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Abstract
Federated learning enables multiple actors to col-
laboratively train models without sharing private
data. Existing algorithms are successful and well-
justified in this task when the intended target do-
main, where the trained model will be used, shares
data distribution with the aggregate of clients, but
this is often violated in practice. A common rea-
son is label shift—that the label distributions dif-
fer between clients and the target domain. We
demonstrate empirically that this can significantly
degrade performance. To address this problem,
we propose FedPALS, a principled and practical
model aggregation scheme that adapts to label
shifts to improve performance in the target do-
main by leveraging knowledge of client and target
label distributions at the central server. Our ap-
proach ensures unbiased updates under federated
stochastic gradient descent which yields robust
generalization across clients with diverse, label-
shifted data. Extensive experiments on image clas-
sification tasks demonstrate that FedPALS consis-
tently outperforms baselines by aligning model
aggregation with the target domain. Our find-
ings reveal that conventional federated learning
methods suffer severely in cases of extreme label
sparsity on clients, highlighting the critical need
for targeted aggregation as offered by FedPALS.

1. Introduction
Federated learning has emerged as a powerful paradigm
for training machine learning models collaboratively across
multiple clients without sharing data (McMahan et al., 2017;
Kairouz et al., 2021). This is attractive in problems where
privacy is paramount, such as healthcare (Sheller et al.,
2020), finance (Byrd & Polychroniadou, 2020), and natural
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language processing (Hilmkil et al., 2021). While effective
when data from different clients are identically distributed,
the performance of federated learning can degrade signifi-
cantly when clients exhibit systematic data heterogeneity,
such as label shift (Zhao et al., 2018; Woodworth et al.,
2020).

Most federated learning research, even that addressing data
heterogeneity, focuses on what we term standard federated
learning, where the test distribution matches the combined
distribution of training clients. However, many real-world
applications require generalization to a target client or do-
main with a data distribution distinct from the combined
distribution. Consider a retail scenario: multiple stores
(clients) collaboratively train a sales prediction model us-
ing their local purchase histories. While each store’s data
reflects its unique customer base, the goal is to deploy the
model in a new store (target client) with different customer
preferences, and no historical records. This is targeted fed-
erated learning, a more challenging paradigm than standard
federated learning due to the inherent distributional shift
between training and test data.

The problem of generalizing under distributional shifts has
been extensively studied in centralized settings, often under
the umbrella of domain adaptation (Blanchard et al., 2011;
Ganin et al., 2016). However, traditional domain adaptation
techniques, such as sample re-weighting (Lipton et al., 2018)
or domain-invariant representation learning (Arjovsky et al.,
2020), typically require access to data from both source and
target domains. This requirement is incompatible with the
decentralized nature of federated learning, where neither
the server nor the clients share data between them. While
several techniques have been proposed to address client
heterogeneity in standard federated learning, such as regu-
larization (Li et al., 2020a; 2021), clustering (Ghosh et al.,
2020; Vardhan et al., 2024), and meta-learning (Chen et al.,
2018; Jiang et al., 2019), they do not address the challenge
of generalizing to a new target client with a different data
distribution.

Contributions We introduce the problem of targeted fed-
erated learning under label shift, where the goal is to train
a model that generalizes well to a target client (domain)
whose label distribution differs from those of the training
clients (see Section 2). To address this problem, we propose
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a novel aggregation scheme called FedPALS that optimizes
a convex combination of client models to ensure that the
aggregated model is better suited for the label distribution
of the target domain (Section 3). We prove that the resulting
stochastic gradient update behaves, in expectation, as cen-
tralized learning in the target domain (Proposition 1), and
examine its relation to standard federated averaging (Propo-
sition A). We demonstrate the effectiveness of FedPALS
through an extensive empirical evaluation (Section 4), show-
ing that it outperforms traditional approaches in scenarios
where distributional shifts pose significant challenges, at the
small cost of sharing client label marginals with the cen-
tral server. Moreover, we observe that traditional methods
struggle particularly in scenarios where training clients have
sparse label distributions, highlighting the need for targeted
aggregation strategies.

2. Targeted federated learning with label shift
In federated learning, a global model hθ is produced by
a central server by aggregating updates to model parame-
ters θ from multiple clients (McMahan et al., 2017). We
focus on classification tasks in which the goal is for hθ to
predict the most probable label Y ∈ {1, ...,K} for a given d-
dimensional input X ∈ X ⊂ Rd. Each client i = 1, ...,M
holds a data set Di = {(xi,1, yi,1), ..., (xi,ni

, yi,ni
)} of ni

labeled examples, assumed to be drawn i.i.d. from a local
client-specific distribution Si(X,Y ). Due to constraints on
privacy or communication, these data sets cannot be shared
directly with other clients or with the central server.

Learning proceeds over rounds t = 1, ..., tmax, each com-
prising three steps: (1) The central server broadcasts the
current global model parameters θt to all clients; (2) Each
client i computes updated parameters θi,t based on their
local data set Di, and sends these updates back to the server;
(3) The server aggregates the clients’ updates, for example,
using federated averaging (FedAvg) (McMahan et al., 2017)
or related techniques, to produce the new global model θt+1.

A common implicit assumption in federated learning is
that the learned model will be applied in a target domain
T (X,Y ) that coincides with the aggregate distribution of
clients,

S̄(X,Y ) =

M∑
i=1

ni

N
Si(X,Y ), (1)

where N =
∑M

i=1 ni. To this end, trained models are eval-
uated in terms of their average performance over clients.
However, in applications, the intended target domain may
be different entirely (Bai et al., 2024). Here, we assume
that the target domain is distinct from all client distribu-
tions: ∀i : T (X,Y ) ̸= Si(X,Y ) and from the client ag-
gregate, T (X,Y ) ̸= S̄(X,Y ). We refer to this setting
as targeted federated learning. While distributional shift

between clients is a well-recognized problem in federated
learning, the target domain is still typically the client ag-
gregate S̄ (Karimireddy et al., 2020; Li et al., 2020b). Our
setting differs also from federated domain generalization
which lacks a specific target domain (Bai et al., 2024).

