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ABSTRACT

Consistency models (CMs) are a powerful class of diffusion-based generative mod-
els optimized for fast sampling. Most existing CMs are trained using discretized
timesteps, which introduce additional hyperparameters and are prone to discretiza-
tion errors. While continuous-time formulations can mitigate these issues, their
success has been limited by training instability. To address this, we propose a
simplified theoretical framework that unifies previous parameterizations of diffu-
sion models and CMs, identifying the root causes of instability. Based on this
analysis, we introduce key improvements in diffusion process parameterization,
network architecture, and training objectives. These changes enable us to train
continuous-time CMs at an unprecedented scale, reaching 1.5B parameters on
ImageNet 512×512. Our proposed training algorithm, using only two sampling
steps, achieves FID scores of 2.06 on CIFAR-10, 1.48 on ImageNet 64×64, and
1.88 on ImageNet 512×512, narrowing the gap in FID scores with the best existing
diffusion models to within 10%.

1 INTRODUCTION
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Figure 1: Sample quality vs. effective sam-
pling compute (billion parameters × number
of function evaluations during sampling). We
compare the sample quality of different mod-
els on ImageNet 512×512, measured by FID
(↓). Our 2-step sCM achieves sample quality
comparable to the best previous generative
models while using less than 10% of the ef-
fective sampling compute.

Diffusion models (Sohl-Dickstein et al., 2015; Song &
Ermon, 2019; Ho et al., 2020; Song et al., 2021b) have
revolutionized generative AI, achieving remarkable results
in image (Rombach et al., 2022; Ramesh et al., 2022; Ho
et al., 2022), 3D (Poole et al., 2022; Wang et al., 2024; Liu
et al., 2023b), audio (Liu et al., 2023a; Evans et al., 2024),
and video generation (Blattmann et al., 2023; Brooks et al.,
2024). Despite their success, a significant drawback is
their slow sampling speed, often requiring dozens to hun-
dreds of steps to generate a single sample. Various diffu-
sion distillation techniques have been proposed, includ-
ing direct distillation (Luhman & Luhman, 2021; Zheng
et al., 2023b), adversarial distillation (Wang et al., 2022;
Sauer et al., 2023), progressive distillation (Salimans &
Ho, 2022), and variational score distillation (VSD) (Wang
et al., 2024; Yin et al., 2024b;a; Luo et al., 2024; Xie et al.,
2024b; Salimans et al., 2024). However, these methods
come with challenges: direct distillation incurs extensive
computational cost due to the need for numerous diffu-
sion model samples; adversarial distillation introduces
complexities associated with GAN training; progressive
distillation requires multiple training stages and is less effective for one or two-step generation; and
VSD can produce overly smooth samples with limited diversity and struggles at high guidance levels.

Consistency models (CMs) (Song et al., 2023; Song & Dhariwal, 2023) offer significant advantages
in addressing these issues. They eliminate the need for supervision from diffusion model samples,
avoiding the computational cost of generating synthetic datasets. CMs also bypass adversarial training,
sidestepping its inherent difficulties. Aside from distillation, CMs can be trained from scratch with
consistency training (CT), without relying on pre-trained diffusion models. Previous work (Song
& Dhariwal, 2023; Geng et al., 2024; Luo et al., 2023; Xie et al., 2024a) has demonstrated the
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Figure 2: Selected 2-step samples from a continuous-time consistency model trained on ImageNet 512×512.

effectiveness of CMs in few-step generation, especially in one or two steps. However, these results are
all based on discrete-time CMs, which introduces discretization errors and requires careful scheduling
of the timestep grid, potentially leading to suboptimal sample quality. In contrast, continuous-time
CMs avoid these issues but have faced challenges with training instability (Song et al., 2023; Song &
Dhariwal, 2023; Geng et al., 2024).

In this work, we introduce techniques to simplify, stabilize, and scale up the training of continuous-
time CMs. Our first contribution is TrigFlow, a new formulation that unifies EDM (Karras et al., 2022;
2024) and Flow Matching (Peluchetti, 2022; Lipman et al., 2022; Liu et al., 2022; Albergo et al.,
2023; Heitz et al., 2023), significantly simplifying the formulation of diffusion models, the associated
probability flow ODE and CMs. Building on this foundation, we analyze the root causes of instability
in CM training and propose a complete recipe for mitigation. Our approach includes improved
time-conditioning and adaptive group normalization within the network architecture. Additionally,
we re-formulate the training objective for continuous-time CMs, incorporating adaptive weighting
and normalization of key terms, and progressive annealing for stable and scalable training.

