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Abstract

The quest for human imitative AI has been an enduring topic in AI research since
its inception. The technical evolution and emerging capabilities of the latest cohort
of large language models (LLMs) have reinvigorated the subject beyond academia
to the cultural zeitgeist. While recent NLP evaluation benchmark tasks test some as-
pects of human-imitative behavior (e.g., BIG-bench’s ‘human-like behavior’ tasks),
few, if not none, examine creative problem solving abilities. Creative problem solv-
ing in humans is a well-studied topic in cognitive neuroscience with standardized
tests that predominantly use the ability to associate (heterogeneous) connections
among clue words as a metric for creativity. Exposure to misleading stimuli —
distractors dubbed red herrings — impede human performance in such tasks via the
fixation effect and Einstellung paradigm. In cognitive neuroscience studies, such
fixations are experimentally induced by pre-exposing participants to orthographi-
cally similar incorrect words to subsequent word-fragments or clues. The popular
British quiz show Only Connect’s Connecting Wall segment essentially mimics
Mednick’s Remote Associates Test (RAT) formulation with built-in, deliberate
red herrings, which makes it an ideal proxy task to explore and study the fixation
effect and Einstellung paradigm from cognitive neuroscience in LLMs. In this
paper, we present the novel Only Connect Wall (OCW) dataset and report results
from our evaluation of selected pre-trained language models and LLMs on creative
problem solving tasks like grouping clue words by heterogeneous connections and
identifying correct open knowledge domain connections in respective groups. We
synthetically generate two additional datasets: OCW-Randomized, OCW-WordNet
to further analyze our red-herrings hypothesis in language models. The code and
link to the dataset are available at https://github.com/TaatiTeam/OCW.

1 Introduction

The remarkable capabilities of state-of-the-art large language models (LLMs) [91], across a variety
of domains and downstream tasks [78, 10], have spurred their comparisons with artificial general
intelligence (AGI) [5, 14] and human-imitative AI [31] systems. The extraordinary leap in capabilities
of these LLMs over a short span — from the advent of transformer-based [69] pre-trained, context-
aware language models (PLMs) [52, 17, 40, 36, 53] circa 2018 to 2020, to the current and latest
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Wall D: Season 10, Episode 2

Wall A: Season 11, Episode 23

Gala Twelfth Bonfire Hen ——— night

Orlov Churchill Digby Tony Advert 
Animals

Burns Marx Clarke Bender Cigar 
Smokers

Canal Street Castro Chelsea Darlinghurst Gay Villages

Wall B: Season 12, Episode 27

Jazz Gala Honeygold Jonathan Apples

Healing Join Greg Show of Can Precede 
Hands

Pippin Merry Gaffer Sam Hobbits

Twill Duct Ticker Cassette Types of 
Tape

Wall C: Season 15, Episode 10

Cameo Fuji Bramley Jazz Apples

Amy Lady Bird Dakota Dwayne Johnsons

Thunder Magic Heat Celtics
US 
Basketball 
Teams

Gala Costume Goggles Pool Swimming 
———

Shrewsbury Wellington Ludlow Madeley Shropshire 
Towns

Bath Boarding Doge Cathode Begin with 
Animals

Chelsea Gum Snow Cowboy Boots

Bolt Bond Churchill Coward English 
Playwrights

Figure 1: Examples of Only Connect walls with ground-truth groupings (rows) and connections
(last column). Red herrings include orthographically identical words, e.g., Gala, Churchill and
Chelsea in different connected groups — Gala: Gala night, Apples, Swimming gala, Churchill:
Advert Animals, English Playwrights and Chelsea: Gay Villages, Boots — across walls. In Wall A
(top left), the clues Churchill, Marx, Castro provide misleading stimuli inducing plausible fixation
on historical figures within the wall.

cohort of increasingly larger (billions of parameters) LMs [59, 77, 57, 89, 16, 67, 18] spearheaded
by the OpenAI’s GPT series [13], notably ChatGPT [49] and GPT-4 [48] — justifiably warrants
such comparisons. Several natural language processing (NLP) benchmarks have been proposed to
standardize the evaluation of these LLMs, including MMLU [27], BIG-bench [66], HELM [38],
and Global-Bench [65]. The tasks inventory under these benchmarks are open (type of tasks)
and dynamic (rolling additions). While a subset of these tasks aims to test for human imitative
intelligence (e.g., nineteen tasks listed under the human-like behaviour category in BIG-bench), none
tests for creative problem solving abilities [44] — a hallmark of human-like intelligence [31].

Creative problem-solving by humans is a well-studied topic in cognitive neuroscience and human
behavioural sciences literature. These studies and methods use (word) associative fluency to model
and test creativity objectively [44, 9]. Empirical research in this context commonly employs single
or continuous word association tests that are variants of Mednick’s seminal Remote Associates
Test (RAT) [45]. Such tests entail finding connections or links among a presented group of words
using associations that can be heterogeneous (e.g., synonymy, semantic, compounding) [86, 43].
To exemplify, consider the cue words: {Tennis, Same, Head}. A correct connection in this triplet is:
Match, which connects by semantic link (tennis match), synonymy (same match), and compound-
ing (match head). Further, the word connections can also vary in degrees of figurativeness (e.g.,
Star-Actress vs. Star-Planet) and abstractness (e.g., Humor-Sense vs. Apple-Tree). In humans,
such creative problem-solving abilities are impeded by exposure to wrong answers [61, 62, 85] — a
finding referred to as the fixation effect [34, 82]. A closely related similar concept is the Einstellung
effect [42], which postulates the negative effect of previous experience when solving new problems.

Studies examining the fixation effect induce fixations by presenting clue words intended as wrong an-
swers (misleading stimuli) [61] dubbed “red herrings” or, by pre-exposing participants to red herrings
before attempting creative problem-solving tasks like the RAT [45]. A slew of works in negative
transfer learning in human cognition attempt to explain the RAT fixation phenomenon that involves
pre-exposure to red herrings by the negative effects of prior learning on indirect or implicit measures
of memory [63]. This negative transfer effect was demonstrated and studied using orthographically
similar words to subsequent test word fragments as red herrings [63]. Intuitively, the red herrings
lead participants away from the memory retrieval (or down incorrect neurological pathways by
Hebbian terminology) required for correct responses and fixate on wrong connections [60]. Fixation
in creative problem-solving can be increased by making red herrings more retrievable. Thus, creative
problem-solving can be thought of as a type of indirect memory measure whose retrieval is degraded
by red herrings due to the negative transfer effect. The red herring retrieval hypothesis states that
factors that make red herrings more retrievable should reduce creative problem-solving performance,
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as measured with RAT problems. Two such factors are repetition and context. A following corollary
states that the memory strengths of red herrings determine the magnitude of a fixation effect [8].