In targeted federated learning, the goal is to train a model to
predict well in a target domain T (X,Y ) without access to
samples from T . Formally, our objective is to minimize the
expected target risk, RT of a classifier hθ : X → Y , with
respect to a loss function ℓ : Y × Y → R,

minimize
θ

RT (hθ) := E
(X,Y )∼T

[ℓ(hθ(X), Y )] . (2)

To make solving (2) possible, we assume that target
and client label marginal distributions T (Y ), {Si(Y )} are
known to the central server. This is much less restrictive
than it sounds: (i) Estimating each client label distribution
Si(Y ) merely involves computing the proportion of each
label in the client sample Di, (ii) The target client (domain)
may have collected label statistics without logging context
features X . In our retail example, the label distribution
corresponds to the proportion of sales T (Y = y) of each
product category y, and many companies store this infor-
mation without logging customer features X . The central
server is given access to all label distributions to facili-
tate the learning process, but these are not available to the
clients. Retailers may be hesitant to share their exact sales
statistics T (Y ) with competitors but could share this infor-
mation with a neutral third party (central server) responsible
for coordinating the federated learning process. There is a
privacy-accuracy trade-off in all FL settings. In our experi-
ments, we show that substantial performance improvements
can be gained at the small privacy cost of sharing the label
marginals with the central server.

As in standard FL, clients i ̸= j do not communicate directly
with each other directly but interact with the central server
through model parameters. While it is technically possible
for the server to infer each client’s label distribution Si(Y )
based on their parameter updates (Ramakrishna & Dán,
2022), doing so would likely be considered a breach of trust
in practical applications and sharing would be preferred.

We assume that the distributional shifts between clients
and the target are restricted to label shift—while the label
distributions vary across clients and the target, the class-
conditional input distributions are identical.

Assumption 1 (Label shift). For the client distributions
S1, ..., SM and the target distribution T ,

∀i, j ∈ [M ] : Si(X | Y ) = Sj(X | Y ) = T (X | Y ) . (3)

This setting has been well studied in non-federated learning,
see e.g., (Lipton et al., 2018). In the retail example, label
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shift means that the proportion of sales across product cate-
gories (Si(Y ) and T (Y )) varies between different retailers
and the target, but that the pattern of customers who pur-
chase items in each category (Si(X | Y ) and T (X | Y ))
remain consistent. In other words, although retailers may
sell different quantities of products across categories, the
characteristics of customers buying a particular product
(conditional on the product category) are assumed to be the
same. Note that both label shift and covariate shift may hold,
that is, there are cases where ∀i : Si(X | Y ) = T (X | Y )
and Si(Y | X) = T (Y | X), but Si(X), T (X) differ, such
as when the labeling function is deterministic.

2.1. Limitations of classical aggregation

When either all clients {Si} or their aggregate S̄, see (1), are
identical in distribution to the target domain, the empirical
risk on aggregated client data is identical in distribution
( d
=) to the empirical risk of a hypothetical data set DT =
{(xT,j , yT,j)}nT

j=1 drawn from the target domain,

R̂ :=

M∑
i=1

ni∑
j=1

ℓ (h(xi,j), yi,j)

N

d
=

nT∑
j=1

ℓ (h(xT,j), yT,j)

nT
=: R̂T

Thus, if each client performs a single gradient descent up-
date, the mean of these, weighted by the client sample sizes,
is equal in distribution to a centralized batch update for
the target domain, given the previous parameter value. This
property justifies the federated stochastic gradient (FedSGD)
and federated averaging principles (McMahan et al., 2017),
both of which aggregate parameter updates in this way,

θFA
t+1 =

M∑
i=1

αFA
i θi,t where αFA

i =
ni∑M
j=1 nj

. (4)

Unfortunately, when the target domain T is not the aggre-
gate of clients S̄, the aggregate risk gradient ∇R̂ and, there-
fore, the FedSGD update are no longer unbiased gradients
and updates for the risk in the target domain. As we see in
Table 1 in section 4, this can have large effects on model
quality.

Our central question is: How can we aggregate the pa-
rameter updates θi,t of the M clients, whose data sets are
drawn from distributions S1, ..., SM , such that the resulting
federated learning algorithm minimizes the target risk, RT ?

3. FedPALS: Adjusting for targeted label shift
Next, we develop a model aggregation strategy for targeted
federated learning. Under Assumption 1 (label shift), the
target risk is a weighted sum of class-conditional client

Y = 0

Y = 1

Y = 2

S1, n1 = 200

S2, n2 = 1000

S3, n3 = 400

S4, n4 = 400

T = Æ0S

ÆFAS

Y = 0

Y = 1

Y = 2

S1, n1 = 200

S2, n2 = 800

T

Æ0S

ÆFAS

A B

Figure 1. Illustration of the target label marginal T and client
marginals S1, ..., S4 in a ternary classification task, Y ∈ {0, 1, 2}.
A: there are fewer clients than labels, M < K, and T ̸∈ Conv(S);
α0S is a projection of T onto Conv(S). B: T ∈ Conv(S) and
coincides with α0S. In both cases, the label marginal αFAS im-
plied by FedAvg is further from the target distribution.

risks,

∀i : RT (h) =

K∑
y=1

T (y)ESi
[ℓ(h(X), y) | Y = y] .

In centralized learning, this insight is often used to re-weight
the training objective in a source domain S(y) by the im-
portance ratio T (y)/S(y) (Lipton et al., 2018; Japkowicz &
Stephen, 2002). That is not an option here since T (Y ) is
not revealed to the clients. For now, assume instead that the
target label distribution is covered by the convex hull of the
set of client label distributions S = {Si(Y )}Mi=1.

Assumption 2 (Target coverage). The target label distri-
bution T (Y ) is covered by the convex hull of client label
distributions S1(Y ), ..., SM (Y ), that is T ∈ Conv(S), or

∃αc ∈ ∆M−1 : T (y) =

M∑
i=1

αc
iSi(y) ∀y ∈ [K] . (5)

Under label shift, Assumption 2 implies that T (X,Y ) =∑M
i=1 α

c
iSi(X,Y ), as well. Thus, under Assumptions 1–2,

we have for any αc satisfying (5),

RT (h) =

K∑
y=1

(
M∑
i=1

αc
iSi(y)

)
E[ℓ(h(X), y) | Y = y]

(6)

=

M∑
i=1

αc
iRSi(h) . (7)

Consequently, aggregating client updates with weights αc

will be an unbiased estimate of the update.