With these improvements, we elevate the performance of consistency models in both consistency
training and distillation, achieving comparable or better results compared to previous discrete-time
formulations. Our models, referred to as sCMs, demonstrate success across various datasets and
model sizes. We train sCMs on CIFAR-10, ImageNet 64×64, and ImageNet 512×512, reaching
an unprecedented scale with 1.5 billion parameters—the largest CMs trained to date (samples in
Figure 2). We show that sCMs scale effectively with increased compute, achieving better sample
quality in a predictable way. Moreover, when measured against state-of-the-art diffusion models,
which require significantly more sampling compute, sCMs narrow the FID gap to within 10% using
two-step generation. In addition, we provide a rigorous justification for the advantages of continuous-
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time CMs over discrete-time variants by demonstrating that sample quality improves as the gap
between adjacent timesteps narrows to approach the continuous-time limit. Furthermore, we examine
the differences between sCMs and VSD, finding that sCMs produce more diverse samples and are
more compatible with guidance, whereas VSD tends to struggle at higher guidance levels.

2 PRELIMINARIES

2.1 DIFFUSION MODELS

Given a training dataset, let pd denote its underlying data distribution and σd its standard deviation.
Diffusion models generate samples by learning to reverse a noising process that progressively perturbs
a data sample x0 ∼ pd into a noisy version xt = αtx0 + σtz, where z ∼ N (0, I) is standard
Gaussian noise. This perturbation increases with t ∈ [0, T ], where larger t indicates greater noise.

We consider two recent formulations for diffusion models.

EDM (Karras et al., 2022; 2024). The noising process simply sets αt = 1 and σt = t, with the
training objective given by Ex0,z,t

[
w(t)

∥∥fDM
θ (xt, t)− x0

∥∥2
2

]
, where w(t) is a weighting function.

The diffusion model is parameterized as fDM
θ (xt, t) = cskip(t)xt + cout(t)Fθ(cin(t)xt, cnoise(t)),

where Fθ is a neural network with parameters θ, and cskip, cout, cin, and cnoise are manually designed
coefficients that ensure the training objective has the unit variance across timesteps at initialization.
For sampling, EDM solves the probability flow ODE (PF-ODE) (Song et al., 2021b), defined by
dxt
dt = [xt − fDM

θ (xt, t)]/t, starting from xT ∼ N (0, T 2I) and stopping at x0.

Flow Matching. The noising process uses differentiable coefficients αt and σt, with time derivatives
denoted by α′

t and σ′
t (typically, αt = 1 − t and σt = t). The training objective is given by

Ex0,z,t

[
w(t) ∥Fθ(xt, t)− (α′

tx0 + σ′
tz)∥

2
2

]
, where w(t) is a weighting function and Fθ is a neural

network parameterized by θ. The sampling procedure begins at t = 1 with x1 ∼ N (0, I) and solves
the probability flow ODE (PF-ODE), defined by dxt

dt = Fθ(xt, t), from t = 1 to t = 0.

2.2 CONSISTENCY MODELS

←
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−

∆
t→

0

Figure 3: Discrete-time CMs (top & middle)
vs. continuous-time CMs (bottom). Discrete-
time CMs suffer from discretization errors
from numerical ODE solvers, causing impre-
cise predictions during training. In contrast,
continuous-time CMs stay on the ODE trajec-
tory by following its tangent direction with
infinitesimal steps.

A consistency model (CM) (Song et al., 2023; Song &
Dhariwal, 2023) is a neural network fθ(xt, t) trained to
map the noisy input xt directly to the corresponding clean
data x0 in one step, by following the sampling trajectory
of the PF-ODE starting at xt. A valid fθ must satisfy
the boundary condition, fθ(x, 0) ≡ x. One way to meet
this condition is to parameterize the consistency model as
fθ(xt, t) = cskip(t)xt+cout(t)Fθ(cin(t)xt, cnoise(t)) with
cskip(0) = 1 and cout(0) = 0. CMs are trained to have con-
sistent outputs at adjacent time steps. Depending on how
nearby time steps are selected, there are two categories of
consistency models, as described below.

Discrete-time CMs. The training objective is defined at
two adjacent time steps with finite distance:

Ext,t [w(t)d(fθ(xt, t),fθ−(xt−∆t, t−∆t))] , (1)

where θ− denotes stopgrad(θ), w(t) is the weighting
function, ∆t > 0 is the distance between adjacent time
steps, and d(·, ·) is a metric function; common choices
are ℓ2 loss d(x,y) = ∥x − y∥22, Pseudo-Huber loss
d(x,y) =

√
∥x− y∥22 + c2−c for c > 0 (Song & Dhari-

wal, 2023), and LPIPS loss (Zhang et al., 2018). Discrete-
time CMs are sensitive to the choice of ∆t, and therefore
require manually designed annealing schedules (Song & Dhariwal, 2023; Geng et al., 2024) for fast
convergence. The noisy sample xt−∆t at the preceding time step t−∆t is often obtained from xt

3
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by solving the PF-ODE with numerical ODE solvers using step size ∆t, which can cause additional
discretization errors.

