Umin is intractable, we approximate it
as minn U(B, yn,1), where yn,1 is the first epoch performance. We report mean±std of normalized
regrets over 5 runs (30 for Random, BOHB, and DEHB) and the average rank across all tasks.

†Modified version without pretrained model selection or wall-time balancing.
4While prior work [62, 44] uses B = 1,000, we set B = 300 to better show the benefit of transfer learning.

7

https://github.com/db-Lee/CFBO

Random
ifBO

BOHB
CFBO-NT

DEHB
Quick-Tune

DyHPO
FSBO

DPL
CFBO

0 100 200 300

10 2

10 1

No
rm

al
ize

d
Re

gr
et

LCBench

0 100 200 300

Taskset

0 100 200 300

PD1

Total Epochs Spent

Figure 5: Results on conventional multi-fidelity HPO (α = 0). X and O markers denote non-transfer and
transfer learning methods, respectively.

10 2

10 1

No
rm

al
ize

d
Re

gr
et

LCBench
Linear (c=1)

Taskset
Linear (c=1)

PD1
Linear (c=1)

PD1
Square (c=2)

PD1
Square-Root (c=0.5)

2 6 2 5 2 4 2 3 2 2
1
3
5
7
9

Ra
nk

2 6 2 5 2 4 2 3 2 22 6 2 5 2 4 2 3 2 22 6 2 5 2 4 2 3 2 22 6 2 5 2 4 2 3 2 2

{2 6, 2 5, 2 4, 2 3, 2 2}

Figure 6: Results on cost-sensitive multi-fidelity HPO (c ∈ {1, 2, 0.5} and α ∈ {2−6, 2−5, 2−4, 2−3, 2−2}).

0 100 200 300
10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

Figure 7: Visualization of the normalized regrets on PD1 benchmark. See Appendix G for the others.

4.2 Main Results

Results on conventional multi-fidelity HPO (α = 0). We first validate the effectiveness of the
proposed CFBO in conventional multi-fidelity HPO setups (α = 0). The results are presented
in Fig. 5, where non-transfer learning and transfer learning methods are denoted by X and O
markers, respectively. Notably, although our methods are not specifically designed for conventional
setups (α = 0), they achieve results comparable to the baselines. For example, CFBO-NT, the
non-transfer learning variant, performs on par with the best non–transfer baseline, ifBO. Similarly,
CFBO achieves comparable performance to transfer-BO baselines, showing better normalized regret
on TaskSet and PD1, and slightly higher regret on LCBench compared to FSBO.

Results on cost-sensitive multi-fidelity HPO (α > 0). In real-world scenarios, utility functions
can take various forms and may be defined differently by different users. To evaluate the effec-
tiveness of CFBO under such realistic cost-sensitive settings, we conduct experiments on vari-
ous utility functions, including linear (c = 1), square (c = 2), and square-root (c = 0.5), with
α ∈ {2−6, 2−5, 2−4, 2−3, 2−2}. Fig. 6 presents the normalized regret (first row) and rank (second
row) for each method. First, CFBO-NT not only outperforms all non–transfer learning base-
lines (denoted with the X markers) but also surpasses a strong transfer-learning baseline (i.e.,
FSBO) in several settings—e.g., most PD1 cases in terms of rank—except for c = 2 and α = 2−6.
CFBO exceeds all relevant baselines in most settings, except TaskSet with c = 1 and α = 2−2,
demonstrating the robustness of our method to variations in the utility function.

8

0 50 100 150 200 250 300
Total Epochs Spent

10 2

10 1

No
rm

al
ize

d
Re

gr
et

CFBO
DyHPO
DPL
Quick-Tune

(a) Optimal regret of xn∗

0 50 100 150 200 250 300
Total Epochs Spent

0.0

0.2

0.4

0.6

0.8

1.0

t /
 T

CFBO
DyHPO
DPL
Quick-Tune

(b) ∆t

0 2 4 6 8
HP Index Sorted by Freq. Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

. R
at

io

CFBO (= 2 2)
CFBO (= 2 5)
CFBO (= 0)
DyHPO (= 2 2)
DPL (= 2 2)
Quick-Tune (= 2 2)

(c) Top-10 distribution

-10 -3 -2 -1 0 1 2 3 10
log

10 2

2 × 10 2

3 × 10 2

4 × 10 2

No
rm

al
ize

d
Re

gr
et

LCBench
TaskSet
PD1
Average

(d) Varying β

Figure 8: (a) Optimal regret of the selected configuration xn∗ at a future step b +∆t. (b) Future ∆t in (a)
at which the optimal regret of xn∗ is achieved. (c) Distribution of the top-10 hyperparameter configurations
selected during BO. (d) Normalized regrets with varying β of BetaCDF(·, β, β)γ in Eq. 7 (γ = log0.5 0.2).

Visualization. We also visualize the normalized regret during the BO process using a task from
the PD1 benchmark in Fig. 7. Asterisks indicate stopping points, while dotted lines represent the
normalized regret achievable without stopping. Although our CFBO struggles to stop near the max-
imum utility (minimum regret) during the BO process when the penalty is weak (α ∈ {2−6, 2−5}),
the regrets obtained at those points are still lower than the baselines. In addition, CFBO success-
fully stops almost at the optimum when the penalty is stronger (α ∈ {2−4, 2−3, 2−2}).

Table 2: Wall-clock time (seconds) per BO step
on LCBench, TaskSet, and PD1.

Method LCBench TaskSet PD1

DPL [24] 0.65±0.02 0.64±0.01 0.63±0.01

ifBO [44] 0.58±0.01 0.30±0.00 0.08±0.00

CFBO (ours) 1.52±0.02 0.78±0.01 0.23±0.01

Algorithm runtime. In Tab. 2, we report the av-
erage wall-clock time per BO step over five runs for
DPL [24], ifBO [44], and CFBO. All measurements
are conducted on a single A100 GPU. While ifBO is
the most efficient method, the difference between the
wall-clock times of ifBO and CFBO is negligible,
as neural network training dominates the total wall-
clock time in HPO (e.g., 90 seconds for ResNet-50 [20] per training epoch in CIFAR-10/100 [31]).

Real-world object detection dataset. We evaluate CFBO on a real-world object detection dataset
and observe that it achieves the best performance (in terms of both normalized regret and rank)
among all baselines. Details and additional experimental results are provided in Appendix G.

4.3 Analysis

Ablation study. To evaluate the effectiveness of each component, we conduct ablation studies
on the proposed (1) stopping criterion (§3.3), (2) acquisition function (§3.2), and (3) transfer
learning with the LC mixup (§3.4) on the PD1 benchmark. For (1) the stopping criterion, we
compare two approaches: the smoothly mixed criterion with our adaptive threshold (δb ✓) and the
only regret-based criterion with a fixed threshold δ (δb ✗), which is used by the baselines. For (2) the
acquisition function, we use either our proposed approach (Eq. 4; A ✓) or the acquisition function
of ifBO [44, A ✗]. For (3) transfer learning, we compare our surrogate trained with the proposed
mixup strategy (T. ✓) against the ifBO [44] which is only trained on synthetic prior data (T. ✗).

Table 3: Results of ablation studies using the PD1 benchmark.
For better readability, we multiply 100 to normalized regrets.

δb A T. α

0 2−6 2−5 2−4 2−3 2−2

✗ ✗ ✗ 0.8±0.1 2.3±0.1 3.7±0.3 6.0±0.6 9.8±1.1 15.2±2.0

✗ ✗ ✓ 0.2±0.0 1.7±0.1 3.2±0.1 5.9±0.3 9.4±0.4 11.7±0.4

✗ ✓ ✓ 0.2±0.0 1.5±0.0 2.6±0.0 4.5±0.0 6.9±0.0 8.5±0.0

✓ ✓ ✓ 0.2±0.0 1.0±0.0 1.3±0.0 0.9±0.0 1.1±0.0 1.7±0.0

In Tab. 3, comparing the first and sec-
ond rows, we see that transfer learn-
ing is relatively more effective in con-
ventional settings (α = 0) than in
cost-sensitive settings (α > 0). Com-
paring between the second and third
rows shows that our acquisition func-
tion enhances performance more in
cost-sensitive settings. Lastly, com-
paring between the third and last row shows that our adaptive threshold significantly improves per-
formance in cost-sensitive settings.