Proposition 1 (Unbiased SGD update). Consider a single
round t of federated learning in the batch stochastic gradi-
ent setting with learning rate η. Each client i ∈ [M ] is given
parameters θt by the server, computes their local gradient,
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and returns the update θi,t = θt − η∇θR̂i(hθt). Let As-
sumptions 1–2 hold and αc satisfy (5). Then, the aggregate
update θt+1 =

∑M
i=1 α

c
iθi,t satisfies

E[θt+1 | θt] = E[θTt+1 | θt] ,

where θTt+1 = θt − η∇θR̂T (hθt) is the batch stochastic
gradient descent (SGD) update for R̂T that would be ob-
tained with a sample from the target domain. A proof is in
Appendix E.

By Proposition 1, we may compute unbiased parameter up-
dates for the target domain by replacing the aggregation
step of FedSGD with aggregation weighted according to
αc. In practice, many federated learning systems, including
FedAvg, allow clients several steps of local optimization
(e.g., an epoch) before aggregating the parameter updates at
the server. Strictly speaking, this is not justified by Proposi-
tion 1, but we find in all experiments that aggregating client
updates computed over an epoch performs very well, see
Section 4.

In applications, the target may not be covered by clients
(Assumption 2 may not hold), and αc may not exist. For
example, if the target label marginal T (y) is sparse, only
clients with exactly the same sparsity pattern as T can be
used in a convex combination αcS = T . That is, if we aim
to classify images of animals and T contains no tigers, then
no clients contributing to the combination can have data
containing tigers. Since {Si(Y )}Mi=1, T (Y ) are known to
the server, it is straightforward to verify Assumption 2.

A pragmatic choice when Assumption 2 is violated is to look
for the convex combination α0 that most closely aligns with
the target label distribution, and use that for aggregation,

α0 = argmin
α∈∆M−1

∥∥∥∥ M∑
i=1

αiSi(Y )− T (Y )

∥∥∥∥2
2

(8)

We illustrate the label distributions implied by weighting
with α0 and αFA (FedAvg) in Figure 1.

Effective sample size of aggregates. A limitation of ag-
gregating using α0 as defined in (8) is that, unlike FedAvg,
it does not give higher weight to clients with larger sample
sizes, which can lead to a higher variance in the model esti-
mate. The variance of importance-weighted estimators can
be quantified through the concept of effective sample size
(ESS) (Kong, 1992), which measures the number of samples
needed from the target domain to achieve the same variance
as a weighted estimate computed from source-domain sam-
ples. ESS is often approximated as 1/(

∑m
i=1 w

2
j ) where

w are normalized sample weights such that wj ≥ 0 and∑n
j=1 wj = 1. In federated learning, we can interpret

the aggregation step as assigning a total weight αi to each
client i, which has ni samples. Consequently, each sample

(xj , yj) ∈ Di has the same weight w̃j = αi/ni. The ESS
for the aggregate is then given by 1/(

∑m
i=1(

∑
j∈Si

w̃2
j )) =

1/(
∑m

i=1 niα
2
i /n

2
i ) = 1/(

∑m
i=1 α

2
i /ni).

In light of the above, we propose a client aggregation step
such that the weighted sum of clients’ label distributions
will a) closely align with the target label distribution, and b)
minimize the variance due to weighting using the inverse of
the ESS. For a given regularization parameter λ ∈ [0,∞),
we define the weights αλ as the solution to the following
problem.

αλ = argmin
α∈∆M−1

∥T (Y )−
M∑
i=1

αiSi(Y )∥22 + λ
∑
i

α2
i

ni
, (9)

and aggregate client parameters as θλt+1 =
∑M

i=1 α
λ
i θi,t.

We refer to this strategy as Federated learning with Parame-
ter Aggregation for Label Shift (FedPALS). Moreover, we
analyze some limit cases of FedPALS in Appendix A.

3.1. Sparse clients and targets

In problems with a large number of labels, K ≫ 1, it is com-
mon that any individual domain (clients or target) supports
only a subset of the labels. For example, in the IWildCam
benchmark, not every wildlife camera captures images of all
animal species. When the target T (Y ) is sparse, meaning
T (y) = 0 for certain labels y, it becomes easier to find
a good match (αλ)⊤S(Y ) ≈ T (Y ) if the client label dis-
tributions are also sparse. Achieving a perfect match, i.e.,
T ∈ Conv(S), requires that (i) the clients collectively cover
all labels in the target, and (ii) each client contains only
labels that are present in the target. If this is also benefi-
cial for learning, it would suggest that the client-presence
of labels that are not present in the target would harm the
aggregated model. We study the implications of sparsity of
label distributions empirically in Section 4.

4. Experiments
We perform a series of experiments on benchmark data sets
to evaluate FedPALS in comparison with baseline federated
learning algorithms. The experiments aim to demonstrate
the value of the central server knowing the label distribu-
tions of the client and target domains when these differ
substantially. Additionally, we seek to understand how the
parameter λ, controlling the trade-off between bias and
variance in the FedPALS aggregation scheme, impacts the
results. Finally, we investigate how the benefits of FedPALS
are affected by the sparsity of label distributions and by
the distance d(T, S) := minα∈∆M−1 ∥T (Y )− α⊤S(Y )∥22
from the target to the convex hull of clients.

Experimental setup While numerous benchmarks exist
for federated learning (Caldas et al., 2018; Chen et al., 2022)
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and domain generalization (Gulrajani & Lopez-Paz, 2020;
Koh et al., 2021), respectively, until recently none have ad-
dressed tasks that combine both settings. To fill this gap,
Bai et al. (2024) introduced a benchmark specifically de-
signed for federated domain generalization (DG), evaluating
methods across diverse datasets with varying levels of client
heterogeneity. In our experiments, we use the PACS (Li
et al., 2017) and iWildCam(see appendix D.1 for results)
data sets from the Bai et al. (2024) benchmark to model re-
alistic label shifts between the client and target distributions.
We modify the PACS dataset to consist of three clients, each
missing a label that is present in the other two. Additionally,
one client is reduced to one-tenth the size of the others, and
the target distribution is made sparse in the same label as
that of the smaller client.

