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ABSTRACT

Any well-behaved generative model over a variable x can be expressed as a
deterministic transformation of an exogenous (‘outsourced’) Gaussian noise
variable z: x = 𝑓𝜃 (z). In such a model (e.g., a VAE, GAN, or continuous-time
flow-based model), sampling of the target variable x ∼ 𝑝𝜃 (x) is straightforward,
but sampling from a posterior distribution of the form 𝑝(x | y) ∝ 𝑝𝜃 (x)𝑟 (x, y),
where 𝑟 is a constraint function depending on an auxiliary variable y, is generally
intractable. We propose to amortize the cost of sampling from such posterior
distributions with diffusion models that sample a distribution in the noise space
(z). These diffusion samplers are trained by reinforcement learning algorithms
to enforce that the transformed samples 𝑓𝜃 (z) are distributed according to the
posterior in the data space (x). For many models and constraints of interest, the
posterior in the noise space is smoother than the posterior in the data space, making
it more amenable to such amortized inference. Our method enables conditional
sampling under unconditional GAN, (H)VAE, and flow-based priors, comparing
favorably both with current amortized and non-amortized inference methods. We
demonstrate the proposed outsourced diffusion sampling in several experiments
with large pretrained prior models: conditional image generation, reinforcement
learning with human feedback, and protein structure generation.

1 INTRODUCTION

Generative models, trained on a dataset to maximize likelihood or related quantities, can become
priors for Bayesian inference problems. The aim is to approximate or sample from the product
of the modeled distribution over a data space with an observation likelihood or other constraint
function. While such diverse applications as conditional generation (Dhariwal & Nichol, 2021; Ho &
Salimans, 2022), inverse problems (Song et al., 2022; Chung et al., 2023; Venkatraman et al., 2024),
and constrained improvement from human feedback (Korbak et al., 2022; Fan et al., 2023) can be
cast as posterior inference tasks, sampling from such posterior distributions when no unbiased target
data is available is generally intractable. For some model families, approximate solutions, such as
MCMC, approximate guidance, and variational inference, may be possible. Each of those methods
has limitations, such as high cost to reach convergence for multimodal posteriors, intractability of
accurate density estimation, and reliance on techniques specialized to the model and constraint.

Fundamentally, generative models are probabilistic programs that produce samples from the distri-
butions they define by a combination of deterministic computation and injection of random noise.1
This paper argues that the noise space of generative models – the space where the noise injected
during generation resides – is an effective target for posterior inference. To be precise, we consider a
generative model that expresses data as a deterministic transformation of noise, x = 𝑓𝜃 (z), where the
noise variable z follows a known distribution z ∼ 𝑝z (z) and 𝜃 are the model parameters. This model
defines a distribution over x – the pushforward [ 𝑓𝜃 ]∗𝑝z of the noise distribution by the deterministic
transformation – with density 𝑝(x). A constraint function 𝑟 (x, y) in the data space, depending on an
auxiliary variable y, defines a posterior distribution 𝑝(x | y) ∝ 𝑝(x)𝑟 (x, y). This posterior can be
sampled by inferring a distribution over the noise variable z that, when transformed by 𝑓𝜃 , aligns
with the posterior in the data space. The posterior in the noise space is often smoother (and lower-

1We refer here to models that produce samples in a bounded number of operations, not to objects such as
deep energy-based models, for which sampling is intractable.
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Figure 1: Left: Top row: Marginal
densities of a CNF that transforms
a Gaussian distribution (𝑡 = 0) to a
Swiss roll (𝑡 = 1). Middle row: The
constraint function – a mixture of two
Gaussians and its reflection through
the origin – pulled back to x𝑡 . Bottom
row: Posterior densities at x𝑡 . The
rightmost column shows samples in the
data space. Right: Example for a GAN
that transforms noise (z) to data (x).
Outsourced diffusion samplers ap-
proximate 𝑝(x0 | y) or 𝑝(z | y), which
are smoother than 𝑝(x | y) (see Fig. 2).

p(
x t

)

t = 0.00

p(
x t

y)
p(

y
x t

)

t = 0.50 t = 0.75 t = 1.00

p(
z)

z

p(
z

y)
p(

y
z)

p(
x)

x

p(
z

x)
p(

y
x)

p(
z)

z

p(
z

y)
p(

y
z)

p(
x)

x

p(
z

x)
p(

y
x)

Target
p(x1

y)
Outsourced

p(x0
y)

Figure 2: Marginal densities of the posteriors
from the CNF example in Fig. 1 in data (top
row) and noise space (bottom row).

Table 1: Common families of generative models can be expressed
as deterministic transformations of noise. Here, 𝑑latent is the
latent dimension and 𝑑latent ≪ 𝑑data (§2). Posteriors under such
priors are generally intractable, but some models can be fine-
tuned by asymptotically unbiased variational objectives to sample
intractable posteriors (§3.1). Outsourced diffusion sampling ap-
proximates posteriors in the noise space (§3.2 and §4).
Model Noise dim. 𝑑noise Invertible? Variational tuning?

(H)VAE 𝑑latent · 𝑁 + 𝑑data × ✓
GAN 𝑑latent × ×
NF / CNF 𝑑data ✓ ✓/×
Diffusion 𝑑data · (𝑇 + 1) × ✓
Latent diffusion 𝑑latent · (𝑇 + 1) + 𝑑data × ✓

dimensional) than the corresponding posterior in the data space (Fig. 1), making it more amenable to
efficient sampling (Fig. 2).

While posterior sampling in noise space is still intractable, it can be addressed by methods of black-
box variational inference. Recent advances in diffusion samplers – diffusion models trained not on a
dataset, but to match a given unnormalized density (Zhang & Chen, 2022; Vargas et al., 2023; Richter
& Berner, 2024; Sendera et al., 2024) – open an opportunity to model complex posteriors in noise
space. We call such amortized posterior inference in the noise space outsourced diffusion sampling.

Our exposition and experiments support three claims:

(1) Outsourced diffusion sampling is agnostic to the form of the mapping 𝑓𝜃 and applicable to a
wide range of prior models, including VAEs, GANs, normalizing flows, and continuous-time
flow-based models (Table 1).

(2) Outsourced diffusion sampling is an effective posterior inference method under large pretrained
generative model priors in a variety of domains: conditional image generation, reinforcement
learning with human feedback, discriminator-adjusted GAN sampling, and protein structure
generation (Table 2).

(3) Outsourced diffusion sampling is more efficient than amortized inference methods that fit a
model to sample the data space posterior directly and than non-amortized methods like MCMC,
illustrating the flexibility of diffusion sampling in outsourced noise spaces (§5).

2 OUTSOURCING NOISE IN GENERATIVE MODELS

Consider a probabilistic model over a variable x taking values in R𝑑data , with auxiliary latent variables
w valued in R𝑑latent . The model is a joint distribution over x and w, and it induces a distribution over x,
its marginalization over w. In terms of densities (if they exist), if 𝑝(w, x) is the joint density, then the
marginal density of x is 𝑝(x) =

∫
𝑝(w, x) 𝑑w.

A form of the noise outsourcing lemma (see, e.g., Austin, 2015) states that, under basic assumptions,
any such model is equivalent to one augmented with additional latent variables w′, independent of w
and following a fixed distribution, such that x is a (deterministic) function of w and w′. In particular,
if w and w′ are both standard Gaussian, then x is a deterministic function of a Gaussian noise variable
z (the concatentation of w and w′), called the ‘outsourced’ noise:
Proposition 2.1 (Noise outsourcing lemma for Gaussians). Let w and x be Borel-measurable random
variables valued in R𝑑latent and R𝑑data , respectively, with w marginally standard Gaussian, and let
𝑑noise > 𝑑latent. There exists a random variable z in R𝑑noise such that:

(1) z is standard Gaussian and w is the projection of z onto its first 𝑑latent coordinates;
(2) there exists a measurable function 𝑓 : R𝑑noise → R𝑑data such that (w, x) = (w, 𝑓 (z)) almost surely.
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Prop. 2.1 ensures that any generative model with marginally Gaussian latent variables can be rewritten
as a deterministic function of a higher-dimensional Gaussian noise variable, but does not specify
the form of the function 𝑓 (which is very non-unique). We will be interested in modeling Bayesian
posteriors over x given observations by pulling them back to the noise variable z, using methods
agnostic to the form of 𝑓 , which is seen as a black-box transformation.

Common families of generative models have a natural form for 𝑓 , obtainable explicitly from their
latent variable structure, that we will exploit. We now explain how several model families, in
their basic form, can be expressed as deterministic transformations of noise z following a Gaussian
distribution over R𝑑noise . See Table 1 for a summary.