In this work, we study the juxtaposition of these theories from human cognitive neuroscience (fixations,
negative transfer learning, red herring memory retrieval hypothesis) from the context of LLMs and
natural language processing. While negative transfer learning has been observed and studied in AI
research [76, 22], the context of these studies is limited to strict machine learning sub-domains like
statistical distribution measures and computer vision. There has not been any work that systematically
examines these specific concepts’ relation in AI research. Our major contributions are as follow:

1. Only Connect Wall (OCW) Dataset and creative problem solving tasks. We introduce a
novel dataset for evaluating creative problem solving tasks by curating the problems and human
performance results from the popular British quiz show Only Connect [81, 3]. Specifically, the
Connecting Walls segment of the show, where the tasks entail grouping sixteen (16) jumbled up clue
words into four (4) connected groups, and naming the correct connections (Figure 1). The presented
words have heterogeneous connections with open-domain knowledge retrieval, e.g., history, places,
famous people, tools, and cultural references. These ‘walls’ contain red herrings or misleading
stimuli by design, which makes this dataset an analogical proxy for RAT tests in evaluating LLMs for
creative problem-solving. Section §2 provides a detailed description of the dataset.

2. Experiments, results, and key findings of baseline LLMs evaluation. We evaluate a suite of
NLP models from static embeddings to PLMs to LLMs and demonstrate that none can solve the tasks
of the OCW dataset. Our findings show that SOTA LLMs (e.g. GPT-4 [48]) perform significantly
worse than the expert human baseline, and somewhat surprisingly, that increasing the number of
in-context examples in few-shot in-context-learning is ineffective. Sections §3 and §4 provide details.

2 Only Connect Walls Dataset

Here we focus on the Connecting Walls segment (usually the third round) of the quiz-show. Each
wall contains sixteen jumbled-up word clues that must be sorted into four groups, each with four
connected words. Once the groups are formed, contestants must also identify the right connection or
relationship among the items in each group. While there is only one correct solution to each wall,
the puzzles are designed to include several red herring clues that can fit into another category and
red herring categories fitting multiple clues. Figure 1 shows solved sample walls from the show
highlighting a couple of typical red herrings.

2.1 Dataset Collection and Structure

The OCW dataset contains 618 connecting wall puzzles and solutions in total from 15 seasons of the
show. Each show episode has two walls. The total number of walls per season varies based on the
(varying) number of aired season episodes. The walls were scraped from fan websites1, and human
performance results (for grouping and connection tasks) were manually curated by watching all the
episodes. Figure 2 depicts the high-level structure of the dataset in JSON format with self-explanatory
object keys and comments.

2.2 Tasks and Evaluation Metrics

The two dataset tasks: Task 1 (Grouping), and Task 2 (Connections) are identical to the quiz-show’s
human participant tasks. We evaluate Task 1 (Groupings) via six metrics: number of solved walls,
number of correct groups (max. four per wall), Adjusted Mutual Information (AMI) [71], Adjusted
Rand Index (ARI) [28], Fowlkes Mallows Score (FMS) [21], and Wasserstein Distance (WD) [54],
normalized to (0, 1) range, between predicted and ground-truth labels [88, 70].

We similarly evaluate Task 2 (Connections) with three metrics: exact string matching, ROUGE-1
F1 [39], and BERTScore F1 [90]. Exact match is the most strict, assigning a score of 1 when the
predicted connection is identical to the ground-truth and 0 otherwise. ROUGE-1 F1 relaxes this
criterion; it is large when there is a high proportion of ground-truth tokens in the model’s predicted

1The primary source was the Only Connect fan website: https://ocdb.cc [6].
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Predicted Connection Ground-truth Connection Exact Match ROUGE-1 F1 BERTScore F1

Types of numbers Types of numbers 1.00 1.00 1.00
Slang terms for money Slang for money 0.00 0.86 0.79
Types of trees Trees 0.00 0.50 0.63
Bridges in London Thames bridges 0.00 0.40 0.31
Medieval occupations Chaucer characters 0.00 0.00 0.15

Table 1: Examples of predicted and ground-truth connections and their performance according to the
chosen metrics. Exact match is 0 for anything but identical strings. Empirically, we observe that a
ROUGE-1/BERTScore F1 of ≥ 0.5 indicates that a predicted connection is likely correct.

connection and a low proportion of non-ground truth tokens. BERTScore F1 is similar but further
relaxes this criterion, assigning a non-zero score for semantically similar (but non-identical) predicted
tokens. Together these three metrics provide a more holistic view of model performance on Task 2
than any one metric alone. Empirically, we find that a ROUGE-1 or BERTScore F1 of ≥ 0.5 indicates
that a predicted connection would likely be considered correct (Table 1). Note that BERTScore has
many parameters affecting the final score; a hashcode is produced and reported for reproducibility.

Each of the evaluation metrics for Task 1 of Task 2 could be calculated per wall, per episode, per
season, or for the entire test set. We present results on the entire test set in this paper (§4). We split
the dataset into a train set (62 walls), validation set (62 walls), and test set (494 walls). The primary
goal of our dataset is to evaluate the zero- and few-shot creative problem-solving abilities of LLMs;
as such, we elect to set the size of the test set to be much greater than train or validation sets.

3 Experiments: Language Model Evaluations

This section describes methods and models used to provide baseline results for the dataset. For
Task 1 (Grouping), we use clustering techniques on word-embeddings from classical and pre-trained
language models (PLMs) (§3.1), and few-shot in-context learning (ICL) with LLMs (§3.2). For Task
2 (Connections), we only provide baseline results using few-shot ICL with LLMs (§3.2).