Furthermore, we construct two additional tasks by intro-
ducing label shift to standard image classification data
sets, Fashion-MNIST (Xiao et al., 2017) and CIFAR-
10 (Krizhevsky, 2009). We apply two label shift sampling
strategies: sparsity sampling and Dirichlet sampling. Spar-
sity sampling involves randomly removing a subset of labels
from clients and the target domain, following the data set
partitioning technique first introduced in McMahan et al.
(2017). Each client is assigned C random labels, with an
equal number of samples for each label and no overlap
among clients. Dirichlet sampling simulates realistic non-
i.i.d. label distributions by, for each client i, drawing a
sample pi ∼ DirichletK(β), where pi(k) represents the
proportion of samples in client i that have label k ∈ [K].
We use a symmetric concentration parameter β > 0 which
controls the sparsity of the client distributions. See Ap-
pendix C for more experimental details.

While prior works focus on inter-client distribution shifts as-
suming that client and target domains are equally distributed,
we apply these sampling strategies also to the target set,
thereby introducing label shift between the client and tar-
get data. Figures 2b & 6b (latter in appendix) illustrate an
example with C = 6 for sparsity sampling and Dirichlet
sampling with β = 0.1, where the last client (Client 9) is
chosen as the target. In addition, we investigate the effect of
T (Y ) /∈ Conv(S) in a synthetic task described in D.5.

Baseline algorithms and model architectures Along-
side FedAvg, we use SCAFFOLD, FedProx, AFL and Fe-
dRS (Karimireddy et al., 2020; Li et al., 2020b; Mohri et al.,
2019; Li & Zhan, 2021) as baselines. The first two chosen
due to their prominence in the literature for handling non-iid
data, and AFL which is similar in concept to FedPALS and
aims to optimize for an unseen domain. We also include
FedRS, designed specifically to address label distribution
skew. For the synthetic experiment in Section D.5, we use
a logistic regression model. For CIFAR-10 and Fashion-
MNIST, we use small, two-layer convolutional networks,

while for PACS and iWildCam, we use a ResNet-50 pre-
trained on ImageNet. Early stopping, model hyperparame-
ters, and λ in FedPALS are tuned using a validation set that
reflects the target distribution in the synthetic experiment,
CIFAR-10, Fashion-MNIST, and PACS. This tuning process
consistently resulted in setting the number of local epochs
to E = 1 across all experiments. For robust evaluation, we
report the mean test accuracy and standard deviation for
each method over 3 independent random seeds for PACS
and 8 seeds for the smaller Fashion-MNIST and CIFAR-10.

4.1. Experimental results on benchmark tasks

We present summary results for three tasks with selected
skews in Table 1 and explore detailed results below. Across
these tasks, FedPALS consistently outperforms or matches
the best-performing baseline. We include results for an
Oracle FedAvg model, which is trained on clients whose
distributions are identical to the target distribution, eliminat-
ing any client-target distribution shift (see Appendix C for
details on its construction). A FedPALS Oracle would be
equivalent since there is no label shift. The Oracle, which
enjoys perfect alignment between client and target distri-
butions, achieves superior performance, underscoring the
challenges posed by distribution shifts in real-world scenar-
ios where such alignment is absent.

CIFAR-10/Fashion-MNIST. Figure 2c shows the results
for the CIFAR-10 data set, where we vary the label sparsity
across clients. In the standard i.i.d. setting, where all labels
are present in both the training and target clients (C = 10),
all methods perform comparably. However, as label sparsity
increases and fewer labels are available in client data sets
(i.e., as C decreases), we observe a performance degradation
in standard baselines. In contrast, our proposed method,
FedPALS, leverages optimized aggregation to achieve a
lower target risk, resulting in improved test accuracy under
these challenging conditions. Similar trends are observed
for Fashion-MNIST, as shown in Figure 7 in Appendix D.
Furthermore, the results in the highly non-i.i.d. cases (C =
2, 3 and β = 0.1) are summarized in Table 1. Additional
experiments in Appendix D examine how the algorithms
perform with varying numbers of local epochs (up to 40)
and clients (up to 100).

PACS. As shown in Figure 3a, being faithful to the target
distribution is crucial for improved performance. Lower
values of λ generally correspond to better performance. No-
tably, FedAvg struggles in this setting because it system-
atically underweights the client with the distribution most
similar to the target, leading to suboptimal model perfor-
mance. In fact, this even causes performance to degrade
over time. Interestingly, the baselines also face challenges
on this task: both FedProx, FedRS and SCAFFOLD perform
similarly to FedPALS when λ = 93. However, FedPALS
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Table 1. Comparison of mean accuracy and standard deviation (±) across different algorithms. The reported values are over 8 independent
random seeds for the CIFAR-10 and Fashion-MNIST tasks, and 3 for PACS. C indicates the number of labels per client and β the Dirichlet
concentration parameter. M is the number of clients. The Oracle method refers to a FedAvg model trained on clients whose distributions
are identical to the target.

Data set Label split M FedPALS FedAvg FedProx SCAFFOLD AFL FedRS Oracle

Fashion-
MNIST

C = 3 10 92.4± 2.1 67.1± 22.0 66.9± 20.8 69.5± 19.3 78.9± 14.7 85.3± 13.5 97.6± 2.1
C = 2 80.6± 23.7 53.9± 36.2 52.9± 35.7 54.9± 36.8 78.6± 20.0 63.14± 20.2 97.5± 4.0

CIFAR-10 C = 3 65.6± 10.1 44.0± 8.4 43.5± 7.2 43.3± 7.4 53.2± 0.9 44.0± 8.0 85.5± 5.0
C = 2 10 72.8± 17.4 46.7± 15.8 47.7± 15.6 46.7± 14.9 54.7± 0.1 49.4± 9.5 89.2± 3.9
β = 0.1 62.6± 17.9 40.8± 9.2 41.9± 9.7 43.5± 10.5 53.4± 11.5 57.1± 11.2 79.2± 3.7

PACS C = 6 3 86.0± 2.9 73.4± 1.6 75.3± 1.3 73.9± 0.3 74.5± 0.9 76.1± 1.6 90.5± 0.3
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Figure 2. Results on CIFAR-10 with sparsity sampling, varying the number of labels per clients C across 10 clients. Clients with IDs
0–8 are used in training, and Client 9 is the target client. The task is more difficult for small C, when fewer clients share labels, and the
projection distance is larger.
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demonstrates significant improvements over these methods,
highlighting the effectiveness of our aggregation scheme in
enhancing performance. We also see that FedPALS + Fed-
Prox performs comparably to just using FedPALS in this
case, although it does have higher variance. Additionally,
in Table 1, we present the models selected based on the
source validation set, where FedPALS outperforms all other
methods. For comprehensive results, including all baseline
comparisons, see Table 4 in Appendix D.

