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ABSTRACT

Transfer learning has witnessed remarkable progress in recent years, for example,
with the introduction of augmentation-based contrastive self-supervised learning
methods. While a number of large-scale empirical studies on the transfer perfor-
mance of such models have been conducted, there is not yet an agreed-upon set
of control baselines, evaluation practices, and metrics to report, often hindering a
nuanced and calibrated understanding of the real efficacy of the methods. We pro-
pose an evaluation standard that aims to quantify and communicate transfer learn-
ing performance in an informative and accessible setup. This is done by baking a
number of simple yet critical control baselines in the evaluation method, particu-
larly the ‘blind-guess’ (quantifying the dataset bias), ‘scratch-model’ (quantifying
the architectural contribution), and ‘maximal-supervision’ (quantifying the upper-
bound). To demonstrate how the proposed evaluation standard can be employed,
we provide an example empirical study investigating a few basic questions about
self-supervised learning. For example, using this standard, the study shows the
effectiveness of existing self-supervised pre-training methods is skewed towards
image classification tasks versus others, such as dense pixel-wise predictions.

1 INTRODUCTION

Creating computer vision models that can support a wide range of downstream tasks will require
the development of representations whose utility extend beyond the exact same objective they were
optimized for. Transfer learning is a general approach to operationalize this perspective by using
representations of a model trained on a source task to improve the sample complexity of learning
another downstream task. Supervised pre-training approaches to transfer learning, however, still
have the drawback of requiring large annotated datasets for the source task. Self-supervised learn-
ing, in turn, holds the potential to remove this bottleneck by learning representations directly from
unlabelled data by means of employing a proxy pre-training objective whose optimization results
in transferable representations, but does not require manual labelling (Noroozi & Favaro, 2016;
Zhang et al., 2016; Gidaris et al., 2018). For example, the recently revisited contrastive learning
approaches (Hadsell et al., 2006; Chen et al., 2020a; He et al., 2020; Caron et al., 2020) constitute a
milestone in this paradigm and were shown to achieve impressive transfer performance competitive
with representations obtained in a fully supervised way for classification tasks.

Given the rapid progress in transfer and self-supervised learning, obtaining a clear and complete
picture of the increasingly large number of methods being proposed is difficult, in part due to an
absence of standard evaluation practices and the non-uniformity of reported (control) baselines.
Ideally, such an evaluation standard should have a number of desirable properties, such as:

1. providing a simple metric that clearly communicates the “effectiveness” transfer learning
of a given method on a natural and interpretable scale.

2. taking into account the effects of irreducible factors that upper-bound the best possible
transfer performance, such as the uncertainty in observations or the imperfect nature of
current neural network training practices.

3. normalizing away the benefits due to the statistical regularities of datasets that lower-bound
the worst possible performance (Coughlan & Yuille, 2000), to prevent them from being a
confounder in comparisons.

4. providing an intuitive way to draw comparisons about the utility of different self-supervised
learning methods across different downstream tasks.
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This paper proposes an evaluation standard that satisfies the aforementioned properties by incorpo-
rating a set of key control baselines in the evaluation. We then proceed with example analyses on
questions that would be otherwise harder to study without such a standard – for example, assess-
ing whether existing self-supervised learning methods are equally effective across different types
of tasks. The proposed standard is not limited to self-supervised learning and is applicable to any
transfer learning evaluation.

2 RELATED WORK

Self-Supervised Representation Learning is a special case of general transfer learning and one
of the most attended ones today. Earlier work on self-supervised learning largely focused on hand-
designed proxy-tasks, such as solving a jigsaw puzzle (Noroozi & Favaro, 2016), image colorization
(Zhang et al., 2016), rotation prediction (Gidaris et al., 2018), as well as numerous others (Misra &
Maaten, 2020; Pathak et al., 2016; Zamir et al., 2016). More recently, a number of augmentation-
based contrastive methods have been proposed (Chen et al., 2020a; He et al., 2020; Caron et al.,
2020; Henaff, 2020; Chen et al., 2020b), and were shown to outperform previous approaches sig-
nificantly. These methods employ a contrastive-loss formulation (Hadsell et al., 2006), and learn
representations that are similar for augmented views of the same image and dissimilar for different
images. Bardes et al. (2021); Zbontar et al. (2021); Grill et al. (2020) also suggest learning rep-
resentations that are close for augmentations of the same image, but do not use negative examples
explicitly and achieve similar performance to contrastive methods.

