
CVPR
#16

CVPR
#16

CVPR 2024 Submission #16. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

m
m
ulti-step
ulti-modal

m’s m&m’s: A Benchmark to Evaluate Tool-Use for multi-step multi-modal Tasks

Anonymous CVPR submission

Paper ID 16

Figure 1. We present examples of query-plan pairs along with the execution results of the plans in m&m’s. Our benchmark contains a large
quantity of diverse user queries involving three modalities (i.e. text, image, and audio) as well as human-verified plans that consist of 1 - 3
tools across three categories: multi-modal machine learning models (blue), public APIs (red) and image processing modules (yellow).

Abstract

Real-world multi-modal problems are rarely solved by001
a single machine learning model, and often require multi-002
step computational plans that involve stitching several mod-003
els. Tool-augmented LLMs hold tremendous promise for004
automating the generation of such computational plans.005
However, the lack of standardized benchmarks for evalu-006
ating LLMs as planners for multi-step multi-modal tasks007
has prevented a systematic study of planner design deci-008
sions. Should LLMs generate a full plan in a single shot or009
step-by-step? Does feedback improve planning? To answer010
these questions and more, we introduce m&m’s: a bench-011
mark containing 4K+ multi-step multi-modal tasks involv-012
ing 33 tools that include multi-modal models, (free) pub-013
lic APIs, and image processing modules. For each of these014
task queries, we provide automatically generated plans us-015
ing this realistic toolset. We further provide a high-quality016

subset of 1,565 task plans that are human-verified and cor- 017
rectly executable. With m&m’s, we evaluate 6 popular 018
LLMs with 2 planning strategies (multi-step vs. step-by-step 019
planning), 2 plan formats (JSON vs. code), and 3 types of 020
feedback (parsing/verification/execution). Finally, we sum- 021
marize takeaways from our extensive experiments. 022

1. Introduction 023

Planning agents—powered by large language models 024
(LLMs)—are becoming increasingly proficient at decom- 025
posing user-specified tasks into a series of subtasks, where 026
each subtask is executed by invoking tools (Figure 1). 027
Given an LLM and toolset, the design space of planning 028
agents is extremely rich, involving many decisions such as 029
planning strategy (e.g. generation of the whole plan vs one 030
step of the plan at a time), forms of feedback (e.g. pars- 031
ing/verification/execution feedback), and plan format (e.g. 032

