CVPR
#16

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016

CVPR 2024 Submission #16. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Q@ m&m’s: A Benchmark to Evaluate Tool-Use for multi-step multi-modal Tasks

Anonymous CVPR submission

Paper ID 16

O KETEE

I have an image '08773.jpg', and I'd like 2
to know more about what's in the image.
Once you determine that, can you

provide me with a brief overview of the ’
subject from Wikipedia ?

I have an audio file '8455.flac' and it
seems to describe an event. Can you tell
me where did this event take place

based on the content? 8455.flac

| just heard about a movie called
Moonlight that released in 2016. Can you

and then tell me who directed it?

I need an illustration for my children's
book. I've imagined a scene where
there's a large group of little kids and
adults at a long table with blue plates.
After we have the image, we also need
to identify all the objects, then add
labels to them.

alarge group of
little kids and

plates for a
children's book

I've got an image 2329676.jpg. Could
you find and highlight the dog in the
picture, by replacing it with a
smiling_face emoji? | think it would be
great for my upcoming blog post on
traveling with pets.

Moonlight Search
find out some details about this movie (2016) movie
adults at along [[IELTS
table with blue gen.

Object
det.

PLAN
= Executed Plan

The kimono (¥ 5D/, lit. 'thing
kimonn E

to wear') is a traditional Japanese
On arriving at home at my own

garment and the national dress of
residence, | found that our salon my own
was filled with a brilliant company. residence

Japan.
Q: where did this event take place?

Title: Moonlight; Year: 2016; Genre:
Drama, Director: Barry Jenkins; Plot: .
; . Barry Jenkins
A young African-American man ...
Q: Who directs it?

{'bbox":

[933.94,
§ a 3422,
. 464.92],
‘label':
'‘person'}...
{'bbox"[-0.2, {'bbox":
274.85, [196.89,
493.75, 1381,
496.75], 270.09,
‘label': 285.9],
'truck'}... 'label": 'dog'}

Figure 1. We present examples of query-plan pairs along with the execution results of the plans in m&m’s. Our benchmark contains a large
quantity of diverse user queries involving three modalities (i.e. text, image, and audio) as well as human-verified plans that consist of 1 - 3

tools across three categories: multi-modal machine learning models (blue), public APIs (red) and

Abstract

Real-world multi-modal problems are rarely solved by
a single machine learning model, and often require multi-
step computational plans that involve stitching several mod-
els. Tool-augmented LLMs hold tremendous promise for
automating the generation of such computational plans.
However, the lack of standardized benchmarks for evalu-
ating LLMs as planners for multi-step multi-modal tasks
has prevented a systematic study of planner design deci-
sions. Should LLMs generate a full plan in a single shot or
step-by-step? Does feedback improve planning? To answer
these questions and more, we introduce m&m’s: a bench-
mark containing 4K+ multi-step multi-modal tasks involv-
ing 33 tools that include multi-modal models, (free) pub-
lic APIs, and image processing modules. For each of these
task queries, we provide automatically generated plans us-
ing this realistic toolset. We further provide a high-quality

(yellow).

subset of 1,565 task plans that are human-verified and cor-
rectly executable. With m&m’s, we evaluate 6 popular
LLMs with 2 planning strategies (multi-step vs. step-by-step
planning), 2 plan formats (JSON vs. code), and 3 types of
feedback (parsing/verification/execution). Finally, we sum-
marize takeaways from our extensive experiments.

1. Introduction

Planning agents—powered by large language models
(LLMs)—are becoming increasingly proficient at decom-
posing user-specified tasks into a series of subtasks, where
each subtask is executed by invoking tools (Figure 1).
Given an LLM and toolset, the design space of planning
agents is extremely rich, involving many decisions such as
planning strategy (e.g. generation of the whole plan vs one
step of the plan at a time), forms of feedback (e.g. pars-
ing/verification/execution feedback), and plan format (e.g.