Benchmarking and Analysis. The literature contains various empirical studies on the effectiveness
of self-supervised pre-training, across a wide range of methods and downstream tasks. Van Horn
et al. (2021); Islam et al. (2021); Cole et al. (2021) focus on classification tasks and study how the
final transfer performance depends on the image domain of a dataset, downstream-task complexity,
and the available amount of labelled data for transfer. Ericsson et al. (2021); Newell & Deng (2020)
further include non-classification tasks in their evaluation setup, and Kotar et al. (2021) conduct a
comprehensive empirical study with a diverse set of downstream tasks to demonstrate the benefits
of contrastive self-supervised pre-training. Goyal et al. (2019); Kolesnikov et al. (2019); Tian et al.
(2020); Xiao et al. (2020); Cole et al. (2021) examine the effects of various pre-training parame-
ters such as the model capacity, pretext task complexity, and the augmentation policy used in the
contrastive loss formulation, to provide a further understanding of the successes of self-supervised
pre-training. Tian et al. (2020); Tsai et al. (2020); Arora et al. (2019); Lee et al. (2020) build a
mathematical framework to explain how self-supervised pre-training can improve the performance
on downstream tasks, aiming to provide theoretical guarantees. In this work, we also include non-
classification tasks in our showcase analysis, and aim to study the transfer performance more com-
prehensively with the proposed control baselines and evaluations across different data-regimes.

Evaluation Metrics and Baselines. A standard way to evaluate self-supervised learning methods is
through freezing their pre-trained representations and reporting the performance of a linear classifier
trained on top to solve ImageNet classification. Ericsson et al. (2021) show empirically that this
practice is not as predictive of the downstream performance for non-classification tasks as it is for
classification tasks. Kotar et al. (2021) adopt a more comprehensive setup that evaluates transfer
performance on a broader range of downstream tasks, and opt for reporting most of their results
in terms of relative improvements over ImageNet supervised pre-training, but the absolute level
of performance of the ImageNet pre-training baseline remains unclear for their study. Newell &
Deng (2020) and Cole et al. (2021) include comparisons to a model trained from scratch on the
same amount of labelled data, and the former further suggests measuring the transfer efficacy as the
proportion of labelled data saved by self-supervised pre-training compared to training a model from
scratch to achieve the same performance. Our work also incorporates the scratch performance as a
baseline to account for the difficulty of the downstream task. We additionally put our comparisons
into perspective by attempting to account for the dataset bias and the performance upper-bound due
to irreducible uncertainties or architectural limitations.

3 THE EVALUATION STANDARD

This section describes the control baselines and the overall evaluation standard we propose. We
start with a short description of the transfer-learning setting, and then proceed with presenting the
definitions and motivations behind each of the control baselines. We then incorporate these baselines
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Figure 1: Right: Exemplary cRf -n and cRf -cRscratch curves for the SwAV self-supervised pre-
training method, transferred to surface normals estimation. The relative improvement against the
scratch control baseline (i.e. ∆/cRscratch) can directly be read from the plot and provides a visual-
ization for the transfer efficacy of a given method. Left: corresponding qualitative surface normals
predictions for SwAV and three control baselines: blind-guess, maximal-supervision and scratch. In
this example, the improvement of the SSL pre-training over scratch is observed to diminishes with
more training data, which can also be inferred from the qualitative examples for 10K/100K. This
(rather general) trend indicates the benefit of transfer learning in high-data regime is less significant,
and therefore, relative improvement comparisons are more meaningful across different data-regimes
(particularly mid and low data) where the scratch baseline performs relatively poorly.

into an affine rescaling of the empirical risk, and discuss the associated visualizations and additional
metrics.

