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a b s t r a c t 

Discriminative classification models often assume all classes are available at the training phase. As such 

models do not have a strategy to learn new concepts from available unlabeled instances, they usually 

work poorly when unknown classes emerge from future data to be classified. To address the appear- 

ance of new classes, some authors have developed approaches to transfer knowledge from known to 

unknown classes. Our study provides a more flexible approach to learn new (visual) classes that emerge 

over time. The key idea is materialized by an iterative classifier that combines Support Vector Machines 

with clustering via an optimization algorithm. An entropy and density-based selection strategy explores 

label uncertainty and high-density regions from unlabeled data to be classified. Selected instances from 

new classes are submitted to get labels and then used to improve the model. The proposed image classi- 

fier is consistently better than approaches that select instances randomly or from clusters. We also show 

that features obtained via Deep Learning methods improve results when compared with shallow features, 

but only using our selection strategy. Our approach requires fewer iterations to learn new classes, thereby 

significantly saving labeling costs. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Digital visual content is responsible for a significant share of the

current network traffic [1] . A huge number of images is constantly

uploaded into the various platforms for image collection storage

and visualization. Over the last decades, studies on image repre-

sentations, retrieval and classification devoted efforts to develop

increasingly accurate methods to better describe visual content, al-

lowing indexing data based on image content, and also classifying

images [2–5] , which is essentially to assign labels to some image,

given a predefined semantics. 

As a rule of thumb, classification methods based on discrimi-

native models (e.g., Logistic Regression, Support Vector Machines,

and Deep Neural Networks) typically require training sets with

a large number of labeled instances, which must be representa-

tive enough to correctly classify unseen (unlabeled) data [6] . How-

ever, although gathering masses of image data is easier nowa-

days, the process of labeling instances to compose a training set
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s an expensive and error-prone task [7,8] . Also, available image

ollections are often cluttered and unclean. Hence, there are cases

here only a limited source of annotated data is in hand [9,10] .

fter training with this ill-posed source , many techniques do not

are well on new target data that represents a somewhat differ-

nt input distribution [11,12] . For example, Deep Learning (DL) has

een in the recipe for success of state-of-the-art visual recogni-

ion methods [13] . Having thousands of labeled instances (images)

or each known class of the problem, researchers have reached im-

ressive low error rates by using DL schemes [14–16] . However

ven such classification methods suffer from limitations, in par-

icular when addressing problems with limited annotated training

et [17] . 

Due to idiosyncrasies of the sampling process [18,19] and the

ack of knowledge about the entire set of possible classes [20] , in

any practical domains one does not have instances of all classes

uring the training phase — i.e., instances of one or more classes

ould be missing while building a classification model. In partic-

lar, although some methods allow incrementally learning new

lasses [21] , those often do not include a strategy to detect such

ew classes via unlabeled instances. This shortcoming has moti-

ated our research, which specifically addresses the problem of

earning new unknown classes in future data. 

https://doi.org/10.1016/j.neucom.2019.04.070
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Fig. 1. A hypothetical ideal classifier trained to recognize horses, people, and elephants, makes mistakes in the presence of a new class of images representing dinosaurs. 
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This paper presents an investigation on classifiers that can deal

ith the emergence of instances from a new class, which should

e quickly detected and learned. We are particularly interested in

pplication scenarios for which there are small training sets, with

pecific visual classes missing. Image classification systems trained

n these limited training sets will perform poorly when, among

he images to be classified subsequently, some belong to unknown

lasses. For example, Fig. 1 considers that an ideal classifier has

een induced from a training set with instances of three classes:

Horses ”, “People ”, and “Elephants ”. By inferring the class label of

mages in a balanced target set, which includes unlabeled instances

rom a new class “Dinosaurs ”, the classification accuracy cannot

chieve more than 75% (because in reality this is a four-class prob-

em). As the classifier has not learned the new class, it will predict

inosaurs as being horses, people, or elephants. In other words,

lassifiers commonly neglect the existence of new concepts by as-

uming a unique finite set of classes [20,22–24] . They are highly

ependent on prior knowledge and typically do not support con-

ept changes or the appearance of a new class. 

Our main contributions are as follows. First, we propose a flex-

ble iterative classifier, which allows the combination of practically

ny supervised algorithms with unsupervised ones aiming to im-

rove classification results. Specifically, we have combined the sim-

le and efficient k -Means algorithm [25] with an SVM [26] trained

n both handcrafted and deep features. These settings were cho-

en because they show to be a competitive combination of alter-

atives for image classification [18,21,27,28] . Hence, our iterative

lassifier can be seen as an ensemble , which allows the coupling

f different (un)supervised algorithms gathering their capabilities

o achieve better results. Such a mechanism has been applicable

n many real-world problems by means of the C 

3 E (Consensus be-

ween Classification and Clustering Ensembles) algorithm [29–31] .

econd, we extended our iterative classifier to detect new classes

aking advantage of unsupervised information generated by clus-

ering algorithms. In more detail, our approach explores label un-

ertainty and high-density regions to find unlabeled instances that

elong to new classes. Using active learning [32] , some selected

nstances are labeled (by a domain expert) and then incorporated

nto the model to improve classification. By doing so, our classifier

an learn new concepts/classes in an iterative fashion, being more

uitable to real-world problems where incomplete knowledge oc-

urs [20] and the adaptation of the model needs to recognize new

lasses over time [8,33] . Our third contribution is based on the im-

ge representation via Deep Learning (DL) methods. As our strategy

o select instances from new classes in combination with deep fea-
ures achieved very good results, we anticipate that it makes room

or applications of DL in scenarios with few and/or missing classes

nstances. As already known, approaches based on DL [3,34] re-

uire a large amount of labeled data to achieve very good predic-

ions and are based on a unique and finite set of known classes.

ur iterative classifier relaxes this assumption by recognizing new

lasses, even with few labeled data, from the combination of dif-

erent methods, including those based on DL. 

The remainder of the paper is organized as follows.

ection 2 addresses related studies and theoretical founda-

ions on which our approach is grounded. Section 3 introduces

he proposed iterative classifier, based on the C 

3 E algorithm,

or the detection and learning of new classes. Section 4 outlines

ur experimental setup and the used datasets. Section 5 ad-

resses experimental results and a discussion to show that the

esulting image classifier can successfully handle new classes.

ection 6 provides the conclusions and suggests directions for

urther research. 

. Related work 

Image classification systems should ideally recognize a large

umber of visual classes. To reach this goal, some studies have

oncentrated effort s to smartly sample representative training sets

18,19] . In this context, active learning methods can select the most

nformative instances from unlabeled data to help building bet-

er classifiers [32] . To do this, they can take into account margin

ampling, in which candidate instances to be in the training set

re those that lie within the margin of Support Vector Machines

SVMs) [35] . Other approaches are based on a disagreement coef-

cient measured between different views (from independent and

edundant sets of features) or different classifiers [36] , so that in-

tances that maximize such a criterion are preferable for selection.

or this, some authors have also used multiple views and learn-

rs simultaneously [37] . Another strategy considers the selection

f the most uncertain instances from an estimation of their poste-

ior probability distribution of classes [38] . Similarly, Huang et al.

39] suggested to combine informative and representative mea-

ures for unlabeled instances. As their work is restricted to binary

lassification, some authors have combined uncertainty and diver-

ity focusing on multi-class problems [40] . 

In order to situate our contribution within the literature, we

ere anticipate that our paper reports a method that makes use

f concepts from active learning, classification, and clustering. It

ocuses on detecting new concepts and allows to learn them with
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a few labeled instances. In comparison, other active learning stud-

ies often neglect scenarios in which one or more classes are not

included in the first model, e.g. [38,40] . In addition, our approach

allows combining the outputs from standard clustering and clas-

sification methods and requires minimal adaptations to discover

new classes. Therefore a direct empirical comparison between our

method and the frameworks in [38,40] would be difficult and un-

fair. On the other hand, studies that report comparisons of sam-

pling techniques often point to random selection as a standard

baseline, with competitive results when compared to many other

strategies [39] . A more competitive approach that complements

the comparison with a uniform random strategy is to obtain the

instances by sampling from clusters. For example, selecting k in-

stances as those nearest to the cluster centroids of a k -Means out-

put [39,41] . 

