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Abstract

We propose a novel and effective input transfor-
mation based adversarial defense method against
gray- and black-box attack, which is computa-
tionally efficient and does not require any ad-
versarial training or retraining of a classification
model. We first show that a very simple itera-
tive Gaussian smoothing can effectively wash
out adversarial noise and achieve substantially
high robust accuracy. Based on the observation,
we propose Self-Supervised Iterative Contex-
tual Smoothing (SSICS), which aims to recon-
struct the original discriminative features from
the Gaussian-smoothed image in context-adaptive
manner, while still smoothing out the adversarial
noise. From the experiments on ImageNet, we
show that our SSICS achieves both high standard
accuracy and very competitive robust accuracy
for the gray- and black-box attacks; e.g., transfer-
based PGD-attack and score-based attack. A note-
worthy point to stress is that our defense is free
of computationally expensive adversarial training,
yet, can approach its robust accuracy via input
transformation.

1. Introduction

Due to the vulnerability of deep neural networks to the ad-
versarial attacks, an “arms race” research between attack and
defense methods has been recently pursued very actively.
Namely, when a method was proposed to defend against ex-
isting attack methods, it soon got broken by stronger new at-
tacks, and vice versa. Among the proposed defense methods,
the so-called adversarial training, which requires re-training
of the networks from scratch to meet the robust performance
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criterion, was shown to be the most robust against strong
white-, gray- and black-box attacks (Dong et al., 2020).
However, the obvious drawback of such defense is that the
re-training becomes computationally expensive for large
training datasets or models.

Input transformation based empirical defense methods (Dzi-
ugaite et al., 2016), on the other hand, simply transform the
given input data in a way that the adversarial noise can be
removed before it gets fed into the network; thus, re-training
is not necessary. However, early examples of those defense
methods later on were shown to be largely broken by not
only adaptive attacks, e.g., (Carlini & Wagner, 2017) and
(Madry et al., 2017), but also various kinds of strong gray-
and black-box attacks (Guo et al., 2017a; Dong et al., 2020).
Another line of work is the certified defense (Cohen et al.,
2019), which also provides with robustness guarantees, and
recently, (Salman et al., 2020) proposed a certified defense
method that first denoises the Gaussian noise-corrupted in-
put data before passing it to the classification network. The
method can be interpreted as performing a special form of
input transformation, hence, did not require a re-training of
the network as well. However, while their method can give
a certificate on the robust accuracy, its standard accuracy
tends to deteriorate significantly (as we show later).

Inspired by (Salman et al., 2020), we propose a new input
transformation based empirical defense method that can
achieve both strong standard and robust accuracy against
gray- and black-box attacks without any adversarial training
or retraining of a classification model. To that end, we first
demonstrate that a very simple iferative Gaussian smooth-
ing, which effectively washes out the adversarial noise, can
achieve surprisingly high robust accuracy. We then devise
Self-Supervised Iterative Contextual Smoothing (SSICS),
which aims to iteratively reconstruct the original discrim-
inative features from the Gaussian-smoothed image in a
context-adaptive way, while still smoothing out the adver-
sarial noise. To realize such smoothing, we devise a new,
efficient version of blind-spot network (BSN) based on a re-
cent work (Byun et al., 2021). As a result, we show that our
SSICS, an input transformation-based defense, can almost
approach the standard and robust accuracy of the adversarial
training-based state-of-the-art defense method on the gray-
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and black-box attacked ImageNet validation set.

2. Related Work

Adversarial attack and defense  After (Szegedy et al.,
2013) revealed the vulnerability of neural networks, various
papers have proposed different methods to attack the neu-
ral network (Madry et al., 2017; Goodfellow et al., 2014;
Kurakin et al., 2016; Andriushchenko et al., 2020). Against
these attacks, several papers proposed adversarial defense
methods categorized by adversarial training (Shafahi et al.,
2019; Xie et al., 2019) and input transformation (Guo et al.,
2017b; Xu et al., 2017; Dziugaite et al., 2016; Xie et al.,
2017). However, input transformation methods are reported
to easily be incapacitated by white-box attack (Dong et al.,
2020). In more weak attack settings, such as gray- and black-
box attacks, (Guo et al., 2017b) suggested that input trans-
formation with additional training achieves a comparative
performance against adversarial examples from the attack
scenarios. However, these still show weakness in strong
gray- and black-box attacks (Dong et al., 2020). Related
studies on blind-spot network are listed in Supplementary
Materials (SM).