1



CVPR
#16

CVPR
#16

CVPR 2024 Submission #16. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

JSON strings that specify tools and arguments vs free-form033

Python code).034

Unfortunately, there is no existing planning bench-035

mark that supports evaluation along this combinatori-036

ally rich design space with a realistic set of multimodal037

tools. Recent concurrent benchmarks such as ToolEmu and038

TaskBench [20, 23] provide user queries and ground truth039

plans but lack support for realistic plan execution. For in-040

stance, TaskBench assumes that a list of tools is available041

for planning without providing actual implementation of the042

tools. ToolEmu likewise uses LLMs to emulate tool execu-043

tion instead of providing tool implementations. The lack044

of actual implementations of tools and real execution feed-045

back makes the study of the design space elucidated above046

unrealistic at best, if not impossible.047

Motivated by this need for a standardized benchmark for048

studying the design space of multi-step multi-modal plan-049

ning agents, we �rst propose them&m's benchmark, which050

contains 4K+ realistic user tasks and automatically gener-051

ated task plans. Among these, 1565 are human-veri�ed052

and executable with 33 curated tools consisting of multi-053

modal models, public APIs, and image processing mod-054

ules. Next, we usem&m's to systematically study the im-055

pact of 2 planning strategies (step-by-step and multi-step),056

2 kinds of feedback (veri�cation and execution), and 2 plan057

formats (JSON and code). Through extensive experimen-058

tation with 6 popular open-source and proprietary LLMs059

of varying sizes, we reveal three key �ndings: First, exist-060

ing LLMs instructed to perform multi-step planning consis-061

tently outperform step-by-step planning, regardless of the062

model size. Second, feedback improves LLM's ability to063

predict the correct argument name for each tool and gen-064

erate overall executable tool plans but doesn't necessarily065

improve the ability to choose the right tools. Third, most066

models perform comparably on tool prediction with JSON-067

format generation and Python code generation, but they all068

produce more executable plans with JSON-format genera-069

tion than with code generation.070

2. m& m's: the benchmark071

We curate them&m's benchmark to facilitate the study of072

LLM planners formulti-stepmulti-modal tasks.073

2.1. Dataset generation074

075

To create such a dataset, our data generation process con-076

sists of �ve major steps: tool graph sampling, input example077

sampling, query generation, plan generation, and �nally hu-078

man veri�cation of generated query-plan pairs (Figure 2.1).079

1 Tool graph sampling. We �rst create a directed graph080

with all 33 tools as the nodes and edges denoting valid con-081

nections between nodes. A connection is valid only if the082

output of the source tool matches the expected input type of083

the target tool. We then sample subgraphs from the full tool084

graph to obtain tool sequences with valid tool dependencies.085

2 Input example sampling. Besides the tool sequences, 086

we also need input examples to the tools to ground queries087

generation. To do so, we �rst collect real-world exam- 088

ples from 11 existing datasets, including ImageNet [4],089

SQUAD [18], Visual Genome [12], MagicBrush [41], lib- 090

rispeech [16]. Then, to pair a tool graph sampled in the091

previous step with an input, we randomly sample an input092

for the �rst tool in the graph. For example, if the �rst tool 093

in a tool sequence isimage classification , we ran- 094

domly sample an image (e.g. “16611.jpg”) from ImageNet095

as the input. 096

3 Query generation. With a set of tool sequences and 097

input examples to the �rst tools, we prompt GPT-4 to gener-098

ate realistic user queries. Concretely, we randomly sample099

5 different input examples for each tool sequence and ask100

GPT-4 to generate 2 queries for each tool sequence with the101

same input (See Appendix for the full prompt). 102

4 Plan generation.For plan generation, we write a rule- 103

based program to generate a plan for each query. Each step104

in the plan contains an id, tool name, and an argument dic-105

tionary with this tool's argument names as the keys and ar-106

gument values as values. We populate each node's ID and107

name based on the sampled tool sequence and �ll in the ar-108

gument names for each tool using a pre-de�ned metadata109

document. 110

5 Human veri�cation Finally, we perform extensive hu- 111

man veri�cation on all 4k+ generated query-plan pairs. We112

ask three expert annotators (who are undergraduate and113

Ph.D. students in CS) to rate each query-plan pair with 0114

or 1, where 1 indicates that the plan can resolve the query115

perfectly. We obtain a subset of 1.5k+ examples on which116

all three annotators rate 1 and perform further �ltering to 117

balance the overall distribution of tools (See the Appendix118

for more details). 119

2.2. Dataset quantity and quality 120

Overall, m&m's contains a large quantity ofdiverse 121

ecologically-valid taskqueries (see Figure 1). Each task 122

is associated withhuman-veri�ed and executable plans, 123

where 1565 have been veri�ed to be correct by three human124

annotators and 882 remain after additional �ltering. Tasks125

aregranular in dif�culty with 70 queries that require a sin- 126

gle tool, 159 need two tools, and 653 need three tools. See127

more examples and details in the Appendix. 128

3. Experiment 129

Using our benchmark with a �exible agent design, we ex-130

periment with 6 instruction-tuned large language models of131

varying sizes across different planning setups. 132

2



CVPR
#16

CVPR
#16

CVPR 2024 Submission #16. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 2.Data generation pipeline.As shown in panel A, our generation process consists of �ve main steps: input example sampling, tool
graph sampling, user query generation with GPT-4, rule-based plan generation, and human veri�cation. Panel B showcases an instantiation
of this process with a real example.