Variational autoencoders (VAEs; Kingma & Welling, 2014). The generative model in a simple
VAE may have the form x ∼ N(µ𝜃 (w), 𝜎2

𝜃
(w)𝐼𝑑data ), where w follows a Gaussian distribution in

R𝑑latent and µ𝜃 and 𝜎𝜃 are neural networks outputting a vector and scalar, respectively. This model
may be reparametrized as

x = µ𝜃 (w) + 𝜎𝜃 (w)𝜉, (1)
where 𝜉 ∼ N(0, 𝐼𝑑data ). Thus x is a deterministic transformation of the concatenation of w and 𝜉,
which follows a Gaussian distribution in R𝑑latent+𝑑data . (The encoder, an auxiliary object used in training
the VAE, does not form part of the generative model.) Hierarchical VAEs (HVAEs; Rezende et al.,
2014), generalize VAEs, using a Markovian chain of latent variables in the generative process i.e.,
a graphical model structure of w𝑁 → · · · → w1 → x with each transition a conditional Gaussian
distribution. If these variables are all R𝑑latent -valued, then x can be similarly reparametrized as a
function of the 𝑁 𝑑latent-dimensional Gaussian noises injected on each transition w𝑖+1 → w𝑖 and the
𝑑data-dimensional noise on the last step, as in (1).

Generative adversarial networks (GANs; Goodfellow et al., 2014). In a GAN, a generator 𝐺 𝜃

maps Gaussian-distributed noise z ∼ N(0, 𝐼𝑑latent ) deterministically to data, x = 𝐺 𝜃 (z). Thus a GAN
is naturally a model with outsourced noise in R𝑑latent . (The discriminator is an auxiliary object used
in training, not a part of the generative model.)

Normalizing flows (NFs; Rezende & Mohamed, 2015). In a NF – also naturally a generative model
with outsourced noise – the generator 𝑓𝜃 maps Gaussian noise z ∼ N(0, 𝐼𝑑data ) to data x deterministi-
cally, x = 𝑓𝜃 (z). Unlike a GAN generator, the function 𝑓𝜃 is constrained to be invertible and necessar-
ily (in order to model a full-support distribution) must have noise of the same dimension as the data.

Continuous normalizing flows (CNFs; Chen et al., 2018) A CNF is an invertible transformation
from noise z = x0 to data x = x1 that is the solution of a neural ordinary differential equation (ODE)

𝑑x𝑡 = 𝑣 𝜃 (x𝑡 , 𝑡) 𝑑𝑡.
This includes ODEs derived from diffusion models, e.g., DDIMs (Song et al., 2021a), and those
trained with flow matching, the family of methods introduced by Lipman et al. (2023); Albergo &
Vanden-Eijnden (2023); Liu et al. (2023).

Under regularity conditions on 𝑣 𝜃 , a distribution over initial conditions x0 induces marginal distribu-
tions over x𝑡 for 𝑡 > 0, and in particular over the data variable x1. The CNF is a generative model
with outsourced noise variable z = x0.

Diffusion models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) and latent diffusion
models (Rombach et al., 2021) can also be expressed as deterministic transformations of noise; see
Appendix A.1 for discussion and connections.

3 POSTERIORS UNDER GENERATIVE MODEL PRIORS

For a generative model 𝑝(x) of any of the types described in §2, and a positive constraint function
𝑟 (x, y) such that Ex∼𝑝 (x) [𝑟 (x, y)] is finite, we are interested in sampling the posterior distribution
𝑝(x | y) ∝ 𝑝(x)𝑟 (x, y). Various sources of constraints will be described in §5 (see Table 2).

3.1 POSTERIOR SAMPLING AND APPROXIMATION

Here, we describe existing methods for sampling approximately from such intractable posteriors.

Model-agnostic methods. The most general methods for sampling from distributions defined by
unnormalized densities are Markov chain Monte Carlo (MCMC) methods. These methods may not
require fitting parametric models, although hybrid methods – such as adaptive importance sampling
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(Bugallo et al., 2017), twisted SMC variants (Lawson et al., 2018; 2022), and neural boostrap
algorithms (Midgley et al., 2023) – can accelerate their convergence.

MCMC methods are agnostic to the form of the target distribution and are guaranteed to converge
to it under mild conditions in the limit of infinite time (or memory in the case of particle filtering
methods like SMC (Del Moral et al., 2006; Doucet et al., 2009)), making them anytime algorithms
that can trade off computation cost for accuracy. However, MCMCs assume access to the target
density and possibly to its gradient, limiting their applicability:

• For (H)VAEs and their special case diffusion models, the density cannot be computed exactly;
only variational bounds are available.

• For GANs, the density cannot be computed because the generator is not injective (invertible) and
may not even define a full-support distribution over the target space.

• For CNFs, the density can be approximated using the Hutchinson trace estimator (Hutchinson,
1989; Grathwohl et al., 2019), but accurately computing the gradient is expensive, as it requires
backpropagating through the computation graph of a neural ODE integrator.

Monte Carlo methods in latent space. MCMC sampling can be performed at intermediate time
points of continuous-time flow-based models (Cabezas et al., 2024). MCMC techniques are also used
for sampling in GAN latent spaces for discriminator-guided sampling (Che et al., 2020; Hou et al.,
2025) and for conditional generation by sampling in intermediate activation spaces (Nguyen et al.,
2017). Similar approaches are applied to normalizing flows (Coeurdoux et al., 2024). Monte Carlo
techniques are also used in diffusion models (Appendix A.1).

Amortized inference and fine-tuning. For some families of models, it is possible to train a model
that, at convergence to the global optimum, samples from the posterior distribution exactly. This is a
problem of variational inference: the model is trained – or perhaps fine-tuned using the prior model
as initialization – to be close to the target distribution in some measure of divergence.

For CNFs, a method for fine-tuning the drift function 𝑣 𝜃 to yield a CNF that samples from the
posterior distribution, known as adjoint matching, has recently been proposed by Domingo-Enrich
et al. (2024). While this method is asymptotically unbiased, it requires access to the gradient of
the likelihood function. Furthermore, it is only applicable to a narrow class of flow-based models,
namely, those that are trained from certain marginal couplings and interpolants and closely related
to the probability flow ODEs of diffusion models. This restrictiveness is due to adjoint matching
converting the neural ODE to an equivalent neural SDE2, which is not possible in general (e.g., for
flow-based models trained using minibatch optimal transport couplings (Tong et al., 2024; Pooladian
et al., 2023) or with non-Gaussian source distributions). Naı̈vely applying adjoint matching to such
CNFs gives biased results (Fig. 8, see Appendix D.1).

3.2 BAYESIAN POSTERIOR IN NOISE SPACE

We describe how posterior distributions can be pulled back to the noise space of a generative
model expressed as a deterministic transformation of an outsourced variable. This relies on a basic
measure-theoretic fact regarding the transformation of density functions under pushforward measures:

Proposition 3.1. Suppose that (𝑍, Σ𝑍 ) and (𝑋,Σ𝑋) are measurable spaces and 𝑓 : 𝑍 → 𝑋 is
measurable. If 𝜇 is a 𝜎-finite measure on 𝑍 and 𝜈 is a 𝜎-finite measure on 𝑋 with 𝜈 ≪ 𝑓∗𝜇, then
𝑓∗

((
𝑑𝜈

𝑑 𝑓∗𝜇
◦ 𝑓

)
· 𝜇

)
= 𝜈. In particular, if 𝜇 is a probability measure and ℎ : 𝑋 → R≥0 is 𝑓∗𝜇-

integrable, then 𝜆 := 1∫
ℎ 𝑑 ( 𝑓∗𝜇)

(ℎ ◦ 𝑓 ) · 𝜇 is a probability measure on 𝑍 , and 𝑓∗𝜆 = 1∫
ℎ 𝑑 ( 𝑓∗𝜇)

(ℎ · 𝑓∗𝜇)
is a probability measure on 𝑋 .

(See Appendix A.2 for the proof.) In common terms, in terms of densities, the relevance of the
proposition of our setting is as follows. Let 𝑓 : R𝑑noise → R𝑑data be a function from the noise space to
the data space. A prior density 𝑝(z) in the noise space, transformed via x = 𝑓 (z), defines a prior 𝑝(x)
(a density with respect to some reference measure, such as the volume measure on the image of 𝑓 ). If
ℎ(x) = 𝑟 (x, y) is a constraint function with

∫
𝑟 (x, y)𝑝(x) 𝑑x < ∞, then if z′ is a variable in the noise

space distributed with density proportional to 𝑝(z′)𝑟 ( 𝑓 (z′), y), and x′ = 𝑓 (z′), then x′ is distributed
with density proportional to 𝑝(x′)𝑟 (x′, y) in the data space. This means that to sample the posterior in
latent space, we can sample from the posterior in noise space (with density 𝑝(z)𝑟 ( 𝑓 (z), y)) and trans-

2In diffusion models (SDEs), the prior model can also be fine-tuned to sample from the posterior using
objectives closely related to those proposed here; see Appendix A.1.
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form the sample by 𝑓 . (Note that such sampling does not require computation of the pushforward den-
sity. Indeed, 𝑓 need not be injective or smooth, as would typically be required for such computations.)

Amortizing outsourced posterior sampling. Although noise space posteriors might be simpler than
the distribution in target space (Figs. 1 and 2), they can still be multimodal and high-dimensional.
MCMC methods have been used to sample from noise spaces of NFs and GANs (?Cannella et al.,
2021), but suffer from long mixing times. In addition, many MCMC methods assume that the target
density 𝑝(z)𝑟 ( 𝑓 (z), y) is (efficiently) differentiable, which is not the case when 𝑓 is a CNF.