Continuous-time CMs. When using d(x,y) = ∥x− y∥22 and taking the limit ∆t→ 0, Song et al.
(2023, Remark 10) show that the gradient of Eq. (1) with respect to θ converges to

∇θExt,t

[
w(t)f⊤

θ (xt, t)
dfθ−(xt, t)

dt

]
, (2)

where dfθ− (xt,t)

dt = ∇xtfθ−(xt, t)
dxt
dt + ∂tfθ−(xt, t) is the tangent of fθ− at (xt, t) along the

trajectory of the PF-ODE dxt
dt . Notably, continuous-time CMs do not rely on ODE solvers, which

avoids discretization errors and offers more accurate supervision signals during training. However,
previous work (Song et al., 2023; Geng et al., 2024) found that training continuous-time CMs, or
even discrete-time CMs with an extremely small ∆t, suffers from severe instability in optimization.
This greatly limits the empirical performance and adoption of continuous-time CMs.

Consistency Distillation and Consistency Training. Both discrete-time and continuous-time CMs
can be trained using either consistency distillation (CD) or consistency training (CT). In consistency
distillation, a CM is trained by distilling knowledge from a pretrained diffusion model. This diffusion
model provides the PF-ODE, which can be directly plugged into Eq. (2) for training continuous-time
CMs. Furthermore, by numerically solving the PF-ODE to obtain xt−∆t from xt, one can also train
discrete-time CMs via Eq. (1). Consistency training (CT), by contrast, trains CMs from scratch
without the need for pretrained diffusion models, which establishes CMs as a standalone family of
generative models in their own right. Specifically, CT approximates xt−∆t in discrete-time CMs as
xt−∆t = αt−∆tx0+σt−∆tz, reusing the same data x0 and noise z when sampling xt = αtx0+σtz.
In the continuous-time limit, as ∆t→ 0, this approach yields an unbiased estimate of the PF-ODE
dxt
dt → α′

tx0 + σ′
tz, leading to an unbiased estimate of Eq. (2) for training continuous-time CMs.

3 SIMPLIFYING CONTINUOUS-TIME CONSISTENCY MODELS

Previous consistency models (CMs) adopt the model parameterization and diffusion process for-
mulation in EDM (Karras et al., 2022). Specifically, the CM is parameterized as fθ(xt, t) =
cskip(t)xt + cout(t)Fθ(cin(t)xt, cnoise(t)), where Fθ is a neural network with parameters θ. The
coefficients cskip(t), cout(t), cin(t) are fixed to ensure that the variance of the diffusion objective is
equalized across all time steps at initialization, and cnoise(t) is a transformation of t for better time
conditioning. Since EDM diffusion process is variance-exploding (Song et al., 2021b), meaning
that xt = x0 + tz, we can derive that cskip(t) = σ2

d/(t
2 + σ2

d), cout(t) = σd · t/
√
σ2
d + t2, and

cin(t) = 1/
√
t2 + σ2

d (see Appendix B.6 in Karras et al. (2022)). Although these coefficients are
important for training efficiency, their complex arithmetic relationships with t and σd complicate
theoretical analyses of CMs.

To simplify EDM and subsequently CMs, we propose TrigFlow, a formulation of diffusion models that
keep the EDM properties but satisfy cskip(t) = cos(t), cout(t) = −σd sin(t), and cin(t) ≡ 1/σd (proof
in Appendix B). TrigFlow is a special case of flow matching (also known as stochastic interpolants
or rectified flows) and v-prediction parameterization (Salimans & Ho, 2022). It closely resembles
the trigonometric interpolant proposed by Albergo & Vanden-Eijnden (2023); Albergo et al. (2023);
Ma et al. (2024), but is modified to account for σd, the standard deviation of the data distribution pd.
Since TrigFlow is a special case of flow matching and simultaneously satisfies EDM principles, it
combines the advantages of both formulations while allowing the diffusion process, diffusion model
parameterization, the PF-ODE, the diffusion training objective, and the CM parameterization to all
have simple expressions, as provided below.

Diffusion Process. Given x0 ∼ pd(x0) and z ∼ N (0, σ2
dI), the noisy sample is defined as

xt = cos(t)x0 + sin(t)z for t ∈ [0, π2 ]. As a special case, the prior sample xπ
2
∼ N (0, σ2

dI).

Diffusion Models and PF-ODE. We parameterize the diffusion model as fDM
θ (xt, t) =

Fθ(xt/σd, cnoise(t)), where Fθ is a neural network with parameters θ, and cnoise(t) is a transfor-
mation of t to facilitate time conditioning. The corresponding PF-ODE is given by

dxt
dt

= σdFθ

(
xt
σd
, cnoise(t)

)
. (3)

4
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Diffusion Objective. In TrigFlow, the diffusion model is trained by minimizing

LDiff(θ) = Ex0,z,t

[∥∥∥∥σdFθ (xt
σd
, cnoise (t)

)
− vt

∥∥∥∥2
2

]
, (4)

where vt = cos(t)z − sin(t)x0 is the training target.

Consistency Models. As mentioned in Sec. 2.2, a valid CM must satisfy the boundary condition
fθ(x, 0) ≡ x. To enforce this condition, we parameterize the CM as the single-step solution of the
PF-ODE in Eq. (3) using the first-order ODE solver (see Appendix B.1 for derivations). Specifically,
CMs in TrigFlow take the form of

fθ(xt, t) = cos(t)xt − sin(t)σdFθ

(
xt
σd
, cnoise(t)

)
, (5)

where cnoise(t) is a time transformation for which we defer the discussion to Sec. 4.1.