5. Discussion
We have explored targeted federated learning under label
shift, a scenario where client data distributions differ from
a target domain with a known label distribution, but no tar-
get samples are available. We demonstrated that traditional
approaches, such as federated averaging (FedAvg), which
assume identical distributions between the client aggregate
and the target, fail to adapt effectively in this context due
to biased aggregation of client updates. To address this,
we proposed FedPALS, a novel aggregation strategy that
optimally combines client updates to align with the target
distribution, ensuring that the aggregated model minimizes
target risk. Empirically, across diverse tasks, we showed
that under label shift, FedPALS significantly outperforms
standard methods like FedAvg, FedProx, FedRS and SCAF-
FOLD, as well as AFL. Specifically, when the target label
distribution lies within the convex hull of the client distribu-
tions, FedPALS finds the solution with the largest effective
sample size, leading to a model that is most faithful to the
target distribution. More generally, FedPALS balances the
trade-off between matching the target label distribution and
minimizing variance in the model updates. Our experiments
further highlight that FedPALS excels in challenging scenar-

6



ios where label sparsity and client heterogeneity hinder the
performance of conventional federated learning methods.
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Appendix

A. FedPALS in the limits
In the FedPALS aggregation scheme (9), there exists a
trade-off between closely matching the target label distri-
bution and minimizing the variance of the model param-
eters. This trade-off gives rise to two notable limit cases:
T ∈ Conv(S), λ → 0, and λ → ∞. If all source distribu-
tions {Si}Mi=1 are identical and match the target distribution,
this corresponds to the classical i.i.d. setting.

Case 1: λ → ∞ ⇒ Federated averaging In the limit
λ → ∞, as the regularization parameter λ grows large,
FedPALS aggregation approaches FedAvg aggregation.
Proposition 2. The limit solution αλ to (9), as λ → ∞, is

lim
λ→∞

αλ
i =

ni∑M
j=1 nj

= αFA
i for i = 1, . . . ,M .

(10)

The result is proven in Appendix E. By Proposition 2, the
FedAvg weights αFA maximize the ESS and coincide with
FedPALS weights αλ in the limit λ → ∞. As a rare special
case, whenever T (Y ) = S̄ =

∑M
i=1

ni

N Si(Y ), FedAvg
weights αFA = αλ for any value of λ, since both terms
attain their mimima at this point. However, this violates the
assumption that T (Y ) ̸= S̄(Y ).

Case 2: Covered target, T ∈ Conv(S) Now, consider
when the target label distribution is in the convex hull of the
source label distributions, Conv(S). Then, we can find a
convex combination αc of source distributions Si(Y ) that
recreate T (Y ), that is, T (Y ) =

∑M
i=1 α

c
iSi(Y ). However,

when there are more clients than labels, M > K, such a
satisfying combination αc need not be unique and different
combinations may have different effective sample size. Let
Ac = {αc ∈ ∆M−1 : T (Y ) = (αc)⊤S(Y )} denote all sat-
isfying combinations where S(Y ) ∈ RM×K is the matrix
of all client label marginals. For a sufficiently small regular-
ization penalty λ, the solution to (9) will be the satisfying
combination with largest effective sample size.

lim
λ→0

αλ = argmin
α∈Ac

M∑
i=1

α2
i

ni
.

If there are fewer clients than labels, M < K, the set of
target distributions for which a satisfying combination exists
has measure zero, see Figure 1 (left). Nevertheless, the two
cases above allow us to interpolate between being as faithful
as possible to the target label distribution (λ → 0) and
retaining the largest effective sample size (λ → ∞), the
latter coinciding with FedAvg.

Finally, when T ∈ Conv(S) and λ → 0, Proposition 1 ap-
plies also to FedPALS; the aggregation strategy results in an

unbiased estimate of the target risk gradient in the SGD set-
ting. However, like the unregularized weights, Proposition 1
does not apply for multiple local client updates.

Case 3: T ̸∈ Conv(S) If the target distribution does not
lie in Conv(S), see Figure 1 (left), FedPALS projects the
target to the “closest point” in Conv(S) if λ = 0, and to a
tradeoff between this projection and the FedAvg aggregation
if λ > 0.

B. Related work
Efforts to mitigate the effects of distributional shifts in feder-
ated learning can be broadly categorized into client-side and
server-side approaches. Client-side methods use techniques
such as clustering clients with similar data distributions and
training separate models for each cluster (Ghosh et al., 2020;
Sattler et al., 2020; Vardhan et al., 2024), and meta-learning
to enable models to quickly adapt to new data distributions
with minimal updates (Chen et al., 2018; Jiang et al., 2019;
Fallah et al., 2020). Other notable strategies include regu-
larization techniques that penalize large deviations in client
updates to ensure stable convergence (Li et al., 2020b; 2021)
and recent work on optimizing for flatter minima to enhance
model robustness (Qu et al., 2022; Caldarola et al., 2022).
Server-side methods focus on improving model aggregation
or applying post-aggregation adjustments. These include op-
timizing aggregation weights (Reddi et al., 2021), learning
adaptive weights (Li et al., 2023), iterative moving averages
to refine the global model (Zhou et al., 2023), and promoting
gradient diversity during updates (Zeng et al., 2023). Both
categories of work overlook shifts in the target distribution,
leaving this area unexplored.