3. Method

3.1. Preliminary and notations

Preliminary and notations We denote € R" as a clean
image and x’ as an adversarial example constructed by
the adversarial attack such as PGD (Madry et al., 2017).
We assume that we have a pretrained classifier fg, which
successfully predicts the label of the given input image .
However, fg is vulnerable to an attacked image &’ in general.
Note that we only consider gray-box attack and black-box
attack. For gray-box attack case, attacker can only access to
the classifier model, not to the defense method, and in black-
box attack case, an attacker do not know the information of
both the classifier and defense method. The goal of input
transformation converting the input data = to & = T'(x) is
to maintain standard accuracy for the clean image x, while
increasing robust accuracy for the attacked image x’.

FBI-Net Blind-spot Network (BSN) is designed for train-
ing a denoiser in an unsupervised way and FBI-Net proposed
in (Byun et al., 2021) achieves the state-of-the-art blind de-
noising performance with very short inference time. The
reconstruction of i-th pixel of a given image «; of FBI-Net
can be denoted as

& = ao(0,Crl)i = go(x); )

. Note that ayg is the output of BSN with parameter 8 which
receives  as an input image and returns a reconsturcted
image, go(x) € R™. However, it only utilizes the k X k patch
surrounding «; (which excludes x;, denoted as C, . XZ 1)> as
input patch for restoration &;.

3.2. Iterative smoothing for adversarial defense

The idea of using a variety of input transformation methods
for adversarial defense was previously discussed in (Guo
et al., 2017a). However, these methods require additional
training procedure and still show weakness to strong gray-
and black-box attacks. Different from the previous methods,
our model introduces an iterative pre-processing of the given
input image &, either for attacked and clean images =’ and
x, as in,

Here, S(-) is a smoothing method and the number T" denotes
the number of iteration. After the iterative pre-processing
step, we feed &(7) to fg for robust classification against
adversarial attack. The overall process is shown in Figure 1.

We note that Gaussian or median smoothing can be common
solutions, and iterative smoothing is widely used for image
denoising (Kumar & Sodhi, 2020). In summary, we firstly
apply iterative smoothing to adversarial defense and show
that the effectiveness of the iterative smoothing on erasing
adversarial perturbations in the attacked samples.

3.3. Self-supervised iterative contextual smoothing

Self-supervised training of FBI-Net Different from the
usage of BSN in blind image denoising, we propose to train
BSN in self-supervised manner by using mean squared error
loss function, denoted as:

1 .
. 3
nHw z[|; 3)

, where the clean image « is used as the input and target
image, and & = gy (). One important thing to note is that
the loss function can only be trained by BSN, due to the
constraints of BSN on the input image .

After training FBI-Net, the restored pixel &; of the given
input x can be considered as the context-to-pixel smoothed
result, because the restoration reconstructs the single pixel
&; by utilizing the convolution using the patch information
surrounding x; (but excluding ;) and the trained parameter
6. Figure 2(a) shows the smoothing procedure by FBI-Net.