Figure 3. Comparing planning strategies. We �nd that models consistently perform better on tool-F1 under multi-step prediction
compared to under step-by-step prediction regardless of their sizes. Similarly, all models except for Gemini-pro achieve a higher pass rate
with multi-step prediction.

3.1. Setup133

We establish a uni�ed framework to categorize LLMs'134

task planning setups along the three axes below.Planning135

strategy: Prior works formulate task planning as either136

step-by-step or multi-step planning[17, 22, 39]. Step-by-137

step planning refers to the setup where a language model138

is instructed to predict only one action at a time (Figure 9139

(1b)). On the other hand, in the setting of multi-step plan-140

ning, a model can predict multiple actions at once (Figure141

9 (1a)). Plan format: Additionally, existing works have142

also adopted different plan formats for tool use: often as143

code, pseudo-code, or prede�ned structured representations144

such as JSON [7, 22, 28]. In this work, we primarily fo-145

cus on two of the common plan formats: JSON and code.146

Feedback: We experiment with three kinds of feedback - 147

feedback from parsers, rule-based veri�ers, and execution148

modules (Figure 13). 149

3.2. Evaluation metrics 150

To holistically evaluate planning agents' performance on151

our benchmark, we adopt three main metrics:tool-F1, 152

argname-F1, andpass rate. Tool-F1 is de�ned as the F1 153

score of tool name prediction, where we treat each predicted154

tool name as one example and compare the set of predicted155

tool names to the groundtruth set of tools in each plan. Sim-156

ilarly, argname-F1is de�ned as the F1 score of argument 157

name prediction for each tool.Pass rateis the percentage 158

3



CVPR

#16
CVPR

#16
CVPR 2024 Submission #16. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 1. We present the tool-F1 and argname-F1 of models with various feedback, where P, V, and E represent parsing, veri�cation, and
execution feedback respectively. We use parsing feedback only (P) under multi-step planning and JSON-format language generation as the
basis, while showing the� of those with other feedback combinations compared to parsing feedback only.

tool-F1 argname-F1 pass rate

model P PV PE PVE P PV PE PVE P PV PE PVE
Llama-2-7b 29.78 -2.94 -2.59 -2.58 34.03 2.03 1.24 1.15 28.23 18.14 10.32 13.72
Llama-2-13b 42.27 -3.45 -2.78 -4.57 45.07 3.94 3.08 3.29 38.10 29.93 32.99 23.92
Mixtral-8x7B 66.79 1.18 -0.11 -0.04 72.52 2.00 1.89 2.72 75.74 10.32 8.96 10.77
Gemini-pro 69.38 1.18 -0.11 -0.04 73.37 2.00 1.89 2.72 77.32 13.27 14.06 16.67
GPT-3.5-turbo-0125 80.52-0.65 -2.80 -2.56 84.86 0.65 -0.92 -0.86 89.46 6.69 7.26 6.92
GPT-4-0125-preview 88.46-0.60 0.25 -0.91 89.81 -0.18 0.48 0.32 97.73 1.13 -1.25 2.15

Note: we use the experiments with parsing feedback instead of no feedback at all as the baseline to highlight external feedback's
effects on tool selection and invocation instead of parsing. We include the results of experiments with no feedback in the Appendix.

Figure 4.Comparing plan formats. We �nd that all models except for Llama-7-b perform comparably on tool-F1 with JSON-format and
code generation. However, JSON-format generation leads to a much higher pass rate across all models.

