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Figure 1. We present examples of query-plan pairs along with the execution results of the plans in m&m’s. Our benchmark contains a large
quantity of diverse user queries involving three modalities (i.e. text, image, and audio) as well as human-verified plans that consist of 1 - 3
tools across three categories: multi-modal machine learning models (blue), public APIs (red) and image processing modules (yellow).

Abstract

Real-world multi-modal problems are rarely solved by001
a single machine learning model, and often require multi-002
step computational plans that involve stitching several mod-003
els. Tool-augmented LLMs hold tremendous promise for004
automating the generation of such computational plans.005
However, the lack of standardized benchmarks for evalu-006
ating LLMs as planners for multi-step multi-modal tasks007
has prevented a systematic study of planner design deci-008
sions. Should LLMs generate a full plan in a single shot or009
step-by-step? Does feedback improve planning? To answer010
these questions and more, we introduce m&m’s: a bench-011
mark containing 4K+ multi-step multi-modal tasks involv-012
ing 33 tools that include multi-modal models, (free) pub-013
lic APIs, and image processing modules. For each of these014
task queries, we provide automatically generated plans us-015
ing this realistic toolset. We further provide a high-quality016

subset of 1,565 task plans that are human-verified and cor- 017
rectly executable. With m&m’s, we evaluate 6 popular 018
LLMs with 2 planning strategies (multi-step vs. step-by-step 019
planning), 2 plan formats (JSON vs. code), and 3 types of 020
feedback (parsing/verification/execution). Finally, we sum- 021
marize takeaways from our extensive experiments. 022

1. Introduction 023

Planning agents—powered by large language models 024
(LLMs)—are becoming increasingly proficient at decom- 025
posing user-specified tasks into a series of subtasks, where 026
each subtask is executed by invoking tools (Figure 1). 027
Given an LLM and toolset, the design space of planning 028
agents is extremely rich, involving many decisions such as 029
planning strategy (e.g. generation of the whole plan vs one 030
step of the plan at a time), forms of feedback (e.g. pars- 031
ing/verification/execution feedback), and plan format (e.g. 032
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JSON strings that specify tools and arguments vs free-form033