Instead, it can be desirable to use amortized variational inference to fit a fast sampler to the latent
posterior, that is, to approximate it by a parametric model. We have no samples from this posterior,
but have access to its unnormalized density 𝑅(z | y) := 𝑝(z)𝑟 ( 𝑓 (z), y).
We call such a model an outsourced sampler, a name motivated by the fact that the factors of variation
in the posterior are ‘outsourced’ to the noise space via the pullback operation. We shall use diffusion
models as the variational family, as will be discussed in §4.2.

4 OUTSOURCED DIFFUSION SAMPLING

4.1 DIFFUSION SAMPLERS FOR AMORTIZED INFERENCE

Diffusion sampling is the variational inference problem of approximating a distribution over R𝑑 ,
with a given unnormalized density 𝑅 : R𝑑 → R>0, by a diffusion model. Samples from the target
distribution, which has density 𝑝target (z) = 1

𝑍
𝑅(z), are not available, nor do we have access to the

normalizing constant 𝑍; however, we have the ability to query for the unnormalized density 𝑅(z) at
any point z. The goal is to train a neural stochastic differential equation

z0 ∼ N(0, 𝐼𝑑) 𝑑z𝑡 = 𝑢𝜙 (z𝑡 , 𝑡) 𝑑𝑡 + 𝜎𝑡 𝑑B𝑡 , (2)
where 𝑢𝜙 is a neural network, 𝜎𝑡 is a scalar function of time, and B𝑡 is standard Brownian motion, so
that the induced distribution over z1 = z is close to the target distribution 𝑝target (z) in some measure
of divergence. (Note that, unlike for diffusion models trained from data, it is standard for generation
to proceed in increasing time (from noise at 𝑡 = 0 to the target at 𝑡 = 1.) The model can be sampled
by simulating (2) in a time discretization, e.g., using the Euler-Maruyama method.

Training diffusion samplers is more difficult than training typical diffusion models, i.e., maximizing a
variational bound on log-likelihood of a dataset. Various objectives have been proposed, including:
(1) ones that rely on differentiable simulation of the generative process during training (Li et al., 2020;
Kidger et al., 2021; Zhang & Chen, 2022; Vargas et al., 2023) and are linked with optimal control
(Berner et al., 2022; Vargas et al., 2024), (2) ones using biased but asymptotically consistent Monte
Carlo estimates of the score function (Vargas et al. (2022); Huang et al. (2024); Akhound-Sadegh et al.
(2024)), and (3) ‘off-policy’ divergences that can be optimized on arbitrary generative trajectories not
necessarily sampled from the current iteration of the model (Richter et al., 2020; Nüsken & Richter,
2021; Sendera et al., 2024, inter alia). A unifying perspective on these methods and analysis in the
continuous-time limit were recently given by Berner et al. (2025).

In this work, we adopt training methods of the third kind, using off-policy divergences, as they have
have two notable advantages. First, they treat the target 𝑅 as a black-box reward function and do
not require access to the score ∇ log 𝑅, as differentiable simulation methods and some Monte Carlo
methods do. Second, they can be trained off-policy, on trajectories obtained through exploration,
allowing the flexible use of exploration strategies and thus promoting mode discovery, as demonstrated
for continuous-space samplers by Malkin et al. (2023); Sendera et al. (2024); Phillips & Cipcigan
(2024); Kim et al. (2025). The exact form of the off-policy divergence will be described in §4.2.

4.2 DIFFUSION SAMPLING IN NOISE SPACE

Diffusion models are an attractive choice of variational family due to their ability to sample from
complex high-dimensional distributions. We train outsourced diffusion samplers by using the methods
introduced in §4.1 to approximate posteriors in outsourced noise spaces (§3.2).

The target density we wish to sample takes the form 𝑅(z | y) := 𝑝(z)𝑟 ( 𝑓 (z), y). The sampler can be
conditioned on the auxiliary variable y (taking it as an input, resulting in amortization over y and the
possibility of generalizing to new y) or can be trained for a single, fixed value of y.

Training objective. To train a diffusion model to sample from the target density 𝑅(z | y), we use
the trajectory balance objective (TB; Malkin et al., 2022). TB was first introduced in the context of
(discrete) generative flow networks (GFlowNets; Bengio et al., 2021; 2023) and generalized to the

5
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Table 2: The priors and constraints studied in §5. Outsourced diffusion sampling works in noise spaces of a
wide range of generative models and is agnostic to their specific form.
Task Constraint Prior Prior type 𝑑noise 𝑑data

CIFAR-10 classifer guidance CIFAR-10 classifer SN-GAN GAN 128 3 × 32 × 32
I-CFM CNF 3 × 32 × 32 3 × 32 × 32

FFHQ text conditioning ImageReward StyleGAN3 GAN 512 3 × 256 × 256
NVAE Hierarchical VAE 4 × 20 × 8 × 8 3 × 256 × 256

Text-to-Image model RLHF ImageReward Stable Diffusion 3 Latent-CNF 16 × 64 × 64 3 × 512 × 512
Protein structure (Appendix B) Structure Diversity FoldFlow 2 Riemannian CNF 7 × 64 7 × 64

(a) SN-GAN Prior (b) Posterior (Dog) (c) Posterior (Car) (d) I-CFM Prior (e) Posterior (Dog) (f) Posterior (Car)

Figure 3: CIFAR-10 samples generated using SN-GAN (top row) and CFM (bottom row) priors and posterior
samples from trained outsourced diffusion models for the ‘Dog’ and ‘Car’ classes.

continuous setting in Lahlou et al. (2023); it is also a close relative of the VarGrad objective (Richter
et al., 2020). It was comprehensively evaluated for diffusion samplers in Sendera et al. (2024) and
its asymptotic consistency in the continuous-time limit was established in Berner et al. (2025). We
briefly review the TB objective and refer to those works for further details.

A diffusion model – a neural network with parameters 𝜙 and possibly conditioned on y – defines a
Markovian distribution over denoising trajectories 𝜏 = (z0 → zΔ𝑡 → · · · → z1), where Δ𝑡 = 1

𝑇
is the

time step of the discretization of the SDE (2), via

𝑝
𝜙

𝐹
(𝜏 | y) = 𝑝(z0)

𝑇∏
𝑖=1

𝑝
𝜙

𝐹
(z𝑖Δ𝑡 | z(𝑖−1)Δ𝑡 , y). (3)

Here 𝑝(z0) is the density of a fixed distribution over the initial noise (recall that generation goes
forward in time) and 𝑝

𝜙

𝐹
is the density of the transition kernel defined by the model, i.e., the

probability of transitioning from a sample at a given noise level to a sample at the next-lowest noise
level. Similarly, the (fixed) noising process defines a distribution over noising trajectories conditioned
on their terminal endpoint: 𝑝𝐵 (𝜏 | z1) =

∏𝑇
𝑖=1 𝑝𝐵 (z(𝑖−1)Δ𝑡 | z𝑖Δ𝑡 ). The TB objective associated with

a trajectory 𝜏 is a squared log-ratio:

LTB (𝜏; y, 𝜙) =
(
log

𝑍𝜙 (y)𝑝𝜙

𝐹
(𝜏 | y)

𝑅(z1 | y)𝑝𝐵 (𝜏 | z1)

)2

, (4)

where 𝑍𝜙 is a learned model that, at optimality, estimates the partition function
∫
𝑅(z | y) 𝑑z. This

objective aims to match two distributions over trajectories: the one defined by the denoising model
and that defined by the target distribution and the noising kernel. If the two distributions are equal,
then their marginal densities at 𝑡 = 1 also coincide.

For training, one draws trajectories 𝜏 from some training distribution (which is not necessarily the
current model 𝑝𝜙

𝐹
) and optimizes (4) with respect to the parameters 𝜙. If the TB loss is optimized to

0 for every trajectory 𝜏 in the continuous-time limit, the model 𝑝𝜙

𝐹
asymptotically samples from the

target density 𝑅(z | y) (Berner et al., 2025).

Exploration and credit assignment techniques. We borrow a number of off-policy exploration
techniques (such as replay buffers), as well as methods to make training more stable (such as
temperature annealing) from the diffusion samplers literature. For details, see Appendix C.

5 EXPERIMENTS

The goal of our experiments is to demonstrate the general applicability of outsourced sampling,
highlighting tasks which lack specialized techniques for posterior inference. We list the different tasks,
alongside the sources of priors, constraints, and the dimension of noise sampled by the outsourced
diffusion model in Table 2. Additional experiments on protein structure generation are in Appendix B.

5.1 CLASS-CONDITIONAL SAMPLING
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Figure 4: Samples from the FFHQ priors and outsourced
diffusion posteriors for different prompts (also Appendix E.