Analysis on acquisition function (§3.2). To better understand the sources of improvement, we
analyze the configurations selected by each method. Specifically, for each BO step b, we run the
configuration xn∗ currently chosen at step b up to its final epoch T and compute two metrics: the
minimum ground-truth regret R achievable at some future step b+∆t (Fig. 8a) and the correspond-
ing optimal increment ∆t (Fig. 8b). In Fig. 8a, our method achieves significantly lower minimum
regret compared to baselines. This indicates that our acquisition function in Eq. 4 performs as in-
tended, selecting at each BO step the configuration expected to maximally improve utility in the

9

https://www.nvidia.com/en-us/data-center/a100/

future. Fig. 8b shows that the configurations selected by our method initially correspond to larger
∆t values (i.e., non-greedy behavior), but progressively shift to smaller ∆t values (i.e., greedy be-
havior). This transition occurs because, as the BO progresses, the performance improvements begin
to saturate, causing the cost of BO to dominate the trade-off. Consequently, ∆t becomes smaller,
eventually approaching zero. These behaviors are not prominently observed in the baselines.

Fig. 8c shows the distribution of the top-10 most frequently selected configurations during BO. As
expected, our method tends to focus on a smaller subset of configurations, optimizing for short-
term performance, particularly under stronger penalties (i.e., larger α). The baselines exhibit exces-
sive exploration of configurations, even under the strongest penalty (i.e., α = 2−2).

Analysis on stopping criterion (§3.3). Next, we analyze the effectiveness of our stopping crite-
rion with the adaptive threshold δb defined in Eqs. 5–7. Fig. 8d presents the normalized regret in
various values of β, the mixing coefficient between the two extreme stopping criteria discussed in
§3.3. log β → 10 corresponds to the baseline criterion (the fixed threshold δ = 0.2), which relies
solely on the estimated normalized regret in Eq. 5. log β → −10 corresponds to hard thresholding
based exclusively on the PI pb in Eq. 7. The results show that the optimal criterion is achieved with
a smooth balance between the two (β = e−1), demonstrating the importance of incorporating the
possibility of further improvement through pb.

Ra
nd

om
BO

HB
DEH

B
DyH

PO DPL ifB
O

Quic
k-T

un
e

FSB
O

CFB
O-NT

CFB
O

0.00
0.01
0.02
0.03
0.04
0.05
0.06

Im
pr

ov
em

en
t

Fixed Threshold
= 0.2

Adaptive Threshold
b

Figure 9: Improvement with the optimal stopping criterion.

To further assess the significance of the
stopping criterion in cost-sensitive multi-
fidelity HPO, we quantify the improve-
ment of normalized regrets obtained by
an optimal stopping criterion for each
method. The optimal stopping criterion
assumes that the BO process is stopped
at the point of maximum utility in the
BO trajectory for each method. Fig. 9
presents the average improvement on the
PD1 benchmark across all α ∈ {2−6, 2−5, 2−4, 2−3, 2−2}. The improvement is smaller when using
the adaptive threshold δb in Eq. 6; i.e., our adaptive stopping criterion closely approximates the
optimal stopping point, leaving minimal room for improvement and demonstrating its effectiveness.

5 Conclusion

In this paper, we present cost-sensitive freeze-thaw Bayesian optimization to improve the efficiency
of hyperparameter optimization (HPO). Assuming that users aim to early-stop HPO when the utility
saturates, we introduced a novel acquisition function and stopping criterion specifically tailored
to this problem setup. Additionally, we proposed a novel transfer learning method for training a
sample-efficient in-context learning curve (LC) extrapolator. Our empirical evaluation demonstrated
the effectiveness of our approach compared to existing multi-fidelity HPO and transfer-BO methods.

Limitations and future work. We identify three main limitations of our study and outline poten-
tial directions for future research as follows:

• We focus on pool-based HPO, i.e., |X | ∈ N, which may not fully reflect real-world applications.
To enable continuous optimization over xn ∈ Rdx , a common approach [48] is to perform gradient
ascent on the hyperparameter configuration xn to maximize the acquisition function A. In this
case, A must be differentiable with respect to xn. Unfortunately, our acquisition function A(·;U)
in Eq. 4 does not satisfy this property, since the sampling from pθ (for MC estimation) is not
differentiable. Extending CFBO to this continuous setting remains an interesting direction.

• In §3.4, we explore transfer learning by training Prior-Data Fitted Networks [39] on mixed LC
datasets. Recently, Tune-Tables [15] have demonstrated strong performance in fine-tuning PFNs
on tabular datasets through context optimization. Since transfer learning is not only a key com-
ponent of our work but also widely recognized in the literature [60, 3], integrating the LC mixup
with the context optimization approach of Tune-Tables presents a promising direction.

• Our work assumes that users care only about the trade-off within a single task. In real-world
scenarios, however, users (e.g., cloud service customers) may also consider future budgets or the
costs of multiple tasks running in parallel. Developing a system that accounts for these more
complex and realistic settings would be a valuable direction.

10

Acknowledgement

We express our sincere gratitude to the anonymous reviewers (uqhd, AJQp, Ly5J, and Vxb6) for
their valuable feedback and efforts in helping us improve this paper.

Funding. This work was supported by Institute for Information & communications Technology
Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (RS-2019-II190075,
Artificial Intelligence Graduate School Program(KAIST), No.RS-2022-II220713, Meta-learning
Applicable to Real-world Problems), IITP with a grant funded by the Ministry of Science and ICT
(MSIT) of the Republic of Korea in connection with the Global AI Frontier Lab International Collab-
orative Research (No. RS-2024-00469482 & RS-2024-00509279), National Research Foundation
of Korea (NRF) grant funded by MSIT (No. RS-2023-00256259), and Center for Applied Research
in Artificial Intelligence (CARAI) grant funded by DAPA and ADD (UD190031RD).

References
[1] Majid Abdolshah, Alistair Shilton, Santu Rana, Sunil Gupta, and Svetha Venkatesh. Cost-

aware multi-objective bayesian optimisation. arXiv preprint arXiv:1909.03600, 2019.

[2] Steven Adriaensen, Herilalaina Rakotoarison, Samuel Müller, and Frank Hutter. Efficient
bayesian learning curve extrapolation using prior-data fitted networks. Advances in Neural
Information Processing Systems, 36, 2023.

[3] Sebastian Pineda Arango, Fabio Ferreira, Arlind Kadra, Frank Hutter, and Josif Grabocka.
Quick-tune: Quickly learning which pretrained model to finetune and how. In The Twelfth
International Conference on Learning Representations, 2023.

[4] Noor Awad, Neeratyoy Mallik, and Frank Hutter. Dehb: Evolutionary hyberband for scalable,
robust and efficient hyperparameter optimization. In Zhi-Hua Zhou, editor, Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages 2147–
2153. International Joint Conferences on Artificial Intelligence Organization, 8 2021. doi: 10.
24963/ijcai.2021/296. URL https://doi.org/10.24963/ijcai.2021/296. Main Track.

[5] Tianyi Bai, Yang Li, Yu Shen, Xinyi Zhang, Wentao Zhang, and Bin Cui. Transfer learning for
bayesian optimization: A survey. arXiv preprint arXiv:2302.05927, 2023.

[6] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

[7] Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Accelerating neural architec-
ture search using performance prediction. arXiv preprint arXiv:1705.10823, 2017.

[8] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal
of machine learning research, 13(2), 2012.

[9] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. Advances in neural information processing systems, 24, 2011.