Expansion to context-to-context smoothing The limita-
tion of context-to-pixel restoration is that it only considers
a single pixel level restoration. It induces the quality degra-
dation on restoration in non-local features. To overcome
this limitation, we propose two simple tensor operations,
patch-to-channel and channel-to-patch operation, to expand
the restoration process from context-to-pixel to context-to-
context. As shown in Figure 2(b), the two operations are ap-
plied as a pre- and post-processing for FBI-Net respectively.
patch-to-channel transfers pixels of input image in P X Px
patches to channel-wise pixels and channel-to-context ex-
actly operates as a reverse operation of context-to-channel.
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Figure 2. Illustration and modules of SSICS

By adding these tensor operations, the restoration is sim-
ply expanded from context-to-pixel to context-to-context.
For example, Figure 2(b) illustrates that the red color patch
(consisting of four pixels) is reconstructed from patch infor-
mation of eight nearby patches. As a result, it also can be
considered as context-to-context smoothing using FBI-Net.

Combining Gaussian smoothing The level of difficulty
is higher to reconstruct context-to-context than context-to-
pixel, we combined Gaussian smoothing with the output of
FBI-Net. The restored Z; is denoted as,

@; = Or(90(0(®)))i + GS (), S

, where O and O,.(-) denotes patch-to-channel and channel-

to-patch operation, and gg is also trained by Equation (3).
During training, gg learns to reconstruct the residual be-
tween a target image and GS(x), and then it can be ap-
plied to iterative smoothing proposed in Equation (2) as
the smoothing function S(-). In conclusion, we call it as
Self-Supervised Iterative Contextual Smoothing (SSICS)
and experimentally found that, our SSICS not only well
removes adversarial perturbations than Gaussian smoothing,
but also maintains discriminative features for classification
during iterative steps.

4. Experimental Results
4.1. Experimental settings

Adversarial attack Following the experimental setting
of (Xie et al., 2019), we evaluate all the baselines and the
proposed method using PGD (L, and L) attack (Madry
et al., 2017) on ImageNet validation dataset (Deng et al.,
2009). We used ImageNet pretrained ResNet152 (He et al.,

2016) as the classification model for entire experiments. The
more details are introduced in SM.

Evaluation metric and baselines  As an evaluation met-
ric, we report standard accuracy, which is average classifica-
tion accuracy for clean images, and robust accuracy, which
is average classification accuracy for adversarial examples.
We select five defense methods as a baseline and FD (Xie
et al., 2019), which is the state-of-the-art defense trained
by adversarial training, as an empirical upper bound. The
detailed description of baselines is introduced in SM.

4.2. Gray-box attack

Table 1. Experimental results of adversarial defense against Gray-
box PGD attack Lo, (¢ = 16, iter = 10). o denotes variance of
Gaussian noise for DS and G and Pk denote a kernel size for
Gaussian smoothing and SSICS respectively. ¢ means the number
of steps for iterative smoothing

. N Standard Robust Average | Inference Time
Adversarial defense .
Accuracy | Accuracy | Accuracy (per image)
w/o defense 78.31 4.40 41.36 0.0000
FS 76.68 6.22 41.45 0.0000
TVM 69.86 17.37 43.62 0.8962
JPEG 76.00 5.57 40.79 0.0083
DS (0 =0.12) 65.82 36.55 51.19 1.0300
DS (o = 0.25) 50.50 41.87 46.19 1.0300
DS (0 = 0.5) 26.98 24.90 25.94 1.0300
GS (Gg =5,t=6) 65.29 43.20 54.25 0.0000
SSICS (Pk =0,Gg =0,t=17) 69.15 40.38 54.76 0.3312
SSICS (P =2,Gg =0,t=17) 64.67 47.37 56.02 0.0808
SSICS (Px =2,Gg =11, =17) 68.30 48.83 58.56 0.0809
FD 64.00 63.46 63.73 0.0000

Single gray-box PGD attack To compare baselines to
Gaussian smoothing (GS) and variants of SSICS, we evalu-
ate all the baselines for gray-box attack. we report the best
result of each method in Table 1. We generate adversarial
examples using gray-box PGD L, attack and evaluate all
the methods using the adversarial examples. For training all
the variants of SSICS, only the 5% of ImageNet training
dataset were used.