of predictions that execute successfully without any execu-159

tion errors.160

We report additional metrics, including argvalue-F1,161

overall plan accuracy, normalized edit distance, and edge-162

F1 as well as code-speci�c metrics such as AST accuracy163

and CodeBLEU in the supplementary material.164

3.3. Results165

166

We highlight three key �ndings and describe each of167

them in detail:168

1. Models consistently perform better on tool-F1 and169

pass rate under multi-step planning than under step-170

by-step planning. We �nd that all large language mod-171

els achieve higher tool-F1 when they are instructed to per-172

form multi-step planning compared to when they perform173

step-by-step prediction (Figure 3), and all models except174

for Gemini-pro achieve a higher pass rate with multi-step175

planning. Among the 6 models we evaluated, Llama-2-176

7b, Llama-2-13b, and GPT-3.5 all showcase a large in-177

crease (> 10%) in performance with multi-step planning178

compared to step-by-step prediction, with the greatest in-179

crease of 21.8% for GPT-3.5.180

2. External feedback can improve planning agents' per-181

formance on argument name prediction and pass rate. 182

On the effects of external feedback, we �nd that both ver-183

i�cation and execution feedback can lead to slightly better184

argname-F1 and much higher pass rates (Table 1), indicat-185

ing that feedback can help models predict correct argument186

names and generate more executable plans. With feedback,187

most models can increase argname-F1 by around 1-4% and188

pass rate by up to 20-30% (Table 1). There are only a few189

exceptions on GPT-3.5 and GPT-4, which already obtain190

relatively high performance without feedback and experi-191

ence around 1% drop in argname-F1 and/or pass rate with192

feedback (Table 1). 193

3. Models perform comparably on tool-F1 with JSON- 194

format and code generation but much worse on pass rate 195

with code generation. Our experiments show that while 196

all models except for Llama-2-7b achieve similar tool-F1s197

(< 3% difference) with JSON-format generation and code198

generation, they all suffer from a large drop in pass rate199

with code generation (Figure 4). These results suggest that200

JSON-format generation is preferable to code generation201

when the executability of generated plans matters. 202

Upon qualitative analysis, we �nd common errors that 203

result in the �ndings above and present examples of these204

errors in the Appendix. 205

4



CVPR
#16

CVPR
#16

CVPR 2024 Submission #16. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References206

[1] Kelsey R Allen, Kevin A Smith, and Joshua B Tenenbaum.207
Rapid trial-and-error learning with simulation supports �ex-208
ible tool use and physical reasoning.Proceedings of the Na-209
tional Academy of Sciences, 117(47):29302–29310, 2020. 7210

[2] Po-Lin Chen and Cheng-Shang Chang. Interact: Explor-211
ing the potentials of chatgpt as a cooperative agent.arXiv212
preprint arXiv:2308.01552, 2023. 7213

[3] Carlos G Correa, Mark K Ho, Frederick Callaway,214
Nathaniel D Daw, and Thomas L Grif�ths. Humans de-215
compose tasks by trading off utility and computational cost.216
PLOS Computational Biology, 19(6):e1011087, 2023. 7217

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,218
and Li Fei-Fei. Imagenet: A large-scale hierarchical image219
database. In2009 IEEE conference on computer vision and220
pattern recognition, pages 248–255. Ieee, 2009. 2221

[5] Difei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin, Joya222
Chen, Zihan Fan, and Mike Zheng Shou. Assistgpt: A gen-223
eral multi-modal assistant that can plan, execute, inspect, and224
learn.arXiv preprint arXiv:2306.08640, 2023. 7225

[6] Madeleine Grunde-McLaughlin, Michelle S Lam, Ranjay226
Krishna, Daniel S Weld, and Jeffrey Heer. Designing llm227
chains by adapting techniques from crowdsourcing work-228
�ows. arXiv preprint arXiv:2312.11681, 2023. 7229

[7] Tanmay Gupta and Aniruddha Kembhavi. Visual pro-230
gramming: Compositional visual reasoning without training,231
2022. 3, 6, 7232

[8] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky233
Liang, Pete Florence, Andy Zeng, Jonathan Tompson, Igor234
Mordatch, Yevgen Chebotar, et al. Inner monologue: Em-235
bodied reasoning through planning with language models.236
arXiv preprint arXiv:2207.05608, 2022. 7237