[10] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

[11] Floriana Ciaglia, Francesco Saverio Zuppichini, Paul Guerrie, Mark McQuade, and Jacob So-
lawetz. Roboflow 100: A rich, multi-domain object detection benchmark. arXiv preprint
arXiv:2211.13523, 2022.

[12] Alexander I Cowen-Rivers, Wenlong Lyu, Rasul Tutunov, Zhi Wang, Antoine Grosnit,
Ryan Rhys Griffiths, Alexandre Max Maraval, Hao Jianye, Jun Wang, Jan Peters, et al. Hebo:
Pushing the limits of sample-efficient hyper-parameter optimisation. Journal of Artificial In-
telligence Research, 74:1269–1349, 2022.

11

https://doi.org/10.24963/ijcai.2021/296

[13] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hy-
perparameter optimization of deep neural networks by extrapolation of learning curves. In
Twenty-fourth international joint conference on artificial intelligence, 2015.

[14] Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Robust and efficient hyperparameter
optimization at scale. In International conference on machine learning, pages 1437–1446.
PMLR, 2018.

[15] Benjamin Feuer, Robin T Schirrmeister, Valeriia Cherepanova, Chinmay Hegde, Frank Hutter,
Micah Goldblum, Niv Cohen, and Colin White. Tunetables: Context optimization for scalable
prior-data fitted networks. Advances in Neural Information Processing Systems, 37:83430–
83464, 2024.

[16] Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and
reverse gradient-based hyperparameter optimization. In International Conference on Machine
Learning, pages 1165–1173. PMLR, 2017.

[17] Matilde Gargiani, Aaron Klein, Stefan Falkner, and Frank Hutter. Probabilistic rollouts for
learning curve extrapolation across hyperparameter settings. arXiv preprint arXiv:1910.04522,
2019.

[18] Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Es-
lami, and Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018.

[19] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and David
Sculley. Google vizier: A service for black-box optimization. In Proceedings of the 23rd ACM
SIGKDD international conference on knowledge discovery and data mining, pages 1487–1495,
2017.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 770–778, 2016.

[21] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

[22] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimiza-
tion for general algorithm configuration. In Learning and Intelligent Optimization: 5th In-
ternational Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected Papers 5, pages
507–523. Springer, 2011.

[23] Carl Hvarfner, Danny Stoll, Artur Souza, Marius Lindauer, Frank Hutter, and Luigi Nardi.
\pi bo: Augmenting acquisition functions with user beliefs for bayesian optimization. In
International Conference on Learning Representations, 2021.

[24] Arlind Kadra, Maciej Janowski, Martin Wistuba, and Josif Grabocka. Scaling laws for hy-
perparameter optimization. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

[25] Kirthevasan Kandasamy, Gautam Dasarathy, Barnabas Poczos, and Jeff Schneider. The multi-
fidelity multi-armed bandit. Advances in neural information processing systems, 29, 2016.

[26] Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider, and Barnabás Póczos. Multi-
fidelity bayesian optimisation with continuous approximations. In International conference on
machine learning, pages 1799–1808. PMLR, 2017.

[27] Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed
bandits. In International conference on machine learning, pages 1238–1246. PMLR, 2013.

[28] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[29] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast bayesian
optimization of machine learning hyperparameters on large datasets. In Artificial intelligence
and statistics, pages 528–536. PMLR, 2017.

12

[30] Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. Learning curve
prediction with bayesian neural networks. In International conference on learning representa-
tions, 2017.

[31] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[32] Eric Hans Lee, Valerio Perrone, Cedric Archambeau, and Matthias Seeger. Cost-aware
bayesian optimization. arXiv preprint arXiv:2003.10870, 2020.

[33] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan Ben-Tzur, Moritz
Hardt, Benjamin Recht, and Ameet Talwalkar. A system for massively parallel hyperparameter
tuning. Proceedings of Machine Learning and Systems, 2:230–246, 2020.

[34] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hy-
perband: A novel bandit-based approach to hyperparameter optimization. Journal of Machine
Learning Research, 18(185):1–52, 2018.

[35] Anastasia Makarova, Huibin Shen, Valerio Perrone, Aaron Klein, Jean Baptiste Faddoul, An-
dreas Krause, Matthias Seeger, and Cedric Archambeau. Automatic termination for hyper-
parameter optimization. In International Conference on Automated Machine Learning, pages
7–1. PMLR, 2022.

[36] Neeratyoy Mallik, Edward Bergman, Carl Hvarfner, Danny Stoll, Maciej Janowski, Marius
Lindauer, Luigi Nardi, and Frank Hutter. Priorband: Practical hyperparameter optimization in
the age of deep learning. Advances in Neural Information Processing Systems, 36, 2024.

[37] Luke Metz, Niru Maheswaranathan, Ruoxi Sun, C Daniel Freeman, Ben Poole, and Jascha
Sohl-Dickstein. Using a thousand optimization tasks to learn hyperparameter search strategies.
arXiv preprint arXiv:2002.11887, 2020.

[38] J Mockus, V Tiesis, and A Zilinskas. The application of bayesian methods for seeking the
extremum, vol. 2. L Dixon and G Szego. Toward Global Optimization, 2, 1978.

[39] Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter.
Transformers can do bayesian inference. In International Conference on Learning Represen-
tations, 2021.

[40] Samuel Müller, Matthias Feurer, Noah Hollmann, and Frank Hutter. Pfns4bo: In-context
learning for bayesian optimization. In International Conference on Machine Learning, pages
25444–25470. PMLR, 2023.

[41] Tung Nguyen and Aditya Grover. Transformer neural processes: Uncertainty-aware meta
learning via sequence modeling. In International Conference on Machine Learning, pages
16569–16594. PMLR, 2022.

[42] Valerio Perrone, Rodolphe Jenatton, Matthias W Seeger, and Cédric Archambeau. Scalable
hyperparameter transfer learning. Advances in neural information processing systems, 31,
2018.

[43] Matthias Poloczek, Jialei Wang, and Peter Frazier. Multi-information source optimization.
Advances in neural information processing systems, 30, 2017.

[44] Herilalaina Rakotoarison, Steven Adriaensen, Neeratyoy Mallik, Samir Garibov, Edward
Bergman, and Frank Hutter. In-context freeze-thaw bayesian optimization for hyperparam-
eter optimization. arXiv preprint arXiv:2404.16795, 2024.

[45] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

13

[46] David Salinas, Matthias Seeger, Aaron Klein, Valerio Perrone, Martin Wistuba, and Cedric
Archambeau. Syne tune: A library for large scale hyperparameter tuning and reproducible
research. In International Conference on Automated Machine Learning, AutoML 2022, 2022.
URL https://proceedings.mlr.press/v188/salinas22a.html.

[47] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4510–4520, 2018.

[48] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of ma-
chine learning algorithms. Advances in neural information processing systems, 25, 2012.

[49] Jasper Snoek, Kevin Swersky, Rich Zemel, and Ryan Adams. Input warping for bayesian
optimization of non-stationary functions. In International conference on machine learning,
pages 1674–1682. PMLR, 2014.

[50] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sun-
daram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using
deep neural networks. In International conference on machine learning, pages 2171–2180.
PMLR, 2015.

[51] Artur Souza, Luigi Nardi, Leonardo B Oliveira, Kunle Olukotun, Marius Lindauer, and Frank
Hutter. Bayesian optimization with a prior for the optimum. In Machine Learning and Knowl-
edge Discovery in Databases. Research Track: European Conference, ECML PKDD 2021,
Bilbao, Spain, September 13–17, 2021, Proceedings, Part III 21, pages 265–296. Springer,
2021.

[52] Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian optimization. Advances
in neural information processing systems, 26, 2013.

[53] Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization.
arXiv preprint arXiv:1406.3896, 2014.

[54] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[55] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu,
Yadong Mu, Mingkui Tan, Xinggang Wang, et al. Deep high-resolution representation learning
for visual recognition. IEEE transactions on pattern analysis and machine intelligence, 43(10):
3349–3364, 2020.