3.1 TRANSFER LEARNING SETTING

We consider a standard transfer learning setting that employs an encoder-decoder architecture. The
encoder ψ : X → Z , where X and Z denote the set of input images and their projected latent repre-
sentations respectively, is first optimized using a given pre-training method (e.g., a self-supervised
method, or a source-task solved in a fully supervised way) on a pre-training dataset Dpre. The de-
coder φ : Z → Y for the downstream task, with Y denoting the output space, is then trained in a
supervised way using a transfer dataset D of annotated images to minimize the task-specific loss L,
and the encoder parameters are also fine-tuned. The number of images |D| used for this optimization
is called the data-regime for transfer learning. The resulting model is denoted as fθ = φ ◦ ψ, where
θ includes all the network parameters. After training, the empirical risk is computed over the test
partition Dtest of the transfer dataset using the loss L for the downstream-task:

Rfθ =
1

|Dtest|
∑

(x,y)∈Dtest

L(y, fθ(x))). (1)

3.2 CONTROL BASELINES

Motivation. Transfer learning results are commonly reported using the empirical risk. Therefore,
interpreting such results requires knowledge about the scale of the training loss and its nonlinear
relation to the inherent prediction fidelity/value for the particular downstream task and dataset. To
illustrate with a toy example, when a classification model is reported to achieve the accuracy of 0.9,
judging whether this model performs well or not cannot be done solely by means of the reported
metric: the model can be considered proficient if there are 1000 uniformly distributed classes in the
dataset, but not so if 90% of the images belong to the same class – since the accuracy of merely
statistically informed guess is 0.001 (900× worse than the model’s) for the former and 0.9 (the
same as the model’s) for the latter. Furthermore, the sample complexity of obtaining an additional
improvement will differ depending on the granularity and similarity of the categories.

Such observations motivate the following questions: What additional context can we provide to
create a more complete picture of the transfer performance? What are the most sensible, efficient,
and simple control baselines that would allow us to attain a more accurate assessment?

The Scratch Control Baseline: When training a decoder φ on a transfer dataset, choices about
training parameters (e.g., the model architecture or the optimization method used) are an important
source of inductive bias. Similarly, those specifics of a downstream task and dataset that charac-
terize their amenability for model training have an influence on how the optimization will proceed.
Such considerations are independent of the particular choice of pre-training method being evalu-
ated, yet they have a critical impact on the final transfer performance. Therefore, as previous studies
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also illustrate (Cole et al., 2021), it is important to include the scratch control baseline (i.e., a ran-
domly initialized model trained only using a transfer dataset corresponding to the data-regime being
examined), to disentangle and clarify the benefits of the pre-training method.

The Maximal-Supervision Control Baseline: Even in the presence of an infinite amount of data,
many factors can still limit the minimum error achievable on a downstream task. Examples include
uncertainties and multi-modality in the label generation process, finite model capacities and archi-
tectural bottlenecks, or the non-convexity of the optimization problem and the imperfect nature of
the algorithms employed. Having an estimate of such factors is useful for framing the transfer per-
formance in an interpretable scale. We, therefore, employ a maximal-supervision control baseline –
a randomly initialized model trained using a large amount of data for the downstream task intended
to provide an approximation to the maximum achievable performance on the downstream task. This
baseline may not always be attainable, e.g., when sufficiently large training data for the dataset do-
main or a theoretical approximation are unavailable. In our experiments, we will show cases where a
good approximation is attainable (e.g., for Tasknomomy (Zamir et al., 2018)) as well as cases where
it is not attainable (e.g., for CIFAR-100 (Krizhevsky et al., 2009)), and discuss the implications.

The Blind-Guess Control Baseline: Regularities in datasets can allow statistically informed
guesses for the downstream task (Coughlan & Yuille, 2000). Such guesses can often be unexpect-
edly performant (Zamir et al., 2018; Eftekhar et al., 2021). The effects of such regularities can be
accounted for by constructing an input-agnostic blind-guess control baseline, defined as the single
constant prediction with the lowest error arg minŷ∈Y Ey [L(ŷ, y)], which corresponds to the mean
output for L2 loss, the median output for L1 loss, and the most-represented class for the 0-1 loss.
This control baseline serves as a sanity check to clarify whether a pre-training method provides a tan-
gible benefit, as compared to solely capturing regularities in dataset statistics in an input-independent
prediction.