Figure 2: JSON Structure of the OCW dataset. One truncated example is shown.
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Figure 3: Solved wall (wall_id="8cde") for Task 1 (Grouping) using best performing
model (E5BASE) with both static and contextual embeddings. Left: solved wall using static em-
beddings. Right: unsolved wall using contextual embeddings. 2D projection of embeddings using
t-SNE is shown. Colors and shapes correspond to true clusters, and grey convex regions correspond
to predicted clusters. The legend shows the ground truth connection for each group.

3.1 Task 1: Grouping using Word Embeddings

For the grouping task evaluation (§2.2), we use clustering algorithms on word-embeddings of the
sixteen clue words in each wall, to group them into four predicted groups that are subsequently
evaluated against the four ground-truth groups for each wall. A vanilla k-means (with k = 4)
clustering algorithm [25] does not guarantee each predicted group to have four words, thus we use
variants like constrained clustering.

Clustering Semi-supervised constrained clustering [72, 7] is used when the user has pre-existing
knowledge about the desired partition (in our case, 4 groups). Here, we adopt a minimum cost flow
network clustering approach [12] with a cluster size of four for grouping. Our preliminary analysis
showed that clustering results exhibited slight variations across runs. This slight discrepancy could
be attributed to the initializations of cluster centroids. To address this issue and ensure reliable
results, we report the mean and variance of results (Table 3)across sixteen (16) runs, each with
a unique seed and randomized order of sixteen-word clues. We tested two additional clustering
approaches motivated by [47, 19]: (1) We constructed a self-similarity matrix containing pair-wise
similar information about the words prior to applying constrained clustering; (2) We performed
dimensionality reduction using Principal Component Analysis (PCA) [58] and t-distributed stochastic
neighbor embedding (t-SNE) [68] before applying constrained clustering. Neither approach improved
performance over raw embeddings’ clusters, and, for brevity, results are not included.

Static word embedding We used two well-known classic word embedding models, GloVe [51] and
FastText [23], both of which are accessed through the Flair library (Table 2). We used two FastText
models, one pre-trained on the Common Crawl corpus and another on Wikipedia. Approximately
10% of the total clues encountered in the dataset were out-of-vocabulary (OOV). A significant
portion (~80%) of the OOV cases were addressed by mean pooling for clues comprised of multiple
words to obtain one unified embedding. For the remaining OOV instances, we combined the static
embeddings with BytePair encoded[26] sub-words.

PLMs We explored general-purpose PLMs (BERT [17], RoBERTa [40], DistilBERT [56],
ELMo [52]) as well as Sentence Transformers (MPNet [64], E5 [75]; see Table 2). We evalu-
ated performance with and without contextual embeddings.2 Depending on the context, some clues
in the dataset may appear across different walls with different meanings. As an example, the word

2Static embeddings are obtained from the PLMs by passing clues through the model independently.
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Model # Parameters Version Accessed via

Word Embeddings

BPEmb [26] En – en Flair [4]
GloVe [51] 6B – glove Flair
FastText [23] Crawl – crawl Flair

News – news Flair

Pre-trained Language Models (PLMs)

ELMoLARGE [52] 94M large Flair [4]
DistilBERTBASE [56] uncased 66M distilbert-base-uncased HuggingFace [83]
BERTBASE [17] uncased 110M bert-base-uncased HuggingFace
BERTLARGE uncased 340M bert-large-uncased HuggingFace
RoBERTaLARGE [40] 355M roberta-large HuggingFace

Sentence Transformers

all-mpnetBASE [64] V2 110M sentence-transformers/all-mpnet-base-v2 HuggingFace
E5BASE [75] V2 110M intfloat/e5-base-v2 HuggingFace
E5LARGE V2 340M intfloat/e5-large-v2 HuggingFace

Large Language Models (LLM)

GPT-3.5-turbo – gpt-3.5-turbo-0301 OpenAI API
GPT-4 – gpt-4-0314 OpenAI API

Table 2: Details about the baselines and models used in our experiments.

“Gala” was found in three distinct walls, each associated with a different meaning: apples, swimming
___, and ___ night (Figure 1). The contextual embeddings were aimed to capture contextual semantic
similarity among the clues (if any). They were generated by joining the 16 clues in the wall as a
pseudo-sentence. We randomly shuffle the word order across sixteen different runs for each wall to
account for the positional ordering. We note that such faux sentences (for inducing context) are not
valid English syntactic sentences. We used mean pooling to generate embeddings for clues comprised
of multiple words to capture the collective meaning of the entire clue.

3.2 Task 2: Connections using Few-shot In-context Learning (ICL) with LLMs

Few-shot ICL with LLMs has emerged as a performant and broadly applicable paradigm in NLP [13].
To evaluate the performance of this approach on our proposed dataset, we designed a few-shot prompt
for GPT-3.5-turbo and GPT-4 [48], which are amongst the strongest performing LLMs currently
available.3 For Task 1 (Grouping, §2.2), the prompt consists of some natural language instructions,
several examples of solved walls from the training set, and the current example’s 16 clues, randomly
sorted. For Task 2 (Connections), in place of the 16 clues, the prompt contains a solved wall without
the connections (Figure 4).

We developed our prompts on the validation set and reported the final performance on the test set.
In-context examples are randomly selected from the train set; the same examples are used across
all test inputs. We experiment with 0, 1, 3, 5, and 10 in-context examples. When necessary, we
apply simple post-processing to the LLMs output. For example, in both Task 1 and Task 2, we
take a maximum of 4 predictions for the groups and connections, respectively, and pad up to 4 with
the empty string in cases where the model outputs fewer than 4.4 To make results as reproducible
as possible, we set the temperature=0 and used the 03/01/2023 GPT-3.5-turbo snapshot and the
03/14/2023 GPT-4 snapshot. The max output length is set to 144 tokens. All other hyperparameters of
the OpenAI API are left at their defaults [2]. Prompts were designed as per the Guidance library [1].

4 Results and Discussions

4.1 Task 1: Grouping Results

Embedding Clustering Techniques In Table 3 we report the performance of several static embed-
ding baselines on Task 1 (Grouping). E5BASE was the most performant model and, on average, solved

3In preliminary experiments, we found that open-source LLMs like LLaMA [67] perform poorly and
typically do not follow the task instructions.