CVPR
#16

017
018
019
020
021
022

023

024
025
026
027
028
029
030
031
032

JSON strings that specify tools and arguments vs free-formoutput of the source tool matches the expected input type af
Python code). the target tool. We then sample subgraphs from the full tool
Unfortunately, there is no existing planning bench- graph to obtain tool sequences with valid tool dependencies
mark that supports evaluation along this combinatori- @ Input example sampling. Besides the tool sequences,
ally rich design space with a realistic set of multimodal we also need input examples to the tools to ground queries
tools. Recent concurrent benchmarks such as ToolEmu angjeneration. To do so, we rst collect real-world exam-
TaskBench [20, 23] provide user queries and ground truthples from 11 existing datasets, including ImageNet [4],
plans but lack support for realistic plan execution. For in- SQUAD [18], Visual Genome [12], MagicBrush [41], lib-
stance, TaskBench assumes that a list of tools is availabl&ispeech [16]. Then, to pair a tool graph sampled in the
for planning without providing actual implementation of the previous step with an input, we randomly sample an input
tools. ToolEmu likewise uses LLMs to emulate tool execu- for the rst tool in the graph. For example, if the rst tool
tion instead of providing tool implementations. The lack in atool sequence isnage classification . we ran-

of actual implementations of tools and real execution feed- domly sample an image (e.g. “16611.jpg”) from ImageNet
back makes the study of the design space elucidated abovas the input.

unrealistic at best, if notimpossible. (3) Query generation. With a set of tool sequences and
Motivated by this need for a standardized benchmark for input examples to the rst tools, we prompt GPT-4 to gener-

studying the design space of multi-step multi-modal plan- ate realistic user queries. Concretely, we randomly sample

ning agents, we rst propose the&m's benchmark, which 5 gjfferent input examples for each tool sequence and ask

ated task plans. Among these, 1565 are human-veri ed sgme input (See Appendix for the full prompt).

and executable with 33 curated tools consisting of multi-
modal models, public APIs, and image processing mod-
ules. Next, we usen&m's to systematically study the im-
pact of 2 planning strategies (step-by-step and multi-step)
2 kinds of feedback (veri cation and execution), and 2 plan
formats (JSON and code). Through extensive experimen-
tation with 6 popular open-source and proprietary LLMs
of varying sizes, we reveal three key ndings: First, exist-
ing LLMs instructed to perform multi-step planning consis-
tently outperform step-by-step planning, regardless of the
model size. Second, feedback improves LLM's ability to

@ Plan generation. For plan generation, we write a rule-
based program to generate a plan for each query. Each step
in the plan contains an id, tool name, and an argument dic:
‘tionary with this tool's argument names as the keys and ar:
gument values as values. We populate each node's ID and
name based on the sampled tool sequence and Il in the ar-
gument names for each tool using a pre-de ned metadata
document.

@ Human veri cation Finally, we perform extensive hu-
man veri cation on all 4k+ generated query-plan pairs. We

) ask three expert annotators (who are undergraduate and
predict the correct argument name for each tool and gen- P (g '

erate overall executable tool plans but doesn't necessarilyph'D' studentg in_ CS) to rate each query-plan pair with 0
improve the ability to choose the right tools. Third, most or 1, where 1 |nd|c_ates that the plan can resolve the query
models perform comparably on tool prediction with JSON- perfectly. We obtain a subset of 1.5k+ examples on which
format generation and Python code generation, but they aIIaII three annotators r.ate_ . gnd perform further ltering tc_)

) balance the overall distribution of tools (See the Appendix
produce more executable plans with JSON-format genera- oo details)
tion than with code generation. '

2.2. Dataset quantity and quality

2. m&m's: the benchmark _ : .
Overall, m&m's contains a large quantity odliverse

We curate then&m's benchmark to facilitate the study of ecologically-valid task queries (see Figure 1). Each task

LLM planners formulti-stepmulti-modal tasks. is associated witthuman-veri ed and executable plans,
_ where 1565 have been veri ed to be correct by three human
2.1. Dataset generation annotators and 882 remain after additional Itering. Tasks

aregranular in dif culty with 70 queries that require a sin-
rgl;_le tool, 159 need two tools, and 653 need three tools. See

To create such a dataset, our data generation process co More examples and details in the Appendix.

sists of ve major steps: tool graph sampling, input example
sampling, query generation, plan generation, and nally hu-
man veri cation of generated query-plan pairs (Figure 2.1).
@ Tool graph sampling. We rst create a directed graph Using our benchmark with a exible agent design, we ex-

with all 33 tools as the nodes and edges denoting valid con-periment with 6 instruction-tuned large language models of
nections between nodes. A connection is valid only if the varying sizes across different planning setups.

3. Experiment

Figure 2.Data generation pipeline.As shown in panel A, our generation process consists of ve main steps: input example sampling, tool
graph sampling, user query generation with GPT-4, rule-based plan generation, and human veri cation. Panel B showcases an instantiation
of this process with a real example.