Importance of Control Baselines: The main goal of incorporating control baselines is to project
the performance of a method onto a comparative scale to capture how well it works, as well as
to provide insight into why it works through rejecting a set of null-hypotheses. Computer vision
literature contains numerous recent examples of how the inclusion of appropriate baselines can
provide such a clarification for their respective fields and problems. For example, Tatarchenko
et al. (2019) employ a set of recognition baselines for the single-view 3D reconstruction problem,
and reveals that the performance of state of the art models are statistically indistinguishable from
classification and retrieval based methods. Another example is the study by Zamir et al. (2018),
which employ a gain metric (i.e., the win rate against a network trained from scratch) to show that
given a target task (e.g., classification), multiple source tasks (e.g., colorization) can collapse to a
performance level below the scratch baseline in the lower data regime. Sax et al. (2019) employ a
blind intelligent actor baseline (i.e., a policy operating without visual input) for navigation tasks, and
reveals that policies trained from scratch as well as state of the art representation learning methods
perform at a similar level to this baseline when tested on unseen environments. Here we use such
baselines in a more systematic way.

Transfer learning is a field where empirical studies are prevalent, and this empirical nature makes
rendering evaluations with respect to an appropriate set of baselines particularly important for mea-
suring the progress in a more accessible and comparable way, while also systematically revealing
and preventing blind spots. The current common practice is to report and compare downstream
performances between different pre-training methods using the original loss scale or relative to the
ImageNet features performance (Kotar et al., 2021; Ericsson et al., 2021; Islam et al., 2021). While
this setup still allows conclusions based on quantitative results, it is hard to assess whether the dif-
ference in the methods’ performance is significant or not. As an example, comparing the L1 loss
for the downstream task of depth estimation as reported in Fig.7 of (Kotar et al., 2021) with the
blind baseline reported by (Zamir et al., 2020) in Tab. 1, one can conclude that all models perform
at the blind guess level, and no meaningful improvement was made. Employing an appropriate set
of common control baselines would make it easier to identify and prevent miscalibrations across
different studies and gain a more complete and comparable picture about the real effectiveness of
methods.
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3.3 THE PROPOSED EVALUATION SETUP

Calibrated-Risk: To incorporate all three of the previously proposed control baselines in a single
metric, we calibrate the empirical risk Rf of a transfer model f as follows:

cRf =
Rf −Rmax

Rblind −Rmax
, (2)

where Rblind and Rmax correspond to the empirical risks of the blind-guess and maximal-
supervision controls. We refer to cRf as the calibrated risk. Similarly, the calibrated risk of the
scratch control is computed as:

cRscratch =
Rscratch −Rmax

Rblind −Rmax
, (3)

where Rscratch denotes the empirical risk of the scratch control baseline. It is useful to note that
cRf and cRscratch are invariant to affine transformations of the training loss L.

The calibrated risk of a given pre-training method varies depending on the data-regime, and com-
parisons across different pre-training methods can therefore show rank reversals. Accordingly, con-
sidering the performance across a range of different data regimes, in the form of a learning curve
(Hoiem et al., 2021), can provide a more revealing picture of the rigidity and practical value of in-
ductive biases introduced by different pre-training methods. As illustrated in Fig.1, we suggest two
plots to illustrate the resulting curves:

• Plotting cRf and cRscratch on the y-axis against the transfer dataset size n on the x-axis
(i.e., cRf -n curves, as shown in Fig.1, middle).

• Plotting cRf on the y-axis against cRscratch on the x-axis, to emphasize the relative im-
provement against scratch performance (i.e., cRf -cRscratch curves, as shown in Fig.1,
right).