[9] Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu,238
Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan, Neil Zhen-239
qiang Gong, et al. Metatool benchmark for large language240
models: Deciding whether to use tools and which to use.241
arXiv preprint arXiv:2310.03128, 2023. 7242

[10] Drew A Hudson and Christopher D Manning. Gqa: A new243
dataset for real-world visual reasoning and compositional244
question answering. InProceedings of the IEEE/CVF con-245
ference on computer vision and pattern recognition, pages246
6700–6709, 2019. 6247

[11] Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and248
Tamara Berg. ReferItGame: Referring to objects in pho-249
tographs of natural scenes. InProceedings of the 2014 Con-250
ference on Empirical Methods in Natural Language Process-251
ing (EMNLP), pages 787–798, Doha, Qatar, 2014. Associa-252
tion for Computational Linguistics. 6253

[12] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,254
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-255
tidis, Li-Jia Li, David A Shamma, et al. Visual genome:256
Connecting language and vision using crowdsourced dense257
image annotations.International journal of computer vision,258
123:32–73, 2017. 2259

[13] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hal-260
linan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri,261

Shrimai Prabhumoye, Yiming Yang, et al. Self-re�ne: It- 262
erative re�nement with self-feedback.Advances in Neural 263
Information Processing Systems, 36, 2024. 7 264

[14] Grégoire Mialon, Cĺementine Fourrier, Craig Swift, Thomas 265
Wolf, Yann LeCun, and Thomas Scialom. Gaia: a 266
benchmark for general ai assistants. arXiv preprint 267
arXiv:2311.12983, 2023. 6 268

[15] Ning Miao, Yee Whye Teh, and Tom Rainforth. Selfcheck: 269
Using llms to zero-shot check their own step-by-step reason-270
ing. arXiv preprint arXiv:2308.00436, 2023. 7 271

[16] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev272
Khudanpur. Librispeech: An asr corpus based on public do-273
main audio books. In2015 IEEE International Conference 274
on Acoustics, Speech and Signal Processing (ICASSP), pages 275
5206–5210, 2015. 2 276

[17] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, 277
Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, Bill Qian, 278
Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie279
Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu, and Maosong 280
Sun. Toolllm: Facilitating large language models to master281
16000+ real-world apis, 2023. 3, 6, 7 282

[18] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and283
Percy Liang. SQuAD: 100,000+ questions for machine com-284
prehension of text. InProceedings of the 2016 Conference on 285
Empirical Methods in Natural Language Processing, pages 286
2383–2392, Austin, Texas, 2016. Association for Computa-287
tional Linguistics. 2 288

[19] Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-289
Chakra, Ian Reid, and Niko Suenderhauf. Sayplan: Ground-290
ing large language models using 3d scene graphs for scalable291
task planning.arXiv preprint arXiv:2307.06135, 2023. 7 292

[20] Yangjun Ruan, Honghua Dong, Andrew Wang, Silviu Pitis, 293
Yongchao Zhou, Jimmy Ba, Yann Dubois, Chris J. Maddi- 294
son, and Tatsunori Hashimoto. Identifying the risks of lm 295
agents with an lm-emulated sandbox, 2023. 2, 6, 7 296

[21] Timo Schick, Jane Dwivedi-Yu, Roberto Dess��, Roberta 297
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettlemoyer, 298
Nicola Cancedda, and Thomas Scialom. Toolformer: Lan-299
guage models can teach themselves to use tools.Advances 300
in Neural Information Processing Systems, 36, 2024. 6 301

[22] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, 302
Weiming Lu, and Yueting Zhuang. Hugginggpt: Solving ai 303
tasks with chatgpt and its friends in hugging face, 2023. 3,304
6, 7 305

[23] Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan 306
Ren, Siyu Yuan, Weiming Lu, Dongsheng Li, and Yueting 307
Zhuang. Taskbench: Benchmarking large language models308
for task automation.arXiv preprint arXiv:2311.18760, 2023. 309
2, 6, 7, 9, 15 310