4Please see our codebase for all post-processing steps: https://github.com/TaatiTeam/OCW

6

https://github.com/TaatiTeam/OCW


Task 2 (Connections) Prompt

System Role (Natural Language Instructions)

You are currently competing in Round 3: Connecting Wall on the quiz 
show Only Connect. Your task: given 4 groups of 4 "clues" (words or 
phrases), determine the connection for each group. You will be given 
the groups as four lists of four. You are also given examples of solved 
walls, which include the connections. Provide your answer by repeating 
the four groups and adding it after "Connection:"

Note: Connections might be thematic, linguistic, factual, mathematical 
and rely on both arcane subject areas and popular culture.

User Role (In-context examples + input)

Example 1
Newel, Bannister, Tread, Riser. Connection: Parts of a staircase
Jaffa, Eccles, "Banbury, Chorley. Connection: ___ cake
Forsyth, Edmonds, Holmes, Parsons. Connection: Quiz show hosts
Plum, Moriarty, Indiana Jones, Higgins. Connection: Fictional professors

Groups:
Newel, Bannister, Tread, Riser. Connection:
Jaffa, Eccles, "Banbury, Chorley. Connection:
Forsyth, Edmonds, Holmes, Parsons. Connection:
Plum, Moriarty, Indiana Jones, Higgins. Connection:

Solved wall:

Task 1 (Grouping) Prompt

System Role (Natural Language Instructions)

You are currently competing in Round 3: Connecting Wall on the quiz show 
Only Connect. Your task: given 16 "clues" (words or phrases), solve the wall 
by grouping the clues into four groups of four. You will be given the clues 
as a list. You are also given examples of solved walls, which include the 
connections. Provide your answer as a list of four groups of four clues; 
separate groups by newlines and clues by commas. Do not try to guess 
the connection; only use the clues given and don't make up your own.

Be careful! Connecting Wall is deliberately difficult. The puzzles are 
designed to include red herrings and to suggest more connections than 
actually exist. Some clues appear to fit into more than one category. Still, 
there is only one perfect solution for each wall.

User Role (In-context examples + input)

Example 1
Agnew, Blofeld, Boycott, Johnston. Connection: Test Match Special regulars
Knees, Bike, Last legs, Marks. Connection: On your ___
Banshees, Tory, Brock, Galore. Connection: Words originating from Irish
Angled, Uppers, Elating, Eighth. Connection: Last letter to front = new word

Clues: Blanc, Brooks, B, Smith, Screwdriver, Hammer, Gimlet, Wrench, 
Sidecar, Manhattan, Gibson, Margarita, Puzzle, Business, Nuts, Suit

Solved wall:

Figure 4: Example prompts for Task 1 (Grouping) and Task 2 (Connections) used with GPT-3.5-
turbo and GPT-4. The system’s role includes natural language instructions. The user role includes
n in-context examples and the current examples 16 clues (Task 1) or the solved wall without
connections (Task 2). For Task 1, the model is instructed to output the solved wall as four lines of
four clues separated by commas. For Task 2, the model is instructed to copy the solved wall and fill
in the connections. Emphasis and bold text are for visualization purposes only.

1/4 Groups Solved

✅  Up, Down, Charm, Strange
❌  Santa, Satan, Grass, Snout
❌  Lag, Puck, Bottom, Dr Riviera
❌  Elastic band, Squash ball, 
Condom, Screw

Ground-truth connection(s): Quarks

2/4 Groups Solved

✅  Lambeth, Queen Elizabeth II, Millenium, 
London
✅  Chariot, Moon, Hermit, Tower
❌  Bottle, Bell, Stocking, Spider
❌  Print, Shore, Fiddler, Velvet

Ground-truth connection(s): Thames bridges, 
Blue ___

4/4 Groups Solved

✅  Strudel, Knish, Bridie, Calzone 
✅  Scar, Ursula, Stromboli, Hades
✅  Ned, Scratch, Nick, Harry
✅  Doll, Bird, Dame, Sheila

Ground-truth connection(s): Turnovers, 
Disney animated villains, "Old" names 
for the Devil, Nicknames for women

Figure 5: Examples of partially and fully solved walls predicted by GPT-4.

1 wall and correctly clustered 89 groups. Contextual embeddings had the lowest overall performance
amongst all methods (Table 6 in Appendix §A). One explanation is that by concatenating all the clues
in each wall, the resulting input may not adhere to the sentence structure that PLMs are accustomed to
during training. This may disrupt the natural flow of information and, in turn, lead to less meaningful
contextual embeddings. Moreover, the context may change abruptly when combining clues from
different parts of the wall. This can introduce ambiguity and contextual shifts that the model may
struggle to interpret accurately. Another possible explanation is the effect of positional encoding
in the underlying models. Unlike other main components of PLMs, positional encoding is variant
to sequence order [33]. Even though the addition of positional to word embeddings helps with
learning the contextual representation of words at different positions, intrinsic similarities may be
more important than contextual usage. The embedding dependence on neighboring clues may have
hindered the clustering process by introducing noise and capturing irrelevant information that is
specific to a particular context. For instance, in Figure 3, the contextual embedding model erroneously
associated the clue “Shop” with the connection “Photo ___”, resulting in the formation of the word
“Photoshop”; however, this association is incorrect as it is an example of a red herring in the wall. In
contrast, the static embedding model correctly mapped “Shop” to its British slang meaning connection
“Betray”. Please refer to Appendix §B for more examples.

Few-shot ICL with LLMs Performance of GPT-4 far surpassed the static (Table 3) and contextual
embedding baselines (Table 6), particularly in terms of the number of solved walls and correct
groups (>2X the next most performant model, E5), but was still far below human performance (§4;
see §5 for example predictions). Examining the predictions of the best-performing model (GPT-4,
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WD ↓ FMS ↑ ARI ↑ AMI ↑ # Solved Walls # Correct Groups

Classic Word Embeddings

GloVe 84.9± .4 31.5± .3 14.4± .3 17.6± .4 0± 0 68± 4
FastText (Crawl) 84.2± .5 32.1± .3 15.2± .3 18.4± .4 0± 0 80± 4
FastText (News) 85.5± .5 30.4± .2 13.0± .2 15.8± .3 0± 0 62± 3

Pre-trained Language Models (PLMs)