Reading cRf -n Curves: Eq. 2 implies that calibrated risks for the maximal-supervision and blind-
guess control baselines correspond to horizontal lines cRf = 0 and cRf = 1. If the maximal-
supervision control baseline is trained using sufficiently many data samples (i.e., meaning thatRmax

is a good approximation of the maximum achievable performance, which may not always be true
for small-scale datasets), then Rf ≤ Rmax holds for all data regimes and per Eq. 2, cRf approaches
the maximal-supervision level cRf = 0 as n goes to infinity. The cRf curve of a good pre-training
method should lie below the cRscratch curve and as close to the line cRf = 0 as possible across all
data regimes.

Reading cRf -cRscratch Curves: In most situations, the absolute scalar value cRf by itself does
not provide a clear indication of how well a pre-training method performs, and the more informative
quantity is instead the relative improvement with respect to the scratch performance cRscratch.
To visually facilitate this comparison, we propose plotting cRf against cRscratch. This maps the
cRscratch-n curve onto the main diagonal x = y, and a good pre-training method should therefore
lie below it. The relative-improvement of a pre-training method over scratch can be read from the
ratio of distances ∆ and cRscratch in Fig. 1.

The Choice of Transfer Data-Regimes. A qualitative assessment of the images given in Fig. 1 and
Fig. 3 illustrates how the efficiency of self-supervised pre-training compared to the scratch baseline
depends on the amount of data available for transfer. Both methods perform similarly in high data-
regimes and approach the performance of the maximal-supervision control, which can also be seen
from qualitative examples for 100k train sizes. It is important, therefore, to choose training sizes
appropriately when evaluating the efficiency of SSL pre-training. We define low- and high-data
regimes as ones where the scratch performance is close to blind-guess and maximal-supervision
controls respectively, and suggest choosing training-dataset sizes to cover this range.

Calibrated Cumulative Improvement. In order to facilitate tabular analysis and allow straightfor-
ward comparisons between different pre-training methods, we introduce a global Calibrated Cumu-
lative Improvement (CCI) metric. We calculate it as the area between an SSL curve and the main
diagonal as measured on the cRf -cRscratch plot, divided by the total area under the main diagonal,
shown in Fig. 1. CCI shows the total improvement of a pre-training method compared to scratch
over multiple data-regimes. The CCI values of our experiments are available in the legends of each
figure.
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Figure 2: By how much does contrastive self-supervised learning outperform training from scratch?
We plot cRf -n and cRf -cRscratch curves for SwAV and MoCov2 across different downstream
tasks. For the three classification tasks, we use encoders pretrained on ImageNet (denoted as IN).
For surface normals and depth estimation, we use the Taskonomy pre-trained versions of the same
backbones. For all the tasks, contrastive SSL performs better than no pre-training by a relatively
large margin, and SwAV outperforms MoCov2 in most cases.

4 EXPERIMENT SETTINGS

To illustrate how the proposed control-baselines and evaluation standard can be employed, we per-
form an example empirical analysis of transfer learning in Section 4. The current section describes
our experimental setup including pre-training methods, datasets, and downstream-tasks. All exper-
iments were conducted using PyTorch (Paszke et al., 2017), and the associated code will be made
available online.

4.1 DATASETS AND DOWNSTREAM TASKS

The literature on benchmarking transfer performances of different pre-training methods commonly
focuses on image classification tasks (Cole et al., 2021; Kolesnikov et al., 2020; Islam et al., 2021).
Our experiments similarly incorporate three examples of such classification problems, namely Ima-
geNet (Deng et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), and EuroSAT (Helber et al., 2019).
In addition to classification, we also include pixel-wise regression tasks using the Taskonomy dataset
(Zamir et al., 2018). In total, we use four different datasets, each representing a distinct image do-
main with different properties.