[56] Zi Wang, George E Dahl, Kevin Swersky, Chansoo Lee, Zachary Nado, Justin Gilmer, Jasper
Snoek, and Zoubin Ghahramani. Pre-trained gaussian processes for bayesian optimization.
arXiv preprint arXiv:2109.08215, 2021.

[57] Ying Wei, Peilin Zhao, and Junzhou Huang. Meta-learning hyperparameter performance
prediction with neural processes. In International Conference on Machine Learning, pages
11058–11067. PMLR, 2021.

[58] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel
learning. In Artificial intelligence and statistics, pages 370–378. PMLR, 2016.

[59] James Wilson. Stopping bayesian optimization with probabilistic regret bounds. Advances in
Neural Information Processing Systems, 37:98264–98296, 2024.

[60] Martin Wistuba and Josif Grabocka. Few-shot bayesian optimization with deep kernel surro-
gates. In International Conference on Learning Representations, 2020.

[61] Martin Wistuba and Tejaswini Pedapati. Learning to rank learning curves. In International
Conference on Machine Learning, pages 10303–10312. PMLR, 2020.

[62] Martin Wistuba, Arlind Kadra, and Josif Grabocka. Supervising the multi-fidelity race of hy-
perparameter configurations. Advances in Neural Information Processing Systems, 35:13470–
13484, 2022.

14

https://proceedings.mlr.press/v188/salinas22a.html

[63] Jian Wu and Peter I Frazier. Continuous-fidelity bayesian optimization with knowledge gradi-
ent. 2018.

[64] Jian Wu, Saul Toscano-Palmerin, Peter I Frazier, and Andrew Gordon Wilson. Practical multi-
fidelity bayesian optimization for hyperparameter tuning. In Uncertainty in Artificial Intelli-
gence, pages 788–798. PMLR, 2020.

[65] Qian Xie, Raul Astudillo, Peter Frazier, Ziv Scully, and Alexander Terenin. Cost-aware
bayesian optimization via the pandora’s box gittins index. Advances in Neural Information
Processing Systems, 37:115523–115562, 2024.

[66] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=r1Ddp1-Rb.

[67] Lucas Zimmer, Marius Lindauer, and Frank Hutter. Auto-pytorch: Multi-fidelity metalearning
for efficient and robust autodl. IEEE transactions on pattern analysis and machine intelligence,
43(9):3079–3090, 2021.

15

https://openreview.net/forum?id=r1Ddp1-Rb

Appendix Overview

This appendix provides supplementary materials to support the main paper as follows:

• Related Work (Appendix A): discusses the relevant literature on (1) multi-fidelity HPO, (2)
freeze-thaw BO, (3) LC extrapolation, (4) transfer BO, (5) cost-sensitive HPO, (6) early stopping
BO, (7) BO with user preferences, and (8) neural processes.

• Notation (Appendix B): summarizes an overview of the notation used throughout this paper.
• Utility Estimation (Appendix C): details how we can estimate user utility with Bradley-Terry

model [10] and provides several examples.
• Dataset (Appendix D): provides details on benchmarks (LCBench [67], TaskSet [37], PD1 [55])

and data preprocessing.
• Details on LC Extrapolator (Appendix E): contains the architectural and training details of the

LC extrapolator pθ.
• Implementation Details (Appendix F): includes implementation details of CFBO and baselines.
• Additional Experiments (Appendix G): presents additional experiments, including results on

real-world object detection datasets and visualizations of normalized regrets and LC extrapolations
during Bayesian optimization process.

A Related Work

Multi-fidelity HPO. Unlike traditional black-box approaches for HPO [8, 22, 9, 48, 50, 49, 12,
40], multi-fidelity (or gray-box) HPO aims to optimize hyperparameters in a sample-efficient manner
by utilizing low-fidelity information (e.g., validation set performances with smaller training datasets)
as a proxy for higher or full fidelities [52, 25, 29, 43, 26, 63, 64], dramatically speeding up the HPO
process. In this paper, we focus on using performances at fewer training epochs to better predict and
optimize performances at longer training epochs. One well-known example is Hyperband [34], a
bandit-based method that randomly selects a set of hyperparameter configurations and stops poorly
performing ones using successive halving [27] before reaching the last training epoch. While Hyper-
band shows much better performance than random search [8], its computational or sample efficiency
can be further improved by replacing random sampling of configurations with Bayesian optimiza-
tion [BOHB; 14], adopting an evolution strategy to promote internal knowledge transfer [DEHB; 4],
or making it asynchronously parallel [33].

Freeze-thaw BO. Freeze-thaw BO [53] dynamically pauses (freezes) and resumes (thaws) config-
urations based on the last epoch’s performances extrapolated from a set of partially observed learn-
ing curves (LCs) obtained from other configurations, leading to an efficient and sensible allocation
of computational resources. DyHPO [62] and its transfer version [3] improve the computational
efficiency of freeze-thaw BO using deep kernel Gaussian processes [GPs; 58], but their acquisition
maximizes one-step forward fidelity (i.e., epoch), producing a myopic strategy. Other recent variants
of freeze-thaw BO include DPL [24] and ifBO [44], which are non-myopic, and their acquisitions
maximize performance either at the last fidelity or random future steps. On the other hand, we
maximize the utility specified by each user.

LC extrapolation. Freeze-thaw BO requires the ability to dynamically update predictions on fu-
ture performances from partially observed learning curves (LCs), thus heavily relying on LC ex-
trapolation [7, 17, 61]. DyHPO [62] and Quick-Tune [3] propose to extrapolate LCs for only a
single step forward. Freeze-thaw BO [53] and DPL [24] use non-greedy extrapolations but limit the
shape of the LCs. [13] consider a broader set of basis functions but require computationally expen-
sive Markov Chain Monte Carlo (MCMC), and also do not consider correlations between different
configurations. [30] models interactions between configurations with Bayesian neural networks
(BNNs) but suffers from the same computational inefficiency of MCMC and online retraining. LC-
PFNs [2] are an in-context Bayesian LC extrapolation method without retraining, but they do not
consider interactions between configurations. Recently, ifBO [44] further combined LC-PFNs with
PFNs4BO [40] to develop an in-context surrogate function for freeze-thaw BO, but they train PFNs
only with a prior distribution. On the other hand, we use transfer learning with LC mixup (§3.4),
i.e., training PFNs with existing LC datasets, to improve the sample efficiency of freeze-thaw BO
while successfully encoding the correlations between configurations at the same time.

16

Transfer-BO. Transfer learning can be used to improve the sample efficiency of BO [5], and here
we list a few examples. Some recent work has explored scalable transfer learning with deep neural
networks [42, 60]. Additionally, different components of BO can be transferred, such as obser-
vations [52], surrogate functions [19, 60], hyperparameter initializations [60], or all of them [57].
However, most of the existing transfer-BO approaches assume traditional black-box BO settings.
To the best of our knowledge, Quick-Tune [3] is the only recent work that targets multi-fidelity and
transfer-BO simultaneously. However, their multi-fidelity BO formulation is greedy. As described
in Figs. 8a and 8b of §4.3, our CFBO can dynamically control the degree of greediness during BO
by explicitly taking into account the trade-off between the cost and performance of BO.

Cost-sensitive HPO. Multi-fidelity BO is inherently cost-sensitive since predictions get more ac-
curate as the gap between fidelities becomes smaller. However, the performance metric of such
vanilla multi-fidelity BO monotonically increases as we spend more budget. In this paper, we aim
to find the optimal trade-off between the budget spent and the corresponding intermediate per-
formances of BO, thereby automatically early-stopping the BO around the maximal utility. Quick-
Tune [3] also suggests cost-sensitive BO in multi-fidelity settings, but unlike our work, their primary
focus is on the trade-off between performance and the cost of BO associated with pretrained models
of various sizes, which can be seen as a generalization of the traditional notion of cost-sensitive
BO [48, 1, 32, 65] from black-box to multi-fidelity settings.