ELMoLARGE 86.3± .6 29.5± .3 11.8± .4 14.5± .4 0± 0 55± 4
DistilBERTBASE 86.7± .6 29.1± .2 11.3± .3 14.0± .3 0± 0 49± 4
BERTLARGE 88.3± .5 26.5± .2 8.2± .3 10.3± .3 0± 0 33± 2
BERTBASE 89.5± .4 25.1± .2 6.4± .3 8.1± .4 0± 0 22± 2
RoBERTaLARGE 88.4± .4 26.7± .2 8.4± .3 9.4 ± .4 0± 0 29± 3

Sentence Transformers

all-mpnetBASE 86.3± .4 29.4± .3 11.7± .4 14.3± .5 0± 0 50± 4
E5LARGE 84.4± .7 32.3± .4 15.4± .5 18.5± .6 0± 0 76± 5
E5BASE 83.8± .6 33.1± .3 16.3± .4 19.5± .4 1± 0 89± 6

Human Performance – – – – 285 / 494 1405 / 1976

Table 3: Results of selected models on Task 1 (Grouping) using static embeddings. WD: Wasserstein
Distance. FMS: Fowlkes Mallows Score. ARI: Adjusted Rand Index. NMI: Normalized Mutual
Information. Mean ± standard deviation over 16 random seeds is shown. Bold: best scores.

# In-context Examples WD ↓ FMS ↑ ARI ↑ AMI ↑ # Solved Walls # Correct Groups

GPT-3.5-turbo 0-shot 82.5 34.0 18.4 21.6 0 114
1-shot 82.3 34.4 18.2 21.2 0 123
3-shot 80.9 36.8 21.3 24.7 0 140
5-shot 80.6 37.3 22.0 25.4 2 149

10-shot 81.2 36.1 20.4 24.0 2 137

GPT-4 0-shot 75.8 41.5 27.2 30.7 6 239
1-shot 73.4 43.7 29.7 33.5 4 262
3-shot 73.7 43.9 29.9 33.6 5 272
5-shot 72.9 43.4 29.1 32.8 7 269

10-shot 73.6 42.8 28.5 32.3 3 249

Human Performance – – – – 285 / 494 1405 / 1976

Table 4: Results on Task 1 (Grouping) using Large Language Models. WD: Wasserstein Distance.
FMS: Fowlkes Mallows Score. ARI: Adjusted Rand Index. NMI: Normalized Mutual Information.
Bold: best scores.

3-shot), we found common sources of error to include misformatted outputs (4.4% of all predicted
groups) and hallucinated clues (6.6%).

Surprisingly, more in-context examples (from 1 to 10 shot) did not improve performance. One
possible explanation for this observation is that, due to the huge variety of possible connection types,
the in-context examples’ primary benefit is demonstrating the expected output format – as opposed
to demonstrating how to perform the task – which likely requires only a single example. This is
related to the concepts of task learning versus task recognition, which are thought to be the two
distinct mechanisms through which ICL leverages demonstrations [50, 32]. Many clues require
open-domain, arcane, cultural and intimate knowledge of niche subject areas (e.g., “Professional
snooker players”, “Female Radio 1 DJs”) that, without prior memorization, are unlikely to help. The
presence of orthographically similar clue words in the in-context examples could themselves act as
red herrings and plausibly induce negative transfer learning. An interesting future direction would
be the evaluation of retrieval augmented models [24, 37, 11, 29], which may be capable of solving
groups about highly specific subject areas.

4.2 Task 2: Connections Results

In Figure 6, we present the results for Task 2 (Connections). In general, GPT-4 outperforms GPT-
3.5-turbo, especially in the 0-shot regime. Performance for GPT-4 improves monotonically with
an increasing number of in-context examples, although improvements are sometimes small (e.g.,
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Figure 6: Results for Task 2 (Connections) with GPT-3.5-turbo and GPT-4. For reference, hu-
man performance is approximately 80% (fraction of correctly answered connections). We report
max(BERTScore, 0) in the case of GPT-3.5-turbo for readability.

< 0.01). As expected, the exact match score for both models is low (< 15%). This is explained
by the fact that even insignificant differences between the model’s predictions and the ground truth
will result in a score of 0 (e.g., “Made of rubber” vs. “Made from rubber”). For this reason, we
also report ROUGE-1 and BERTScore F1 scores (§2.2). Although not a perfect comparison, we can
contextualize these results with human performance, which we recorded as the fraction of correctly
guessed connections: ∼80% on the test set. The quiz show Only Connect allows for some small
deviations in guessed connections that will be accepted as correct, making the comparison to ROUGE
and BERTScore more suitable than to exact match. Our results suggest that at 41-45% F1, the
best performance achieved with few-shot ICL (GPT-4, 10-shot) is far below human performance.
Lastly, we note that a common source of model error was the inclusion of clues in the predicted
connection (occurring in 8.2% of all predicted connections for the best performing model), e.g.,
“Fireplace tools (Spade, Brush, Poker, Tongs)”, even though (1) the model was not instructed to do so,
and (2) the in-context examples were not formatted like this.

More complicated post-processing or prompting strategies (e.g., “Chain of Thought” [79], “Tree of
Thoughts” [87]) could mitigate these issues and improve performance. However, applying these more
complicated prompting strategies to the OCW dataset is non-trivial, as they require breaking down
the problem into intermediate steps, and the number or nature these intermediate reasoning steps
should take is unclear. We leave their application to the OCW dataset for future work.

4.3 Effects of Red-Herrings: Additional Datasets, Experiments and Analyses

To analyze our red-herring hypothesis on language models, we designed and performed additional
ablative experiments. The original OCW dataset contains red-herrings as distractors by design. We
generate two additional datasets from OCW to decrease the presence of red-herrings: OCW-Randomized
and OCW-WordNet. The goals, construction and other details are presented in Appendix §C.1.

In OCW-Randomized, we diluted the presence of red herrings by randomly swapping groups among
the walls in the test set – thus negating the inherent deliberate distractor groups in each wall. We
further simplify the grouping task in OCW-WordNet by removing red herrings altogether. This is
achieved by using subordinate-superlative (or hyponym-hypernym) word hierarchy and synonyms in
the English lexical database WordNet [46, 20]. Thus the results in Table 5 present results on datasets
with a decreasing proportion of red herrings from left to right, and by our hypothesis, increasing task
simplicity for LLMs. The results are aligned with our expectations, with GPT-3.5-turbo and GPT-4
performance increasing significantly with the reduction of red herrings from the test set.