4 STABILIZING CONTINUOUS-TIME CONSISTENCY MODELS

Training continuous-time CMs has been highly unstable (Song et al., 2023; Geng et al., 2024). As a
result, they perform significantly worse compared to discrete-time CMs in prior works. To address
this issue, we build upon the TrigFlow framework and introduce several theoretically motivated im-
provements to stabilize continuous-time CMs, with a focus on parameterization, network architecture,
and training objectives.

4.1 PARAMETERIZATION AND NETWORK ARCHITECTURE

Key to the training of continuous-time CMs is Eq. (2), which depends on the tangent function
dfθ− (xt,t)

dt . Under the TrigFlow formulation, this tangent function is given by

dfθ−(xt, t)

dt
= − cos(t)

(
σdFθ−

(
xt
σd
, t

)
− dxt

dt

)
− sin(t)

xt + σd
dFθ−

(
xt
σd
, t
)

dt

 , (6)

where dxt
dt represents the PF-ODE, which is either estimated using a pretrained diffusion model in

consistency distillation, or using an unbiased estimator calculated from noise and clean samples in
consistency training.

To stabilize training, it is necessary to ensure the tangent function in Eq. (6) is stable across different
time steps. Empirically, we found that σdFθ− , the PF-ODE dxt

dt , and the noisy sample xt are all
relatively stable. The only term left in the tangent function now is sin(t)dFθ−dt = sin(t)∇xtFθ−

dxt
dt +

sin(t)∂tFθ− . After further analysis, we found∇xtFθ−
dxt
dt is typically well-conditioned, so instability

originates from the time-derivative sin(t)∂tFθ− , which can be decomposed according to

sin(t)∂tFθ− = sin(t)
∂cnoise(t)

∂t
· ∂emb(cnoise)

∂cnoise
· ∂Fθ−

∂emb(cnoise)
, (7)

where emb(·) refers to the time embeddings, typically in the form of either positional embeddings (Ho
et al., 2020; Vaswani, 2017) or Fourier embeddings (Song et al., 2021b; Tancik et al., 2020) in the
literature of diffusion models and CMs.

Below we describe improvements to stabilize each component from Eq. (7) in turns.

Identity Time Transformation (cnoise(t) = t). Most existing CMs use the EDM formulation,
which can be directly translated to the TrigFlow formulation as described in Appendix B.2. In
particular, the time transformation becomes cnoise(t) ∝ log(σd tan t). Straightforward derivation
shows that with this cnoise(t), sin(t) · ∂tcnoise(t) = 1/ cos(t) blows up whenever t→ π

2 . To mitigate
numerical instability, we propose to use cnoise(t) = t as the default time transformation.

Positional Time Embeddings. For general time embeddings in the form of emb(c) = sin(s · 2πω ·
c+ ϕ), we have ∂cemb(c) = s · 2πω cos(s · 2πω · c+ ϕ). With larger Fourier scale s, this derivative

5
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Figure 4: Stability of different formulations. We show the norms of both terms in
df
θ−
dt

= ∇xfθ− · dxt
dt

+
∂tfθ− for diffusion models trained with the EDM (cnoise(t) = log(σd tan(t))) and TrigFlow (cnoise(t) = t)
formulations using different time embeddings. We observe that large Fourier scales in Fourier embeddings cause
instabilities. In addition, the EDM formulation suffers from numerical issues when t → π

2
, while TrigFlow

(using positional embeddings) has stable partial derivatives for both xt and t.
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Figure 5: Comparing different training objectives for consistency distillation. The diffusion models are
EDM2 (Karras et al., 2024) pretrained on ImageNet 512×512. (a) 1-step and 2-step sampling of continuous-
time CMs trained by using raw tangents

df
θ−
dt

, clipped tangents clip(
df
θ−
dt

,−1, 1) and normalized tangents

(
df
θ−
dt

)/(∥df
θ−
dt

∥+ 0.1). (b) Quality of 1-step and 2-step samples from continuous-time CMs trained w/ and
w/o adaptive weighting, both are w/ tangent normalization. (c) Quality of 1-step samples from continuous-time
CMs vs. discrete-time CMs using varying number of time steps (N ), trained using all techniques in Sec. 4.

has greater magnitudes and oscillates more vibrantly, causing worse instability. To avoid this, we use
positional embeddings, which amounts to s ≈ 0.02 in Fourier embeddings. This analysis provides a
principled explanation for the observations in Song & Dhariwal (2023).

Adaptive Double Normalization. Song & Dhariwal (2023) found that the AdaGN layer (Dhariwal &
Nichol, 2021), defined as y = norm(x)⊙ s(t) + b(t), negatively causes CM training to diverge. Our
modification is adaptive double normalization, defined as y = norm(x)⊙pnorm(s(t))+pnorm(b(t)),
where pnorm(·) denotes pixel normalization (Karras, 2017). Empirically we find it retains the
expressive power of AdaGN for diffusion training but removes its instability in CM training.