Another related area is personalized federated learning,
which focuses on fine-tuning models to optimize perfor-
mance on each client’s specific local data (Collins et al.,
2022; Boroujeni et al., 2024). This setting differs fundamen-
tally from our work, which focuses on improving generaliza-
tion to new target clients without any training data available
for fine-tuning. Label distribution shifts have also been ex-
plored with methods such as logit calibration (Zhang et al.,
2022; Xu et al., 2023), novel loss functions (Wang et al.,
2021), feature augmentation (Xia et al., 2023), gradient
reweighting (Xiao et al., 2023), and contrastive learning (Wu
et al., 2023). However, like methods aimed at mitigating the
effects of general shifts, these do not address the challenge
of aligning models with an unseen target distribution, as
required in our setting.

Generalization under domain shift in federated learning
remains underdeveloped (Bai et al., 2024). The work
most similar to ours is that of agnostic federated learning
(AFL) (Mohri et al., 2019), which aims to learn a model
that performs robustly across all possible target distributions
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within the convex hull of client distributions. One notable
approach is tailored for medical image segmentation, where
clients share data in the frequency domain to achieve better
generalization across domains (Liu et al., 2021). However,
this technique requires data sharing, making it unsuitable
for privacy-sensitive applications like ours. A different line
of work focuses on addressing covariate shift in federated
learning through importance weighting (Ramezani-Kebrya
et al., 2023). Although effective, this method requires send-
ing samples from the test distribution to the server, which
violates our privacy constraints.

C. Experimental details
Here we provide additional details about the experimental
setup for the different tasks.

C.1. Sampling strategies

Sparsity sampling entails randomly removing a subset of
labels from clients and the target domain following the data
set partitioning technique introduced in McMahan et al.
(2017). Each client is assigned C random labels, with an
equal number of samples for each label and no overlap
among clients. Sparsity sampling has been extensively used
in subsequent studies (Geyer et al., 2017; Li et al., 2020a;
2022).

Dirichlet sampling simulates non-i.i.d. label distributions
by, for each client i, drawing a sample pi ∼ DirichletK(β),
where pi(k) represents the proportion of samples in client i
that have label k ∈ [K]. The concentration parameter β > 0
controls the sparsity of the client distributions. In dirichlet
sampling, using a smaller β results in more heterogeneous
client data sets, while a larger value approximates an i.i.d.
setting. This widely-used method for sampling clients was
first introduced by Yurochkin et al. (2019).

C.2. Oracle construction

The Oracle method serves as a benchmark to illustrate the
performance upper bound when there is no distribution shift
between the clients and the target. To construct this Oracle,
we assume that the client label distributions are identical to
the target label distribution, effectively eliminating the label
shift that exists in real-world scenarios.

In practice, this means that for each dataset, the client data
is drawn directly from the same distribution as the target.
The aggregation process in the Oracle method uses FedAvg,
as no adjustments for label shift are needed. Since the client
and target distributions are aligned, FedPALS would behave
equivalently to FedAvg under this setting, as there is no
need for reweighting the client updates.

This method allows us to assess the maximum possible per-

formance that could be achieved if the distributional differ-
ences between clients and the target did not exist. By com-
paring the Oracle results to those of our proposed method
and other baselines, we can highlight the impact of label
shift on model performance and validate the improvements
brought by FedPALS.

C.3. Synthetic task

We randomly sampled three means µ1 = [6, 4.6], µ2 =
[1.2,−1.6], and µ3 = [4.6,−5.4] for each label cluster,
respectively.

C.4. PACS

In this task we use the official source and target splits which
are given in the work by Bai et al. (2024). We construct the
task such that the training data is randomly assigned among
three clients, then we remove the samples of one label from
each of the clients. This is chosen to be labels ’0’, ’1’ and
’2’. Then the client that is missing the label ’2’ is reduced
so that it is 10% the amount of the original size. For the
target we modify the given one by removing the samples
with label ’2’, thereby making it more similar to the smaller
client. To more accurately reflect the target distribution we
modify the source domain validation set to also lack the
samples with label ’2’. This is reasonable since we assume
that we have access to the target label distribution.

We pick four values of λ, [0,12,42,93], which approximately
correspond to an ESS of 15%, 25%, 50% and 75% respec-
tively. We use the same hyperparameters during training as
Bai et al. (2024) report using in their paper. Furthermore,
we use the cross entropy loss in this task.

C.5. iWildCam

We perform this experiment using the methodology de-
scribed in Bai et al. (2024) with the heterogeneity set to
the maximum setting, i.e., λ = 0 in their construction.1

We use the same hyperparameters which is used for Fe-
dAvg in the same work to train FedPALS. We perform 80
rounds of training and, we then select the best performing
model based on held out validation performance and report
the mean and standard deviation over three random seeds.
This can be seen in Table 3. We pick four values of λ,
[0,600,2500,5800], which approximately correspond to an
ESS of 8%, 25%, 50% and 75% respectively. We use the
cross entropy loss in this task.

Due to FedProx performing comparably to FedPALS on this
task, in contrast with other experiments, we also perform
an experiment where we do both FedProx and FedPALS.

1Note that this is not the same λ used in the trade-off in Fed-
PALS.
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δ Accuracy
10−3 88.8
10−2 85.2

5× 10−1 81.4

Table 2. Results of perturbing T with varying noise levels δ.

This is easily done as FedProx is a client side method while
FedPALS is a weighting method applied at the server. This
results in the best performing model.

We use the same hyperparameters during training as Bai
et al. (2024) report using in their paper. However, we set the
amount of communication rounds to 80.

C.6. Perturbation of target marginal T

In an experiment we perturb the given target label marginals,
T , to evaluate the performance impact of noise in the esti-
mate. We do this by generating gaussian noise, ϵ, and then
we add the noise to the label marginal to create a new target
Tp. We modulate the size of the noise with a parameter δ
and only add the positive noise values.

Tp = T + δmax(ϵ, 0)

This is then normalised and used as the new target label
marginal. This perturbation was done on the PACS exper-
iment with δ ∈ [10−3, 10−2, 5 × 10−1] and repeated for
three seeds. The results are given in Table 2 where we see
that the performance decreases with increasing noise.