The above studies emphasize that sampling limitations, as well

as underlying supervised classification assumptions, can hinder

suitable learning. From this perspective, classifiers capable of self-

adaptation are essential, particularly when new unknown classes

of images appear. 

To address the emergence of new classes, Jun and Ghosh

[10] proposed a semi-supervised spatially adaptive mixture model

that enables the detection of unknown land-cover classes from

hyperspectral images. Focusing on unsupervised visual category

learning, Lee and Grauman [42] introduced a context-aware dis-

covery algorithm that captures interactions among objects within

images so that co-occurrences can identify new categories. Bart

and Ullman [43] used feature ( image patch ) adaptation to produce

a cross-generalization able to learn a new class from a single in-

stance. They assumed that a feature is effective for a new class if

a similar feature has proved useful for a previously learned class.

Likewise, Lampert et al. [8,33] utilized attribute-based classification

to transfer knowledge between classes and recognize new image

classes that have no training instance. To do so, high-level attributes

are learned in an intermediate step of a cascade classifier. Inspired

by these works, zero/one-shot learning approaches have provided

interesting results [44,45] . 

Scheirer et al. [20] employed the term “Open Set” to outline a

more realistic classification scenario, in which incomplete knowl-

edge of the world is present at training time and unknown classes

can emerge over time. In contrast, they also denoted the restricted

scenario, referred to by traditional classifiers as a “Closed Set”, in

which a unique finite set of known classes is considered. The au-

thors investigated open set problems by using a 1-vs-set machine ,

which is an extension of 1-class and binary SVMs in which an ad-

ditional plane is used to optimize the empirical and open space

risk. By specializing the two existing planes, the classifier limits

the positive region and avoids extending decision boundaries be-

yond the negative and unknown regions. In [11] , the authors ex-

tended the idea to non-linear classifiers in a multi-class setting. 

From a broader perspective, researchers from different areas

have investigated methods to automatically learn concepts dissim-

ilar from those already known [46,47] . In data stream applications,

clustering has been used to identify changes in the underlying

data distribution ( concept-drift ) and the emergence of new classes

( concept-evolution ) [4 8,4 9] . As the aforementioned studies, we have

used the information provided by clustering algorithms to explore

available unlabeled data. From this, and contrary to Riva et al. [21] ,

new unknown concepts/classes are incrementally learned through

a strategy that selects unlabeled instances representing novelty.

Even when we are dealing with multi-class problems, our method

differs from that introduced by Scheirer et al. [11] , which only rec-

ognizes unknown classes to keep them apart from the class of in-

terest. In more detail, our iterative classifier can incorporate and

learn new classes over time. Unlike the mechanisms used by Lam-

pert et al. [8,33] , no coupling between known and unknown classes
s required. In other words, our approach does not require transfer

earning, but it is an alternative to fulfill a portion of the require-

ents addressed in Section 7.1 of [33] — particularly the following

uestion raised by the authors: “How can we build object recogni-

ion systems that adapt and incorporate new categories encountered?”

In the context of image recognition tasks, Deep Learning (DL)

ethods are relevant, requiring huge amounts of labeled data

3,15] . But there are application scenarios where only a limited

ource of annotated data is available, which makes it difficult

o train DL architectures [2,17,50] . Besides, incomplete knowledge

with missing classes) during the training phase requires self-

daptable models, which is little explored in DL frameworks. Such

 gap is of our interest as well, so our method can be a step toward

uch a flexibility. Instead of using DL for classification we employed

ur iterative classifier on features extracted via a pre-trained Con-

olutional Neural Network (CNN), which is a common practice for

nding feature embeddings [51] . As addressed next, our iterative

lassifier explore label uncertainty and high-density regions to dis-

over new classes of images, which can be represented by either

andcrafted global features, or deep features. 

. Detecting and learning new classes 

As clustering algorithms naturally capture similarities between

bjects , similarity matrices constructed from cluster ensembles can

e a source of supplementary information about the data explored

31,52] and can help, for example, in the identification of high-

ensity regions . We have used this kind of information, along with

stimations of the label uncertainty , to explore new classes of im-

ges. Our approach is materialized by an iterative classifier that

ombines classification and clustering to detect and learn new

lasses. The starting point was the C 

3 E algorithm [30,31,53] , which

s briefly revisited in Section 3.1 . The extension of this algorithm

o address new classes is introduced in Section 3.2 . 

.1. Review of C 3 E 

Acharya et al. [31] introduced a framework that combines clas-

ifiers and clustering algorithms to improve the generalization ca-

ability of classification. Its core is a general optimization algo-

ithm, named C 

3 E (Consensus between Classification and Cluster-

ng Ensembles), which explores a large class of loss functions [30] .

oletta et al. [53] investigated a simpler version of C 

3 E by employ-

ng a Squared Loss function (C 

3 E-SL). This algorithm has provided

ttractive empirical results, as it is flexible and computationally ef-

cient in practice. 

C 

3 E-SL assumes that an ensemble of classifiers (consisting of

ne or more classifiers) has been previously induced from a train-

ng set. This ensemble estimates initial class probability distribu-

ions for every instance x i of a target/test set X = { x i } n i =1 
. Such

istributions are stored as c -dimensional vectors, { πi } n i =1 
, where c

s the number of classes. Cluster ensembles can provide soft con-

traints for classifying the instances of X . The rationale is that sim-

lar instances, found by clustering algorithms, are more likely to

hare the same class label. The probability distributions in { πi } n i =1 
an be refined by using a similarity matrix S = { s i j } n i, j=1 

. S captures

imilarities between the instances of X so that each entry corre-

ponds to the relative co-occurrence of two instances in the same

luster [52] (considering all of the data partitions built on X ). 

In summary, C 

3 E-SL receives as input a set of vectors, { πi } n i =1 
,

nd a similarity matrix, S , and outputs a consolidated classifica-

ion for every instance in X which is represented by a set of vec-

ors { y i } n i =1 
— y i = p(C | x i ) , i.e., y i is the estimated posterior class

robability assignment for every instance in X . To do so, C 

3 E-SL

olves an optimization problem whose objective is to minimize J
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n (1) with respect to the set of probability vectors { y i } n i =1 
: 

 = 

1 

2 

∑ 

i ∈X 
‖ y i − πi ‖ 

2 + α
1 

2 

∑ 

(i, j) ∈X 
s i j ‖ y i − y j ‖ 

2 . (1)

Algorithm 1 describes an update procedure that minimizes J in

1) . In more detail, keeping { y j } n j=1 
\ { y i } fixed, we can minimize J

or every y i by iteratively computing Eq. (2) . The number of iter-

tions, I , and the parameter that controls the relative importance

f classifiers and cluster ensembles, α, can be automatically esti-

ated from data following the parameter optimization procedure

roposed in [53] . 

Algorithm 1: C 

3 E with Squared Loss function – C 

3 E-SL [53] . 

Input : { πi } , S , α, I. 

Output : { y i } . 
1 Initialize { y i } such that y i� = 

1 
c ∀ i ∈ { 1 , 2 , ..., n } , 

∀ � ∈ { 1 , 2 , ..., c} ; 
2 Repeat 

3 Update y i ∀ i ∈ { 1 , 2 , ..., n } via Equation (2): 

4 

y i = 

πi + 2 α
∑ 

j � = i s i j y j 

1 + 2 α
∑ 

j � = i s i j 

, (2) 

5 until the number of iterations reaches I; 

The combination of classification and clustering has been

hown to be useful for designing learning methods that are aware

f the differences between training and target distributions [30] .

e believe that this aspect can help in the exploration of fu-

ure data, particularly for discovering new concepts/classes not ob-

erved during training. 