Semantic Classification Tasks. ImageNet is a standard large-scale computer vision dataset of 1.3M
natural images, each containing an object from one of the 1000 classes. We also use the relatively
smaller CIFAR-100 and EuroSAT datasets to evaluate how well self-supervised learned represen-
tations transfer to different domains when only a small amount of labelled data is available. For
ImageNet and CIFAR-100, we use the standard train/test splits, and split the EuroSAT dataset ran-
domly. We train all models using the cross-entropy loss and evaluate them on the corresponding test
sets using error rate. As the blind-guess prediction, we use the most common class. We train the
maximal-supervision control baselines for CIFAR-100 and EuroSAT from scratch, using all avail-
able training images and use weights available from the PyTorch library (Paszke et al., 2017) for
ImageNet.

Pixel-Wise Regression Tasks. We use two common pixel-wise regression tasks: depth and surface
normals estimation from the Taskonomy dataset (Zamir et al., 2018). Taskonomy contains 4M
images of natural indoor scenes from about 600 different buildings. We use images from the official
full+ split buildings, and fix a random subset of 60K images from the set of test buildings to evaluate
the final performances. We use L1-norm as the loss for training on both downstream tasks. The
blind-guess control baseline for both tasks is computed as the pixel-wise median over a set of 60K
train images. The maximal-supervision control baselines are trained from scratch using 1.2M images
from the same full+ split, and reach a level of performance close to the one reported in (Zamir et al.,
2020).
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4.2 PRE-TRAINING METHODS

Contrastive Self-Supervised Learning. In our showcase analysis, we consider representative sam-
ples of contrastive self-supervised learning methods: SwAV (Caron et al., 2020), MoCov2 (Chen
et al., 2020c), SimCLR (Chen et al., 2020a), SimSiam (Chen & He, 2021), Barlow Twins (Zbontar
et al., 2021), and PIRL (Misra & Maaten, 2020). These methods have the main attributes of modern
contrastive methods and most of them achieve state-of-the-art performance on standard benchmarks.
We use the pre-trained models from the corresponding github releases1, as well as pre-trained mod-
els from the VISSL library 2 (Goyal et al., 2021).

Non-Contrastive Pretext Tasks. As examples of non-contrastive approaches, we consider two
proxy tasks based on image colorization (Zhang et al., 2016) and jigsaw puzzle (Noroozi & Favaro,
2016). For both proxy tasks, we use encoders pre-trained on ImageNet from the VISSL repository
(Goyal et al., 2021).

Supervised Pre-Training. We consider two supervised tasks in our study to measure whether there
is a gap between supervised and self-supervised pre-training approaches. First, we use a standard
ImageNet pre-trained encoder, as commonly employed by many evaluation studies, and generally
adopted as an initialization in the community. Second, for depth and surface normals estimation, we
choose the corresponding pre-training tasks from the Taskonomy dictionary that were empirically
found to result in the best transfer performance. As reported by Zamir et al. (2018), this task is
reshading for both. We pre-train the reshading encoder on the Taskonomy dataset using the same
number of images as ImageNet pre-training. For the ImageNet encoder we use the weights provided
by PyTorch.

4.3 ARCHITECTURE AND TRAINING DETAILS

All pre-trained encoders share the same ResNet-50 architecture (He et al., 2016). For transfers to
downstream tasks, we use two types of decoders. For classification tasks, we use a single fully-
connected layer that takes the output of the final encoder’s layer and outputs the logits for each
class. For pixel-wise regression tasks, we use a UNet-style (Ronneberger et al., 2015) decoder with
six upsampling blocks and skip-connections from the encoder layers of the same spatial resolution.
We randomly sub-sample n images from the corresponding training set to form each data-regime
and split them into train and validation sets. We use the validation split for early-stopping, as well as
to choose the hyper-parameters for different downstream tasks. The final performance is evaluated
on the fixed test split.

5 EMPIRICAL ANALYSIS

The main goal of this section is to showcase an actual application of the proposed evaluation standard
on a set of exemplary scenarios. It presents a targeted and small-scale empirical study that poses a set
of questions about the transfer performance of self-supervised pre-training methods, and proceeds
with a subsequent analysis that utilizes the suggested controls and visualizations to address them.