5 Related Work

Various datasets and tasks have been proposed for evaluating language models against human-like
linguistic capabilities. Earlier examples of such tasks include word sense disambiguation (WSD) [55],
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OCW OCW-Randomized OCW-WordNet
# Solved Walls # Correct Groups # Solved Walls # Correct Groups # Solved Walls # Correct Groups

GPT-3.5-turbo 0-shot 0 114 5 274 337 1522
1-shot 0 123 12 315 320 1400
3-shot 0 140 10 306 415 1748
5-shot 2 149 16 337 415 1759

10-shot 2 137 17 333 428 1800

GPT-4 0-shot 6 239 59 595 471 1926
1-shot 4 262 57 644 304 1581
3-shot 5 272 62 649 279 1537
5-shot 7 269 68 655 298 1584

10-shot 3 249 55 614 378 1742

Human Performance 285 / 494 1405 / 1976 – – – –

Table 5: Coalesced results of LLMs performance on Task 1 (grouping) using two additional test
datasets OCW-Randomized and OCW-WordNet with decreasing presence of red-herrings from left to
right in the walls, juxtaposed against the original OCW test set (left-most column). Only the main
metrics are shown (details and full results in Appendix §C). Bold: best scores.

Winograd schema challenge [35] and word sense induction (WSI) [80]. WSD aims to determine
a word’s correct meaning or sense within a specific context. WSI focuses on automatically clus-
tering words into different senses or semantic categories based on their contextual usage patterns.
Benchmarks like GLUE [74] and SuperGLUE [73] are aimed at aggregating and standardizing these
classical NLP tasks to evaluate language models. The PLMs (e.g., BERT variants) and the first
generation of LLMs, mostly solved or attained human-level performance on these tasks by 2020s [41].

In order to evaluate the human-imitative capabilities of modern LLMs, more challenging tasks
have been proposed in recent benchmarks like BIG-bench [66] and HumanEval [15]. BIG-bench
aims to address the limitations of existing benchmarks by providing a more comprehensive, open,
and dynamic (tasks added on a rolling basis) evaluation benchmark. It covers a wide range of
tasks, including a suite of tasks targeted specifically for human-like behavior. HumanEval is
an evaluation set to measure the functional correctness of code synthesis from docstrings [15].
This benchmark includes 164 original programming problems that assess language comprehension,
algorithms, and simple mathematics comparable to simple software interview questions. While
these recent benchmarks include a wide net of complex tasks, evaluating a broad range of LLM
capabilities, our work here is orthogonal to these since none of them aims to specifically measure
creative problem-solving or creativity and their impediments in LLMs.

6 Limitations & Future Work

As with any machine learning dataset, especially one designed to evaluate the performance of LLMs,
the OCW dataset has several limitations. First, we noticed that the performance of contextual
approaches can vary significantly depending on the order that clues are provided to the model. To
alleviate this (and where feasible), we evaluate models across 16 random sortings of the clues. Due to
cost, we did not evaluate GPT-3.5-turbo and GPT-4’s sensitivity to this ordering; future work should
report performance across multiple random sorts. Second, due to the nature of the quiz show Only
Connect, the clues, groups, and connections in the dataset tend to be Western- (and specifically UK-)
centric (e.g. “Doctor Who companions”, “English cricket captains”, “Irish counties”). Therefore,
performance on the OCW dataset may not extrapolate to languages or cultures outside of Western
English. In fact, the US-centric bias of LLMs like GPT-3.5/4 [84] might partially explain their poor
performance on the UK-centric OCW dataset. We hope to add additional Only Connect inspired
walls in multiple languages and with clues derived from various cultures & subcultures in future work.
Finally, given that the walls are publicly available as text on fan sites like ocdb.cc, there is always the
possibility that they are included in the training sets of LLMs like GPT. However, we think this is
unlikely, given the low performance on the grouping and connection tasks. Preventing the test sets
of publicly available datasets like our OCW from “leaking” into the training sets of LLMs remains
an interesting and open problem. We have taken basic steps against this leakage by distributing our
dataset in a compressed format [30].
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[43] M. Marko, D. Michalko, and I. Riečanskỳ. Remote associates test: An empirical proof of
concept. Behavior research methods, 51:2700–2711, 2019.

[44] S. Mednick. The associative basis of the creative process. Psychological review, 69(3):220,
1962.

[45] S. A. Mednick. The remote associates test. The Journal of Creative Behavior, 1968.

[46] G. A. Miller. WordNet: A lexical database for English. In Speech and Natural Language:
Proceedings of a Workshop Held at Harriman, New York, February 23-26, 1992, 1992.

[47] R. Navigli. Word sense disambiguation: A survey. ACM computing surveys (CSUR), 41(2):
1–69, 2009.

[48] OpenAI. GPT-4 technical report. ArXiv preprint, abs/2303.08774, 2023.

13



[49] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback.
Advances in Neural Information Processing Systems, 35:27730–27744, 2022.

[50] J. Pan, T. Gao, H. Chen, and D. Chen. What in-context learning "learns" in-context: Disentan-
gling task recognition and task learning. In Annual Meeting of the Association for Computational
Linguistics, 2023.

[51] J. Pennington, R. Socher, and C. Manning. GloVe: Global vectors for word representation. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543, Doha, Qatar, 2014. Association for Computational Linguistics.
doi: 10.3115/v1/D14-1162.

[52] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer.
Deep contextualized word representations. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–2237, New Orleans, Louisiana, 2018.
Association for Computational Linguistics. doi: 10.18653/v1/N18-1202.

[53] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu.
Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn.
Res., 21:140:1–140:67, 2020.

[54] A. Ramdas, N. García Trillos, and M. Cuturi. On wasserstein two-sample testing and related
families of nonparametric tests. Entropy, 19(2):47, 2017.

[55] O. Sainz, O. L. de Lacalle, E. Agirre, and G. Rigau. What do language models know about
word senses? zero-shot wsd with language models and domain inventories. ArXiv preprint,
abs/2302.03353, 2023.

[56] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. DistilBERT, a distilled version of BERT: smaller,
faster, cheaper and lighter. ArXiv preprint, abs/1910.01108, 2019.