.2. Proposed iterative classifier 

Our proposed classifier is an extension of the C 

3 E-SL algorithm

hat iteratively classifies images. Therefore, it can self-adapt over

ime to improve the classification model. In each iteration, a spe-

ialized search can detect new classes by exploring unlabeled in-

tances that have highly uncertain labels and are located in dense

egions, which are identified from clusters. Essentially, such in-

tances might denote some novelty triggered by concept drift (i.e.,

rom changes in the distribution of classes) or even be represen-

ative of new classes not observed during training. Highly uncer-

ain labels from a particular classification can be captured based

n entropy measures [40,54] . Given the c -dimensional probability

ectors yielded by C 

3 E-SL, { y i } n i =1 
, the classification entropy for an

nstance i can be computed by Eq. (3) : 

 i = 

−∑ c 
j=1 y i j log 2 y i j 

log 2 c 
. (3) 

Now, we aim at combining the classification entropy of images

ith the information about their surrounding densities, which can

e computed from similarity matrices (as those processed by C 

3 E-

L). Let H 

i be the set containing the h -nearest neighbors of a given

nstance i . The density around i can be computed as 

 i = 

1 

h 

∑ 

j∈ H i 
s i j , (4) 

here the values of s ij correspond to the entries in a similarity

atrix S . 
We have assumed that instances that are candidates for new

lasses are those from high-density regions and with high classi-

cation entropy (with respect to the known classes). Therefore, a

andidate to represent a new class can be obtained by choosing

he instance i for which ( e i × d i ) is maximized. We capture this

otion with Entropy and Density-based Selection (EDS), which is

ummarized by Algorithm 2 , whose output is a set of instances

hat are more likely to belong to new classes. To do so, it re-

eives as input the entropy vector e = { e 1 , e 2 , ..., e n } , the density

ector d = { d 1 , d 2 , ..., d n } , and a scalar P 2 , which represents the

umber of selected candidates. Note that, in Step 5, we want

o select P 2 instances that are as dissimilar as possible to each

ther so that these can significantly contribute to the improve-

ent of the model. The output, �, stores the indexes of the P 2 in-

tances from a target set ( X ) that are more likely to belong to new

lasses. 

Algorithm 2: Entropy and Density-based Selection (EDS). 

Input : e , d , P 2 , S n ×n . 

Output : � = { ω j } P 2 j=1 
. 

1 For j ← 1 to P 2 do 

2 If j = 1 then 

3 ω j = arg max 
1 � i � n 

[ e i · d i ] ; 

4 else 

5 ω j = arg max 
1 � i � n 

[ e i · d i · (1 − 1 
j−1 

∑ 

r∈ � s ir )] ; 

6 end 

7 e ω j = −∞ (to select distinct instances) ; 

8 end 

Based on active learning, the instances selected by

lgorithm 2 (EDS) can be labeled by a domain expert so that

ew classes can be discovered. Accordingly, these instances can

e incorporated into the training set, and then the model can

e retrained. Specifically, C 

3 E-SL can be run again to infer the

lass of the remaining unlabeled instances in X — assuming that

he supervised component was rebuilt from the updated training

et and the similarity matrix S was reduced by the elimina-

ion of the corresponding entries of the P 2 selected instances.

lgorithm 3 summarizes the above steps. Such a process can

e repeated several times for the detection and learning of new

lasses. For the sake of simplicity, our iterative classifier, which

ombines Algorithms 3 (IC) and 2 (EDS), is named IC-EDS. 

Algorithm 3: Iterative Classifier (IC) for learning new classes. 

Input : { πi } n i =1 
, S n ×n . 

Output : { y i } q i =1 
. 

1 Run C 

3 E-SL from { πi } n i =1 
and S n ×n to provide { y i } n i =1 

— the 

classifier ensemble was built from P 1 labeled instances ; 

2 P tot = 0 ;
3 Repeat 

4 Obtain labels for P 2 instances provided by Algorithm 2 — e 

and d are computed via Equations (3) and (4), respectively ; 

5 P tot = P tot + P 2 ;
6 q = n − P tot ; 

7 Build a classifier ensemble from (P tot + P 1 ) labeled 

instances to obtain { π′ 
i 
} q 

i =1 
; 

8 Update matrix S ′ q ×q ( removing the rows and columns 

related to the P 2 labeled instances ); 

9 Run C 

3 E-SL from { π′ 
i 
} q 

i =1 
and S ′ q ×q to provide { y i } q i =1 

; 

10 until a certain number of iterations is reached ; 
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4. Experimental setup 

Experiments were based on the holdout method [55] , in which

datasets are randomly split into training and target/test sets. In-

stances from the target/test sets were not used to induce the clas-

sifiers at all, i.e., they constitute independent data not used to op-

timize any parameter of the resulting classifiers. More precisely, a

certain number of labeled images (20% of the dataset) was used

to train and validate the classifiers, and the remainder (the tar-

get set) was used to test them. To simulate the emergence of new

classes, instances from a particular class were left out from the

initial training sets, whereas the target sets always contained in-

stances from all classes. To increase confidence in the results, algo-

rithms were run five times per left out class, taking into account

distinct initial training sets obtained from stratified random sam-

pling (without replacement). 

4.1. Setting up the algorithms 

The iterative classifier introduced in Section 3.2 (IC-EDS) em-

ploys the C 

3 E-SL algorithm, which requires the information of two

user-defined parameters ( α and I ). To automatically optimize these

parameters from data, we adopted practical guidelines as in [53] ,

such that an additional step for parameter optimization was per-

formed (on each training set). Firstly, an SVM classifier was built

on half of the available labeled instances. A dynamic differential

evolution algorithm [53] then estimates the optimal pair of values,

α∗ and I ∗, by minimizing the C 

3 E-SL misclassification rates in a val-

idation set. This set contains the other half of the labeled instances

where, as required by C 

3 E-SL, a cluster ensemble was induced. The

best values estimated for α and I were fixed and used in IC-EDS. 

In our study, C 

3 E-SL refines SVM classification with the help of

information provided by clusters. Parameters C and γ of the non-

linear SVM used were estimated by grid-search on the training set,

as in Hsu et al. [56] . To obtain the components of the cluster en-

semble, four sets of clusters (data partitions) were generated. Each

set was produced by a particular subset of features 1 . We adopted

the ordered multiple runs procedure [57] , in which k -Means based

on L2–norm (Euclidean distance) [25] is run 20 times for ev-

ery number of clusters k = { k min , k min +1 , k min +2 , ..., k max } , k min = 2 c

and k max = 

√ 

n . Therefore, each set has data partitions with differ-

ent numbers of clusters, which were generated from different ini-

tialization. To build a similarity matrix, the best partition of each

set, according to the silhouette criterion [57] , is used. 

Finally, from a (not comprehensive) empirical analysis we have

used h = 5 to compute the densities around data points — Eq. (4) .

Besides, we have fixed five iterations for the Algorithm 3 , each

one selecting P 2 = 5 instances for labeling. Thus, 25 instances were

used to improve the model and discover new classes. 

4.2. Datasets and features 

Experiments were carried out on the following datasets: 

• Caltech-6, which is a subset of Caltech-101 2 , containing 100

randomly selected images from the following classes: airplane,

bonsai, chandelier, hawksbill, motorbike, and watch as com-

piled by [58] . 

• Coil-20 3 dataset, which consists of 1440 gray-scale images of

128 × 128 in size with a black background for 20 different ob-

jects. Each object was recorded under 72 different viewing an-

gles [59] ; 
1 The subset of features was formed by 20% of the original features, which were 

randomly selected (without replacement). 
2 http://www.vision.caltech.edu/Image _ Datasets/Caltech101/ . 
3 http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php . 