As shown in Figure 4, we visualize how our techniques stabilize the time-derivates for CMs trained
on CIFAR-10. Empirically, we find that these improvements help stabilize the training dynamics of
CMs without hurting diffusion model training (see Appendix G).

4.2 TRAINING OBJECTIVES

Using the TrigFlow formulation in Sec. 3 and techniques proposed in Sec. 4.1, the gradient of
continuous-time CM training in Eq. (2) becomes

∇θExt,t

[
− w(t)σd sin(t)F⊤

θ

(
xt
σd
, t

)
dfθ−(xt, t)

dt

]
.

Below we propose additional techniques to explicitly control this gradient for improved stability.

Tangent Normalization. As discussed in Sec. 4.1, most gradient variance in CM training comes
from the tangent function dfθ−

dt . We propose to explicitly normalize the tangent function by replacing
dfθ−
dt with dfθ−

dt /(∥dfθ−dt ∥ + c), where we empirically set c = 0.1. Alternatively, we can clip the

6
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Figure 6: sCD scales commensurately with teacher diffusion models. We plot the (a) FID and (b) FID ratio
against the teacher diffusion model (at the same model size) on ImageNet 64×64 and 512×512. sCD scales
better than sCT, and has a constant offset in the FID ratio across all model sizes, implying that sCD has the same
scaling property of the teacher diffusion model. Furthermore, the offset diminishes with more sampling steps.
tangent within [−1, 1], which also caps its variance. Our results in Figure 5(a) demonstrate that either
normalization or clipping leads to substantial improvements for the training of continuous-time CMs.

Adaptive Weighting. Previous works (Song & Dhariwal, 2023; Geng et al., 2024) design weighting
functions w(t) manually for CM training, which can be suboptimal for different data distributions
and network architectures. Following EDM2 (Karras et al., 2024), we propose to train an adaptive
weighting function alongside the CM, which not only eases the burden of hyperparameter tuning
but also outperforms manually designed weighting functions with better empirical performance and
negligible training overhead. Key to our approach is the observation that∇θE[F⊤

θ y] = 1
2∇θE[∥Fθ−

Fθ− + y∥22], where y is an arbitrary vector independent of θ. When training continuous-time CMs
using Eq. (2), we have y = −w(t)σd sin(t)

dfθ−
dt . This observation allows us to convert Eq. (2) into

the gradient of an MSE objective. We can therefore use the same approach in Karras et al. (2024) to
train an adaptive weighting function that minimizes the variance of MSE losses across time steps
(details in Appendix D). In practice, we find that integrating a prior weighting w(t) = 1

σd tan(t)

further reduces training variance. By incorporating the prior weighting, we train both the network Fθ
and the adaptive weighting function wϕ(t) by minimizing

LsCM(θ, ϕ) :=Ext,t

[
ewϕ(t)

D

∥∥∥∥Fθ (xt
σd
, t

)
− Fθ−

(
xt
σd
, t

)
− cos(t)

dfθ−(xt, t)

dt

∥∥∥∥2
2

− wϕ(t)

]
, (8)

where D is the dimensionality of x0, and we sample tan(t) from a log-Normal proposal distribu-
tion (Karras et al., 2022), that is, eσd tan(t) ∼ N (Pmean, P

2
std) (details in Appendix G).

Diffusion Finetuning and Tangent Warmup. For consistency distillation, we find that finetuning
the CM from a pretrained diffusion model can speed up convergence, which is consistent with
Song et al. (2023); Geng et al. (2024). Recall that in Eq. (6), the tangent dfθ−

dt can be decomposed
into two parts: the first term cos(t)(σdFθ− − dxt

dt ) is relatively stable, whereas the second term
sin(t)(xt + σd

dFθ−
dt ) may cause instability. We introduce an optional technique named as tangent

warmup by replacing the coefficient sin(t) with r · sin(t), where r linearly increases from 0 to 1 over
the first 10k training iterations. We find that the tangent normalization does not affect sample quality
but may reduce some gradient spikes during training.

With all techniques in place, the stability of both discrete-time and continuous-time CM training
substantially improves. We provide detailed algorithms for discrete-time CMs in Appendix E,
and train continuous-time CMs and discrete-time CMs with the same setting. As demonstrated in
Figure 5(c), increasing the number of discretization steps N in discrete-time CMs improves sample
quality by reducing discretization errors, but degrades once N becomes too large (after N > 1024)
to suffer from numerical precision issues. By contrast, continuous-time CMs significantly outperform
discrete-time CMs across all N ’s which provides strong justification for choosing continuous-time
CMs over discrete-time counterparts. We call our model sCM (s for simple, stable, and scalable),
and provide detailed pseudo-code for sCM training in Appendix A.

5 SCALING UP CONTINUOUS-TIME CONSISTENCY MODELS

Below we test all the improvements proposed in previous sections by training large-scale sCMs on a
variety of challenging datasets.
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Figure 7: sCD has higher diversity compared to VSD: Sample quality comparison of the EDM2 (Karras
et al., 2024) diffusion model, VSD (Wang et al., 2024; Yin et al., 2024b), sCD, and the combination of VSD and
sCD, across varying guidance scales. All models are of EDM2-M size and trained on ImageNet 512×512.