[57] T. L. Scao, A. Fan, C. Akiki, E. Pavlick, S. Ilić, D. Hesslow, R. Castagné, A. S. Luccioni,
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Appendices
A Additional Experiments

Task 1 – Grouping In addition to grouping clue words using token embeddings (discussed in
the main paper §4), we also ran grouping the words by clustering on ‘contextual’ embeddings. We
experimentally induce ‘context’ by joining the sixteen (16) word tokens (in a random order) into a
single pseudo-sentence. The embeddings for each token were different based on the ordering of the
tokens. We repeat the random ordering sixteen times and report the mean and variance of the results
obtained in Table 6.

WD ↓ FMS ↑ ARI ↑ AMI ↑ # Solved Walls # Correct Groups

ELMoLARGE 90.0± .3 23.6± .4 4.5± .5 5.6± .7 0± 0 19± 3
DistilBERTBASE 88.4± .7 26.7± .3 8.3± .4 10.4± .5 0± 0 30± 4
BERTLARGE 87.2± .6 28.3± .5 10.4± .6 12.8± .7 0± 0 46± 5
BERTBASE 87.7± .5 28.0± .2 10.0± .3 12.4± .4 0± 0 39± 2
RoBERTaLARGE 88.4± .5 25.9± .2 7.4± .3 9.3± .4 0± 0 30± 4
all-mpnetBASE 87.6± .5 28.0± .3 10.0± .4 12.4± .5 0± 0 38± 3
E5LARGE 87.7± .5 28.1± .3 10.2± .4 12.7± .5 0± 0 37± 4
E5BASE 87.2± .3 28.2± .2 10.2± .3 12.5± .4 0± 0 46± 5

Human Performace – – – – 285 / 494 1405 / 1976

Table 6: Results of selected models on Task 1 (Grouping) using contextual embeddings. WD:
Wasserstein Distance. FMS: Fowlkes Mallows Score. ARI: Adjusted Rand Index. NMI: Normalized
Mutual Information. Mean ± standard deviation over 16 random seeds is shown. Bold: best scores.

Task 2 – Connections In addition to prompting based results on GPT-4 (discussed in §4), we ran
experiments on additional LLMs like LLaMa [67] (7B, 13B) using pre-trained configuration weights
obtained by permission from Meta AI. However, without additional fine-tuning on the specific task,
these LLMs were unable to solve the task in a meaningful manner. To elucidate, LLaMa generated
a bunch of hallucinated words with unequal group sizes. We omit these unintelligible results for
brevity.
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B Additional Figures

In this section, we provide additional t-SNE projections of embeddings from various methods used.
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Figure 7: Solved wall for Task 1 (Grouping) using GloVe. Left: (wall_id="7ed3"), the embedding
model erroneously associated the clue “Suspension” with the connection “Bridges”; however, this
association is an example of a red herring. “Suspension” is “a term used in musical harmony” in
this context. Right: (wall_id="5e3c"), shows that clue “Lord” is close to “God, Heavens, and
Grief ” in the embedding space, which matches the “Good ___!” connection. However, this is another
example of a red herring as, in this context, “Lord” refers to “Lord’s cricket Ground”, a cricket
stadium named after “Thomas Lord”.
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Figure 8: Solved wall for Task 1 (Grouping) using FastText (Crawl). Left: (wall_id="d5e6"), the
embedding model erroneously associated the clue “Tara” other girls’ names; but here, “Tara” is short
for “Hill of Tara” and belongs to the “national coronation sites” group. Right: (wall_id="4c22"),
shows that clue “Pie” associated with the connection “Apple”. Even though it is acceptable in general
context, here it represents a homophone for the Greek letter “π”.
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Figure 9: Solved wall (wall_id="2d8f") for Task 1 (Grouping) using BERTLARGE with both
static and contextual embeddings. Left: contextual embedding solved 3/4 groups. Here the clue
“Rambrandt” is placed near other Dutch painters. The correct grouping for this clue in this wall is
“Toothpaste Brands”. Right: static embedding solved 0/4 groups.
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C Effects of Red-Herrings: Additional Experiments, Analysis and Results

C.1 Additional Datasets

Both of the additional datasets described in this section for ablation experiments have been made
available via our code repositories on Github and HuggingFace.

C.1.1 OCW-Randomized Dataset

This test dataset generates a version of the test set where red herrings are removed or largely reduced
in frequency. This is achieved by rebuilding every wall using a randomly selected group from different
walls. We only applied the process to the (original OCW) test set, the train and validation sets are left
untouched.

Method For each wall in the existing test set, we leave the first group untouched, and sample three
new groups, each from a different wall, such that none of the groups share a word in common. The
connections for each group are unmodified. The result is a new version of the test set where every
wall is composed of 4 random groups from 4 different walls.

C.1.2 OCW-WordNet Dataset

WordNet [46, 20] is a large lexical database of English. Nouns, verbs, adjectives, and adverbs
are grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept. We use
the hypernym/hyponym (or superlative/subordinative) hierarchical lexical structure aggregated in
WordNet to generate an easy test set to further analyze the effects of red-herring in OCW.

Method We use the existing words in a wall to select synonyms from the word’s synsets. We
only consider synsets that have at least five synonymous lexical names, then randomly sample four
words. The original test set word and its definition (ss.definition()) subsequently becomes
the connection phrase for the group. Four groups were generated for each wall, and the easy wall
generation process was repeated for the total number of walls (494) in the original test data set.

For the group connections, we concatenate the superlative parent word with a synset definition giving
a description of the word. This allows for an ideal semantic similarity score to be calculated using
BERTScore. For a few cases (approx. 70/494 walls in the test set), the number of generated groups
per wall is less than four, due to the unavailability of direct synonyms from word synsets. In those
edge cases, we generate and append groups using common hypernym words like animal, mammal,
furniture, etc. to ensure a wall is valid with four groups.

A sample generated easy group is shown below, where we prefix the group_id from the original OCW
dataset with ‘easy’ to aid with mapping or identification.

{
...
"group_3": {
"group_id": "easy_691a_3",
"gt_words": ["gibe","shaft","jibe","barb"],
"gt_connection": "Shaft: an aggressive remark directed at a person
like a missile and intended to have a telling effect"
...

}

Further, we generate easy to train and validation sets mimicking the original dataset, package and
release these three additional easy sets, as OCW-WordNet as added contributions.
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C.2 Results of Ablation Experiments

C.2.1 PLMs: Performance on Task 1 (Grouping)

We perform and present the results using ‘static’ embeddings due to the noted superior results and the
word order related deficiency already shown by using contextual embeddings pertinent to our task
setup.