 

b  

o  
• Corel-10 4 dataset that contains 10 0 0 color photographs divided

into 10 balanced categories — africans, beach, buildings, buses,

dinosaurs, elephants, flowers, horses, mountains, and food [60] ;

• Supermarket Produce dataset comprises 1400 fruit/vegetable

images divided into 14 balanced categories — agata potato, as-

terix potato, cashew, diamond peach, fuji apple, granny-smith

apple, honeydew melon, kiwi, nectarine, orange, plum, williams

pear, taiti lime, and watermelon. Instances of each class vary

in lighting, position of the elements within the image, and the

presence of cropping, occlusions, and shadows [61] . 

It is well known that Caltech-6 contains classes that are difficult

o classify with global features, but better discriminated with Deep

earning (DL) features. Also, a well-behaved dataset (Coil-20) was

sed, followed by a dataset with natural images and more class

verlapping (Corel-10). Finally, a dataset that has some confusion

etween specific classes (Supermarket Produce) was used. Fig. 2

hows the classes of each dataset. These datasets were described

y global color and/or texture visual features, and also by DL fea-

ures as follows: 

Handcrafted global features: global descriptors are fast to

ompute and produce good overall performance for image retrieval

nd classification as shown by Penatti et al. [62] . Such features are

btained via extraction methods that operate on single channel im-

ges therefore requiring preprocessing RGB input images. Following

uidelines for image processing for feature extraction [58] , images

ust be quantized to 1 channel 8-bit/pixel or less [63] . Then, the

ollowing color and texture features — those with the best perfor-

ance as found in previous studies [58,62] — were computed: 

• Border Interior Classification (BIC) : a color extraction method

that can encode structural information, i.e., the spatial distri-

bution of colors throughout the image. This method generates

a representation of the image color distribution by computing

two histograms: one for border pixels and another for interior

pixels. A pixel is classified as border if at least one of its neigh-

bors has a different color, and it is classified as interior other-

wise [64] . The final vector size has dimensions of C × 2, where

C is the number of color levels in the images; 

• Haralick-6 : based on gray-level co-occurrence matrices, this is

one of the most used texture descriptors. It first calculates a co-

occurrence matrix with size C × C using a fixed relationship of

�(x, y ) = (1 , 0) between pairs of pixels. Then, it extracts 6 Har-

alick features from this matrix: Entropy, Homogeneity, Contrast,

Correlation, Maximum Probability, and Uniformity [65] . 

The final global feature vector for each dataset was computed

s follows: 

• Coil-20: the grayscale images were quantized in 8 color levels.

The regions corresponding to the background were ignored, re-

sulting in 15 BIC features. The Haralick-6 was also computed for

this dataset, and concatenated with the BIC descriptor, resulting

in 21 dimensions; 

• Corel-10 and Supermarket Produce : the RGB images were quan-

tized in 64 color levels; only the BIC features were extracted,

resulting in 128 dimensions. 

The choice of features as well as the quantization levels for each

ataset were defined following previous studies [58,62] . While

oil-20 is a grayscale image dataset, therefore requiring texture to

omplement the color description (in terms of intensity levels), the

ther two datasets are well described by color features only. 

Deep features using VGGNet-16 : those features were obtained

y using the activation maps of a VGGNet-16 model pre-trained

n the ImageNet dataset. By performing a forward pass using the
4 http://wang.ist.psu.edu/docs/related/ . 

http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://wang.ist.psu.edu/docs/related/
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Fig. 2. Instances of each class of the datasets used in the experiments. 
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Fig. 3. Instances of classes in the illustrative global feature data. Only ducks and 

cats were used to build the classifier, thus IC-EDS should be able to discover the 

new unknown class “Piggy ” present in the target sets. 
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hole image resized to 224 × 224, we extracted the output of the

rst fully connected (dense) layer of the VGGNet-16 architectures

FC1) forming a vector with 4,096 values. This process has shown

o produce good general purpose features for image classification

51] . A Principal Component Analysis (PCA) was then employed to

btain the first 128 principal components, resulting in a dimen-

ionality that is comparable to those used in the global features. 

. Empirical evaluation 

This section provides a thorough experimental analysis of the

C-EDS algorithm introduced in Section 3.2 . For comparison pur-

oses, IC-EDS was also assessed against two baseline algorithms

ften employed in active learning studies [39,40] . Such compari-

on is made by replacing our proposed search ( Algorithm 2 ) by

he baseline approaches. The first, named IC-RS, performs a uni-

orm sampling of instances to be labeled as in Algorithm 3 (IC)

ut with a Random Selection (RS) in Step 4. The second baseline is

 clustering-based method referred to as IC-KM that uses k -Means

in Step 4 of Algorithm 3 ) to select the k instances as those nearest

o the centroids of the k clusters. All algorithms were implemented

n Matlab and to obtain their inputs the Weka API 5 was used. 

In theory, IC-EDS should get better results than IC-RS because it

erforms a smarter search for new concepts/classes. By uniformly

ampling the examples, IC-RS may also find new classes. There-

ore, we first show that our method performs better than this ran-

om search. The clustering method, IC-KM, should be able find

ew classes as isolated clusters. In order to avoid cluttered display

f the results, we only show the global performance of the IC-KM

ethod in comparison with the other selection methods. The com-

arison between the three methods, which is essential for validat-

ng the selection of candidate instances, is reported after illustrat-

ng the behaviour of our IC-EDS on two simpler datasets. All these

xperiments were run in a computer with 1.9 GHz Intel Quad-Core

7-8650U and 16 GB of RAM running Linux. 

.1. Illustrative example 

Two small datasets are used in this section: Coil-3 (a subset of

 classes from Coil-20), and Caltech-6 (a subset of 6 classes from
5 https://www.cs.waikato.ac.nz/ml/weka/ . 

 

C  

m  
altech-101). Experiments in this section can be seen as a peda-

ogical example of IC-EDS behavior operating in the presence of a

ew unknown class. Specifically, Coil-3 comprises images labeled

s “Duck ”, “Cat ”, and “Piggy ” represented by global features. As

hown in Fig. 3 , initial training sets have only labeled instances of

lasses “Duck ” and “Cat ” (14 instances for each class). In this sense,

C-EDS can initially recognize only ducks and cats, but it should

etect and learn the omitted class “Piggy ” while classifying images

rom the target sets. We used balanced target sets with 57 unla-

eled images for each class (“Duck ”, “Cat ”, and “Piggy ). 

Fig. 4 shows the proportions per class of images selected from

arget sets for each IC-EDS iteration (as defined in Section 4 , IC-

DS was run five times; each time, the algorithm was tested on

 specific target set). In the first iteration of the algorithm, 56%

f the selected images belong to the left out class “Piggy ”. In the

ext iteration, this proportion reached 84%. To illustrate the role of

DS selection, an example of “Piggy ” image in this iteration showed

ensity 0.95 and label uncertainty of 0.96. Fig. 5 depicts a sim-

larity matrix in which “Duck ”, “Cat ”, and “Piggy ” were (to some

xtent) found by cluster ensembles, which helped in the classifi-

ation refinement (by C 

3 E-SL), as well as in the detection of new

lasses ( Algorithm 2 ). After gathering sufficient examples from the

ew class, in the third iteration the proportions of selected im-

ges per class became more similar, and “Piggy ” error rates de-

reased to zero, indicating that IC-EDS got to recognize the “Piggy ”

lass. 

Similarly, when we performed five iterations of IC-EDS on

altech-6 formed by deep features and with the class 6 (“Watch ”)

issing from the training sets, its error rates strictly decreased to

https://www.cs.waikato.ac.nz/ml/weka/
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Fig. 4. Proportions of selected instances in each iteration. 