From the experimental results, first, we can see that base-
lines of input transformation, such as, FS (Xu et al., 2017),
TVM (Rudin et al., 1992) and JPEG (Dziugaite et al., 2016),
could not successfully defend adversarial examples. The
observed failures are also demonstrated by previous works
(Dong et al., 2020; Guo et al., 2017a). Among them, TVM
shows slightly better robust accuracy than others, but it re-
quires long inference time. Second, we observe that DS
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Figure 3. Experimental results on gray-box PGD attacks.

70 70

60

=
=}

v
=)

40

N
o

Robust Accuracy

w
o

30

2075 8 12 16 24 2 2 10 15 20 30

£ Iter

(a) Transfer-based PGD attack (¢)

50
50 45
- 40

(b) Transfer-based PGD attack (iter)

60

55

- No defense
FD
—— JPEG (quality = 75)
. —— FS (depth = 4)
35 s —— GS(Gk=5, t=6)
—— SSICS (Px=2, Gxk=11,t=7)

30
25

40 20 30 50 80 100 120 150

Query

(c) Score-based black-box attack (Square)

Figure 4. Experimental results on black-box attacks.

(Salman et al., 2020) performance is highly dependent on
the level of Gaussian noise used for randomized smoothing.
Even though DS achieves an impressive standard and robust
accuracy in o = (.12, it takes long time to defend because
of its noise sampling procedure. Finally, we clearly observe
that variants of SSICS and GS (Gx = 5,t = 6) achieve
the impressive result in both standard and robust accuracy
compared to all baselines. Epecially, newly proposed SSICS
(Ck = 2, Pg = 11,¢t = 7) maintains high standard accu-
racy, and also well defends adversarial examples with fast
inference time. It is worth highlighted in that our average
accuracy is comparable to FD and overwhelms the other in-
put transformation baselines, without adversarial training or
re-training for the classification model. See SM for the addi-
tional results regarding a verification of iterative smoothing.

Various gray-box PGD attacks The results in Figure 3
demonstrate that input transformation based methods such
as JPEG and FS reveal weakness against strong gray-box
attacks, as already shown in (Dong et al., 2020). On the
other hand, DS (o = 0.12) shows more robust performance
to those attacks. Especially, it achieves a superior result in
PGD L5 but suffers from slow inference time than other
baselines. Note that our SSICS shows consistent robust
accuracy for all experiments, and even obtains comparable
results to FD.

4.3. Black-box attack

We evaluate baselines and SSICS on two types of black-
box attack. First, we consider transfer-based PGD attack
(Dong et al., 2020) and set DenseNet201 as substitute model

(Huang et al., 2017) to generate adversarial examples. Sec-
ond, we select Square (Andriushchenko et al., 2020), which
is the state-of-the-art score-based black-box attack.
Transfer-based PGD attack Figure 4(a) and 4(b) show
the experimental results of transfer-based PGD attack on var-
ious settings that were already proposed in previous section.
Although other baselines show better robust accuracy than
previous section, we clearly observe that GS and SSICS are
more robust to variants of transfer-based PGD attacks, and
only comparable to FD trained by adversarial training.

Score-based black-box attack We generate adversarial ex-
amples using Square (Andriushchenko et al., 2020) on var-
ious queries and evaluate the baselines and SSICS with
them, as shown in Figure 4(c). It again shows that JPEG
and FS are quite robust to score-based black-box attack than
the other type of attacks, as also demonstrated in (Dong
et al., 2020), but GS achieves relatively worse results than
transfer-based PGD attack. On the other hand, our SSICS
maintains competitive robust accuracy for various levels of
query compared to JPEG and FS.