5.1 BY HOW MUCH DOES CONTRASTIVE SELF-SUPERVISED LEARNING OUTPERFORM
TRAINING FROM SCRATCH?

To address this question, we visualize the cRf -cRscratch and cRf -n curves for MoCov2 and
SwAV pre-training methods. For both methods, we use Taskonomy pre-trained encoders for pixel-
wise regression tasks and ImageNet pre-trained versions for classification tasks, as we found them
to perform better. The resulting curves are shown in Fig. 2.

We observe that both contrastive self-supervised methods outperform training from scratch on all
downstream tasks in all data-regimes with a relatively large margin which, as one would expect,
diminishes with more labelled data available for transfer. Between two pre-training methods, SwAV
outperforms MoCov2 in most cases.

1SwAV: https://github.com/facebookresearch/swav, MoCov2: https://github.
com/facebookresearch/moco/

2VISSL: https://github.com/facebookresearch/vissl
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Figure 3: Do different tasks benefit differently from self-supervised pre-training? The
cRf -cRscratch plots above give a comparison across all pre-training methods for each downstream
task. The images given below show corresponding visualizations of depth and normals predictions
for different methods at two different dataset sizes. It can be observed that I. the differences among
different pre-training methods are more pronounced for classification tasks compared to pixel-wise
regression tasks, and II. the best pre-training result for classification is notably better than that of
dense regression. Particularly at the high data-regime, such differences become insignificant. This
suggests the development of pre-training methods may be more curated towards downstream classi-
fication tasks.

We note that the curves for CIFAR-100 eventually fall below the x axis. These negative calibrated
risk values mean that transfer learning eventually starts outperforming the maximal-supervision con-
trol baseline (i.e., training from scratch using a large amount of available data) due to the small scale
of the CIFAR-100 dataset. The relative improvement and CCI computations with respect to the
scratch performance, as well as comparisons between different methods for the same task are still
valid in this case, and the main difference is that the curves no longer converge to the maximal-
supervision baseline since it is no longer a good approximation of the best achievable performance
on the downstream task.

5.2 DO DIFFERENT TASKS BENEFIT DIFFERENTLY FROM SELF-SUPERVISED PRE-TRAINING?

The plots in Fig. 3 show how cRf -cRscratch curves for different pre-training methods compare
on five different downstream tasks. We observe that the transfer performance differences between
the pre-training methods are larger on classification tasks and much less pronounced on pixel-wise
regression ones. Additionally, in the high data regime the differences between the methods become
insignificant for pixel-wise regression tasks, which can also be qualitatively confirmed from the
visualizations of depth and normals predictions at two different dataset sizes. These observations
suggest that the development of pre-training methods may be implicitly biased towards classification
tasks, rather than rather general purpose representations.

5.3 BY HOW MUCH DO CONTRASTIVE METHODS OUTPERFORM NON-CONTRASTIVE
METHODS?

Recent works demonstrate that for semantic classification tasks, contrastive pre-training approaches
result in better transfer performance compared to non-contrastive pretext tasks (He et al., 2020;
Chen et al., 2020a). In this section, we investigate if the same trend holds for pixel-wise regression
tasks. In Fig. 4, we show transfer performance results for colorization and jigsaw as compared to
contrastive methods. For classification tasks, we replicate the common observation that contrastive
methods provide a significant improvement compared to non-contrastive methods. However, we
again observe that the difference is less pronounced on pixel-wise regression tasks, echoing the
conclusion of Section 5.2.
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Figure 4: By how much do contrastive methods outperform non-contrastive methods? We plot the
cRf -cRscratch curves for contrastive pre-training methods (SwAV and MoCov2) together with
non-contrastive methods (colorization and jigsaw). Colorization pre-training falls largely behind
all other methods. Jigsaw pre-training, however, performs relatively similar to the two contrastive
methods on pixel-wise regression tasks and EuroSAT classification, while the gap on CIFAR-100
and ImageNet is much larger (see Sec.5.2).