Table 1: Sample quality on unconditional CIFAR-10 and class-conditional ImageNet 64× 64.

Unconditional CIFAR-10
METHOD NFE (↓) FID (↓)

Diffusion models & Fast Samplers

Score SDE (deep) (Song et al., 2021b) 2000 2.20
EDM (Karras et al., 2022) 35 2.01
Flow Matching (Lipman et al., 2022) 142 6.35
OT-CFM (Tong et al., 2023) 1000 3.57
DPM-Solver (Lu et al., 2022a) 10 4.70
DPM-Solver++ (Lu et al., 2022b) 10 2.91
DPM-Solver-v3 (Zheng et al., 2023c) 10 2.51

Joint Training

Diffusion GAN (Xiao et al., 2022) 4 3.75
Diffusion StyleGAN (Wang et al., 2022) 1 3.19
StyleGAN-XL (Sauer et al., 2022) 1 1.52
CTM (Kim et al., 2023) 1 1.87
Diff-Instruct (Luo et al., 2024) 1 4.53
DMD (Yin et al., 2024b) 1 3.77
SiD (Zhou et al., 2024) 1 1.92

Diffusion Distillation

DFNO (LPIPS) (Zheng et al., 2023b) 1 3.78
2-Rectified Flow (Liu et al., 2022) 1 4.85
PID (LPIPS) (Tee et al., 2024) 1 3.92
Consistency-FM (Yang et al., 2024) 2 5.34
PD (Salimans & Ho, 2022) 1 8.34

2 5.58
TRACT (Berthelot et al., 2023) 1 3.78

2 3.32
CD (LPIPS) (Song et al., 2023) 1 3.55

2 2.93
sCD (ours) 1 3.66

2 2.52

Consistency Training

iCT (Song & Dhariwal, 2023) 1 2.83
2 2.46

iCT-deep (Song & Dhariwal, 2023) 1 2.51
2 2.24

ECT (Geng et al., 2024) 1 3.60
2 2.11

sCT (ours) 1 2.85
2 2.06

Class-Conditional ImageNet 64×64
METHOD NFE (↓) FID (↓)

Diffusion models & Fast Samplers

ADM (Dhariwal & Nichol, 2021) 250 2.07
RIN (Jabri et al., 2022) 1000 1.23
DPM-Solver (Lu et al., 2022a) 20 3.42
EDM (Heun) (Karras et al., 2022) 79 2.44
EDM2 (Heun) (Karras et al., 2024) 63 1.33

Joint Training

StyleGAN-XL (Sauer et al., 2022) 1 1.52
Diff-Instruct (Luo et al., 2024) 1 5.57
EMD (Xie et al., 2024b) 1 2.20
DMD (Yin et al., 2024b) 1 2.62
DMD2 (Yin et al., 2024a) 1 1.28
SiD (Zhou et al., 2024) 1 1.52
CTM (Kim et al., 2023) 1 1.92

2 1.73
Moment Matching (Salimans et al., 2024) 1 3.00

2 3.86

Diffusion Distillation

DFNO (LPIPS) (Zheng et al., 2023b) 1 7.83
PID (LPIPS) (Tee et al., 2024) 1 9.49
TRACT (Berthelot et al., 2023) 1 7.43

2 4.97
PD (Salimans & Ho, 2022) 1 10.70

(reimpl. from Heek et al. (2024)) 2 4.70
CD (LPIPS) (Song et al., 2023) 1 6.20

2 4.70
MultiStep-CD (Heek et al., 2024) 1 3.20

2 1.90
sCD (ours) 1 2.44

2 1.66

Consistency Training

iCT (Song & Dhariwal, 2023) 1 4.02
2 3.20

iCT-deep (Song & Dhariwal, 2023) 1 3.25
2 2.77

ECT (Geng et al., 2024) 1 2.49
2 1.67

sCT (ours) 1 2.04
2 1.48

5.1 TANGENT COMPUTATION IN LARGE-SCALE MODELS

The common setting for training large-scale diffusion models includes using half-precision (FP16)
and Flash Attention (Dao et al., 2022; Dao, 2023). As training continuous-time CMs requires
computing the tangent dfθ−

dt accurately, we need to improve numerical precision and also support
memory-efficient attention computation, as detailed below.

JVP Rearrangement. Computing dfθ−
dt involves calculating dFθ−

dt = ∇xtFθ− · dxtdt + ∂tFθ− ,
which can be efficiently obtained via the Jacobian-vector product (JVP) for Fθ−( ·

σd
, ·) with the input
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Table 2: Sample quality on class-conditional ImageNet 512× 512. †Our reimplemented teacher diffusion model
based on EDM2 (Karras et al., 2024) but with modifications in Sec. 4.1.