Early stopping BO. Makarova et al. [35] propose a principled early stopping BO using:
f∗ − fb ≤ 2ϵ+ ỹ∗ − ỹb, (9)

where f denotes the true performance of population, ỹb the validation performance, ∗ the maximizer,
and ϵ ∈ R>0 a statistical error term. Eq. 9 leads to stopping condition as follows:

ỹ∗ − ỹb ≤ ϵ. (10)
Eq. 10 can be expressed using a utility function:

U(b, ỹb) =

{
ỹb, if ỹb ≥ ỹ∗ − ϵ,

−∞, otherwise.
(11)

Since ỹ∗ and ϵ are unknown, Makarova et al. [35] estimate them using lower confidence bound
(LCB), upper confidence bound (UCB), and the coefficient of variation (CV). As these estimators
are functions of the budget b, Eq. 11 can be rewritten in a utility view:

U(b, ỹb) =

{
ỹb, if ỹb ≥ c(b),

−∞, otherwise.
(12)

Interpreted this way, the stopping criterion in Makarova et al. [35] roughly corresponds to the prefer-
ence: “Stop once performance exceeds c(b); additional budget has no value thereafter.” Therefore,
Eq. 12 represents a special case of our utility formulation.

Similarly, Wilson [59] roughly fits into a utility view:

U(b, ỹb) =

{
ỹb, if p(rb ≤ ϵ|C) < 1− δ,

−cb, otherwise,
(13)

where rb = f∗ − fb and cb is the cumulative cost. Furthermore, although both Makarova et al.
[35] and Wilson [59] provide principled and general approaches for early stopping in BO, they
primarily target black-box BO settings. Due to this fundamental difference, we exclude them from
our baselines in §4.

BO with user preference. Several works have tried to encode the user beliefs about hyperparame-
ter configurations into BO frameworks [51, 23, 36]. On the other hand, our paper suggests encoding
user preferences regarding the trade-off between cost and performance. Therefore, the notion of
user preference in this paper is largely different from the previous literature.

Neural Process Our training method is more similar to Transformer Neural Processes
(TNPs) [41], a Transformer variant of Neural Processes [NPs; 18]. Similarly to PFNs [39, 2, 44],
TNPs directly maximize the likelihood of target data given context data with a Transformer archi-
tecture, which differs from the typical NP variants that summarize the context into a latent variable
and perform variational inference on it. Moreover, as with the other NP variants, TNPs meta-learn
a model over a distribution of tasks to perform sample-efficient inference. In this vein, the whole
training pipeline of our LC extrapolator can be seen as an instance of TNPs—we also meta-learn a
sample-efficient LC extrapolator over the distribution of LCs induced by the mixup strategy.

17

B Notation

In this section, we summarize the notation used throughout the paper in Tab. 4.

Table 4: Notation summary.

Notation Description

xn ∈ Rdx n-th hyperparameter configuration with dimension of dx ∈ N

X = {x1, . . . , xN} Set of hyperparameter configurations

T ∈ N Maximum training epochs for each configuration

t ∈ [T] := {1, . . . , T} Training-epoch index

yn,t ∈ [0, 1] Validation performance of xn at epoch t

B ∈ N Maximum total training epochs (overall BO budget)

b ∈ [B] Budget spent so far

ỹb (Cumulative) best performance observed up to budget b

C = {(x, t, y)} Collected partial or full learning curves

pθ : Rdx × [T]× C → [0, 1] Learning-curve extrapolator

U : [B]× [0, 1]→ [0, 1] Utility function

c ∈ R Hyperparameter which decides for functional form of
U(b, ỹb) = ỹb − α(b

B
)c

α ∈ [0, 1] Penalty coefficient of U(b, ỹb) = ỹb − α(b
B
)c

Up ∈ [0, 1] Utility immediately before current BO step

A(·;U) : [N]→ R Acquisition function in Eq. 4

R̂b :=
Ûmax−Up

Ûmax−Ûmin
∈ [0, 1] The roughly estimated normalized regret in Eq. 5

Ûmax ∈ [0, 1] Maximum utility observed so far for computing R̂b in Eq. 5

Ûmin := U(B, ỹ1) ∈ [0, 1] Approximated minimum utility for computing R̂b in Eq. 5

R :=
Umax−Up

Ûmax−Umin
∈ [0, 1] the true normalized regret in Eq. 5

Umax := maxn,t U(t, yn,t) ∈ [0, 1] True maximum utility for computing R in Eq. 8

Umin ≈ minn U(B, yn,1) ∈ [0, 1] Approximated true minimum utility for computing R in Eq. 8

δ ∈ [0, 1] Fixed stopping threshold for baselines in Eq. 5

δb := BetaCDF(pb, β, β)γ ∈ [0, 1] Adaptive stopping threshold instead of δ in Eq. 5

pb ∈ [0, 1] Probability that current configuration will improve Up in Eq. 7

BetaCDF(·;β, β) : [0, 1]→ [0, 1] the CDF of Beta distribution with shape β

β ∈ R>0 Hyperparameter controlling interpolation in Eq. 6

γ ∈ R>0 Hyperparameter setting δb at pb = 0.5 in Eq. 6

18

C Utility Estimation

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8
Pe

rfo
rm

an
ce

 (y
b)

-0.1-0.0
0.1

0.20.3

0.40.5

0.60.7

0.80.9

-0.1-0.0
0.1

0.2

0.30.4

0.5
0.6

0.70.8

0.9

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)

-0.1-0.0

0.10.2

0.30.4

0.50.6

0.70.8
0.9

-0.1-0.0

0.10.2

0.30.4

0.50.6

0.70.8
0.9

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)

-0.1
-0.0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.80.9

-0.0
0.1

0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)

-0.1
-0.0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

-0.2-0.1

-0.0
0.10.2

0.30.4

0.50.6

0.70.80.9

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)

-0.1-0.0
0.1

0.20.3

0.40.5

0.60.7

0.80.9

-0.1-0.0
0.1

0.20.3

0.40.5

0.6

0.70.80.9

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)

-0.1-0.0

0.10.2

0.30.4

0.50.6

0.70.8
0.9

-0.1-0.0

0.10.2

0.30.4

0.50.6

0.70.8
0.9

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)

-0.1
-0.0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.80.9

-0.2
-0.1

-0.0
0.1

0.2

0.3
0.4

0.5
0.6

0.7
0.80.9

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)

-0.1
-0.0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

-0.2
-0.1

-0.00.1

0.2
0.3

0.4
0.5

0.6
0.70.8

0.9

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)

-0.1-0.0
0.1

0.20.3

0.40.5

0.60.7

0.80.9

-0.1-0.0
0.1

0.20.3

0.4

0.5
0.6

0.7

0.8
0.9

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)

-0.1-0.0

0.10.2

0.30.4

0.50.6

0.70.8
0.9

-0.1-0.0

0.10.2

0.30.4

0.50.6

0.70.8
0.9

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)
-0.1

-0.0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.80.9

-0.1-0.0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.80.9

0.0 0.2 0.4 0.6 0.8

Normalized Computational Budget (b
B)

0.0

0.2

0.4

0.6

0.8

Pe
rfo

rm
an

ce
 (y

b)

-0.1
-0.0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

-0.1
-0.0

0.10.2

0.30.4

0.50.6

0.70.80.9

Figure 10: Contour plots of true utilities and their approximations. From left to right, the columns show
different functional forms of linear (c = 1), quadratic (c = 2), square root (c = 0.5), and a combination
of four different functions including a staircase function. From top to bottom, the rows represent 30, 100, and
1000 user preference data pairs.

Functional forms. In real-world scenarios, users can have more complex utility functions. We
therefore consider the following functional forms: (1) Linear: ỹb − α b

B , (2) Quadratic: ỹb −
α(b

B)2, (3) Square-Root: ỹb − α(b
B)0.5, and (4) Staircase: ỹb −

∑
i αi1(b ∈ Ai) (1(·) is an

indicator function, and Ai is an i-th interval). We further assume that these utility functions can
be linearly combined, e.g., U(·, ·) = w(linear)U (linear)(·, ·) + . . . + w(staircase)U (staircase)(·, ·), where
w(linear) + . . .+ w(staircase) = 1.