WD ↓ FMS ↑ ARI ↑ AMI ↑ # Solved Walls # Correct Groups

Classic Word Embeddings

GloVe 76.8± .7 39.2± .3 24.0± .4 27.7± .4 7± 1 213± 8
FastText (Crawl) 76.1± .5 40.5± .3 25.0± .6 28.6± .7 13± 1 236± 7
FastText (News) 79.3± .5 36.8± .3 21.0± .3 24.5± .4 5± 1 176± 6

Pre-trained Language Models (PLMs)

ELMoLARGE 80.9± .4 35.2± .3 18.9± .3 22.2± .4 3± 1 154± 6
DistilBERTBASE 82.3± .6 34.2± .4 17.7± .5 21.1± .5 1± 1 124± 8
BERTLARGE 86.2± .4 29.2± .3 11.5± .3 14.2± .4 0± 0 66± 4
BERTBASE 87.5± .4 27.7± .3 9.6± .6 11.8± .5 0± 0 48± 4
RoBERTaLARGE 86.7± .5 28.6± .2 10.8± .3 13.4± .3 1± 0 56± 4

Sentence Transformers

all-mpnetBASE 81.4± .4 35.1± .4 18.9± .5 22.0± .6 8± 1 154± 7
E5LARGE 76.0± .5 40.7± .3 25.9± .4 29.7± .4 8± 1 230± 5
E5BASE 75.1± .8 41.8± .3 27.2± .3 31.1± .3 8± 1 249± 8

Human Performance – – – – – –

Table 7: Results of OCW-Randomized using static embeddings. WD: Wasserstein Distance. FMS:
Fowlkes Mallows Score. ARI: Adjusted Rand Index. NMI: Normalized Mutual Information. Mean
± standard deviation over 16 random seeds is shown. Bold: best scores.

WD ↓ FMS ↑ ARI ↑ AMI ↑ # Solved Walls # Correct Groups

Classic Word Embeddings

GloVe 43.0± 1.0 66.1± .4 57.4± .5 60.9± .5 118± 3 886± 1
FastText (Crawl) 30.6± 1.0 75.8± .6 69.6± .7 72.4± .7 195± 6 1173± 18
FastText (News) 44.9± 1.2 64.9± .5 55.9± .6 59.5± .6 105± 3 844± 12

Pre-trained Language Models (PLMs)

ELMoLARGE 52.5± 1.1 58.9± .3 48.2± .4 52.5± .4 67± 3 682± 9
DistilBERTBASE 45.5± 1.0 64.1± .4 55.0± .5 58.7± .5 105± 3 835± 13
BERTLARGE 76.9± 1.0 38.9± .2 23.4± .3 27.5± .3 7± 0 197± 6
BERTBASE 73.0± 1.3 42.5± .5 27.9± .6 32.5± .6 8± 2 268± 12
RoBERTaLARGE 57.4± 1.3 54.8± .3 43.3± .3 47.5± .3 48± 2 573± 8

Sentence Transformers

all-mpnetBASE 22.6± .7 81.9± .4 77.1± .5 79.4± .4 256± 4 1365± 12
E5LARGE 23.6± .8 80.9± .4 75.9± .5 78.3± .4 250± 4 1347± 12
E5BASE 26.9± .9 78.0± .4 72.3± .5 75.0± .5 224± 4 1259± 10

Human Performance – – – – – –

Table 8: Results of OCW-WordNet using static embeddings. WD: Wasserstein Distance. FMS:
Fowlkes Mallows Score. ARI: Adjusted Rand Index. NMI: Normalized Mutual Information. Mean
± standard deviation over 16 random seeds is shown. Bold: best scores.

C.2.2 LLMs: Performance on Task 1 (Grouping) using GPT3.5/4

Here we present the results of repeating Task 1 (grouping) on the ablation datasets OCW-
Randomized (C.1.1) and OCW-Wordnet (C.1.2) to analyze the effects of red-herrings in walls
on LLM performance.

The results adhere to the expected results of superior performance with the dilution/removal of
red-herrings from the walls.
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# In-context Examples WD ↓ FMS ↑ ARI ↑ AMI ↑ # Solved Walls # Correct Groups

GPT-3.5-turbo 0-shot 74.3 40.4 26.4 29.8 5 274
1-shot 72.0 43.1 29.0 32.3 12 315
3-shot 72.7 43.4 29.4 32.9 10 306
5-shot 70.7 44.6 30.9 34.4 16 337

10-shot 70.5 43.8 30.0 33.5 17 333

GPT-4 0-shot 58.2 56.2 45.4 48.8 59 595
1-shot 55.1 58.0 47.5 51.0 57 644
3-shot 55.0 57.5 46.9 50.3 62 649
5-shot 54.1 58.0 47.5 50.9 68 655

10-shot 56.6 56.1 45.1 48.5 55 614

Human Performance – – – – – –

Table 9: Results of OCW-Randomized using Large Language Models. WD: Wasserstein Distance.
FMS: Fowlkes Mallows Score. ARI: Adjusted Rand Index. NMI: Normalized Mutual Information.
Bold: best scores.

# In-context Examples WD ↓ FMS ↑ ARI ↑ AMI ↑ # Solved Walls # Correct Groups

GPT-3.5-turbo 0-shot 15.9 86.3 83.4 84.9 337 1522
1-shot 24.8 76.4 74.4 75.4 320 1400
3-shot 8.65 92.7 91.2 91.8 415 1748
5-shot 8.09 94.0 92.4 93.1 415 1759

10-shot 6.55 95.3 94.0 94.7 428 1800

GPT-4 0-shot 1.51 98.5 98.0 98.2 471 1926
1-shot 19.2 87.9 84.3 83.7 304 1581
3-shot 21.5 86.6 82.5 81.8 279 1537
5-shot 19.1 88.1 84.5 83.8 298 1584

10-shot 11.2 92.9 90.7 90.4 378 1742

Human Performance – – – – – –

Table 10: Results of OCW-WordNet using Large Language Models. WD: Wasserstein Distance.
FMS: Fowlkes Mallows Score. ARI: Adjusted Rand Index. NMI: Normalized Mutual Information.
Bold: best scores.
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