Fig. 5. Similarity matrix generated by cluster ensembles captured the existence of 

three clusters (dark regions) and helped in the refinement of SVM classification and 

detection of a new class (“Piggy ”). The clusters from bottom-left to top-right have 

“Duck ”, “Cat ”, and “Piggy ” instances, respectively. 
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0.03. Fig. 6 shows the proportions (per class) of selected images

in each IC-EDS iteration. Thus, the behavior of the algorithm on

Caltech-6 was similar to when Coil-3 was used. Note the tendency

of selecting images from the omitted class 6 were similar for both

datasets. This suggests that, initially, when a certain class is un-

known, IC-EDS detects it because the unknown concept is dissim-

ilar from those already known. After learning such a class, there

was not much novelty to capture, so the proportions become more

alike. 

We designed IC-EDS to find instances from high density regions

and that have high classification entropy. Although our desidera-
um is to have a joint effect of both density and entropy, it may

e instructive to study them separately. To do so, we continue to

xplore the results on Caltech-6, but now focusing on some par-

icular folds (training sets) sampled according to the experimental

etup described in Section 4 . We tested two strategies: (i) select-

ng instances as originally done by Algorithm 2 (EDS), in which

ntropy and density measures are combined and (ii) selecting in-

tances with EDS operating only with the entropy measure ( i.e. ,

ensity information was not considered at all). Fig. 7 shows the

umber of instances from class 6 that were selected in the first

teration of IC-EDS. Note that the combination of entropy and den-

ity yields to the detection of more instances from the omitted

lass — as compared to using entropy only. As expected, high la-

el uncertainty, by itself, may not be enough to identify instances

rom new classes. In this sense, note that high density regions are

ess prone to favor the selection of outliers. 

Let us explore a bit more the results depicted in Fig. 7 by us-

ng Fig. 8 , which depicts radar plots where each axis represents

he true class label of a selected instance in the first iteration of

C-EDS. Recall from Fig. 6 that, in the first iteration, 84% of the se-

ected instances are from the (omitted) class 6 (“Watch ”). As one

an infer from the depicted number of instances of class 6, there

s a one-to-one correspondence between the folds in Figs. 8 and 7 .

he polygon area for each radar plot represents the proportion of

he h nearest neighbors sharing the same class label of the selected

nstance. These neighbors are the ones used to compute (from the

imilarity matrix) the density for each candidate instance, and thus

resumably represent them. Fig. 8 shows that for folds 1, 3, and

, all the neighbors share the same class label of the selected in-

tances (class 6). Folds 2 and 5 show a different scenario, where

ot all of the neighbors belong to the same class. Note for fold 5

hat two candidates are from class 2 (already known by the clas-

ification model). Indeed, these are representative of their local re-

ion, because all their neighbors belong to class 2 as well. So, our

pproach allows to find regions where instances are likely to share

he same class label. 
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Fig. 6. Proportions of selected instances when class 6 (“Watch”) of the Caltech-6 dataset was left out to be recognized. 

Fig. 7. Number of instances from class 6 (“Watch ”) selected in the first iteration of 

IC-EDS. 
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.2. Results on Coil-20 

We now compare IC-EDS with its baseline, IC-RS, which ran-

omly selects instances to be labeled. Fig. 9 shows the propor-

ions (per class) of selected images after five iterations of both

lgorithms when instances from class 13 (“Piggy ”) were left out

f the initial training sets. Unlike the illustrative experiment in

ection 5.1 , we are now dealing with a more difficult problem
Fig. 8. Proportion of nearest neighbors sharing the same class label of a selected inst
ecause the algorithms must detect a new class within a set of

wenty classes, of which nineteen were seen by the classifiers. No-

ice that we are also comparing the performance of the algorithms

or the dataset formed by Global Features (GF) and deep features

ia VGGNet-16 (VGG16). As expected, IC-RS selected an uniform

roportion of instances from different class (ranging from 1.6% to

.8%), whereas IC-EDS selected instances from the unknown class

ore often. More precisely, instances from classes 2, 3, 13, and 16

ere more frequently selected. In particular, 8.4% of the chosen

nstances belonged to the omitted class “Piggy ” when IC-EDS and

lobal Features (IC-EDS-GF) were used, but this percentage was of

0.8% by using Deep Features (IC-EDS-VGG16), decreasing the class

rror rate by over 20% independently of the used features — see

able 1 further on. 

Let us examine scenarios when omitting two other Coil-20

lasses: 

• Class 2 – “Wooden Part 1 ” (see Fig. 10 ): after 5 iterations, 14.4%

of the instances selected by IC-EDS-GF belonged to class 2,

whereas for IC-EDS-VGG16 this percentage was 30.4%. After up-

dating the model with 25 new instances, the error rates were

around 0.85 for IC-EDS-GF and IC-RS versions, while dropping

to near 0.30 with the use of IC-EDS-VGG16. This shows that the

VGG16 representation was better for both selection of instances

and to add discriminative information to the model. 

• Class 4 – “Cat ” (see Fig. 11 ): IC-EDS selected around 38.4%

of “Cat” instances (with both GF or VGG-16 features). Notice
ance (axes show the class label of selected instances — five instances per fold). 
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Fig. 9. Proportions of selected instances per class after 5 iterations when class 13 (“Piggy ”) was initially omitted in order to have it be discovered later. 

Fig. 10. Class 2 (“Wooden Part 1 ”) error rates. 
Fig. 11. Class 4 (“Cat ”) error rates. 
Table 1 

Selected images (%) and error rates for each left out class of Coil-20. The a

instances). Standard deviations are within parentheses, and the best results are

Class left out 

Selection (%) 

IC-RS-GF IC-RS-VGG16 IC-EDS-GF IC-EDS-

1 ( “Duck”) 4.0 (4.90) 5.6 (6.07) 13.6 (11.17) 33.6 (5.

2 ( “Wooden Part 1”) 6.4 (6.07) 4.8 (4.38) 14.4 (8.76) 30.4 (21

3 ( “Car 1”) 4.8 (3.35) 3.2 (1.79) 8.0 (5.66) 29.6 (8.

4 ( “Cat”) 2.4 (3.58) 2.4 (3.58) 38.4 (21.09) 38.4 (27

5 ( “Anacin”) 3.2 (4.38) 8.0 (4.00) 4.0 (2.83) 33.6 (7.

6 ( “Car 2”) 4.8 (3.35) 4.0 (1.00) 2.4 (3.58) 28.8 (12

7 ( “Wooden Part 2”) 7.2 (3.35) 1.6 (2.19) 16.0 (16.73) 28.8 (16

8 ( “Talc”) 4.0 (2.83) 1.6 (2.19) 24.8 (25.52) 50.4 (21

9 ( “Tylenol”) 2.4 (2.19) 6.4 (7.27) 19.2 (8.67) 26.4 (15

10 ( “Vaseline”) 5.6 (2.19) 4.8 (6.57) 31.2 (18.63) 38.4 (27

11 ( “Wooden P. 3”) 4.8 (7.16) 4.0 (4.00) 10.4 (8.29) 35.2 (25

12 ( “Cup 1”) 5.6 (4.56) 2.4 (3.58) 22.4 (20.12) 31.2 (24

13 ( “Piggy”) 3.2 (2.19) 5.6 (2.19) 8.4 (9.21) 20.8 (4.

14 ( “Pot 1”) 4.8 (3.35) 4.0 (4.00) 18.4 (15.39) 36.8 (25

15 ( “Half Cov. Pot”) 3.2 (3.35) 7.2 (3.35) 11.2 (14.25) 38.4 (15

16 ( “Pot 2”) 4.8 (3.35) 4.8 (3.35) 11.2 (20.67) 33.6 (20

17 ( “Uncovered Pot”) 2.4 (3.58) 4.0 (6.93) 12.0 (12.33) 34.4 (13

18 ( “Cup 2”) 4.0 (2.83) 3.2 (7.16) 12.0 (13.27) 37.6 (34

19 ( “Car 3”) 3.2 (1.79) 2.4 (2.19) 11.2 (13.08) 35.2 (8.

20 ( “Cream Cheese”) 8.0 (2.83) 4.0 (2.83) 1.6 (3.58) 47.2 (34
lgorithms were run for 5 iterations (25 selected and manually labeled 

 highlighted in bold. 