Table 4: FFHQ text-conditioning results for
NVAE and StyleGAN3 priors. We report av-
erage log-reward and CLIP cosine distance
(diversity) for posteriors, averaged over the
prompts shown in Fig. 4.
Prior Sampler E[log 𝑟 (x, y)] (↑) CLIP Diversity (↑)

NVAE
Prior −1.94 0.30
Latent HMC −1.2 0.30
Outsourced Diff. 0.98 0.26

StyleGAN3
Prior −1.52 0.36
Latent HMC −0.62 0.31
Outsourced Diff. 1.23 0.26

Table 3: CIFAR-10 posterior sampling results for GAN
and CNF priors. We report expected classifier log prob-
ability and FID scores for the class posteriors, averaged
over all 10 classes.
Prior Sampler E[log 𝑝(y | x)] (↑) FID (↓)

SN-GAN
Prior −5.37 97.14
Latent HMC −3.26 75.33
Outsourced Diff. −3.84 68.12

I-CFM

Prior −5.88 84.79
Latent HMC −2.80 46.69
Adj. Matching −3.09 19.45
Outsourced Diff. −3.35 34.28

Setup. The prior model 𝑝𝜃 (x) is an off-the-shelf
unconditional image generator trained on the
CIFAR-10 dataset (Krizhevsky, 2009).

Using a CIFAR-10 classifier 𝑝(y | x), we train
a posterior class-conditioned generative model
𝑝(x | y) ∝ 𝑝𝜃 (x)𝑝(y | x). For our experiments
we work with two priors which achieve high fi-
delity unconditional generation: a flow matching
(CNF) model trained with independent coupling
and linear interpolants (I-CFM; Tong et al.,
2024), and a spectrally normalized GAN (SN-
GAN; Miyato et al., 2018). We use a 13-layer
VGG-net model as the classifier (Simonyan & Zisserman, 2015). We compare outsourced diffusion
sampling against a powerful MCMC baseline and a recent method for fine-tuning flow-based models:

• Hamiltonian Monte Carlo (HMC; Brooks et al., 2011) applied in the noise spaces of both the
SN-GAN and CFM priors to sample the outsourced posterior. We highlight that HMC with CNF
priors can be quite slow, since it requires differentiating through the ODE integrator.

• Adjoint Matching (Domingo-Enrich et al., 2024): see §3.1 and Fig. 8 for discussion. Note that
adjoint matching requires access to the gradient of the constraint function.

For the SN-GAN prior, we train an outsourced diffusion model to sample the noise z ∈ R512. For the
CFM prior, we sample the initial noise latent at 𝑡 = 0, where z ∈ R3×32×32. See Appendix C.2.

Results. We report average log-reward (classifier log-likelihood) of samples and FID scores (com-
puted with the dataset images of the given class) in Table 3. The CFM posteriors consistently
outperform SN-GAN posteriors, reflecting the superior quality of the CFM prior. Among the meth-
ods evaluated, adjoint matching with the CFM prior achieves the best performance – as expected,
since it is specifically designed for fine-tuning I-CFM models with a Gaussian source (samples in
Fig. 7). Outsourced diffusion, a more general approach, also delivers strong conditional generation
(visualized in Fig. 3). Unlike adjoint matching and HMC, outsourced diffusion does not rely on
gradient information from either the classifier or the prior. Additionally, the outsourced diffusion
model offers significant advantages in training efficiency, requiring approximately 5 hours on an
A100 GPU compared to 12 hours for adjoint matching (see Appendix D.3). Moreover, we show
how we can distill one-step outsourced diffusion samplers in Appendix D.2, with no performance
degradation and significant sampling speed advantage.

5.2 CONDITIONAL HIGH-RESOLUTION FACE GENERATION

Setup. Given a generator of high-resolution (256 × 256) human face images trained on the FFHQ
dataset (Karras et al., 2021b) as the prior 𝑝𝜃 (x), we aim to generate faces aligned with a specified
text caption y. To achieve this, we use a constraint function given by ImageReward (Xu et al.,
2023), a text-image reward model built on the BLIP backbone (Li et al., 2022) that scores images
based on their alignment with the provided text prompt and aesthetic quality. The ImageReward
score serves as the log-constraint function log 𝑟 (x, y) in our formulation, enabling us to frame the
text-conditional face generation problem as posterior inference. For the prior models, we employ
NVAE (Vahdat & Kautz, 2020) and StyleGAN3 (Karras et al., 2021a), both of which achieve
high-fidelity unconditional generation.

NVAE is a deep hierarchical VAE with a large number of latents of different scales. Vahdat & Kautz
(2020, Appendix B.6) notes that almost all the feature variance is captured by the first 4 levels of the
latent hierarchy. We train the outsourced diffusion model to sample noise z ∈ R4×20×8×8 for these
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levels, which turns out to be sufficient for conditional generation. For StyleGAN3, we sample the
generator noise space z ∈ R512. Due to the absence of specialized variational techniques for posterior
inference with GANs and VAEs, we use HMC sampling of the outsourced noise, targeting the same
distribution as the outsourced diffusion sampler, as the baseline. More details in Appendix C.3.

Results. We report average ImageReward score and diversity, measured as average cosine distance
of CLIP (Radford et al., 2021) embeddings for 100 generated images from the posterior, for 4
different prompts in Table 4. We find HMC for StyleGAN3 can get stuck in bad reward modes, but
sometimes obtains high reward. HMC is consistently poor with the NVAE prior, which we attribute to
a combination of dimensionality and high energy barriers. Outsourced diffusion samplers consistently
generate prompt-accurate posterior samples. Illustrative samples are displayed in Fig. 4 and more
uncurated samples in Appendix E. StyleGAN3 posteriors are of higher quality than NVAE posteriors,
likely because the prior is also stronger.

5.3 TEXT-TO-IMAGE RLHF
Table 5: RLHF finetuning results for SD3 prior. We
report expected log reward and CLIP cosine distance
(diversity) for posteriors, averaged over the prompts
listed in Fig. 5.
Sampler E[log 𝑟 (x, y)] (↑) CLIP diversity (↑)
Prior 0.791 0.19
CFG 0.84 0.17
Outsourced Diff. 1.27 0.16

Setup. Diffusion and flow matching models that
generate images conditioned on textual prompts
often struggle with complex prompts that in-
volve compositional relationships. A promising
strategy to address this limitation is to fine-tune
such models using reward functions that quan-
tify image-caption alignment. In previous work, Fan et al. (2023); Venkatraman et al. (2024) used
Stable-Diffusion-1.5 (Rombach et al., 2021) as a caption-conditioned prior 𝑝(x | y) and ImageReward
as the unnormalized log-likelihood log 𝑟 (x, y). In both of those works, the prior diffusion model
was tuned to sample approximately from the posterior 𝑝aligned (x | y) ∝ 𝑝(x | y)𝑟 (x, y). In our
experiments, we instead align Stable Diffusion 3 (SD3; Esser et al., 2024), which is a CNF, not a
diffusion model, and is thus unsuitable for fine-tuning using the mentioned techniques.

A cat and a dog. A cat riding a llama.

Prior Posterior Prior Posterior

Quiet village disrupted by
meteor strike.

A human with a horse face
and a human with a wolf

face.
Figure 5: Sampled images from the SD3 prior and out-
sourced diffusion posterior for different prompts. More
examples in Appendix F.

We train outsourced diffusion samplers of the
CNF’s 16 × 64 × 64-dimensional noise space.
Gradient-based posterior inference techniques,
such as adjoint matching and HMC, are pro-
hibitive for a flow model at the scale of SD3,
since they involve differentiating through the
reward model, high resolution multiscale de-
coder, and ODE integrator. Instead, as a base-
line, we tune the classifier-free-guidance weight
(Ho & Salimans, 2022) individually for each
prompt and report the best performance. See
Appendix C.4 for details.

Results. We report the ImageReward score and
the average CLIP cosine distance averaged over
4 prompts in Table 5. We present illustrative
examples in Fig. 5, with further uncurated
samples provided in Appendix F. We find that
latent sampling greatly improves reward (and our qualitative assessments) compared to the prior.
These results, along with the analysis in §5.2, demonstrate the effectiveness of our proposed method
to fine-tune high-dimensional image priors.

6 CONCLUSION

We have proposed outsourced diffusion samplers for efficient posterior inference in the noise spaces
of generative models. These samplers take advantage of the expressiveness of diffusion models and
the flexibility of off-policy training algorithms for black-box target distributions and can be applied to
any model that can be written as a deterministic transformation of noise. While we have demonstrated
the effectiveness of this method in a variety of settings, there are many questions for future work.
One natural direction is to extend the method to discrete problems, where the noise space is discrete
or the transformation involves discretization. Another is to adapt outsourced diffusion sampling to
general probabilistic programs, where the generative model includes both stochasticity and nontrivial
control flow, and where current inference methods use MCMC sampling in outsourced noise spaces
(Dash et al., 2023).
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A THEORY AND METHOD DETAILS

A.1 OUTSOURCED SAMPLING FOR DIFFUSION PRIORS

We describe posterior sampling, outsourced posterior inference and diffusion sampling when the
prior generative model is itself a diffusion model.