[24] Noah Shinn, Beck Labash, and Ashwin Gopinath. Re�ex- 311
ion: an autonomous agent with dynamic memory and self-312
re�ection. arXiv preprint arXiv:2303.11366, 2023. 7 313

[25] Otilia Stretcu, Edward Vendrow, Kenji Hata, Krishnamurthy 314
Viswanathan, Vittorio Ferrari, Sasan Tavakkol, Wenlei Zhou, 315
Aditya Avinash, Emming Luo, Neil Gordon Alldrin, Ranjay 316
Krishna, and Ariel Fuxman. Agile modeling: From concept 317
to classi�er in minutes. InProceedings of the IEEE/CVF 318

5



CVPR
#16

CVPR
#16

CVPR 2024 Submission #16. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

International Conference on Computer Vision, pages 22323–319
22334, 2023. 7320

[26] Alane Suhr, Mike Lewis, James Yeh, and Yoav Artzi. A cor-321
pus of natural language for visual reasoning. InProceedings322
of the 55th Annual Meeting of the Association for Compu-323
tational Linguistics (Volume 2: Short Papers), pages 217–324
223, Vancouver, Canada, 2017. Association for Computa-325
tional Linguistics. 6326

[27] Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and327
Chao Zhang. Adaplanner: Adaptive planning from feedback328
with language models.Advances in Neural Information Pro-329
cessing Systems, 36, 2024. 7330

[28] D�́dac Suŕ�s, Sachit Menon, and Carl Vondrick. Vipergpt:331
Visual inference via python execution for reasoning.arXiv332
preprint arXiv:2303.08128, 2023. 3, 6, 7333

[29] Imad Eddine Toubal, Aditya Avinash, Neil Gordon Alldrin,334
Jan Dlabal, Wenlei Zhou, Enming Luo, Otilia Stretcu, Hao335
Xiong, Chun-Ta Lu, Howard Zhou, Ranjay Krishna, Ariel336
Fuxman, and Tom Duerig. Modeling collaborator: Enabling337
subjective vision classi�cation with minimal human effort338
via llm tool-use. InProceedings of the IEEE/CVF Interna-339
tional Conference on Computer Vision, 2024. 7340

[30] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar,341
Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima Anandku-342
mar. Voyager: An open-ended embodied agent with large343
language models.arXiv preprint arXiv:2305.16291, 2023. 7344

[31] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang,345
Jingsen Zhang, Zhiyuan Chen, Jiakai Tang, Xu Chen, Yankai346
Lin, et al. A survey on large language model based au-347
tonomous agents.arXiv preprint arXiv:2308.11432, 2023.348
7349

[32] Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Li-350
fan Yuan, Hao Peng, and Heng Ji. Mint: Evaluating llms351
in multi-turn interaction with tools and language feedback.352
arXiv preprint arXiv:2309.10691, 2023. 7353

[33] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed354
Chi, Sharan Narang, Aakanksha Chowdhery, and Denny355
Zhou. Self-consistency improves chain of thought reason-356
ing in language models, 2023. 7357

[34] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,358
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang, Xiaoyun359
Zhang, and Chi Wang. Autogen: Enabling next-gen llm ap-360
plications via multi-agent conversation framework.arXiv361
preprint arXiv:2308.08155, 2023. 12362

[35] Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr,363
Prithviraj Ammanabrolu, Noah A. Smith, Mari Ostendorf,364
and Hannaneh Hajishirzi. Fine-grained human feedback365
gives better rewards for language model training, 2023. 14366

[36] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,367
William Cohen, Ruslan Salakhutdinov, and Christopher D.368
Manning. HotpotQA: A dataset for diverse, explainable369
multi-hop question answering. InProceedings of the 2018370
Conference on Empirical Methods in Natural Language Pro-371
cessing, pages 2369–2380, Brussels, Belgium, 2018. Asso-372
ciation for Computational Linguistics. 6373