Error rate 

VGG16 IC-RS-GF IC-RS-VGG16 IC-EDS-GF IC-EDS-VGG16 

37) 0.95 (0.06) 0.85 (0.16) 0.41 (0.29) 0.44 (0.21) 

.28) 0.86 (0.08) 0.85 (0.18) 0.84 (0.13) 0.33 (0.21) 

29) 0.77 (0.14) 0.90 (0.17) 0.97 (0.05) 0.54 (0.38) 

.80) 0.87 (0.24) 0.95 (0.09) 0.08 (0.12) 0.33 (0.28) 

27) 0.93 (0.09) 0.82 (0.19) 0.88 (0.10) 0.37 (0.27) 

.46) 0.62 (0.23) 0.96 (0.04) 0.97 (0.05) 0.45 (0.37) 

.35) 0.85 (0.12) 0.95 (0.07) 0.39 (0.22) 0.52 (0.13) 

.84) 0.85 (0.25) 0.95 (0.06) 0.61 (0.23) 0.03 (0.08) 

.13) 0.87 (0.14) 0.89 (0.07) 0.54 (0.34) 0.54 (0.33) 

.51) 0.87 (0.12) 0.85 (0.10) 0.23 (0.17) 0.32 (0.43) 

.20) 0.84 (0.22) 0.82 (0.19) 0.62 (0.30) 0.15 (0.15) 

.07) 0.45 (0.40) 0.77 (0.37) 0.09 (0.13) 0.0 0 (0.0 0) 

38) 0.78 (0.21) 0.92 (0.06) 0.79 (0.18) 0.78 (0.16) 

.67) 0.87 (0.20) 0.90 (0.06) 0.27 (0.20) 0.22 (0.34) 

.39) 0.55 (0.47) 0.49 (0.28) 0.0 0 (0.0 0) 0.0 0 (0.0 0) 

.51) 0.21 (0.44) 0.68 (0.20) 0.01 (0.01) 0.03 (0.07) 

.45) 0.73 (0.43) 0.63 (0.41) 0.65 (0.32) 0.02 (0.05) 

.94) 0.25 (0.43) 0.80 (0.23) 0.30 (0.45) 0.0 0 (0.0 0) 

67) 0.91 (0.14) 0.95 (0.05) 0.74 (0.25) 0.40 (0.41) 

.34) 0.40 (0.55) 0.90 (0.10) 0.80 (0.45) 0.17 (0.14) 
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Fig. 12. Number of labeled instances to reach a certain error rate level for the omit- 

ted class “Wooden Part 1 ”. 
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Fig. 14. Global F-Scores for Coil-20. 
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that IC-EDS-GF reduced the class error to less than 0.1,

and to around 0.3 when using deep features (IC-EDS-VGG16),

just by labeling 20 instances (i.e., after 4 iterations). In contrast,

by using IC-RS counterparts, only 2.4% (which approximates

1/20) “Cat ” images were selected and their error rates only

decreased to around 0.9. 

Those results suggest that, if an appropriate set of features is

vailable, our iterative classifier is able to significantly improve re-

ults recognizing in few iterations new classes that may appear. 

It is known that parsimonious and reliable labeling is a desir-

ble property of image classifiers. Therefore, now we analyze the

mpact on the omitted class error rate when labeling and includ-

ng new images in the classification model. For both Figs. 12 and

3 , we anticipate that if a particular algorithm could not get a par-

icular error rate, then its respective bar (for the labeled images)

oes not appear on the graph. For instance, in Fig. 12 only IC-EDS-

GG16 was able too get error rates less than 0.8. This analysis con-

iders the two already studied classes: 

• “Wooden Part 1 ”: Fig. 12 shows that with random algorithms

(IC-RS) as well as with Global Features (GF), the error rate de-

creased from 1 to around 0.85 by labeling 25 (IC-RS-GF), 15 (IC-

RS-VGG16) and 20 (IC-EDS-GF) instances, while 0.33 error was

achieved after 25 instances included with IC-EDS-VGG16. So, in
Fig. 13. Number of labeled instances to reach a cert
this case, the latter can be considered more parsimonious than

the others. 

• “Cat ”: a similar behavior is shown in Fig. 13 but in this case

IC-EDS was superior for both feature spaces: labeling 20 in-

stances was sufficient to achieve error rate below 0.4 with IC-

EDS, whereas, for the same number of instances the IC-RS al-

gorithms best results were error around 0.9. 

In general, IC-EDS algorithms required fewer labeled images to

chieve the same (or lower) error rates obtained by IC-RS counter-

arts, achieving better accuracy results in general. 

To summarize the results, Fig. 14 shows the global F-Score com-

uted by averaging twenty F-Scores, each one corresponding to a

eft out class from dataset Coil-20. Notice that this figure depicts

he global performance of the two baseline algorithms, IC-RS and

C-KM. As expected, IC-EDS algorithms indeed yielded better re-

ults than both IC-RS and IC-KM. Table 1 shows the percentage of

elected images and error rates for each omitted class when the

lgorithms reached 5 iterations (i.e., when 25 instances had been

anually labeled). The numerical results for the IC-KM were omit-

ed in this table for the sake of compactness and because they are

imilar to those achieved by IC-RS algorithm. IC-EDS algorithms
ain error rate level for the omitted class “Cat ”. 
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Table 2 

Selected images (%) and error rates for each left out class of Corel-10. The algorithms were run for 5 iterations (25 selected and manually labeled 

instances). Standard deviations are within parentheses, and the best results are highlighted in bold. 

Class left out 

Selection (%) Error rate 

IC-RS-GF IC-RS-VGG16 IC-EDS-GF IC-EDS-VGG16 IC-RS-GF IC-RS-VGG16 IC-EDS-GF IC-EDS-VGG16 

1 ( “Africans”) 11.2 (4.38) 12.8 (5.93) 36.0 (11.66) 44.8 (22.70) 0.81 (0.18) 0.81 (0.00) 0.64 (0.11) 0.55 (0.29) 

2 ( “Beach”) 9.6 (6.07) 8.0 (4.90) 17.6 (7.80) 48.8 (24.56) 0.49 (0.31) 0.97 (0.04) 0.41 (0.23) 0.37 (0.12) 

3 ( “Buildings”) 16.0 (6.32) 9.6 (4.56) 28.8 (14.53) 47.2 (31.04) 0.73 (0.21) 0.67 (0.29) 0.51 (0.14) 0.03 (0.06) 

4 ( “Buses”) 12.8 (6.57) 11.2 (5.22) 14.4 (12.52) 33.6 (8.76) 0.88 (0.19) 0.71 (0.28) 0.97 (0.02) 0.50 (0.28) 

5 ( “Dinosaurs”) 13.6 (4.56) 11.2 (5.22) 17.6 (6.69) 33.6 (8.29) 0.21 (0.44) 0.82 (0.14) 0.04 (0.05) 0.49 (0.33) 

6 ( “Elephants”) 8.0 (8.00) 9.6 (3.58) 8.0 (8.00) 50.4 (21.09) 0.86 (0.11) 0.88 (0.13) 0.97 (0.03) 0.12 (0.21) 

7 ( “Flowers”) 8.8 (6.57) 10.4 (2.19) 28.0 (4.00) 24.0 (14.14) 0.50 (0.10) 0.92 (0.13) 0.75 (0.23) 0.65 (0.18) 

8 ( “Horses”) 8.8 (3.35) 9.6 (4.56) 3.2 (1.79) 50.4 (19.31) 0.92 (0.09) 0.87 (0.16) 0.99 (0.01) 0.11 (0.08) 

9 ( “Mountains”) 10.4 (5.37) 12.0 (9.38) 4.8 (7.16) 36.0 (13.56) 0.93 (0.07) 0.92 (0.05) 0.98 (0.03) 0.55 (0.15) 

10 ( “Food”) 7.2 (1.79) 12.0 (4.90) 9.6 (4.56) 50.4 (23.08) 0.91 (0.12) 0.75 (0.18) 0.86 (0.13) 0.25 (0.13) 

Fig. 15. Proportions of selected instances per class after 5 iterations when class 10 (“Food ”) was initially omitted in order to have it be discovered later. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Class 10 (“Food ”) error rates. 
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worked very well because for the 35% of the omitted classes, they

reduced their error rates to lower than 0.1 (three cases reached to

0.0). More specifically, IC-EDS-VGG16 selected more instances from

those left out than the rest of the algorithms and provided lower

error rates for 65% of these cases (IC-EDS-GF got better results for

25% of the cases). Therefore, using deep features, a good average

F-Score was obtained by using our iterative classifier based on EDS

algorithm. Note that IC-RS and IC-KM reached an F-Score around

0.3, regardless of the set of features employed. 