Monte Carlo methods. The ‘guidance’ term in diffusion posteriors – the difference between the
scores of the noised prior and posterior distributions – can be estimated by Monte Carlo integration
(Song et al., 2023; Cardoso et al., 2024) or using approximations specialized for constraints arising
from linear inverse problems (Kawar et al., 2021; Kadkhodaie & Simoncelli, 2021; Song et al.,
2022; Chung et al., 2023). Posterior estimation can also be achieved through stochastic optimization
(Graikos et al., 2022; Mardani et al., 2024)

Methods related to sequential Monte Carlo, which treat a modification to the denoising transition
kernel as a proposal, have also been proposed (Doucet et al., 2022; Dou & Song, 2024; Chen et al.,
2025).

Amortized methods. Because generation proceeds in a long sequence of sampling steps, and the
modes of the posterior are not known a priori, these methods use reinforcement learning techniques
to discover regions of high posterior density. Asymptotically unbiased methods include ELEGANT
(Uehara et al., 2024) and relative trajectory balance (Venkatraman et al., 2024).

Outsourcing noise in diffusion models. Generation of data x = x0 is modeled as a Markov process
x𝑇 → · · · → x1 → x0, where x𝑇 ∼ N(0, 𝐼𝑑data ) and the transition from x𝑡 to x𝑡−1 is conditionally
spherical-Gaussian. Via the reparametrization trick, the trajectory of latent variables can be expressed
as a function of the initial sample x𝑇 and the 𝑇 standard Gaussian noises injected at each step of
sampling, just as in a VAE. Thus a diffusion model is a generative model with outsourced noise in
R𝑑data · (𝑇+1) (see (6) below).

Generalizing this setting, a typical latent diffusion model chains a diffusion model in a latent space
R𝑑latent , w𝑇 → · · · → w1 → w0, with a Gaussian decoder w0 → x of the same form as a VAE decoder.
Combining the two, the data x is a deterministic transformation of the concatenation of the initial
latent variable w𝑇 , the 𝑇 standard Gaussian noises injected at each step of sampling, and the noise
in the final decoder. Thus a latent diffusion model is a generative model with outsourced noise in
R𝑑latent · (𝑇+1)+𝑑data .

(Note the similarity to the outsourced interpretation of HVAEs above: a diffusion model indeed
be understood as a deep hierarchical VAE. However, a diffusion model is also a neural stochastic
differential equation (Tzen & Raginsky, 2019; Song et al., 2021b) integrated in discrete time. In this
view, in the continuous-time limit, the outsourced noise is a sample of Brownian motion, and indeed
an Itô integral is a deterministic transformation of a Brownian noise random variable.)

Outsourced autoregressive sampling under diffusion priors recovers relative trajectory balance.
Venkatraman et al. (2024) studied the problem of fine-tuning a diffusion model 𝑝𝜃 – seen as a
transition policy 𝑝𝜃 (x𝑖Δ𝑡 | x(𝑖−1)Δ𝑡 ) – to yield a diffusion model 𝑝

post
𝜙

that samples the product
of the distribution 𝑝𝜃 (x1) defined by the prior model with a constraint 𝑟 (x1), where the prior and
posterior diffusion model share the noising process and standard Gaussian noise distribution 𝑝(x0).
The relative trajectory balance (RTB) objective was proposed; for a trajectory 𝜏,

LRTB (𝜏; 𝜙) =
(
log

𝑍𝜙

𝑟 (x1)
+

𝑇∑︁
𝑖=1

log
𝑝

post
𝜙

(x𝑖Δ𝑡 | x(𝑖−1)Δ𝑡 )
𝑝𝜃 (x𝑖Δ𝑡 | x(𝑖−1)Δ𝑡 )

)2

, (5)

where 𝑍𝜙 is a learned scalar (note the resemblance to (4)).

Let 𝜉𝑖 be the standard Gaussian noise injected in sampling 𝑥𝑖Δ𝑡 conditionally on 𝑥 (𝑖−1)Δ𝑡 , so that the
prior model can be rewritten as a deterministic function of the noises 𝜉0, 𝜉1, . . . , 𝜉𝑇 via

x0 = 𝜉0, x𝑖Δ𝑡 = x(𝑖−1)Δ𝑡 + 𝑣 𝜃 (x(𝑖−1)Δ𝑡 , (𝑖 − 1)Δ𝑡)Δ𝑡 + 𝜎𝑖Δ𝑡

√
Δ𝑡𝜉𝑖 , (6)

where 𝜇𝜃 outputs the drift of the generative SDE. Similarly, let 𝜇post
𝜙

be the drift of the posterior
generative SDE. For a trajectory 𝜏 sampled using a sequence of noises 𝜉0, 𝜉1, . . . , 𝜉𝑇 under the prior
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model, the RTB loss (5) can then be rewritten in terms of the noises:

LRTB (𝜏; 𝜙) =
(
log

𝑍𝜙

𝑟 (x1)
+

𝑇∑︁
𝑖=1

log
N(x𝑖Δ𝑡 − x(𝑖−1)Δ𝑡 ; 𝜇

post
𝜙

(x(𝑖−1)Δ𝑡 , (𝑖 − 1)Δ𝑡)Δ𝑡, 𝜎2
𝑖Δ𝑡

Δ𝑡)
N (x𝑖Δ𝑡 − x(𝑖−1)Δ𝑡 ; 𝜇𝜃 (x(𝑖−1)Δ𝑡 , (𝑖 − 1)Δ𝑡)Δ𝑡, 𝜎2

𝑖Δ𝑡
Δ𝑡)

)2

=

(
log

𝑍𝜙

𝑟 (x1)
+

𝑇∑︁
𝑖=1

log
N(𝜉𝑖; 𝜇diff (x(𝑖−1)Δ𝑡 , (𝑖 − 1)Δ𝑡)

√
Δ𝑡/𝜎𝑖Δ𝑡 , 𝐼𝑑data )

N (𝜉𝑖; 0, 𝐼𝑑data )

)2

=

(
log

𝑍𝜙N(𝜉0; 0, 𝐼𝑑data )
∏𝑇

𝑖=1 N(𝜉𝑖; 𝜇diff (x(𝑖−1)Δ𝑡 , (𝑖 − 1)Δ𝑡)
√
Δ𝑡/𝜎𝑖Δ𝑡 , 𝐼𝑑data )

𝑟 (x1)
∏𝑇

𝑖=0 N(𝜉𝑖; 0, 𝐼𝑑data )

)2

(7)

where 𝜇diff (x, 𝑡) := 𝜇
post
𝜙

(x, 𝑡) − 𝜇𝜃 (x, 𝑡).
Consider now an amortized sampler of the outsourced noises 𝜉0, 𝜉1, . . . , 𝜉𝑇 that generates the variables
autoregressively (𝜉0 from a standard Gaussian, then subsequently each 𝜉𝑖 from a Gaussian with unit
variance and mean conditioned on the previously sampled noises). The transition policy density of
this sampler can be written

𝑝𝐹 (𝜉𝑖 | 𝜉0, . . . , 𝜉𝑖−1) = N(𝜉𝑖; 𝜇outsourced (𝜉0, . . . , 𝜉𝑖−1), 𝐼𝑑data ).
Under a model parametrization in which the policy takes as input the intermediate state x(𝑖−1)Δ𝑡 ,
computed as a function of the noises 𝜉0, . . . , 𝜉𝑖−1 using the prior model,

𝜇outsourced (𝜉0, . . . , 𝜉𝑖−1) = 𝜇diff (x(𝑖−1)Δ𝑡 , (𝑖 − 1)Δ𝑡)
√
Δ𝑡/𝜎𝑖Δ𝑡 ,

the numerator in (7) is precisely 𝑍𝜙𝑝𝐹 (𝜏), where 𝜏 is the sampling trajectory of the autoregressive
sampler generating 𝜉0, 𝜉1, . . . , 𝜉𝑇 . The denominator is 𝑟 (x1) multiplied with the prior density of
the noise, which is the target density for the sampler (the unnormalized density of the outsourced
posterior).

Thus we see that (7) exactly recovers the trajectory balance objective (Malkin et al., 2022) for an
autoregressive sampler of outsourced noise.

A.2 PROOF OF PROP. 3.1

Proposition A.1. Suppose that (𝑍, Σ𝑍 ) and (𝑋, Σ𝑋) are measurable spaces and 𝑓 : 𝑍 → 𝑋 is
measurable. If 𝜇 is a 𝜎-finite measure on 𝑍 and 𝜈 is a 𝜎-finite measure on 𝑋 with 𝜈 ≪ 𝑓∗𝜇, then
𝑓∗

((
𝑑𝜈

𝑑 𝑓∗𝜇
◦ 𝑓

)
· 𝜇

)
= 𝜈. In particular, if 𝜇 is a probability measure and ℎ : 𝑋 → R≥0 is 𝑓∗𝜇-

integrable, then 𝜆 := 1∫
ℎ 𝑑 ( 𝑓∗𝜇)

(ℎ ◦ 𝑓 ) · 𝜇 is a probability measure on 𝑍 , and 𝑓∗𝜆 = 1∫
ℎ 𝑑 ( 𝑓∗𝜇)

(ℎ · 𝑓∗𝜇)
is a probability measure on 𝑋 .