METHOD NFE (↓) FID (↓) #Params

Diffusion models

ADM-G (Dhariwal & Nichol, 2021) 250×2 7.72 559M
RIN (Jabri et al., 2022) 1000 3.95 320M
U-ViT-H/4 (Bao et al., 2023) 250×2 4.05 501M
DiT-XL/2 (Peebles & Xie, 2023) 250×2 3.04 675M
SimDiff (Hoogeboom et al., 2023) 512×2 3.02 2B
VDM++ (Kingma & Gao, 2024) 512×2 2.65 2B
DiffiT (Hatamizadeh et al., 2023) 250×2 2.67 561M
DiMR-XL/3R (Liu et al., 2024) 250×2 2.89 525M
DIFFUSSM-XL (Yan et al., 2024) 250×2 3.41 673M
DiM-H (Teng et al., 2024) 250×2 3.78 860M
U-DiT (Tian et al., 2024b) 250 15.39 204M
SiT-XL (Ma et al., 2024) 250×2 2.62 675M
Large-DiT (Alpha-VLLM, 2024) 250×2 2.52 3B
MaskDiT (Zheng et al., 2023a) 79×2 2.50 736M
DiS-H/2 (Fei et al., 2024a) 250×2 2.88 900M
DRWKV-H/2 (Fei et al., 2024b) 250×2 2.95 779M
EDM2-S (Karras et al., 2024) 63×2 2.23 280M
EDM2-M (Karras et al., 2024) 63×2 2.01 498M
EDM2-L (Karras et al., 2024) 63×2 1.88 778M
EDM2-XL (Karras et al., 2024) 63×2 1.85 1.1B
EDM2-XXL (Karras et al., 2024) 63×2 1.81 1.5B

GANs & Masked Models

BigGAN (Brock, 2018) 1 8.43 160M
StyleGAN-XL (Sauer et al., 2022) 1×2 2.41 168M
VQGAN (Esser et al., 2021) 1024 26.52 227M
MaskGIT (Chang et al., 2022) 12 7.32 227M
MAGVIT-v2 (Yu et al., 2023) 64×2 1.91 307M
MAR (Li et al., 2024) 64×2 1.73 481M
VAR-d36-s (Tian et al., 2024a) 10×2 2.63 2.3B

METHOD NFE (↓) FID (↓) #Params
†Teacher Diffusion Model

EDM2-S (Karras et al., 2024) 63×2 2.29 280M
EDM2-M (Karras et al., 2024) 63×2 2.00 498M
EDM2-L (Karras et al., 2024) 63×2 1.87 778M
EDM2-XL (Karras et al., 2024) 63×2 1.80 1.1B
EDM2-XXL (Karras et al., 2024) 63×2 1.73 1.5B

Consistency Training (sCT, ours)

sCT-S (ours) 1 10.13 280M
2 9.86 280M

sCT-M (ours) 1 5.84 498M
2 5.53 498M

sCT-L (ours) 1 5.15 778M
2 4.65 778M

sCT-XL (ours) 1 4.33 1.1B
2 3.73 1.1B

sCT-XXL (ours) 1 4.29 1.5B
2 3.76 1.5B

Consistency Distillation (sCD, ours)

sCD-S 1 3.07 280M
2 2.50 280M

sCD-M 1 2.75 498M
2 2.26 498M

sCD-L 1 2.55 778M
2 2.04 778M

sCD-XL 1 2.40 1.1B
2 1.93 1.1B

sCD-XXL 1 2.28 1.5B
2 1.88 1.5B

vector (xt, t) and the tangent vector (dxtdt , 1). However, we empirically find that the tangent may
overflow in intermediate layers when t is near 0 or π2 . To improve numerical precision, we propose
to rearrange the computation of the tangent. Specifically, since the objective in Eq. (8) contains
cos(t)

dfθ−
dt and dfθ−

dt is proportional to sin(t)
dFθ−
dt , we can compute the JVP as:

cos(t) sin(t)
dFθ−

dt
=
(
∇ xt

σd

Fθ−
)
·
(
cos(t) sin(t)

dxt
dt

)
+ ∂tFθ− · (cos(t) sin(t)σd),

which is the JVP for Fθ−(·, ·) with the input (xtσd , t) and the tangent (cos(t) sin(t)dxtdt ,

cos(t) sin(t)σd). This rearrangement greatly alleviates the overflow issues in the intermediate
layers, resulting in more stable training in FP16.

JVP of Flash Attention. Flash Attention (Dao et al., 2022; Dao, 2023) is widely used for attention
computation in large-scale model training, providing both GPU memory savings and faster training.
However, Flash Attention does not compute the Jacobian-vector product (JVP). To fill this gap, we
propose a similar algorithm (detailed in Appendix F) that efficiently computes both softmax self-
attention and its JVP in a single forward pass in the style of Flash Attention, significantly reducing
GPU memory usage for JVP computation in attention layers.