5. Concluding Remarks

We propose SSICS that extends existing BSN to the context
level and combines Gaussian smoothing. As a result, we
show simple iterative Gaussian smoothing and SSICS can
robustly defend various gray- and black-box attacks without
any adversarial training or re-training of a classification
model. Our future work is to analyze the reason our SSICS
can significantly wash out adversarial perturbation, as well
as maintain the discriminative feature for classification.
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1. Additional Related Works

Blind-spot networks for blind image denoising The
goal of blind image denoising is to train a denoiser net-
work using only a single noisy image. The most dominant
direction in blind image denoising is a blind-spot network
(BSN) method. BSN restores each pixel by only the given
context around the pixel, excluding the target pixel. After
the success of BSN, many modified methods (Krull et al.,
2019; Cha & Moon, 2018; 2019; Laine et al., 2019; Wu
et al., 2020) have been proposed. However, these methods
commonly share the problem of time and cost inefficiency
because of its inefficient architecture. Recently, (Byun et al.,
2021) proposes the newly devised BSN, called as FBI-Net,
which achieves the fastest inference time and the lowest
GPU memory usage than existing all baselines.

2. The Details on Experimental Settings

Baselines We select four input transformation based ad-
versarial methods as baseline, abbreviated as FS(Xu et al.,
2017), SS (Xu et al., 2017), JPEG (Dziugaite et al., 2016)
and TVM (Rudin et al., 1992) proposed in (Guo et al.,
2017). The significant difference to (Guo et al., 2017) is
that we do not re-train the classifier on a given transfor-
mation method for defense in all experiments. Also, we
evaluate DS (Salman et al., 2020) as a representative of cer-
tified defense because it does not require any pre-training of
classifier, like our method. We set the number of sampling
for DS as n = 100. Finally, we select FD (Xie et al., 2019),
which denotes an adversarially trained model, as an upper
bound of defense. We conducted experiments by implement-
ing code in (Ding et al., 2019; Nicolae et al., 2018; Kim,
2020), and downloaded weights of (Salman et al., 2020) and
(Xie et al., 2019) from their official website.
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Hyperparameter settings for PGD attack We used a
specified e and iter (number of steps for gradient update)
for all experiments in the manuscript. For « (the strength
of update for each iteration), we set « = 16,/255. when the
number of steps (iter) is less than or equal to 10, o = ¢/255.
when the number of steps (iter) is greater than 10.

Controlling o for Gaussian smoothing For Gaussian
smoothing (GS) (and also GS in SSICS), we set 0 =
Gk — 1/6 and only controls the kernel size Gk as a hyper-
parameter.

3. Additional Experimental Results
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Figure 1. Verification of iterative context smoothing

Verifying iterative context smoothing We verify the ad-
vantage of iterative context smoothing for adversarial de-
fense as shown in Figure 1. For that, we generate adversarial
examples using gray-box PGD L. (¢ = 16, iters=10) attack
and evaluate three types of smoothing, such as Gaussian,
average and median smoothing with the kernel size of 5
(K = 5), and SSICS. Note that we trained DnCNN (Zhang
et al., 2017) and all variants of SSICS, in a self-supervised
way, using only 5% of whole images in ImageNet training
dataset. From the results, we could find out that, firstly, iter-
ative context smoothing with GS (K = 5) works better than
other types of smoothings, such as AS and MS, in both stan-
drand and robust accuracy. Especially, when we iterate GS
(K = 5) for 6 times, it achieves a superior accuracy in both
cases. Secondly, SSICS (Px = 0, Gg = 0), which is equal
to the original FBI-Net (Byun et al., 2021), obtain a better
result at t = 5 than GS (K = 5), however, it is sensitively
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degraded from ¢ = 6. Thirdly, when we extend SSICS to
context-to-context with Px = 2, there is no degradation and
it achieves the most superior standard and robust accuracy
even than GS (K = 5), in addition, if GS is used together,
SSICS (Px = 2,Gg = 11) achieves a slight increase in
both standard and robust accuracy at ¢ = 7. Finally, the
result of DnCNN, which is trained by Equation (3) in the
manuscript, demonstrates that the restoration model based
on a pure convolutional neural network cannot be used for
SSICS. This is because there is no constraint for x;, which
is discussed in Section 3.1 in the manuscript. Therefore,
DnCNN trained by self-supervised learning perfectly re-
turns the given input image directly, as a result, it achieves
robust accuracy it had when defense was not applied.
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