Figure 3. Comparing planning strategies. We nd that models consistently perform better on tool-F1 under multi-step prediction
compared to under step-by-step prediction regardless of their sizes. Similarly, all models except for Gemini-pro achieve a higher pass rate
with multi-step prediction.

3.1. Setup cus on two of the common plan formats: JSON and code:
Feedback: We experiment with three kinds of feedback -
We establish a uni ed framework to categorize LLMs' feedback from parsers, rule-based veri ers, and execution
task planning setups along the three axes beRkanning modules (Figure 13).
strategy: Prior works formulate task planning as either
step-by-step or multi-step planning[17, 22, 39]. Step-by-
step planning refers to the setup where a language model To holistically evaluate planning agents' performance on
is instructed to predict only one action at a time (Figure 9 our benchmark, we adopt three main metriaeol-F1,
(1b)). On the other hand, in the setting of multi-step plan- argname-F1, andpass rate Tool-F1 is de ned as the F1
ning, a model can predict multiple actions at once (Figure score of tool name prediction, where we treat each predicted
9 (1a)). Plan format: Additionally, existing works have tool name as one example and compare the set of predicted
also adopted different plan formats for tool use: often as tool hames to the groundtruth set of tools in each plan. Sims
code, pseudo-code, or prede ned structured representationdarly, argname-FLlis de ned as the F1 score of argument
such as JSON [7, 22, 28]. In this work, we primarily fo- name prediction for each tooPass rateis the percentage

3.2. Evaluation metrics

Table 1. We present the tool-F1 and argname-F1 of models with various feedback, where P, V, and E represent parsing, veri cation, and
execution feedback respectively. We use parsing feedback only (P) under multi-step planning and JSON-format language generation as the
basis, while showing the of those with other feedback combinations compared to parsing feedback only.

tool-F1 | argname-F1 | pass rate
model P PV PE PVEH P PV PE PVE| P PV PE PVE
Llama-2-7b 29.78 -2.94 -259 -258|34.03 2.03 124 1.15|28.23 18.14 10.32 13.72
Llama-2-13b 42.27 -3.45 -2.78 -4.57| 45.07 3.94 3.08 3.29 | 38.10 29.93 32.99 23.92
Mixtral-8x7B 66.79 1.18 -0.11 -0.04| 7252 2.00 189 272 | 7574 10.32 896 10.77
Gemini-pro 69.38 1.18 -0.11 -0.04| 73.37 2.00 1.89 2.72|77.32 13.27 14.06 16.67
GPT-3.5-turbo-0125 80.5; -0.65 -2.80 -2.56| 84.86 0.65 -0.92 -0.86|89.46 6.69 7.26 6.92
GPT-4-0125-preview 88.41 -0.60 0.25 -0.91|89.81 -0.18 048 0.32|97.73 1.13 -125 2.15

Note: we use the experiments with parsing feedback instead of no feedback at all as the baseline to highlight external feedback's
effects on tool selection and invocation instead of parsing. We include the results of experiments with no feedback in the Appendix.

Figure 4.Comparing plan formats. We nd that all models except for Llama-7-b perform comparably on tool-F1 with JISON-format and
code generation. However, JSON-format generation leads to a much higher pass rate across all models.

of predictions that execute successfully without any execu-formance on argument name prediction and pass rate.
tion errors. On the effects of external feedback, we nd that both ver-
We report additional metrics, including argvalue-F1, ication and execution feedback can lead to slightly better
overall plan accuracy, normalized edit distance, and edge-argname-F1 and much higher pass rates (Table 1), indicais
F1 as well as code-speci ¢ metrics such as AST accuracying that feedback can help models predict correct argument

and CodeBLEU in the supplementary material. names and generate more executable plans. With feedback;
most models can increase argname-F1 by around 1-4% and
3.3. Results pass rate by up to 20-30% (Table 1). There are only a few

exceptions on GPT-3.5 and GPT-4, which already obtain
o]) relatively high performance without feedback and experi-
We highlight three key ndings and describe each of gnce around 1% drop in argname-F1 and/or pass rate with

them in detail: feedback (Table 1).
1. Models consistently perform better on tool-F1 and

pass rate under multi-step planning than under step- - Models perform comparably on tool-F1 with JSON-
by-step planning. We nd that all large language mod- fo.rmat and code generation butm_uch worse on pass rate
els achieve higher tool-F1 when they are instructed to per-With code generation. Our experiments show that while
form multi-step planning compared to when they perform all modgls except fqr Llama-2-7b achieve swmlar tool-F1s
step-by-step prediction (Figure 3), and all models except (<3% d_|fference) with JSON-format generation and code
for Gemini-pro achieve a higher pass rate with multi-step 9€n€ration, they all suffer from a large drop in pass rate
planning. Among the 6 models we evaluated, Llama-2- with code generation (Figure 4). These results suggest that
7b, Llama-2-13b, and GPT-3.5 all showcase a large in- JSON-format generation is preferable to code generation
crease % 10%) in performance with multi-step planning when the executability of generated plans matters.