Proof of Prop. 3.1. Let ℎ = 𝑑𝜈
𝑑 𝑓∗𝜇

; we must show that 𝑓∗ ((ℎ ◦ 𝑓 ) · 𝜇) = ℎ · 𝑓∗𝜇. Let 𝐸 ∈ Σ𝑋 and
𝐷 = 𝑓 −1 (𝐸) ∈ Σ𝑍 . By definitions and properties of pushforward measures,

𝑓∗ ((ℎ ◦ 𝑓 ) · 𝜇) (𝐸) = ((ℎ ◦ 𝑓 ) · 𝜇) (𝐷)

=

∫
𝑍

(ℎ ◦ 𝑓 )1𝐷 𝑑𝜇

=

∫
𝑍

(ℎ1𝐸) ◦ 𝑓 𝑑𝜇

=

∫
𝑋

ℎ1𝐸 𝑑𝑓∗𝜇

= (ℎ · 𝑓∗𝜇) (𝐸),
as required.

For the second part of the proposition, if 𝜈 = ℎ · 𝑓∗𝜇, then 𝑑𝜈
𝑑 𝑓∗𝜇

= ℎ 𝑓∗𝜇-almost everywhere, and the
result follows easily from the first part by linearity of the pushforward. □
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Table 6: Results for protein structure experiments.
We report the log-reward, and pairwise TM-Score,
averaged over 64 samples. Standard deviation over
3 seeds is reported.

Method E[log 𝑟div (x)] (↑) Pairwise TM-Score (↓)

Prior −1.325 ± 0.014 0.4480 ± 0.0044
RW MCMC −0.640 ± 0.073 0.4181 ± 0.0057
Outsourced Diff. 0.422 ± 0.225 0.4407 ± 0.0706

(a) CFM Prior

(b) Outsourced Diffusion Posterior

Figure 6: Protein samples with pertinent secondary
structures highlighted: 𝛼-helices (blue), 𝛽-sheets
(red), and coils (green).

B PROTEIN SECONDARY STRUCTURE DIVERSITY EXPERIMENTS

Setup. Many protein generative models have been proposed to tackle the problem of designing novel
yet realistic protein structures (Watson et al., 2023; Bose et al., 2024). They learn to produce proteins
of 𝑁 residues by sampling rotations and translations applied to each residue backbone (the space
SE(3)𝑁 ). As our prior 𝑝𝜃 (x), we use the recent FoldFlow 2 model, which is a Riemannian CNF (on
the manifold SE(3)𝑁 embedded in R7×𝑁 ) trained with minibatch OT coupling Huguet et al. (2024).

Protein residues fold into patterns called secondary structures, which include 𝛼-helices, 𝛽-sheets,
and coils. Many protein generative models have issues producing proteins with diverse secondary
structures, typically under-sampling proteins with 𝛽-sheets. A natural problem is to produce samples
which are both probable under the prior model and exhibit this structural diversity. This can be
framed as sampling from 𝑝𝜃 (x)𝑟div (x), where the constraint function 𝑟div (x) assigns high-values
to proteins with diverse secondary structures (in-particular, the presence of 𝛽-sheets).

Let 𝑝 = [𝑝𝛼, 𝑝𝛽 , 𝑝𝑐] be a vector representing the proportion of residues that are in 𝛼-helices, 𝛽-
sheets or coils. The particular constraint function that we use, adapted from Huguet et al. (2024), is
𝑟div (x) = 𝑒−1.5𝑤⊤ 𝑝

1.2−H[𝑝] , where 𝑤 = [1, 2, 0.5] is a weight vector, and H[𝑝] is the entropy of 𝑝.

This problem poses two challenges. First, since the model is a Riemannian CNF, the flow ODE cannot
be converted into a diffusion SDE, so that adjoint matching and diffusion fine-tuning techniques are
not applicable. Second, the constraint function is not differentiable with respect to the generative
model’s output, ruling out methods such as HMC. We therefore compare our method to a gradient-free
MCMC method in the noise space z. We fix the protein length to 64 residues, and evaluate the model
achieving the highest diversity score during training. See Appendix C.5 for details.

Results. We report the average log 𝑟div (x), as well as a diversity metric (the pairwise TM-Score)
in Table 6. The latter calculates the similarity between pairs of proteins, averaged across a set of
generated samples (Zhang & Skolnick, 2004). Uncurated protein samples are shown in Fig. 6. We
find that our proposed method samples diverse protein structures rich in 𝛽-sheets more frequently
than the baselines, while maintaining a TM-Score comparable to the prior.

C EXPERIMENT DETAILS

C.1 DIFFUSION MODEL

For all experiments, we use a convolutional UNet architecture (Ronneberger et al., 2015) for the
diffusion model. This architecture is naturally well-suited for latent spaces structured as image feature
maps. However, for other types of latent representations, we found that simply reshaping them into
𝐻 ×𝑊 × 𝐶 feature maps and treating them as images yielded surprisingly effective results.

We use the variance preserving SDE (Song et al., 2021b) as backward policy 𝑃𝐵 for the trajectory
balance loss in (4), with a discretisation of 25 steps. For all of the experiments, we use off-policy
training with a replay buffer similar to Sendera et al. (2024). Specifically, for every training update
we randomly sample either from the replay buffer, or generate new on-policy samples which are
added to the replay buffer according to the buffer probability 𝛼 – whose value specific to experiments
is provided in the following sections.
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(a) Adj. (Dog) (b) Adj. (Car)
Figure 7: CIFAR-10 samples generated Adjoint Matching (Adj.) for the Dog and Car classes.

C.2 CLASS-CONDITIONAL SAMPLING

We set the classifier inverse temperature 𝛽 = 4 for all our baselines, otherwise the soft logits
of the classifier results in a fuzzy posterior. We provide some additional information regarding
implementation of the baselines below:

Outsourced Diffusion. We learn to sample the 128 dimensional generator noise with the outsourced
sampler. To keep architectures consistent across experiments, we used the convolutional UNet to
sample this noise by reshaping them to 2 × 8 × 8 feature maps. For sampling from the CNF prior, we
use 45 Euler steps to discretise the ODE. The outsourced sampler operates on the noise space which
the same dimensionality as the output image – 3 × 32 × 32.

Adjoint Matching. To fine-tune flow matching models with a classifier, we use adjoint matching
following the approach described in Domingo-Enrich et al. (2024). Due to the unavailability of the
open source code at this time, we made our own implementation which we found works extremely
well. First, we convert the ODE inference of conditional flow matching into a memoryless SDE,
ensuring that both have the same marginal distribution as outlined in the referenced paper. Next, we
apply the adjoint matching method for the stochastic optimal controls of the memoryless SDE. This
process requires gradient information of the log-reward (i.e., the classifier’s log-likelihood), which
we compute using PyTorch’s autograd functionality.

All hyperparameters remain identical to those of the outsourced diffusion sampler, including the
learning rate, except for the number of training iterations and the temperature annealing schedule.
Training is significantly slower because it requires computing the log-reward gradients and simulating
the full trajectory for adjoint matching. Therefore, we set a total of 2,500 iterations with 1,000 linear
temperature annealing steps. This configuration results in similar or reduced wall time compared
to the outsourced diffusion sampler while achieving stable convergence and high performance on
CIFAR-10. Figure 7 shows the qualitative results of applying adjoint matching to the CIFAR-10 task.

Note that for Stable Diffusion 3, the actual implementation of the inference pipeline—which involves a
diffusion transformer with various combinations of language embedding fusion for multimodality—is
not fully open-sourced. Implementing a memoryless SDE on top of this pipeline is non-trivial and
requires careful tuning and integration with the internal processes of Stable Diffusion’s inference
mechanisms.

Temperature Annealing. We anneal the inverse temperature from 𝛽 = 2 to the final 𝛽 = 4. We tune
the schedule linearly over the first 2, 000 steps of training for outsourced diffusion, and 1, 000 steps
for adjoint matching.

HMC baselines. We use hamiltorch (Cobb & Jalaian, 2021) to implement HMC. We use step size
of 10−2, with 5 leapfrog integration steps. We use a burn-in chain of length 100 before starting
to collecting samples, spaced out by 10 samples. Chains are run for 1, 000 samples, after which
we reset the seed to help diversity. The runtime of HMC is quite slow with the CNF prior due to
gradient computation. A chain of 1, 000 samples takes close to an hour on 𝐴100 GPUs. We only
keep 90 samples from this chain to preserve diversity, but these are still correlated. It would take
close to 10 hours to generate 1, 000 samples for FID computation, but using extra resources we can
run parallel chains. For comparison, outsourced diffusion takes close to 5 hours for full training,
after which sample generation is extremely cheap due to amortization. Despite the need to train a
model, outsourced diffusion is actually more memory-efficient than even a single HMC chain, as it
eliminates the need to compute gradients through the ODE integrator. We visualize samples from a
latent HMC chain in Fig. 40.
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All our results in this task are presented in Table 7 and Table 8.