Figure 5: Does self-supervised Learning outperform supervised pre-training? We plot the
cRf -cRscratch curves for supervised and contrastive pre-training methods. ImageNet pre-training
as a supervised method is included in the plots for all downstream tasks. For depth and normals
estimation, we also include an encoder pre-trained on the reshading task, which is the optimal supe-
vised transfer domain as reported by (Zamir et al., 2018). We observe that supervised pre-training
performs similarly to contrastive methods in most cases, except reshading supervised pre-training on
depth estimation in low-data regimes where it outperforms self-supervised counterparts (discussion
in Sec.5.4).

5.4 DOES SELF-SUPERVISED PRE-TRAINING OUTPERFORM SUPERVISED PRE-TRAINING?

ImageNet Supervised Pre-Training. In Fig. 5, we compare ImageNet pre-training and contrastive
methods. We observe that contrastive methods generally perform comparable or better than Ima-
geNet pre-training. However, in terms of relative improvement against the scratch control baseline,
this difference was found to be relatively minor.

Best Informed Pre-Training. For depth and normals estimation, we include further comparisons
against the best pre-training task according to Taskonomy (Zamir et al., 2018) (see Section 4.2 for
more details). The transfer results are presented in Fig. 5. We did not observe a large difference
between contrastive and supervised pre-training for normals prediction, while the difference is more
pronounced for depth estimation. This seems consistent with (Zamir et al., 2018) where the best
source tasks were found to work well if they it is a close match with the target.

6 CONCLUSION AND LIMITATIONS

We put forth an evaluation standard for measuring the effectiveness of pre-training methods for
transfer learning, which incorporates three important control baselines:

• the scratch control baseline to disentangle the benefits of transfer learning from the induc-
tive biases introduced by other training choices that are independent from the particular
pre-training method,

• the maximal-supervision control baseline to account for the effects of irreducible factors
inherent to the downstream-task that upper-bound the best possible transfer performance,

• the blind-guess control baseline to normalize away the benefits of the statistical regularities
of particular datasets that lower-bound the worst possible transfer performance.

In Section 5, we used these control baselines to define the calibrated risk metric cRf , with the goal of
framing downstream task dependent empirical risk in an interpretable scale. We further showed two
visualizations to plot calibrated risk curves, with the overall goal of providing an accessible way to
judge the transfer efficacy of a given pre-training method, as well as to facilitate comparisons across
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methods. In Section 4, we have provided a targeted small-scale empirical study that showcases how
the proposed evaluation standard can be applied. Through this study, we mainly observed that:

• Classification tasks consistently benefit more from contrastive self-supervised pre-training,
compared to non-classification tasks such as pixel-wise regression (depth and surface nor-
mals estimation).

• The differences between self-supervised pre-training methods (and particularly be-
tween contrastive and non-contrastive approaches) are much less pronounced for non-
classification tasks, as compared to classification tasks where there is a clear improve-
ment from using contrastive methods. These are useful indications and insights for self-
supervised learning research toward developing truly more general representation.

Our study, however, comes with several limitations:
Cross-Task Comparisons. Comparing methods across different tasks using their calibrated risk
values makes the assumption that the prediction fidelity of each task can be captured by an affine
transformation of its task-specific loss function, which may not hold true in practice.
Other Benefits of SSL. Besides reducing the need to label data, self-supervised learning provides
other benefits, such as enabling training on continuous data streams (as opposed to fixed training
sets) or reducing the reliance on rigid category definitions. This paper focused on quantifying the
effectiveness of self-supervised learning in terms of transfer learning and reducing labeled data
demands only.
Pre-training and Downstream Tasks Diversity. In comparison to other works whose main focus
is to provide a comprehensive empirical study (Kotar et al., 2021; Chaves et al., 2021; Goyal et al.,
2019; Islam et al., 2021; Van Horn et al., 2021), this paper mainly aims to propose an evaluation
standard, and consequently we consider a more limited set of pre-training and downstream-tasks
mainly curated to showcase the importance of the proposed control baselines.
The Effects of Pre-training Dataset Size. We evaluate the transfer efficacy as a function of the
transfer dataset size, but the dependency on the pre-training dataset size is another important factor
that determines the overall transfer performance, as studied in (Goyal et al., 2019; He et al., 2020).
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