compared to step-by-step prediction, with the greatest in- Upon qualitative analysis, we nd common errors that
crease of 21.8% for GPT-3.5. result in the ndings above and present examples of these
2. External feedback can improve planning agents' per- errors in the Appendix.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

Kelsey R Allen, Kevin A Smith, and Joshua B Tenenbaum.
Rapid trial-and-error learning with simulation supports ex-
ible tool use and physical reasonir@roceedings of the Na-
tional Academy of Sciencekl7(47):29302-29310, 2020. 7
Po-Lin Chen and Cheng-Shang Chang. Interact: Explor-
ing the potentials of chatgpt as a cooperative agemXiv
preprint arXiv:2308.015522023. 7

Carlos G Correa, Mark K Ho, Frederick Callaway,
Nathaniel D Daw, and Thomas L Grifths. Humans de-
compose tasks by trading off utility and computational cost.
PLOS Computational Biology9(6):€1011087, 2023. 7

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. 12009 IEEE conference on computer vision and
pattern recognitionpages 248-255. leee, 2009. 2

Difei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin, Joya
Chen, Zihan Fan, and Mike Zheng Shou. Assistgpt: A gen-
eral multi-modal assistant that can plan, execute, inspect, and
learn. arXiv preprint arXiv:2306.086402023. 7

Madeleine Grunde-McLaughlin, Michelle S Lam, Ranjay
Krishna, Daniel S Weld, and Jeffrey Heer. Designing llm
chains by adapting techniques from crowdsourcing work-
ows. arXiv preprint arXiv:2312.116812023. 7

Tanmay Gupta and Aniruddha Kembhavi. Visual pro-
gramming: Compositional visual reasoning without training,
2022. 3,6,7

[8] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky

9]

(10]

(11]

(12]

(13]

Liang, Pete Florence, Andy Zeng, Jonathan Tompson, Igor
Mordatch, Yevgen Chebotar, et al. Inner monologue: Em-
bodied reasoning through planning with language models.
arXiv preprint arXiv:2207.05608022. 7

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan Wu,
Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan, Neil Zhen-
giang Gong, et al. Metatool benchmark for large language
models: Deciding whether to use tools and which to use.
arXiv preprint arXiv:2310.03128023. 7

Drew A Hudson and Christopher D Manning. Gga: A new
dataset for real-world visual reasoning and compositional
question answering. IRroceedings of the IEEE/CVF con-
ference on computer vision and pattern recognitipages
6700-6709, 2019. 6

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and
Tamara Berg. ReferltGame: Referring to objects in pho-
tographs of natural scenes. Pmoceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Process-
ing (EMNLP) pages 787—-798, Doha, Qatar, 2014. Associa-
tion for Computational Linguistics. 6

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-
tidis, Li-Jia Li, David A Shamma, et al. Visual genome:
Connecting language and vision using crowdsourced dense
image annotationgnternational journal of computer visign
123:32-73, 2017. 2

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hal-
linan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri,

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Shrimai Prabhumoye, Yiming Yang, et al. Self-re ne: It-
erative re nement with self-feedbackAdvances in Neural
Information Processing Systen®6, 2024. 7

Grégoire Mialon, Gémentine Fourrier, Craig Swift, Thomas
Wolf, Yann LeCun, and Thomas Scialom. Gaia: a
benchmark for general ai assistants.arXiv preprint
arXiv:2311.129832023. 6

Ning Miao, Yee Whye Teh, and Tom Rainforth. Selfcheck:
Using lims to zero-shot check their own step-by-step reason-
ing. arXiv preprint arXiv:2308.004362023. 7

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeeu
Khudanpur. Librispeech: An asr corpus based on public do-
main audio books. 112015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICA$@BEs
5206-5210, 2015. 2