C.7. Choice of hyperparameter λ

A salient question in Cases 2 & 3 is how to choose the
strength of the regularization, λ. A larger value will gener-
ally favor influence from more clients, provided that they
have sufficiently many samples. When T ̸∈ Conv(S), the
convex combination closest to T could have weight on a
single vertex. This will likely hurt the generalizability of
the resulting classifier. In experiments, we compare val-
ues of λ that yield different effective sample sizes, such
as 10%, 25%, 50% or 75% of the original sample size, N .
We can find these using binary search by solving (9) and
calculate the ESS. One could select λ heuristically based
on the the ESS, or treat λ as a hyperparameter and select it
using a validation set. Although this would entail training
and evaluating several models which can be seen as a limi-
tation. We elect to choose a small set of λ values based on
the ESS heuristic and train models for these. Then we use
a validation set to select the best performing model. This
highlights the usefulness of the ESS as a heuristic. If it is
unclear which values to pick, one could elect for a simple
strategy of taking the ESS of λ = 0 and 100% and taking
l equidistributed values in between the two extremes, for
some small integer l.

D. Additional empirical results
Figure 4 illustrates the aggregation weights of clients in
the iWildCam experiment for λ corresponding to different
effective sample sizes.

We report the performance of the models selected using
the held out validation set in Table 3 and Table 4 for the
iWildCam and PACS experiments respectively.

Table 3. Results on iWildCam with 100 clients, standard deviation
reported over 3 random seeds.

Algorithm F1 (macro)

FedPALS, λ = 0 0.13± 0.00
FedPALS, λ = 600 0.18± 0.00
FedPALS, λ = 2500 0.19± 0.00
FedPALS, λ = 5800 0.21± 0.00
FedProx+FedPALS, λ = 5800 0.23± 0.00
FedAvg 0.20± 0.01
FedProx 0.21± 0.00
SCAFFOLD 0.15± 0.01
AFL 0.005± 0.0

Table 4. Results on PACS with 3 clients with mean and standard
deviation reported over 3 random seeds.

Algorithm Accuracy

FedPALS, λ = 0 86.0± 2.9
FedPALS, λ = 12 84.3± 2.5
FedPALS, λ = 42 81.7± 1.2
FedPALS, λ = 93 77.3± 1.6
FedProx+FedPALS, λ = 0 87.2± 4.1
FedAvg 73.4± 1.6
FedProx 75.3± 1.3
SCAFFOLD 73.9± 0.3
AFL 74.5± 0.9

D.1. IWildCam

iWildCam. The test performance across communication
rounds is shown in Figure 5a. Initially, FedPALS widens
the performance gap compared to FedAvg, but as training
progresses, this gain diminishes. While FedPALS quickly
reaches a strong performing model, it eventually plateaus.
The rate of convergence and level of performance reached
appears to be influenced by the choice of λ, with lower
values of λ leading to faster plateaus at lower levels com-
pared to larger ones. This suggests that more uniform client
weights and a larger effective sample size are preferable in
this task. Given the iWildCam dataset’s significant class
imbalance – with many classes having few samples – de-
emphasizing certain clients can degrade performance. We
also note that our assumption of label shift need not hold
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Figure 4. An illustration of the aggregation weights of clients in the iWildCam experiment using FedPALS for different ESS. The clients
are sorted by amount of samples in descending order. The magnitude of the weights produced by federated averaging is shown as dots.
Note that with increasing the ESS, the magnitudes more closely resemble that of federated averaging.

in this experiment, as the cameras are in different locations,
potentially leading to variations in the conditional distribu-
tion p(X | Y ). The performance of the models selected
using the source validation set is shown in Table 3 in Ap-
pendix D. There we see that FedPALS performs comparably
to FedAvg and FedProx while outperforming SCAFFOLD.
Unlike in other tasks, where FedProx performs comparably
or worse than FedPALS, we see FedProx achieve the highest
F1-score on this task. Therefore, we conduct an additional
experiment where we use both FedProx and FedPALS to-
gether, as they are not mutually exclusive. This results in the
best performing model, see Figure 5a. Due to memory is-
sues with the implementation FedRS was not able to run for
this experiment and is omitted. AFL fails to learn in this task
and is thus also omitted, although results are shown in Table
3 in Appendix D. Finally, as an illustration of the impact of
increasing λ, we provide the weights of the clients in this ex-
periment alongside the FedAvg weights in 4 in Appendix D.
We note that as λ increases, the weights increasingly align
with those of FedAvg while retaining weight on the clients
whose label distributions most resemble that of the target.

D.2. Results on CIFAR-10 with Dirichlet sampling

Figure 6 shows the results for the CIFAR-10 experiment
with Dirichlet sampling of client and target label distribu-
tions.

D.3. Training dynamics for Fashion-MNIST

Figure 8 shows the training dynamics for Fashion-MNIST
and CIFAR-10 with different label marginal mechanisms.

D.4. Local epochs and number of clients

In Figure 9c we show results for varying number of clients
for each method. For the cases with number of clients 50
and 100, we use the standard sampling method of federated

0 10 20 30 40 50 60 70 80
Communication rounds

0.00

0.05

0.10

0.15

0.20

Ta
rg

et
 F

1-
sc

or
e

FedProx
SCAFFOLD
FedAvg
FedPALS, = 0
FedPALS, = 600
FedPALS, = 2500
FedPALS, = 5800
FedProx+FedPALS

(a) iWildCam, M = 100.

Figure 5. Target accuracy during training of FedPALS compared to
baselines on PACS (a) and iWildCam (b), averaged over 3 random
seeds. M is the number of training clients. Non-zero λ-values
chosen to correspond to an ESS of 25%, 50% and 75%.
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Figure 6. Results on CIFAR-10 with Dirichlet sampling across 10
clients, varying concentration parameter β. Clients with IDs 0–8
are clients present during training, and client with ID 9 is the target
client.

learning where a fraction of 0.1 clients are sampled in each
communication round. In this case, we optimize αλ for the
participating clients in each communication round. Interest-
ingly, we observe that while FedAvg performs significantly
worse than FedPALS on a target client under label shift, it
outperforms both FedProx and SCAFFOLD when the num-
ber of local epochs is high (E = 40), as shown in Figure
9b.