[37] Shunyu Yao, Howard Chen, John Yang, and Karthik374
Narasimhan. Webshop: Towards scalable real-world web in-375

teraction with grounded language agents.Advances in Neu- 376
ral Information Processing Systems, 35:20744–20757, 2022. 377
6 378

[38] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 379
Thomas L. Grif�ths, Yuan Cao, and Karthik Narasimhan. 380
Tree of thoughts: Deliberate problem solving with large lan- 381
guage models, 2023. 7 382

[39] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran,383
Karthik Narasimhan, and Yuan Cao. React: Synergizing rea-384
soning and acting in language models, 2023. 3, 7, 12 385

[40] Jieyu Zhang, Ranjay Krishna, Ahmed H Awadallah, and Chi386
Wang. Ecoassistant: Using llm assistant more affordably and387
accurately.arXiv preprint arXiv:2310.03046, 2023. 7 388

[41] Kai Zhang, Lingbo Mo, Wenhu Chen, Huan Sun, and Yu Su.389
Magicbrush: A manually annotated dataset for instruction-390
guided image editing.Advances in Neural Information Pro- 391
cessing Systems, 36, 2024. 2 392

[42] Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Wei- 393
jie Su, Chenyu Yang, Gao Huang, Bin Li, Lewei Lu, Xiao- 394
gang Wang, et al. Ghost in the minecraft: Generally capable395
agents for open-world enviroments via large language mod-396
els with text-based knowledge and memory.arXiv preprint 397
arXiv:2305.17144, 2023. 7 398

4. Supplementary 399

A. Related work 400

We situate our work amongst tool-use research. 401

Planning evaluations. Although many tool-use variants 402

have been proposed, evaluating LLMs on tool-use still403

lacks a standardized protocol. For instance, VisProg and404

ViperGPT evaluate their plan'sexecutionson vision tasks 405

using a Python-likecodeformat [7, 28]. HuggingGPT eval- 406

uates only theplanaccuracy (did the agent choose the right407

tools) without executing the proposed plans [22]. Tool-408

Former [21] and ToolLLaMA [17] both usenatural lan- 409

guageinstead ofcodeto interface with tools; while Tool- 410

Former generates amulti-stepplan all at once and evaluates 411

the program'sexecution, ToolLLaMA generates the plan 412

step-by-step, with self-feedbackto correct mistakes. ToolL- 413

LaMA evaluates only theplanswhile ToolFormer evaluates 414

bothplansand executions. Unfortunately, no single bench-415

mark evaluates planning agents along this combinatorial de-416

sign space, which is what we contribute. 417

Tool-use benchmarks.Today, tool-use evaluation is spread 418

out across a number of diverse benchmarks, including Hot-419

potQA, WebShop, GQA, RefCOCO, and NLVR [10, 11, 26, 420

36, 37]. None of these contains ground truth plans, con�at-421

ing planning errors with execution error. In other words,422

it is hard to separate whether an LLM failed to propose423

the correct plan or whether one of the tools used in the424

plan failed. In response, recent concurrent efforts have pro-425

posed new benchmarks, such as ToolEmu, TaskBench, and426

GAIA [14, 20, 23]. They do contain ground truth plans but 427

fail to support evaluating plans' execution results (Table 2).428

6



CVPR
#16

CVPR
#16

CVPR 2024 Submission #16. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 2. Compared to previous tool planning benchmarks,m&m's contains multimodal queries that are more realistic and executable. *:
MetaTool only considers Open AI plugins as tools. #: The queries of TaskBench contain textural placeholder of other modality data such
as images, while queries ofm&m's come with real images.