Table 7: SN-GAN Experimental Results on CIFAR-10

Class Prior HMC Outsourced Diff.
Reward FID Reward FID Reward FID

Airplane -5.82 100.28 -2.53 82.56 -3.89 79.55
Car -5.36 125.16 -3.91 94.81 -4.22 85.88
Bird -5.40 71.30 -4.86 52.14 -3.91 59.76
Cat -5.40 68.30 -2.21 67.55 -3.97 55.05
Deer -5.40 70.10 -3.67 51.10 -3.38 43.04
Dog -5.32 95.62 -4.00 82.32 -4.23 68.52
Frog -4.98 93.00 -4.20 68.12 -3.91 74.70
Horse -5.23 97.53 -3.21 64.60 -3.70 52.87
Ship -5.19 116.89 -2.11 94.45 -3.76 79.73
Truck -5.59 133.23 -2.25 97.88 -3.50 82.07

AVG -5.37 97.14 -3.26 75.33 -3.847 68.117

Table 8: I-CFM Experimental Results on CIFAR-10

Class Prior HMC Adj. Matching Outsourced Diff.
Reward FID Reward FID Reward FID Reward FID

Airplane -5.81 73.09 -2.45 62.24 -3.30 27.64 -3.36 47.61
Car -6.22 92.07 -2.12 24.85 -2.93 17.51 -3.02 19.12
Bird -5.94 73.48 -2.93 60.75 -3.16 23.09 -3.11 41.04
Cat -5.53 70.33 -3.60 54.32 -3.33 20.11 -3.57 43.66
Deer -5.59 72.19 -2.72 49.46 -3.08 15.52 -3.78 31.87
Dog -5.83 89.38 -3.89 41.13 -3.21 23.11 -3.57 34.33
Frog -6.06 93.08 -3.36 55.64 -3.27 20.86 -3.98 34.74
Horse -6.13 82.88 -2.10 46.22 -2.79 16.59 -2.95 31.85
Ship -5.85 102.33 -2.28 37.80 -3.09 18.00 -2.92 32.13
Truck -5.82 99.10 -2.55 34.48 -2.55 12.34 -3.20 26.46

AVG -5.88 84.79 -2.80 46.69 -3.09 19.45 -3.35 34.28

C.3 CONDITIONAL HIGH-RESOLUTION FACE GENERATION

For all prompts we use fixed inverse temperature 𝛽 = 100, which we found to be a suitable reward
scale.

Outsourced Diffusion. StyleGAN3 uses 512 dimensional generator noise. Similar to our SN-GAN
experiment for CIFAR, we reshape this into a 2 × 16 × 16 feature map to be passed to the UNet
model. The NVAE prior for FFHQ is a very deep latent variable model, having 36 total latent groups
starting from 8 × 8 scale all the way up to 128 × 128. The joint dimensionality of this latent space is
extremely large, making joint posterior inference very challenging. Luckily most variable features of
interest are captured in the first 4 latent groups of size 20 × 8 × 8 each. We stack the noise groups to
create 80 × 8 × 8 feature maps jointly diffused by the UNet. We use 25 steps for diffusion sampling.

HMC baseline. We use 5 · 10−3 as the step size for StyleGAN3, and 10−2 as the step size for NVAE.
We use 5 leapfrog integration steps. We only require 100 samples for evaluation in this task (unlike
1000 needed for FID in CIFAR), and so we can afford to only collect 2 samples for every 1000 length
chain. We collect the samples at 𝑡 = 500 and 𝑡 = 1000. This takes around 3 hours for StyleGAN3 and
5 hours for NVAE without parallelism. We only sample the first 4 latent groups with NVAE prior.

We find that unlike the CIFAR-10 priors, HMC struggles to obtain high reward with these priors,
but performs better with StyleGAN3 than NVAE. We attribute the particularly poor performance
of NVAE to the high dimensionality and high energy barriers. Interestingly, outsourced diffusion
performs significantly better for sampling these posteriors. We suspect that it is primarily the nice
mode mixing properties of the diffusion annealing path that facilitate this. However, an additional
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factor might be the benefits of amortization, which is an interesting direction for future work to
investigate. We present the results for different prompts in Table 9, and showcase the first 10 samples
for each prompt, generated from a fixed random seed, in Appendix E.

Table 9: StyleGAN3 Experimental Results on FFHQ

Prompt Prior HMC Outsourced Diff.
Reward Diversity Reward Diversity Reward Diversity

An old man -1.02 0.35 -0.60 0.3 1.62 0.32
A young Asian girl with glasses -1.97 0.36 -0.81 0.32 1.13 0.21
A bald man with a black beard -1.89 0.38 -0.71 0.32 1.02 0.27
A brown-haired child -1.2 0.36 -0.35 0.28 1.14 0.23

AVG -1.52 0.36 -0.62 0.31 1.23 0.26

Table 10: StyleGAN3 Experimental Results on FFHQ

Prompt Prior HMC Outsourced Diff.
Reward Diversity Reward Diversity Reward Diversity

An old man. -1.74 0.30 -1.24 0.32 1.38 0.31
A young Asian girl with glasses. -2.12 0.30 -0.95 0.31 0.70 0.25
A bald man with a black beard. -2.16 0.29 -1.40 0.29 1.32 0.26
A brown-haired child. -1.76 0.30 -1.21 0.31 0.53 0.23

AVG -1.94 0.30 -1.20 0.30 0.98 0.26

C.4 TEXT-TO-IMAGE RLHF

We intentionally choose prompts that pose a challenge for Stable Diffusion 3 while still receiving reli-
able feedback from ImageReward. Since SD3 is generally a more powerful model than ImageReward,
this approach is not applicable to most prompts. However, in a real-world scenario, we anticipate
the use of a better preference model trained with human feedback, which would offer more reliable
guidance for improving the generative model. For training, we use a fixed inverse temperature 𝛽 = 30.

Outsourced Diffusion. We learn to sample from the noise space of SD3, which is a latent CNF.
This means we can sample at a reduced dimensionality from the full image (of size 3 × 512 × 512),
however the latent space is still fairly high dimensional with shape 16 × 64 × 64.

Classifier-Free Guidance. Since SD3 is trained as both an unconditional and conditional model, we
can use CFG to approximately sample from lowered temperature conditional distribution:

v̂𝜃 (x𝑡 , y) = (1 + 𝑤)v𝜃 (x𝑡 , y) − 𝑤v𝜃 (x𝑡 ) (8)
Increasing the guidance scale 𝑤 generally guides the model to be more prompt accurate at the cost of
diversity and if increased too much, image fidelity. We find tuning the CFG weight slightly improves
score with ImageReward. Increasing 𝑤 resulted in degraded performance (”A cat riding a llama.”),
so we report score with the default guidance scale 𝑤 = 5.0 (same as prior).

We present the results for different prompts in Table 11, and showcase the first 10 samples for each
prompt, generated from a fixed random seed, in Appendix F. We set 𝑤 = (6.0, 5.0, 5.5, 5.5) for the
prompts ordered as in the table.

Table 11: Text-To-Image RLHF Experimental Results

Prompt Prior CFG Outsourced Diff.
Reward Diversity Reward Diversity Reward Diversity

A cat and a dog. 0.5 0.14 0.61 0.1 1.23 0.09
A cat riding a llama. 0.79 0.18 0.79 0.18 1.53 0.14
A quiet village is disrupted by a meteor strike. 0.65 0.24 0.71 0.2 0.94 0.21
A human with a horse face and a human with a wolf face. 1.22 0.2 0.71 0.2 0.94 0.2

AVG 0.79 0.19 0.84 0.17 1.27 0.16
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C.5 PROTEIN STRUCTURE PREDICTION

The specific form of the constraint function 𝑟div (x) (which can also be thought of as a reward) is
adapted from (Huguet et al., 2024). It is a monotonic function of the entropy over secondary structure
proportions (restricted to 𝛼-helices, 𝛽-sheets and coils). The non-linear transformation increases the
discrepancy between the rewards of samples with and without 𝛽-sheets. The expression is adjusted
so that it is positive, to allow us to take the logarithm.

The 𝑒−1.5 multiplier ensures the log-constraint function is in the range [−1, 1]. We found this to
improve numerical stability in the diffusion training.

Outsourced Diffusion.
In the outsourced diffusion experiments, an inverse temperature of 𝛽 = 400.0 was used to allow for
improvement in this sparse reward setting. The diffusion sampler used 20 sampling steps.

The SE(3)𝑁 elements representing protein structure were parameterized as R7×𝑁 vectors, with the
first 4 coordinates being a quaternion representation for a rotation matrix and the 3 other numbers
representing the translation vector. For the UNet model, the protein coordinates were shaped into
7 × 8 × 8 vectors. Additionally, the diffusion sampler was first pre-trained (for 200 epochs) using the
denoising score matching objective (Ho et al., 2020), with samples from U(SO(3)𝑁 ) × N (0, 102𝐼3)
(where U is the Haar measure, i.e., the unique invariant probability measure on SO(3)𝑁 ), the initial
x0 distribution used for training the CNF prior model. All inference parameters for the flow model
were based on the default configuration from the FoldFlow 2 paper, including 50 steps for integrating
the flow ODE (Huguet et al., 2024).