D.5. Synthetic experiment: effect of projection distance
on test error

When the target distribution T (Y ) is not covered by the
clients, FedPALS finds aggregation weights corresponding
to a regularized projection of T onto Conv(S). To study the
impact of this, we designed a controlled experiment where
the distance of the projection is varied. We create a classi-
fication task with three classes, Y = {0, 1, 2}, and define
p(X | Y = y) for each label y ∈ Y by a unit-variance Gaus-
sian distribution N (µy, I), with randomly sampled means
µy ∈ R2. We simulate two clients with label distributions
S1(Y ) = [0.5, 0.5, 0.0]⊤ and S2(Y ) = [0.5, 0.0, 0.5]⊤,
and n1 = 40, n2 = 18 samples, respectively. Thus, Fe-
dAvg gives larger weight to Client 1. We define a target
label distribution T (Y ) parameterized by δ ∈ [0, 1] which
controls the projection distance d(T, S) between T (Y ) and
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Figure 7. Results on Fashion-MNIST with label sampling across
10 clients, varying parameter C. Clients with IDs 0–8 are clients
present during training, and client with ID 9 is the target client.

(a) Fashion-MNIST
with C = 6.

(b) CIFAR-10 with
Dirichlet β = 0.2.

Figure 8. Test accuracy during training rounds.

Conv(S),

Tδ(Y ) := (1− δ)Tproj(Y ) + δText(Y ) ,

with Text(Y ) = [0, 0.5, 0.5]⊤ /∈ Conv(S(Y )) and
Tproj(Y ) = [0.5, 0.25, 0.25]⊤ ∈ Conv(S(Y )). By vary-
ing δ, we control the projection distance d(T, S) between
each Tδ and Conv(S) from solving (8), allowing us to study
its effect on model performance.

We evaluate the global model on a test set with ntest = 2000
samples drawn from the target distribution T (Y ) for each
value of δ and record the target accuracy for FedPALS and
FedAvg. Figure 10 illustrates the relationship between the
target accuracy and the projection distance d(T, S) due to
varying δ. When d(S, T ) = 0 (i.e., T (Y ) ∈ Conv(S)),
the target accuracy is highest, indicating that our method
successfully matches the target distribution. As d(S, T )
increases (i.e., T moves further away from Conv(S)), the
task becomes harder and accuracy declines. For all values,
FedPALS performs better than FedAvg. For more details on
the synthetic experiment, see Appendix C.

E. Proofs
E.1. FedPALS updates

Proposition 1 (Repeated) (Unbiased SGD update). Con-
sider a single round t of federated learning in the batch
stochastic gradient setting with learning rate η. Each
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Figure 9. Comparison of CIFAR-10 results with different clients
and settings. (a) 100 clients for C = 2, 3, 10, λ = 1000. (b)
10 clients and number of labels C = 3. We plot test accuracy
as a function of number of local epochs E. The total number of
communication rounds T are set such that T = E/150, where
150 is the number of rounds used for E = 1. (c) Test accuracy as
a function of number of clients, with C = 3.
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Figure 10. Synthetic experiment. Accuracy of the global model
as a function of the projection distance d(T, S) between the tar-
get distribution T (Y ) and client label distributions Conv(S(Y )).
Means and standard deviations reported over 5 independent runs.

client i ∈ [M ] is given parameters θt by the server, com-
putes their local gradient, and returns the update θi,t =

θt − η∇θR̂i(hθt). Let weights αc satisfy T (X,Y ) =∑M
i=1 α

c
iSi(X,Y ). Then, the aggregate update θt+1 =∑M

i=1 α
c
iθi,t satisfies

E[θt+1 | θt] = E[θTt+1 | θt] ,

where θTt+1 is the batch stochastic gradient update for R̂T

that would be obtained with a sample from the target do-
main.

Proof.

θt+1 =

M∑
i=1

αc
iθi,t =

M∑
i=1

θci (θt − η∇R̂i(hθt)) = θt − η

M∑
i=1

αi∇R̂i(hθt)

(11)

E[θt+1 | θt] = θt − η · E

[
M∑
i=1

αi∇R̂i(hθt) | θt

]
(12)

= θt − η ·
∑
x,y

E

[
M∑
i=1

Ŝi(x, y)αi

]
∇L(y, hθt(x))

(13)

= θt − η ·
∑
x,y

T (x, y)∇L(y, hθt(x)) (14)

= θt − η · E

[∑
x,y

T̂ (x, y)

]
∇L(y, hθt(x)) = E[θTt+1 | θt] .

(15)

E.2. FedPALS in the limits

As λ → ∞, because the first term in (9) is bounded, the
problem shares solution with

min
α1,...,αM

∑
i

α2
i

ni
s.t.

∑
i

αi = 1, ∀i : αi ≥ 0 . (16)

Moreover, we have the following result.

Proposition 3. The optimization problem

min
α

∑
i

α2
i

ni
s.t

∑
i

αi = 1 αi ≥ 0 ∀ i ,

has the optimal solution α∗
i = ni∑

i ni
where i ∈ [1,m]

Proof. From the constrained optimization problem we form
a Lagrangian formulation

L(α, µ, τ) =
∑
i

α2
i

ni
+ µ (1−

∑
i

αi)︸ ︷︷ ︸
h(α)

+τ −α︸︷︷︸
g(α)

We then use the KKT-theorem to find the optimal solution
to the problem.

∇αL(α∗) = 0 =⇒ ∀i : 2
α∗
i

ni
− µ− τ = 0 . (17)

In other words, the following ratio is a constant,

∀i α∗
i

ni
= c

for some constant c. We have the additional conditions of
primal feasibility, i.e.

h(α∗) = 0

g(α∗) ≤ 0
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From the first constraint, we have
∑M

i=1 α
∗
i = 1, and thus,

M∑
i=1

α∗
i = c

M∑
i=1

ni = 1

which implies that c = 1/
∑M

i=1 ni and thus

∀i : α∗
i =

ni∑M
i=1 ni

.
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