ToolBench ToolEmu TaskBench MetaTool m&m's
[17] [20] [23] [9] (ours)

Query
Real multi-modal inputs? 7 7 7# 7 3
Veri�ed by human? 7 3 3 3 3

Tools
Are all tools executable? 3 7 7 3 3
Multi-modal models 7 7 3 * 3

Plan Format JSON JSON JSON JSON JSON/Code

Scale
Number of unique tools 3,451 36 103 390 33
Number of queries 126k 144 17K 20k 1.5k

Table 3. We list all 33 tools across three categories - ML models, public APIs, and image processing modules - inm&m's.

Tool category Tool name

ML model text generation, text summarization, text classi�cation, question answering,
optical character recognition, image generation, image editing, image
captioning, image classi�cation, image segmentation, object detection, visual
question answering, automatic speech recognition

Public APIs get weather, get location, get math fact, get trivia fact, get year fact, get date
fact, search movie, love calculator, wikipedia simple search

Image processing image crop, image crop top, image crop bottom, image crop left, image crop
right, select object, count, tag, color pop, emoji, background blur

Planning strategies.There are multiple strategies for plan-429

ning. For instance, Psychology literature reveals that peo-430

ple rarely plan tasks in their entirety due to the cognitive431

cost of planning long-range tasks [3]. Instead, they plan432

the �rst couple of subtasks, and execute them before plan-433

ning the rest [1, 3]. In the tool-use literature, we iden-434

tify two primary forms of planning strategies:step-by-step435

planning [5, 17, 39] andmulti-step planning[7, 22, 28].436

Similar to people, step-by-step planning generates plans se-437

quentially with one subtask at a time. By contrast, multi-438

step planning creates the entire plan before executing any439

subtask. Unfortunately, these two strategies have not been440

systematically compared; we systematically compare both441

across multiple open-source and close-source LLMs.442

Feedback mechanisms. LLM planners make mistakes,443

stitching together tools that fail to execute or worse, fail444

to compile. Although human feedback is one mecha-445

nism to align plans with human expectations and pref-446

erences [2, 32], they require real users, making evalua-447

tion stochastic. However, there have been several auto-448

matic mechanisms that can improve plans [31, 40]. For449

instance, syntactic mistakes can easily be detected using450

externalveri�ers and can guide planners to iterate on their451

plans [8, 13, 15, 24]. Others require examining the output452

of individual subtaskexecutions[19, 27, 30, 39, 42]. In453

this work, we compare plan parsing/veri�cation feedback454

as well as tool execution feedback. 455

B. Limitations 456

There are a few limitations to our benchmark and evalu-457

ation. First,m&m's only considers sequential task plans, 458

which represent a majority of real-world user requests.459

However, some tasks might require dynamic task plans de-460

pending on the output for one subtask [6]. Dynamic plans461

require a more complex tool graph sampling procedure.462

Second, as our main goal is to study the effects of differ-463

ent planning formulations and types of feedback, we do not464

investigate another dimension of planning design: prompt465

style. We use direct and ReACT-style [39] prompting and466

exclude more sophisticated prompting strategies such as467

tree-of-thoughts prompting [33, 38]. Third, a few tools 468

in our benchmark are generative, which makes the eval-469

uation of the actual execution results subjective (See Ap-470

pendix) [25, 29]. 471

C. Additional data 472

We present more examples of query-plan pairs ofm&m's in 473

Figure 5, and a complete list of all 33 tools in Table 3. 474

7




	. Introduction
	. m&m's: the benchmark
	. Dataset generation
	. Dataset quantity and quality

	. Experiment
	. Setup
	. Evaluation metrics
	. Results

	. Supplementary
	. Related work
	. Limitations
	. Additional data
	. Dataset generation
	. Prompts
	. Human verification statistics
	. Data filtering
	. Alternative plans

	. Planning agent
	. Qualitative analysis
	. Additional plan evaluation results
	. Pass rate vs. tool-F1
	. No feedback
	. Step-level metrics
	. Plan-level accuracy
	. Code-specific metrics: AST accuracy and CodeBLEU
	. Efficiency

	. Human evaluation of plan execution results