Python code).034

Unfortunately, there is no existing planning bench-035

mark that supports evaluation along this combinatori-036

ally rich design space with a realistic set of multimodal037

tools. Recent concurrent benchmarks such as ToolEmu and038

TaskBench [20, 23] provide user queries and ground truth039

plans but lack support for realistic plan execution. For in-040

stance, TaskBench assumes that a list of tools is available041

for planning without providing actual implementation of the042

tools. ToolEmu likewise uses LLMs to emulate tool execu-043

tion instead of providing tool implementations. The lack044

of actual implementations of tools and real execution feed-045

back makes the study of the design space elucidated above046

unrealistic at best, if not impossible.047

Motivated by this need for a standardized benchmark for048

studying the design space of multi-step multi-modal plan-049

ning agents, we �rst propose them&m's benchmark, which050

contains 4K+ realistic user tasks and automatically gener-051

ated task plans. Among these, 1565 are human-veri�ed052

and executable with 33 curated tools consisting of multi-053

modal models, public APIs, and image processing mod-054

ules. Next, we usem&m's to systematically study the im-055

pact of 2 planning strategies (step-by-step and multi-step),056

2 kinds of feedback (veri�cation and execution), and 2 plan057

formats (JSON and code). Through extensive experimen-058

tation with 6 popular open-source and proprietary LLMs059

of varying sizes, we reveal three key �ndings: First, exist-060

ing LLMs instructed to perform multi-step planning consis-061

tently outperform step-by-step planning, regardless of the062

model size. Second, feedback improves LLM's ability to063

predict the correct argument name for each tool and gen-064

erate overall executable tool plans but doesn't necessarily065

improve the ability to choose the right tools. Third, most066

models perform comparably on tool prediction with JSON-067

format generation and Python code generation, but they all068

produce more executable plans with JSON-format genera-069

tion than with code generation.070

2. m& m's: the benchmark071

We curate them&m's benchmark to facilitate the study of072

LLM planners formulti-stepmulti-modal tasks.073

2.1. Dataset generation074

075

To create such a dataset, our data generation process con-076

sists of �ve major steps: tool graph sampling, input example077

sampling, query generation, plan generation, and �nally hu-078

man veri�cation of generated query-plan pairs (Figure 2.1).079

1 Tool graph sampling. We �rst create a directed graph080

with all 33 tools as the nodes and edges denoting valid con-081

nections between nodes. A connection is valid only if the082

output of the source tool matches the expected input type of083

the target tool. We then sample subgraphs from the full tool084

graph to obtain tool sequences with valid tool dependencies.085

2 Input example sampling. Besides the tool sequences, 086

we also need input examples to the tools to ground queries087

generation. To do so, we �rst collect real-world exam- 088

ples from 11 existing datasets, including ImageNet [4],089

SQUAD [18], Visual Genome [12], MagicBrush [41], lib- 090

rispeech [16]. Then, to pair a tool graph sampled in the091

previous step with an input, we randomly sample an input092

for the �rst tool in the graph. For example, if the �rst tool 093

in a tool sequence isimage classification , we ran- 094

domly sample an image (e.g. “16611.jpg”) from ImageNet095

as the input. 096

3 Query generation. With a set of tool sequences and 097

input examples to the �rst tools, we prompt GPT-4 to gener-098

ate realistic user queries. Concretely, we randomly sample099

5 different input examples for each tool sequence and ask100

GPT-4 to generate 2 queries for each tool sequence with the101

same input (See Appendix for the full prompt). 102

4 Plan generation.For plan generation, we write a rule- 103

based program to generate a plan for each query. Each step104

in the plan contains an id, tool name, and an argument dic-105

tionary with this tool's argument names as the keys and ar-106

gument values as values. We populate each node's ID and107

name based on the sampled tool sequence and �ll in the ar-108

gument names for each tool using a pre-de�ned metadata109

document. 110

5 Human veri�cation Finally, we perform extensive hu- 111

man veri�cation on all 4k+ generated query-plan pairs. We112

ask three expert annotators (who are undergraduate and113

Ph.D. students in CS) to rate each query-plan pair with 0114

or 1, where 1 indicates that the plan can resolve the query115

perfectly. We obtain a subset of 1.5k+ examples on which116

all three annotators rate 1 and perform further �ltering to 117

balance the overall distribution of tools (See the Appendix118

for more details). 119

2.2. Dataset quantity and quality 120

Overall, m&m's contains a large quantity ofdiverse 121

ecologically-valid taskqueries (see Figure 1). Each task 122

is associated withhuman-veri�ed and executable plans, 123

where 1565 have been veri�ed to be correct by three human124

annotators and 882 remain after additional �ltering. Tasks125

aregranular in dif�culty with 70 queries that require a sin- 126

gle tool, 159 need two tools, and 653 need three tools. See127

more examples and details in the Appendix. 128

3. Experiment 129

Using our benchmark with a �exible agent design, we ex-130

periment with 6 instruction-tuned large language models of131

varying sizes across different planning setups. 132
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Figure 2.Data generation pipeline.As shown in panel A, our generation process consists of �ve main steps: input example sampling, tool
graph sampling, user query generation with GPT-4, rule-based plan generation, and human veri�cation. Panel B showcases an instantiation
of this process with a real example.

Figure 3. Comparing planning strategies. We �nd that models consistently perform better on tool-F1 under multi-step prediction
compared to under step-by-step prediction regardless of their sizes. Similarly, all models except for Gemini-pro achieve a higher pass rate
with multi-step prediction.

3.1. Setup133

We establish a uni�ed framework to categorize LLMs'134

task planning setups along the three axes below.Planning135

strategy: Prior works formulate task planning as either136

step-by-step or multi-step planning[17, 22, 39]. Step-by-137

step planning refers to the setup where a language model138

is instructed to predict only one action at a time (Figure 9139

(1b)). On the other hand, in the setting of multi-step plan-140

ning, a model can predict multiple actions at once (Figure141

9 (1a)). Plan format: Additionally, existing works have142

also adopted different plan formats for tool use: often as143

code, pseudo-code, or prede�ned structured representations144

such as JSON [7, 22, 28]. In this work, we primarily fo-145

cus on two of the common plan formats: JSON and code.146

Feedback: We experiment with three kinds of feedback - 147

feedback from parsers, rule-based veri�ers, and execution148

modules (Figure 13). 149

3.2. Evaluation metrics 150

To holistically evaluate planning agents' performance on151

our benchmark, we adopt three main metrics:tool-F1, 152

argname-F1, andpass rate. Tool-F1 is de�ned as the F1 153

score of tool name prediction, where we treat each predicted154

tool name as one example and compare the set of predicted155

tool names to the groundtruth set of tools in each plan. Sim-156

ilarly, argname-F1is de�ned as the F1 score of argument 157

name prediction for each tool.Pass rateis the percentage 158

3



CVPR

#16
CVPR

#16
CVPR 2024 Submission #16. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 1. We present the tool-F1 and argname-F1 of models with various feedback, where P, V, and E represent parsing, veri�cation, and
execution feedback respectively. We use parsing feedback only (P) under multi-step planning and JSON-format language generation as the
basis, while showing the� of those with other feedback combinations compared to parsing feedback only.