Data collection. We now describe how we roughly estimate user utility based on the user prefer-
ence data pairs. First of all, we assume that it is possible for users to decide whether they prefer one
point to the other one, instead of quantifying their utility, i.e., we can collect user preference data.
For simulation, we assume that we are given these preference data generated by true utility function.
True utility function U is randomly defined by sampling penalizing coefficient from Uniform(0, 1)
and linear combination coefficients from Dirichlet distribution. We randomly select meaningful data
pairs from b/B ∼ Uniform(0, 1) and ỹb ∼ Uniform(0, 1). Here, “meaningful data pairs” means
that one datapoint of each pair is not trivially preferred by user: for example, one has larger per-
formance ỹb with smaller budget b than the other. Users then label their preference on these data
pairs; for simulation, we label the pairs by using the true utility functions with sampled αs and linear
combination coefficients ws.

Training details. As explained in Eqs. 2 and 3, we use the binary cross-entropy loss ℓ(x, y) :=
−y log x − (1 − y) log(1 − x) in Eq. 3 between the probability of preference described by the BT
model and the preference label y> ∈ {0, 1}. We begin by randomly initializing another utility func-
tion to approximate a randomly sampled true utility function, setting the ws and αs to 1

4 and 0.0001,
respectively. We use gradient-based optimization algorithm (e.g., SGD) with 1000 iterations. The
temperature term τ in Eq. 2 is set to 0.05.

Estimation results. Fig. 10 demonstrates that not only can single utilities—linear, quadratic, and
square root—be well approximated using preference data, but even more complex utilities (e.g., a
combination of four different utilities) can also be accurately approximated. Furthermore, we found
that the approximation works well even with smaller numbers (e.g., 30, 100) of user preference data
pairs for simpler cases (i.e., single utilities).

19

D Dataset

LCBench. We use the LCBench benchmark [67], which consists of learning curves for MLPs
trained on multiple tabular datasets. Each task contains 2,000 learning curves with 51 training
epochs. We summarize the hyperparameter settings of LCBench in Tab. 5.

Table 5: The dx = 7 hyperparameters for LCBench datasets.

Name Type Vaules Info

batch size integer [24, 29] log
learning rate continuous [10−4, 10−1] log
max dropout continuous [0, 1]
max units integer [26, 210] log
momentum continuous [0.1, 0.99]
max layers integer [1, 5]
weight decay continuous [10−5, 10−1]

The training/test splits are as follows:

• Training datasets:
APSFailure, Amazon employee access, Australian, Fashion-MNIST,
KDDCup09 appetency, MiniBooNE, adult, airlines, albert, bank-marketing,
blood-transfusion-service-center, car, christine, cnae-9, connect-4,
covertype, credit-g, dionis, fabert, helena.

• Test datasets:
higgs, jannis, jasmine, jungle chess 2pcs raw endgame complete, kc1,
kr-vs-kp, mfeat-factors, nomao, numerai28.6, phoneme, segment, shuttle,
sylvine, vehicle, volkert.

TaskSet. We use the TaskSet benchmark [37], which provides learning curves from diverse opti-
mization tasks across multiple domains. Each task contains 1,000 learning curves with 50 training
epochs. We summarize the hyperparameter settings of TaskSet in Tab. 6.

Table 6: The dx = 8 hyperparameters for TaskSet tasks.

Name Type Vaules Info

learning rate continuous [10−9, 101] log
beta1 continuous [10−4, 1]
beta2 continuous [10−3, 1]
epsilon continuous [10−12, 103] log

l1 continuous [10−9, 101] log
l2 continuous [10−9, 101] log

linear decay continuous [10−8, 10−4] log
exponential decay continuous [10−6, 10−3] log

The training/test splits are as follows:

• Training tasks:
rnn text classification family seed{19, 3, 46, 47, 59, 6, 66},
word rnn language model family seed{22, 47, 48, 74, 76, 81},
char rnn language model family seed{19, 26, 31, 42, 48, 5, 74}.

• Test tasks:
rnn text classification family seed{8, 82, 89},
word rnn language model family seed{84, 98, 99},
char rnn language model family seed{84, 94, 96}.

PD1. We use the PD1 benchmark [56], where each task contains 240 LCs with 50 training epochs.
To facilitate transfer learning, we preprocess the LC data of PD1 by excluding hyperparameter
configurations with their training diverging (e.g., LCs with NaN), and linearly interpolate the LCs
to match their length across different tasks. We then obtain the LCs of 50 epochs over the 240
configurations. We summarize the hyperparameter of PD1 in Table 7.

20

Table 7: The dx = 8 hyperparameters for PD1 tasks.

Name Type Vaules Info

lr initial value continuous [10−5, 101] log
lr power continuous [10−1, 2]

lr decay steps factor continuous [10−2, 0.99]
one minus momentum continuous [10−5, 1] log

The training/test splits are as follows:

• Training tasks:
uniref50 transformer batch size 128, lm1b transformer batch size 2048,
imagenet resnet batch size 256, mnist max pooling cnn tanh batch size 2048,
mnist max pooling cnn relu batch size {256, 2048},
mnist simple cnn batch size {256, 2048},
fashion mnist max pooling cnn tanh batch size 2048,
fashion mnist max pooling cnn relu batch size {256, 2048},
fashion mnist simple cnn batch size {256, 2048},
svhn no extra wide resnet batch size 1024,

cifar{10,100} wide resnet batch size 2048.

• Test tasks:
imagenet resnet batch size 512, translate wmt xformer translate batch size 64,
mnist max pooling cnn tanh batch size 256,
fashion mnist max pooling cnn tanh batch size 256,
svhn no extra wide resnet batch size 256,
cifar100 wide resnet batch size 256, cifar10 wide resnet batch size 256.

Data Preprocessing We follow the convention of LC-PFN [2] for data preprocessing; we consis-
tently apply a non-linear LC normalization5 to the LC data of three benchmarks, which not only
maps either accuracy or log-loss LCs into [0, 1] but also simply makes our optimization as a maix-
imization problem. We also use the maximum and minimum values for each task in LCBench and
PD1 benchmark for the LC normalization. In TaskSet, we only use the yn,0 (i.e., the initial log-loss
without taking any gradient steps) for the LC normalization.

E Details on LC Extrapolator

Construction of context and query points. Following ifBO [44], we can simulate each step of
BO; predicting the remaining part of LC in all configurations conditioned on the set C of the collected
partial LCs. To do so, we construct a training task by randomly sampling the context and query
points from the LC benchmarks after the proposed LC mixup in §3.4 as follows:

1. We choose an LC dataset L = [l1, . . . , lN]⊤ ∈ RN×T by randomly sampling m ∈ [M].

2. From L(m), we randomly sample n1, . . . , nC ∈ [N] and t1, ..., tC ∈ [T] and construct context
points of X(c) = [xn1

, . . . , xnC
]⊤ ∈ RC×dx , T (c) = [t1/T, . . . , tC/T]

⊤ ∈ RC×1, and Y (c) =
[yn1,t1 , . . . , ynC ,tC] ∈ RC×1.

3. From the chosen L, we exclude n1, . . . , nC ∈ [N] and t1, ..., tC ∈ [T] and randomly sample
n′
1, . . . , n

′
Q ∈ [N] and t′1, ..., t

′
Q ∈ [T] and construct query points of X(q) = [xn′

1
, . . . , xn′

Q
]⊤ ∈

RQ×dx , T (q) = [t′1/T, . . . , t
′
C/T]

⊤ ∈ RQ×1, and Y (q) = [yn′
1,t

′
1
, . . . , yn′

Q,t′Q
] ∈ RQ×1.