5.3. Results on Corel-10 

Corel-10 is a more complex dataset in terms of visual con-

tent, including background and clutter. As in the previous sec-

tion, IC-EDS using deep features (VGG16) showed higher propor-

tions of selected images for the classes left out than IC-EDS with

Global Features (GF) — except when class “Flowers ” was omitted.

Table 2 summarizes the results of IC-EDS and IC-RS, and also in-

cludes the error rates for each class when they were taken out

from the training sets. All algorithms labeled a total of 25 images

(after 5 iterations). By observing the table, one interesting aspect

is the difficulty to get low errors for the IC-EDS-GF, even selecting

high proportions of the omitted class. This is probably due to the

lack of quality of the features, not due to classification model. It

is worth noticing the result for IC-EDS-GF when class “Dinosaurs ”

was left out, because this class is the only one with constant back-

ground, thus facilitating its separation from the remaining ones by

using Global Features. In contrast, with IC-EDS-VGG16 very low

error rates were achieved for the classes “Buildings ”, “Elephants ”,
nd “Horses ”. Moreover, IC-EDS-VGG16 obtained lower errors than

hose achieved by IC-EDS-GF for the 90% of the classes taken out. 

The behavior of our iterative classifier for class 10 is illustrated

y Fig. 15 , which depicts the proportions of selected images when

Food ” images are not used in the initial training. According to

his, and taking into account the error rates in Fig. 16 , IC-EDS-

F cannot discriminate images of foods much better than random
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Fig. 17. Class 3 (“Buildings ”) error rates. 
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Fig. 19. Global F-Scores for Corel-10. 
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aseline algorithms. To shed light on this discussion, we note that:

i) the feature space impacts, the learning of a new, unknown class.

s shown in Fig. 15 , images from classes 1 (“Africans ”), 3 (“Build-

ngs ”), and 4 (“Buses ”) were more frequent than those from the

mitted class 10 when IC-EDS-GF was run. Therefore, when the

ew class overlaps those already learned, the selection strategies

ay encounter difficulties to be better than random selection of

nstances. However, once the feature space is adequate, the IC-

DS identifies the new class and significantly decreases its error

ate (see Fig. 16 ); (ii) the performances for either Random Selec-

ion (RS) or Entropy and Density-based Selection (EDS) tend to be

ore similar as the number of iterations increases. As shown in

ection 5.1 , IC-EDS is better at finding images that represent a new

lass in early iterations, in particular for a proper set of features.

ater, classes of selected images become more uniform (as in IC-

S). According to Fig. 17 , which depicts the error rate curves when

lass 3 (“Buildings ”) was left out, IC-EDS-GF yielded a sharper error

ecrease on the first iterations, but after that the random selection

ethods tend to catch up with it. 

Considering the labeling costs, Fig. 18 shows the number of la-

eled images necessary to achieve specific error rates. From this
Fig. 18. Number of labeled instances to reach a certain
erspective, IC-EDS algorithms are more effective than their base-

ines, IC-RS, for the omitted class “Buildings ”. Notice that to obtain

n error rate lower than 0.6, 25 images had to be labeled by using

C-EDS-GF, whereas error lower than 0.1 was achieved by IC-EDS-

GG16 with only 20 labeled images. 

Fig. 19 shows the global F-Scores yielded by averaging individ-

al F-Scores computed for each left out class for the IC-EDS, IC-RS,

nd IC-KM algorithms. Although the results suggest that Corel-10

s a challenging dataset for the exploration of new classes, good

esults were obtained, particularly with few labeled images for

C-EDS-VGG16. Once again it suggests that, the better the feature

pace, more IC-EDS is able to improve results with few selected

mages. 

.4. Results on supermarket produce 

In this dataset, IC-EDS algorithms also yielded the best results

ith similar overall behavior in terms of feature space and er-

or rate per labeled images. Fig. 20 illustrates the proportions of

elected images when class 9 (“Nectarine ”) was omitted. While IC-

S algorithms got proportions between 2% and 10%, IC-EDS-GF and
 error rate level for the omitted class “Buildings ”. 
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Fig. 20. Proportions of selected instances per class after 5 iterations when class 9 (“Nectarine ”) was initially omitted in order to have it be discovered later. 

Fig. 21. Class 9 (“Nectarine ”) error rates. 

Fig. 22. Number of labeled instances to reach a certain error rate level for the omit- 

ted class “Nectarine ”. 

 

 

 

 

Fig. 23. Number of labeled instances to reach a certain error rate level for the omit- 

ted class “Plum ”. 
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IC-EDS-VGG16 found nectarines in 37.6% and 34.4% of the selected

images, respectively. As a result, IC-EDS provided faster error re-

duction, as shown in Fig. 21 . 

To clarify how practical our iterative classifier is in terms of the

labeling task, Figs. 22 and 23 illustrate the labeling effort s neces-
ary for achieving a certain error rate when the “Nectarine ” and

Plum ” classes were omitted. For the “Nectarine ” class, by labeling

5 images (i.e., after 5 iterations of the algorithm), IC-EDS-GF ob-

ained an error rate below 0.7, but IC-EDS-VGG16 required only 20

abeled instances to produce an error two times lower. As for the

Plum ” class, reaching an error rate lower than 0.7 required only

0 labeled instances for IC-EDS algorithms, whereas 20 instances

elected with the random (IC-RS) to reach similar error. 

The performance of the IC-EDS and its two baseline algorithms

s summarized in Fig. 24 , which shows the global F-Score com-

uted from fourteen individual F-Scores, each one for an omitted

lass. For this dataset, our approach got the best results, except

hen IC-EDS-GF is compared with IC-KM-GF from the fourth itera-

ion on. Nevertheless, we shall highlight the features learned from

eep learning, which notably improved results for IC-EDS-VGG16. 

The overall results for IC-EDS and IC-RS are summarized in

able 3 , which shows the proportions of selected images and er-

or rates for each algorithm when a particular class was left out

rom the initial training sets. Algorithms based on IC-EDS discov-

red the omitted classes more accurately than their counterparts,

hich randomly select instances to be labeled (IC-RS). In 93% of

he cases, the highest proportions of left out class selected were

btained by IC-EDS-VGG16 — only when nectarines were taken out

C-EDS-GF selected more. Remarkable error rates were also reached

y IC-EDS-VGG16 (for classes 6, 8, 11, and 13), and only for the

lass 14 (“Watermelon ”) IC-EDS-GF was better than the former. 
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Table 3 

Selected images (%) and error rates for each left out class of Supermarket Produce. The algorithms were run for 5 iterations (25 selected and manually 

labeled instances). Standard deviations are within parentheses, and the best results are highlighted in bold. 