tool-F1 argname-F1 pass rate

model P PV PE PVE P PV PE PVE P PV PE PVE
Llama-2-7b 29.78 -2.94 -2.59 -2.58 34.03 2.03 1.24 1.15 28.23 18.14 10.32 13.72
Llama-2-13b 42.27 -3.45 -2.78 -4.57 45.07 3.94 3.08 3.29 38.10 29.93 32.99 23.92
Mixtral-8x7B 66.79 1.18 -0.11 -0.04 72.52 2.00 1.89 2.72 75.74 10.32 8.96 10.77
Gemini-pro 69.38 1.18 -0.11 -0.04 73.37 2.00 1.89 2.72 77.32 13.27 14.06 16.67
GPT-3.5-turbo-0125 80.52-0.65 -2.80 -2.56 84.86 0.65 -0.92 -0.86 89.46 6.69 7.26 6.92
GPT-4-0125-preview 88.46-0.60 0.25 -0.91 89.81 -0.18 0.48 0.32 97.73 1.13 -1.25 2.15

Note: we use the experiments with parsing feedback instead of no feedback at all as the baseline to highlight external feedback's
effects on tool selection and invocation instead of parsing. We include the results of experiments with no feedback in the Appendix.

Figure 4.Comparing plan formats. We �nd that all models except for Llama-7-b perform comparably on tool-F1 with JSON-format and
code generation. However, JSON-format generation leads to a much higher pass rate across all models.

of predictions that execute successfully without any execu-159

tion errors.160

We report additional metrics, including argvalue-F1,161

overall plan accuracy, normalized edit distance, and edge-162

F1 as well as code-speci�c metrics such as AST accuracy163

and CodeBLEU in the supplementary material.164

3.3. Results165

166

We highlight three key �ndings and describe each of167

them in detail:168

1. Models consistently perform better on tool-F1 and169

pass rate under multi-step planning than under step-170

by-step planning. We �nd that all large language mod-171

els achieve higher tool-F1 when they are instructed to per-172

form multi-step planning compared to when they perform173

step-by-step prediction (Figure 3), and all models except174

for Gemini-pro achieve a higher pass rate with multi-step175

planning. Among the 6 models we evaluated, Llama-2-176

7b, Llama-2-13b, and GPT-3.5 all showcase a large in-177

crease (> 10%) in performance with multi-step planning178

compared to step-by-step prediction, with the greatest in-179

crease of 21.8% for GPT-3.5.180

2. External feedback can improve planning agents' per-181

formance on argument name prediction and pass rate. 182

On the effects of external feedback, we �nd that both ver-183

i�cation and execution feedback can lead to slightly better184

argname-F1 and much higher pass rates (Table 1), indicat-185

ing that feedback can help models predict correct argument186

names and generate more executable plans. With feedback,187

most models can increase argname-F1 by around 1-4% and188

pass rate by up to 20-30% (Table 1). There are only a few189

exceptions on GPT-3.5 and GPT-4, which already obtain190

relatively high performance without feedback and experi-191

ence around 1% drop in argname-F1 and/or pass rate with192

feedback (Table 1). 193

3. Models perform comparably on tool-F1 with JSON- 194

format and code generation but much worse on pass rate 195

with code generation. Our experiments show that while 196

all models except for Llama-2-7b achieve similar tool-F1s197

(< 3% difference) with JSON-format generation and code198

generation, they all suffer from a large drop in pass rate199

with code generation (Figure 4). These results suggest that200

JSON-format generation is preferable to code generation201

when the executability of generated plans matters. 202

Upon qualitative analysis, we �nd common errors that 203

result in the �ndings above and present examples of these204

errors in the Appendix. 205
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4. Supplementary 399