Architecture for predicting LCs. From now on, we denote any row vectors of the constructed
context and query points in lowercase, e.g., x(q) of X(q), or y(q) of Y (q). We train a Transformer [54]
that is a probabilistic model of f(Y (q)|X(c), T (c), Y (c), X(q), T (q)). Conditioned on any subsets of
LCs (i.e., X(c), T (c), and Y (c)), this model predicts a mini-batch of the remaining part of LCs
of existing hyperparameter configurations in a given dataset (i.e., Y (q) of X(q) and T (q)). For

5The details can be found in Appendix A of PFN [2] and https://github.com/automl/lcpfn/blob/
main/lcpfn/utils.py.

21

https://arxiv.org/pdf/2310.20447
https://github.com/automl/lcpfn/blob/main/lcpfn/utils.py
https://github.com/automl/lcpfn/blob/main/lcpfn/utils.py

computational efficiency, we further assume that the query points are independent of each other, as
done in PFNs [39, 44]:

pθ(Y
(q)|X(c), T (c), Y (c), X(q), T (q)) =

∏
x(q),t(q),y(q)

pθ(y
(q)|x(q), t(q), X(c), T (c), Y (c)). (14)

Before encoding the input into the Transformer, we first encode the input of X(c), T (c), Y (c), X(q),
and T (q) using a simple linear layer as follows:

H(c) = X(c)Wx + T (c)Wt + Y (c)Wy (15)

H(q) = X(q)Wx + T (q)Wt, (16)

where Wx ∈ Rdx×dh , Wt ∈ R1×dh , and Wy ∈ R1×dh . Here, we abbreviate the bias term.

Then we concatenate the encoded representations of H(c) and H(q), and feedforward it into the
Transformer layer by treating each pair of each row vector of H(c) and H(q) as a separate posi-
tion/token as follows:

H = Transformer([H(c);H(q), Mask]) ∈ R(M+N)×dh (17)

Ŷ = Head(H) ∈ R(M+N)×do , (18)

where Transformer(·) and Head(·) denote the Transformer layer and multi-layer perceptron (MLP)
for the output prediction, respectively. Mask ∈ R(Nc+Nq)×(Nc+Nq) is the transformer mask that
allows all tokens to attend context tokens only.

In Eq. 18, the output dimension do is specified by the output distribution of y ∈ [0, 1]. Following
PFNs [39, 2, 44], we discretize the domain of y by do = 1000 and use the categorical distribution.
Finally, we only take the output of the last Nq tokens as the output, i.e., Ŷ (q) = Ŷ [:, Nc : (Nc +
Nq)] ∈ RNq×dh (using the indexing operation), since we only need the output of query tokens for
modeling

∏
pθ(y

(q)|x(q), t(q), X(c), T (c), Y (c)).

Training Objective. Our training objective is then defined as follows:

argmin
θ

Ep

− ∑
x(q),t(q),y(q)

log pθ(y
(q)|x(q), t(q), X(c), T (c), Y (c))

 + λPFNLPFN, (19)

where p is the empirical distribution of LC data with the LC mixup in §3.4. We additionally mini-
mize LPFN with coefficient λPFN, which is the LC extrapolation loss of LC-PFN [2] for each LC. We
found λPFN = 0.1 works well for most cases.

Training Details. We sample 4 training tasks for each iteration, i.e., the size of meta mini-batch
is set to 4. We uniformly sample the size C of context points from 1 to 300, and the size of query
points Q is set to 2,048. Following LC-PFN [2], the hidden size of each Transformer block dh, the
hidden size of feed-forward networks, and the number of layers of Transformer, dropout rate are set
1,024, 2,048, 12, and 0.2, respectively. We use GeLU activation [21]. We train the extrapolator for
100,000 iterations on training split of each benchmark with Adam [28] optimizer. The ℓ2 norm of
the gradient is clipped to 1.0. The learning rate is linearly increased to 2 ·10−05 for 25,000 iterations
(25% of the total iteration), and it is decreased with a cosine scheduling until the end. The whole
training process takes roughly 10 hours in a single A100 GPU.

F Implementation Details

0-epoch LC value. We assume access to the 0-epoch LC value (yn,0) which is the performance
without taking any gradient steps, i.e., random guessing. This is also plausible for realistic scenarios,
since in most deep-learning models one evaluation cost is acceptable in comparison to training costs.
The 0-epoch LC values originally are not provided except for LCBench; we use the log-loss of the
first epoch as the 0-epoch LC value for TaskSet, as it is already sufficiently large in our chosen
tasks. For PD1, we interpolate the LCs to be the length of 51 training epochs, and we take the first
performance as the 0-epoch LC value. Furthermore, we take the average over the 0-epoch LC values
ȳ0 := 1

N

∑N
n=1 yn,0 for convenience. The average 0-epoch LC value ȳ0 is always conditioned on

our LC extrapolator pθ for both the training stage in Appendix E and the BO stage in Alg. 1.

22

https://www.nvidia.com/en-us/data-center/a100/

Monte-Carlo (MC) sampling for reducing variance of LCs. We estimate the expectation of the
proposed acquisition function A(·;U) in Eq. 4 with 1,000 MC samples. We found that each LC
yn,tn:T

extrapolated from the LC extrapolator pθ(·|xn, C) is noisy, due to the assumption that the
query points of yn,tn:T

are independent of each other in Eq. 14. Since we compute ỹb+∆t by taking
the maximum among the last step BO performance (i.e., cumulative max operation), the quality of
the estimation degenerates significantly due to the noise. To avoid this, we reduce the variance of the
MC samples by taking the average of the sampled LCs. For example, we sample 5,000 LC samples
from the LC extrapolator pθ, then divide them into 1,000 groups and take the average among the
5 LC samples in each group. We empirically found that this stabilize the estimation of not only
acquisition function A(·;U) and probability of utility improvement pb in Eq. 7.

Implementation details for baselines. We list the implementation details for baselines as follows:

1. Random Search [48]: Instead of randomly selecting a hyperparameter configuration for each
BO step, we run the selected configuration until the last epoch T .

2. BOHB [14] and DEHB [4]: We follow the most recent implementation of these algorithms
in [3]. We slightly modify the official code (https://github.com/releaunifreiburg/
QuickTune), which is based on SyneTune [46] package.

3. DPL [24]: We follow the official code (https://github.com/releaunifreiburg/DPL), and
slightly modify the benchmark implementation to incorporate our experimental setups.

4. ifBO [44]: We use the official code (https://github.com/automl/ifBO) for the surrogate
model (i.e., the LC extrapolator), and incorporate it into our code base to be aligned with our
experimental setups.

5. DyHPO [62] and Quick-Tune† [3]: We follow the official code (https://github.com/
releaunifreiburg/DyHPO), and slightly modify the benchmark implementation to incorporate
our experimental setups. For Quick-Tune†, we pretrain the deep kernel GP for 50,000 iterations
with Adam optimizer with batch size of 512. The initial learning rate is set to 10−3 and decayed
with cosine scheduling. To leverage the transfer learning scenario, we use the best configuration
among the LC datasets which is used for training the GP as an initial guess of BO.

6. FSBO [60]: We use the official code (https://github.com/releaunifreiburg/fsbo),
slightly modify it to incorporate our experimental setups, and use the best configuration among
the LC datasets as an initial guess.

G Additional Experiments

Table 8: Results on object detection datasets (c = 1 and α ∈ {0, 2−6, 2−4}). We multiply 100 to the
normalized regret for better readability.