Class left out 

Selection (%) Error rate 

IC-RS-GF IC-RS-VGG16 IC-EDS-GF IC-EDS-VGG16 IC-RS-GF IC-RS-VGG16 IC-EDS-GF IC-EDS-VGG16 

1 ( “Agata Potato”) 10.4 (4.56) 10.4 (6.07) 17.6 (7.80) 33.6 (20.12) 0.72 (0.14) 0.74 (0.25) 0.76 (0.15) 0.42 (0.31) 

2 ( “Asterix Potato”) 8.0 (6.32) 3.2 (3.35) 20.0 (14.14) 36.0 (19.60) 0.64 (0.39) 0.98 (0.01) 0.63 (0.02) 0.17 (0.16) 

3 ( “Cashew”) 8.8(3.35) 6.4 (4.56) 6.4 (4.56) 32.8 (9.12) 0.36 (0.16) 0.93 (0.10) 0.70 (0.33) 0.33 (0.23) 

4 ( “Dia. Peach”) 4.0 (5.66) 8.8 (5.22) 13.6 (9.21) 35.2 (26.44) 0.86 (0.24) 0.79 (0.13) 0.72 (0.30) 0.13 (0.19) 

5 ( “Fuji Apple”) 5.6 (6.07) 7.2 (3.35) 21.6 (9.21) 24.0 (6.32) 0.82 (0.13) 0.93 (0.04) 0.58 (0.19) 0.53 (0.35) 

6 ( “Gran. Apple”) 4.0 (4.90) 8.0 (7.48) 20.0 (12.00) 53.6 (35.28) 0.79 (0.29) 0.72 (0.30) 0.65 (0.30) 0.0 0 (0.0 0) 

7 ( “Hon. Melon”) 1.6 (2.19) 10.4 (5.37) 12.0 (6.32) 38.4 (20.12) 0.87 (0.15) 0.79 (0.13) 0.77 (0.26) 0.29 (0.34) 

8 ( “Kiwi”) 6.4 (8.29) 6.4 (5.37) 9.6(4.56) 39.2 (26.44) 0.84 (0.19) 0.93 (0.09) 0.90 (0.12) 0.08 (0.06) 

9 ( “Nectarine”) 10.4 (6.07) 7.2 (4.38) 37.6 (13.45) 34.4 (30.01) 0.92 (0.10) 0.95 (0.06) 0.64 (0.17) 0.32 (0.25) 

10 ( “Orange”) 4.0 (4.00) 8.0 (6.93) 12.0 (4.00) 38.4 (23.43) 0.75 (0.23) 0.85 (0.18) 0.68 (0.43) 0.29 (0.26) 

11 ( “Plum”) 9.6 (6.07) 8.0 (4.00) 28.0 (7.48) 43.2 (28.34) 0.63 (0.23) 0.74 (0.30) 0.33 (0.15) 0.02 (0.03) 

12 ( “Williams Pear”) 4.8 (3.35) 3.2 (3.35) 28.0 (11.66) 32.0 (25.61) 0.94 (0.09) 1.0 0 (0.0 0) 0.55 (0.21) 0.46 (0.19) 

13 ( “Taiti Lime”) 3.2 (5.22) 2.4 (2.19) 5.6 (6.07) 43.2 (18.20) 0.66 (0.46) 0.99 (0.01) 0.78 (0.34) 0.08 (0.19) 

14 ( “Watermelon”) 6.4 (3.58) 13.6 (8.29) 18.4 (15.65) 41.6 (22.20) 0.40 (0.47) 0.66 (0.36) 0.05 (0.02) 0.18 (0.21) 

Fig. 24. Global F-Scores for Supermarket Produce. 
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.5. Discussion 

The results observed in the small datasets Coil-3 and Caltech-6

ere consistent with respect to the full datasets: Coil-20, Corel-

0, and Supermarket Produce. Our proposed algorithm (IC-EDS) ef-

ectively used unlabeled data to improve classification results, and

lso discovered new classes. In particular, when features describing

mages are good enough to discriminate the unknown class from

he ones already existing in the current model, then IC-EDS algo-

ithm is consistently better than its baseline algorithms (IC-RS and

C-KM). Experimental evidence suggests that global features often

o not offer sufficient information to allow detecting new image

lasses, apart from a few specific cases. Remarkably better results

re achieved when using deep features that were generated by us-

ng a forward pass on pre-trained Deep Neural Networks. This is

mportant because extracting such features does not require to la-

el images. 

Let us highlight some particular results of F-Scores computed

hen deliberately removing each class from the training set, and

electing up to 25 images to be labeled from a set of unlabeled

nstances: 

• In Coil-20, IC-EDS achieved an average F-Score of 0.78 with

deep features (VGG16) and 0.56 with Global Features (GF),

whereas IC-RS and IC-KM did not get any better than 0.35; 
• In Corel-10, GF were not sufficiently informative, so IC-EDS-

VGG16 got an F-Score equal to 0.73, against less than 0.38 for

the other algorithms; 

• In Supermarket Produce, GF are more informative when com-

pared to the previous datasets. In fact, in the original study of

this dataset, the authors successfully used GF by training with

the same number of examples from all classes [61] . Still, in our

experiments with missing classes, IC-EDS-VGG16 obtained an

F-Score of 0.83, which is superior to IC-EDS-GF (0.45), IC-KM

(0.46), and IC-RS (0.33). 

.6. Time complexity analysis 

The asymptotic time complexity of Algorithm 1 (C 

3 E-SL) is

( c · n 2 ), where c is the number of classes and n is the number

f instances in the target set [30,31] . Our strategy for the selec-

ion of instances ( Algorithm 2 — EDS) is quadratic w.r.t. P 2 that

s, the number of selected candidates. As the proposed algorithm

or learning new classes ( Algorithm 3 — IC-EDS) performs C 

3 E-SL

nd EDS iteratively, its computational complexity per iteration is

( n 2 + P 2 2 · n ). However, the bottleneck of IC-EDS is the rebuilding

f the classifier ensemble, whose cost relies on the chosen compo-

ents. The removal of entries (of labeled instances) from the sim-

larity matrix also demands quadratic time complexity. Notice that

uilding of the similarity matrix, as input for the IC-EDS algorithm,

s O( n 2 ) as well. 

. Conclusions 

We introduced a flexible image classifier that deals with the

ppearance of new classes over time. It combines supervised and

nsupervised algorithms, making use of the supplementary infor-

ation provided by clustering algorithms to help in the detection

f new classes. In particular, our Iterative Classifier (IC) employs

n optimization algorithm to combine classification and clustering

lgorithms. In each iteration, an Entropy and Density-based Selec-

ion (EDS) explores and selects unlabeled instances (from a target

et) that have highly uncertain labels and are located in dense re-

ions. These instances are likely to represent new concepts/classes

nd, as such, are then labeled and used to update the classification

odel for the next iteration. 

Experimental results show that the IC-EDS can successfully dis-

over new classes over time using unlabeled instances, even on

arget sets with many different classes. In addition, the algorithm

llows parsimonious selection of instances, which decreases costs

f labeling. 
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Our contribution is a significant step towards classifiers that

can become aware of new concepts/classes that may appear over

time while using both labeled and unlabeled examples. We also

showed that the iterative selection of instances from new classes

performed better when using IC-EDS on features obtained from a

forward pass on a pre-trained Convolutional Neural Network. 

The main limitations of the proposed approach are: (i) the extra

time needed for optimization of required parameters; (ii) the sen-

sitivity to used feature space, particularly when it enables overlap-

ping of known with unknown classes, which hampers the learning

of the algorithm; (iii) and the rebuilding of the classifier ensemble

in each algorithm iteration, which increases the computational cost

(however, notice that incremental classifiers can be used for time

savings). 

Aspects such as the impact of the type and number of classi-

fiers used and the methods of inducing “good” data partitions will

be explored in future studies. Therefore, a more comprehensive in-

vestigation of a variety of settings may further clarify the capa-

bilities (and potential limitations) of the proposed classifier. More

specifically, the number of neighbors in Eq. (4) is a parameter that

deserves further studies. From a theoretical perspective, studies of

the properties of Eqs. (3) and (4) for detecting new classes are in-

teresting and could help in the design of improvements. 
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