A. Related work 400

We situate our work amongst tool-use research. 401

Planning evaluations. Although many tool-use variants 402

have been proposed, evaluating LLMs on tool-use still403

lacks a standardized protocol. For instance, VisProg and404

ViperGPT evaluate their plan'sexecutionson vision tasks 405

using a Python-likecodeformat [7, 28]. HuggingGPT eval- 406

uates only theplanaccuracy (did the agent choose the right407

tools) without executing the proposed plans [22]. Tool-408

Former [21] and ToolLLaMA [17] both usenatural lan- 409

guageinstead ofcodeto interface with tools; while Tool- 410

Former generates amulti-stepplan all at once and evaluates 411

the program'sexecution, ToolLLaMA generates the plan 412

step-by-step, with self-feedbackto correct mistakes. ToolL- 413

LaMA evaluates only theplanswhile ToolFormer evaluates 414

bothplansand executions. Unfortunately, no single bench-415

mark evaluates planning agents along this combinatorial de-416

sign space, which is what we contribute. 417

Tool-use benchmarks.Today, tool-use evaluation is spread 418

out across a number of diverse benchmarks, including Hot-419

potQA, WebShop, GQA, RefCOCO, and NLVR [10, 11, 26, 420

36, 37]. None of these contains ground truth plans, con�at-421

ing planning errors with execution error. In other words,422

it is hard to separate whether an LLM failed to propose423

the correct plan or whether one of the tools used in the424

plan failed. In response, recent concurrent efforts have pro-425

posed new benchmarks, such as ToolEmu, TaskBench, and426

GAIA [14, 20, 23]. They do contain ground truth plans but 427

fail to support evaluating plans' execution results (Table 2).428
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Table 2. Compared to previous tool planning benchmarks,m&m's contains multimodal queries that are more realistic and executable. *:
MetaTool only considers Open AI plugins as tools. #: The queries of TaskBench contain textural placeholder of other modality data such
as images, while queries ofm&m's come with real images.

ToolBench ToolEmu TaskBench MetaTool m&m's
[17] [20] [23] [9] (ours)

Query
Real multi-modal inputs? 7 7 7# 7 3
Veri�ed by human? 7 3 3 3 3

Tools
Are all tools executable? 3 7 7 3 3
Multi-modal models 7 7 3 * 3

Plan Format JSON JSON JSON JSON JSON/Code

Scale
Number of unique tools 3,451 36 103 390 33
Number of queries 126k 144 17K 20k 1.5k

Table 3. We list all 33 tools across three categories - ML models, public APIs, and image processing modules - inm&m's.

Tool category Tool name

ML model text generation, text summarization, text classi�cation, question answering,
optical character recognition, image generation, image editing, image
captioning, image classi�cation, image segmentation, object detection, visual
question answering, automatic speech recognition

Public APIs get weather, get location, get math fact, get trivia fact, get year fact, get date
fact, search movie, love calculator, wikipedia simple search

Image processing image crop, image crop top, image crop bottom, image crop left, image crop
right, select object, count, tag, color pop, emoji, background blur

Planning strategies.There are multiple strategies for plan-429

ning. For instance, Psychology literature reveals that peo-430

ple rarely plan tasks in their entirety due to the cognitive431

cost of planning long-range tasks [3]. Instead, they plan432

the �rst couple of subtasks, and execute them before plan-433

ning the rest [1, 3]. In the tool-use literature, we iden-434

tify two primary forms of planning strategies:step-by-step435

planning [5, 17, 39] andmulti-step planning[7, 22, 28].436

Similar to people, step-by-step planning generates plans se-437

quentially with one subtask at a time. By contrast, multi-438

step planning creates the entire plan before executing any439

subtask. Unfortunately, these two strategies have not been440

systematically compared; we systematically compare both441

across multiple open-source and close-source LLMs.442

Feedback mechanisms. LLM planners make mistakes,443

stitching together tools that fail to execute or worse, fail444

to compile. Although human feedback is one mecha-445

nism to align plans with human expectations and pref-446

erences [2, 32], they require real users, making evalua-447

tion stochastic. However, there have been several auto-448

matic mechanisms that can improve plans [31, 40]. For449

instance, syntactic mistakes can easily be detected using450

externalveri�ers and can guide planners to iterate on their451

plans [8, 13, 15, 24]. Others require examining the output452

of individual subtaskexecutions[19, 27, 30, 39, 42]. In453

this work, we compare plan parsing/veri�cation feedback454

as well as tool execution feedback. 455

B. Limitations 456

There are a few limitations to our benchmark and evalu-457

ation. First,m&m's only considers sequential task plans, 458

which represent a majority of real-world user requests.459

However, some tasks might require dynamic task plans de-460

pending on the output for one subtask [6]. Dynamic plans461

require a more complex tool graph sampling procedure.462

Second, as our main goal is to study the effects of differ-463

ent planning formulations and types of feedback, we do not464

investigate another dimension of planning design: prompt465

style. We use direct and ReACT-style [39] prompting and466

exclude more sophisticated prompting strategies such as467

tree-of-thoughts prompting [33, 38]. Third, a few tools 468

in our benchmark are generative, which makes the eval-469

uation of the actual execution results subjective (See Ap-470

pendix) [25, 29]. 471

C. Additional data 472

We present more examples of query-plan pairs ofm&m's in 473

Figure 5, and a complete list of all 33 tools in Table 3. 474
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