For TB training, we used a replay buffer, where 1/4 of the samples are drawn proportional to their
reward, and the rest are sampled uniformly. The buffer is used at each iteration with a probability
of 0.2 (𝛼 = 0.2). The reason for the modification from the standard uniform buffer used in other
experiments is to make the best use of high reward samples, which are rare especially early on in
training. A learning rate of 10−5, and a batch size of 16 was used. Gradient 𝑙2 norms were clipped to
0.05.

Due to policy collapse and training instability, models were saved every 100 training iterations, and
the model with highest reward was selected for evaluation. The diffusion model was trained for 4
A100 GPU hours.

Random Walk MCMC baseline. A Gaussian proposal, 𝑝(z′ | z) = N(z′; z, 0.012𝐼) (ie. a step-size
of 0.01). The quaternion dimensions are normalized to have unit norm (projected back to SO(3)𝑁 ).

Note this proposal is symmetric. The MCMC chain was run for 1000 iterations, with 32 chains in
parallel. Metrics were evaluated on samples from the iterations 900 and 1000 (to reduce sample
correlation). This was run for 8 A100 GPU hours.
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D ADDITIONAL EXPERIMENTS

D.1 BIAS IN ADJOINT MATCHING

We compare our method to adjoint matching when using a prior flow model trained with minibatch
OT coupling (Pooladian et al., 2023), with and without a Gaussian source distribution. In both cases,
we see that the adjoint matching method gives biased results for the posterior, whereas our method is
closer to the ground truth.

(a) Source distr. (b) OT-CFM prior (c) True Posterior. (d) Adj. Matching (e) Ours

(f) Source distr. (g) OT-CFM prior (h) True Posterior. (i) Adj. Matching (j) Ours

Figure 8: (a, f) The source distributions for the optimal transport (OT) Flow priors. Top row has Gaussian source,
bottom row has mixture of 8 Gaussians. (b, g) Flow paths from prior samples to the target ‘2 moons’ distribution.
(c, h) The likelihood is constructed such that the posterior is the lower moon. Figure shows flow paths from the
lower moon (target posterior) to the source latents (outsourced posterior) under the OT-Flow. (d, i) Flow paths
from naive application of Adjoint Matching (Domingo-Enrich et al., 2024), an objective for posterior finetuning
of flow priors. The method is biased for OT-Flows or arbitrary source distributions, where we cannot directly
obtain a memoryless SDE. (e, j) Flows from outsourced diffusion model which samples the latent posterior,
close to the ground truth.

D.2 DISTILLATION AND ONE-STEP OUTSOURCED SAMPLERS

Table 12: FID scores
of standard and dis-
tilled outsourced diffu-
sion samplers for a CFM
prior on CIFAR-10.

Sampler FID
SDE 38.65
ODE 36.71
Distilled 33.85

Training outsourced samplers of the kind described in this paper may have
the downside of an increase in the number of sampling steps necessary to
produce posterior samples of interest. We perform further experiments to
show how we can mitigate these side effects via distillation. We distill
outsourced models for the CMF posterior on the ‘car’ class in CIFAR-10, the
SN-GAN posterior for “A dog and a cat”, and a stable diffusion posterior for a
“A green car”. We train distilled one-step samplers equivalent in architecture
and size to our original diffusion samplers. We use the trained outsourced
samplers as teacher models and employ a simple training regime whereby
we sample z0 ∼ N(0, 𝐼𝑑), use an ODE sampling scheme to sample z1, and
then learn a one-step mapping from z0 to z1 with the student model. We use
Mean Square Error (MSE) loss and a simple variance agnostic regularizer to
train the student model and encourage diversity.

We report in Fig. 9 original and posterior samples for all experiments. We observe high-quality
distilled samples, undistinguishable from the original outsourced diffusion sampler. Furthemore, we
report in Table 12 the FID score computed from samples from the original and distilled sampler, with
respect to the original CIFAR-10 samples of the class of interest. We observe comparable, if not
improved, FID for our distilled model. In line with the results in the main paper, we posit that the
ability to fit high fidelity one-step samplers is due to the simplicity of the properties of the target
distribution in latent space, often smoother and lower dimensional than the distribution in data space,
leading to easy-to-learn transforms from z0 to z1.
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Figure 9: Posterior samples via the original outsourced diffusion sampler and the distilled one-step sampler in
three experiments. We use the prompt ”A cat and a dog.” for the stable diffusion experiments, and ”An old man”
for the SN-GAN experiments.

D.3 EFFICIENCY ANALYSIS

The results in Appendix D.2 show that the diffusion sampler can be distilled into a single-step
generator, enabling inference of the fine-tuned model without incurring additional sampling time. As
a result, the inference efficiency remains comparable to that of direct finetuning methods.

On the CIFAR-10 dataset, our method achieves approximately twice the training speed of adjoint
matching when using an NVIDIA A100 GPU. This performance advantage is expected to grow for
higher-dimensional outputs. It is important to note that the requirement for gradient computation
not only raises training memory costs but also limits the flexibility of the method. For tasks where
the reward gradient is unavailable, such as many protein or molecule tasks, Adjoint Matching is
not applicable. In contrast, the outsourced diffusion sampler can be efficiently applied to arbitrary
black-box tasks where the reward (or prior) is not differentiable.
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E FFHQ SAMPLES

E.1 PRIOR.

Figure 10: NVAE prior

Figure 11: StyleGAN3 prior

E.2 AN OLD MAN.

Figure 12: NVAE HMC

Figure 13: NVAE Outsourced Diffusion

Figure 14: StyleGAN3 HMC

Figure 15: StyleGAN3 Outsourced Diffusion
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E.3 AN ASIAN GIRL WITH GLASSES.

Figure 16: NVAE HMC

Figure 17: NVAE Outsourced Diffusion

Figure 18: StyleGAN3 HMC

Figure 19: StyleGAN3 Outsourced Diffusion
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E.4 BALD MAN WITH BLACK BEARD.

Figure 20: NVAE HMC

Figure 21: NVAE Outsourced Diffusion

Figure 22: StyleGAN3 HMC

Figure 23: StyleGAN3 Outsourced Diffusion
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E.5 BROWN HAIRED CHILD.

Figure 24: NVAE HMC

Figure 25: NVAE Outsourced Diffusion

Figure 26: StyleGAN3 HMC

Figure 27: StyleGAN3 Outsourced Diffusion
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F STABLE DIFFUSION 3 SAMPLES

F.1 A CAT AND A DOG.

Figure 28: Prior

Figure 29: Classifer-Free Guidance

Figure 30: Outsourced Diffusion

F.2 A CAT RIDING A LLAMA.

Figure 31: Prior

Figure 32: Classifer-Free Guidance

Figure 33: Outsourced Diffusion
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F.3 A QUIET VILLAGE IS DISRUPTED BY A METEOR STRIKE.

Figure 34: Prior

Figure 35: Classifer-Free Guidance

Figure 36: Outsourced Diffusion

F.4 A HUMAN WITH A HORSE FACE AND A HUMAN WITH A WOLF FACE.

Figure 37: Prior

Figure 38: Classifer-Free Guidance

Figure 39: Outsourced Diffusion
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G CIFAR-10 HMC CHAIN

(a) t=100 (b) t=150 (c) t=200 (d) t=250 (e) t=300

(f) t=350 (g) t=400 (h) t=450 (i) t=500 (j) t=550

(k) t=600 (l) t=650 (m) t=700 (n) t=750 (o) t=800

(p) t=850 (q) t=900 (r) t=950 (s) t=1000

Figure 40: Samples from HMC chain of length 1000 after 100 steps of burn-in, for CIFAR class ’Airplane’ with
CNF prior. We find that in the latent space, MCMC smoothly traverses through different modes. The samples
(d,o,q,r,s) are distinctly identifiable as airplanes and (c) is partially identifiable as an airplane. The samples
approach the correct class after long mixing time.

29


	Introduction
	Outsourcing Noise in Generative Models
	Posteriors under Generative Model Priors
	Posterior Sampling and Approximation
	Bayesian Posterior in Noise Space

	Outsourced Diffusion Sampling
	Diffusion Samplers for Amortized Inference
	Diffusion Sampling in Noise Space

	Experiments
	Class-Conditional Sampling
	Conditional High-Resolution Face Generation
	Text-to-Image RLHF

	Conclusion
	Theory and Method Details
	Outsourced Sampling for Diffusion Priors
	Proof of prop:pushforward

	Protein Secondary Structure Diversity Experiments
	Experiment Details
	Diffusion model
	Class-Conditional Sampling
	Conditional High-Resolution Face Generation
	Text-To-Image RLHF
	Protein Structure Prediction

	Additional Experiments
	Bias in Adjoint Matching
	Distillation and One-Step Outsourced Samplers
	Efficiency Analysis

	FFHQ Samples
	Prior.
	An old man.
	An asian girl with glasses.
	Bald man with black beard.
	Brown haired child.

	Stable Diffusion 3 Samples
	A cat and a dog.
	A cat riding a llama.
	A quiet village is disrupted by a meteor strike.
	A human with a horse face and a human with a wolf face.

	CIFAR-10 HMC Chain