Method α = 0 α = 2−6 α = 2−4

Regret Rank Regret Rank Regret Rank

Random 5.0±1.3 6.5 7.1±2.6 6.4 13.1±2.6 6.5
BOHB 3.2±1.0 5.2 4.8±1.0 5.3 10.7±1.0 5.4
DEHB 5.0±1.4 6.6 6.6±1.4 6.5 12.4±1.3 6.6
DyHPO 16.0±2.5 5.9 17.5±2.5 6.0 23.1±2.7 6.2

DPL 3.9±1.4 4.6 5.5±1.4 4.8 11.4±1.3 5.2
ifBO 2.3±0.5 4.3 3.9±0.5 4.3 9.8±0.5 4.4

Quick-Tune† 5.3±0.0 4.8 6.9±0.0 4.9 12.6±0.0 5.0
FSBO 2.1±0.0 3.9 3.7±0.0 3.9 9.6±0.0 4.2

CFBO (ours) 1.3±0.1 3.3 3.6±0.3 2.9 5.7±0.3 1.4

Effectiveness on the real-world HPO. We investigate the effectiveness of CFBO on real-world
object-detection dataset. From the 10 different datasets in RoboFlow100 [11], we collect 500 LCs of
validation performances by training three different network architectures, such as ResNet-50 [20],
HRNet [55], MobileNetv2 [47], with 4 different hyperparameters (batch size, learning
rate, momentum, and weight decay factor). Based on this setting, we construct 30 tasks (=3
network architectures×10 datasets) and split them into 20/10 tasks for meta-training/meta-test, re-
spectively. In Tab. 8, we observe that CFBO consistently and significantly outperforms all baselines
on this real-world dataset.

23

https://github.com/releaunifreiburg/QuickTune
https://github.com/releaunifreiburg/QuickTune
https://github.com/releaunifreiburg/DPL
https://github.com/automl/ifBO
https://github.com/releaunifreiburg/DyHPO
https://github.com/releaunifreiburg/DyHPO
https://github.com/releaunifreiburg/fsbo

Visualization of normalized regret. We provide visualization for the normalized regret of each
method on LCBench, TaskSet, and PD1 throughout Figs. 11 to 16.

Visualization of the LC extrapolation over BO steps. We provide visualization for the LC ex-
trapolation over BO steps of CFBO throughout Figs. 17 to 22. Specifically, we plot the LC extrap-
olation results of unseen hyperparameter configurations through BO process. Each row shows the
results for a different size of the observation set (|C| ∈ {0, 10, 50, 300}), and each column shows a
different size of context points (yn,≤t, where t ∈ {0, 2, 5, 10, 20, 30}) in each LC.

Random
ifBO

BOHB
CFBO-NT

DEHB
Quick-Tune

DyHPO
FSBO

DPL
CFBO

0 100 200 300
10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300

10 2

10 1

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300
10 2

10 1

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300

10 1

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300

10 1

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

Figure 11: Visualization of the normalized regret on LCBench.

24

Random
ifBO

BOHB
CFBO-NT

DEHB
Quick-Tune

DyHPO
FSBO

DPL
CFBO

0 100 200 300

10 2

10 1

100
No

rm
al

ize
d

Re
gr

et
= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300

10 2

10 1

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300
10 4

10 3

10 2

10 1

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300

10 2

10 1

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300
10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300

10 1

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

Figure 12: Visualization of the normalized regret on LCBench.

25

Random
ifBO

BOHB
CFBO-NT

DEHB
Quick-Tune

DyHPO
FSBO

DPL
CFBO

0 100 200 300

10 2

10 1

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300
10 3

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

Figure 13: Visualization of the normalized regret on LCBench.

26

Random
ifBO

BOHB
CFBO-NT

DEHB
Quick-Tune

DyHPO
FSBO

DPL
CFBO

0 100 200 300
10 2

10 1

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300

10 1

100

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300

10 1

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300
10 3

10 2

10 1

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300
10 4

10 3

10 2

10 1

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300

10 2

10 1

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

Figure 14: Visualization of the normalized regret on TaskSet.

27

Random
ifBO

BOHB
CFBO-NT

DEHB
Quick-Tune

DyHPO
FSBO

DPL
CFBO

0 100 200 300

10 2

10 1

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300

10 2

10 1

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300
10 4

10 3

10 2

10 1

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

Figure 15: Visualization of the normalized regret on TaskSet.

28

Random
ifBO

BOHB
CFBO-NT

DEHB
Quick-Tune

DyHPO
FSBO

DPL
CFBO

0 100 200 300
10 4

10 3

10 2

10 1

100
No

rm
al

ize
d

Re
gr

et
= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300
10 4

10 3

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300

10 3

10 2

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300

10 2

10 1

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300

10 2

10 1

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300

10 2

10 1

100

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

0 100 200 300

10 2

10 1

No
rm

al
ize

d
Re

gr
et

= 2 6

0 100 200 300

= 2 5

0 100 200 300

= 2 4

0 100 200 300

= 2 3

0 100 200 300

= 2 2

Total Epochs Spent

Figure 16: Visualization of the normalized regret on PD1.

29

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

0

Context Points in LC: 0 # Context Points in LC: 2 # Context Points in LC: 5 # Context Points in LC: 10 # Context Points in LC: 20 # Context Points in LC: 30

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

10

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

50

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

|
|=

30
0

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Figure 17: Visualization of LC extrapolation on LCBench.

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

0

Context Points in LC: 0 # Context Points in LC: 2 # Context Points in LC: 5 # Context Points in LC: 10 # Context Points in LC: 20 # Context Points in LC: 30

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

10

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

50

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

|
|=

30
0

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Figure 18: Visualization of LC extrapolation on LCBench.

30

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

0

Context Points in LC: 0 # Context Points in LC: 2 # Context Points in LC: 5 # Context Points in LC: 10 # Context Points in LC: 20 # Context Points in LC: 30

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

10

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

50

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

|
|=

30
0

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Figure 19: Visualization of LC extrapolation on TaskSet.

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

0

Context Points in LC: 0 # Context Points in LC: 2 # Context Points in LC: 5 # Context Points in LC: 10 # Context Points in LC: 20 # Context Points in LC: 30

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

10

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

50

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

|
|=

30
0

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Figure 20: Visualization of LC extrapolation on TaskSet.

31

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

0

Context Points in LC: 0 # Context Points in LC: 2 # Context Points in LC: 5 # Context Points in LC: 10 # Context Points in LC: 20 # Context Points in LC: 30

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

10

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

50

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

|
|=

30
0

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Figure 21: Visualization of LC extrapolation on PD1.

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

0

Context Points in LC: 0 # Context Points in LC: 2 # Context Points in LC: 5 # Context Points in LC: 10 # Context Points in LC: 20 # Context Points in LC: 30

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

10

0.0

0.2

0.4

0.6

0.8

1.0

|
|=

50

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

|
|=

30
0

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Figure 22: Visualization of LC extrapolation on PD1.

32

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the experimental section, we provided numerous supporting evidences for
the claims made in the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide the Limitations paragraph in §5.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our paper does not include any theoretical claims.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide experimental details including datasets, training details, and base-
line implementation throughout Appendices D and F.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We use public benchmark datasets and upload anonymous code in the sup-
plemental materials.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We not only provide experimental setups in main paper but also detail the
setups in depth throughout Appendices D and F.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide mean and standard deviation over 5 runs (or 30 runs) for all our
experiments.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]

33

Justification: We provide the detailed information in the Appendix.
9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We carefully reviewed the NeurIPS Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] .
Justification: The topic of our paper is about improving the efficiency of hyperparameter
optimization, which is irrelevant to societal impacts.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: Our paper is not relevant to such issues and risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes] .
Justification: We properly put citations and URLs for them throughout the paper.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release any new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve any crowdsourcing nor research with human sub-
jects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: Our paper does not involve any crowdsourcing nor research with human sub-
jects.

34

https://neurips.cc/public/EthicsGuidelines

	Introduction
	Background and Related Work
	Method: Cost-sensitive Freeze-thaw Bayesian Optimization (CFBO)
	Utility: Trade-off between Cost and Performance
	Acquisition
	Stopping Criterion
	Transfer Learning with LC mixup

	Experiments
	Experimental Setups
	Main Results
	Analysis

	Conclusion
	Related Work
	Notation
	Utility Estimation
	Dataset
	Details on LC Extrapolator
	Implementation Details
	Additional Experiments