5.2 EXPERIMENTS

To test our improvements, we employ both consistency training (referred to as sCT) and consistency
distillation (referred to as sCD) to train and scale continuous-time CMs on CIFAR-10 (Krizhevsky,
2009), ImageNet 64×64 and ImageNet 512×512 (Deng et al., 2009). We benchmark the sample
quality using FID (Heusel et al., 2017). We follow the settings of Score SDE (Song et al., 2021b)
on CIFAR10 and EDM2 (Karras et al., 2024) on both ImageNet 64×64 and ImageNet 512×512,
while changing the parameterization and architecture according to Section 4.1. We adopt the method
proposed by Song et al. (2023) for two-step sampling of both sCT and sCD, using a fixed intermediate
time step t = 1.1. For sCD models on ImageNet 512×512, since the teacher diffusion model relies
on classifier-free guidance (CFG) (Ho & Salimans, 2021), we incorporate an additional input s into
the model Fθ to represent the guidance scale (Meng et al., 2023). We train the model with sCD
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by uniformly sampling s ∈ [1, 2] and applying the corresponding CFG to the teacher model during
distillation (more details are provided in Appendix G). For sCT models, we do not test CFG since it
is incompatible with consistency training.

Training compute of sCM. We use the same batch size as the teacher diffusion model across all
datasets. The effective compute per training iteration of sCD is approximately twice that of the teacher
model. We observe that the quality of two-step samples from sCD converges rapidly, achieving
results comparable to the teacher diffusion model using less than 20% of the teacher training compute.
In practice, we can obtain high-quality samples after only 20k finetuning iterations with sCD.

Benchmarks. In Tables 1 and 2, we compare our results with previous methods by benchmarking
the FIDs and the number of function evaluations (NFEs). First, sCM outperforms all previous
few-step methods that do not rely on joint training with another network and is on par with, or even
exceeds, the best results achieved with adversarial training. Notably, the 1-step FID of sCD-XXL
on ImageNet 512×512 surpasses that of StyleGAN-XL (Sauer et al., 2022) and VAR (Tian et al.,
2024a). Furthermore, the two-step FID of sCD-XXL outperforms all generative models except
diffusion and is comparable with the best diffusion models that require 63 sequential steps. Second,
the two-step sCM model significantly narrows the FID gap with the teacher diffusion model to within
10%, achieving FIDs of 2.06 on CIFAR-10 (compared to the teacher FID of 2.01), 1.48 on ImageNet
64×64 (teacher FID of 1.33), and 1.88 on ImageNet 512×512 (teacher FID of 1.73). Additionally,
we observe that sCT is more effective at smaller scales but suffers from increased variance at larger
scales, while sCD shows consistent performance across both small and large scales.

Scaling study. Based on our improved training techniques, we successfully scale continuous-time
CMs without training instability. We train various sizes of sCMs using EDM2 configurations (S, M,
L, XL, XXL) on ImageNet 64×64 and 512×512, and evaluate FID under optimal guidance scales, as
shown in Fig. 6. First, as model FLOPs increase, both sCT and sCD show improved sample quality,
showing that both methods benefit from scaling. Second, compared to sCD, sCT is more compute
efficient at smaller resolutions but less efficient at larger resolutions. Third, sCD scales predictably for
a given dataset, maintaining a consistent relative difference in FIDs across model sizes. This suggests
that the FID of sCD decreases at the same rate as the teacher diffusion model, and therefore sCD is
as scalable as the teacher diffusion model. As the FID of the teacher diffusion model decreases with
scaling, the absolute difference in FID between sCD and the teacher model also diminishes. Finally,
the relative difference in FIDs decreases with more sampling steps, and the sample quality of the
two-step sCD becomes on par with that of the teacher diffusion model.

Comparison with VSD. Variational score distillation (VSD) (Wang et al., 2024; Yin et al., 2024b)
and its multi-step generalization (Xie et al., 2024b; Salimans et al., 2024) represent another diffusion
distillation technique that has demonstrated scalability on high-resolution images (Yin et al., 2024a).
We apply one-step VSD from time T to 0 to finetune a teacher diffusion model using the EDM2-M
configuration and tune both the weighting functions and proposal distributions for fair comparisons.
As shown in Figure 7, we compare sCD, VSD, a combination of sCD and VSD (by simply adding
the two losses), and the teacher diffusion model by sweeping over the guidance scale. We observe
that VSD has artifacts similar to those from applying large guidance scales in diffusion models: it
increases fidelity (as evidenced by higher precision scores) while decreasing diversity (as shown by
lower recall scores). This effect becomes more pronounced with increased guidance scales, ultimately
causing severe mode collapse. In contrast, the precision and recall scores from two-step sCD are
comparable with those of the teacher diffusion model, resulting in better FID scores than VSD.

6 CONCLUSION

Our improved formulations, architectures, and training objectives have simplified and stabilized the
training of continuous-time consistency models, enabling smooth scaling up to 1.5 billion parameters
on ImageNet 512×512. We ablated the impact of TrigFlow formulation, tangent normalization, and
adaptive weighting, confirming their effectiveness. Combining these improvements, our method
demonstrated predictable scalability across datasets and model sizes, outperforming other few-step
sampling approaches at large scales. Notably, we narrowed the FID gap with the teacher model to
within 10% using two-step generation, compared to state-of-the-art diffusion models that require
significantly more sampling steps.
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