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan,
Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, Bill Qian,
Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie
Zhou, Mark Gerstein, Dahai Li, Zhiyuan Liu, and Maosong
Sun. Toolllm: Facilitating large language models to master
16000+ real-world apis, 2023. 3, 6, 7

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. SQUAD: 100,000+ questions for machine com-
prehension of text. IRroceedings of the 2016 Conference on
Empirical Methods in Natural Language Processipgges
2383-2392, Austin, Texas, 2016. Association for Computa-
tional Linguistics. 2

Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abouz
Chakra, lan Reid, and Niko Suenderhauf. Sayplan: Ground-
ing large language models using 3d scene graphs for scalable
task planningarXiv preprint arXiv:2307.061352023. 7
Yangjun Ruan, Honghua Dong, Andrew Wang, Silviu Pitis,
Yongchao Zhou, Jimmy Ba, Yann Dubois, Chris J. Maddi-
son, and Tatsunori Hashimoto. Identifying the risks of Im
agents with an Im-emulated sandbox, 2023. 2, 6, 7

Timo Schick, Jane Dwivedi-Yu, Roberto Desfoberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Lan-
guage models can teach themselves to use totdsances

in Neural Information Processing Syster§, 2024. 6
Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. Hugginggpt: Solving ai
tasks with chatgpt and its friends in hugging face, 2023. 3,
6,7

Yongliang Shen, Kaitao Song, Xu Tan, Wengi Zhang, Kan
Ren, Siyu Yuan, Weiming Lu, Dongsheng Li, and Yueting
Zhuang. Taskbench: Benchmarking large language models
for task automationarXiv preprint arXiv:2311.1876@2023.
2,6,7,9,15

Noah Shinn, Beck Labash, and Ashwin Gopinath. Re ex-
ion: an autonomous agent with dynamic memory and self-
re ection. arXiv preprint arXiv:2303.113662023. 7

Otilia Stretcu, Edward Vendrow, Kenji Hata, Krishnamurthy
Viswanathan, Vittorio Ferrari, Sasan Tavakkol, Wenlei Zhou,
Aditya Avinash, Emming Luo, Neil Gordon Alldrin, Ranjay
Krishna, and Ariel Fuxman. Agile modeling: From concept
to classi er in minutes. InProceedings of the IEEE/CVF

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

International Conference on Computer Visjgages 22323—
22334, 2023. 7

Alane Suhr, Mike Lewis, James Yeh, and Yoav Artzi. A cor-
pus of natural language for visual reasoningPlceedings

of the 55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papergjages 217—
223, Vancouver, Canada, 2017. Association for Computa-
tional Linguistics. 6

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and
Chao Zhang. Adaplanner: Adaptive planning from feedback
with language modelsAdvances in Neural Information Pro-

teraction with grounded language agemslvances in Neu-

ral Information Processing Systen®5:20744-20757, 2022.

6

Shunyu Yao, Dian Yu, Jeffrey Zhao, lzhak Shafran,
Thomas L. Grifths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large lan-
guage models, 2023. 7

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran,
Karthik Narasimhan, and Yuan Cao. React: Synergizing rea
soning and acting in language models, 2023. 3, 7, 12

[40] Jieyu Zhang, Ranjay Krishna, Ahmed H Awadallah, and Chi

Wang. Ecoassistant: Using lim assistant more affordably and
accuratelyarXiv preprint arXiv:2310.030462023. 7

Kai Zhang, Lingbo Mo, Wenhu Chen, Huan Sun, and Yu Su.
Magicbrush: A manually annotated dataset for instruction-
guided image editingAdvances in Neural Information Pro-
cessing System36, 2024. 2

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Wei-
jie Su, Chenyu Yang, Gao Huang, Bin Li, Lewei Lu, Xiao-
gang Wang, et al. Ghost in the minecraft: Generally capable
agents for open-world enviroments via large language mod-
els with text-based knowledge and memoayXiv preprint
arXiv:2305.171442023. 7

cessing System36, 2024. 7
D’dac Suts, Sachit Menon, and Carl Vondrick. Vipergpt:
Visual inference via python execution for reasoniragXiv
preprint arXiv:2303.081282023. 3, 6, 7
Imad Eddine Toubal, Aditya Avinash, Neil Gordon Alldrin,
Jan Dlabal, Wenlei Zhou, Enming Luo, Otilia Stretcu, Hao
Xiong, Chun-Ta Lu, Howard Zhou, Ranjay Krishna, Ariel
Fuxman, and Tom Duerig. Modeling collaborator: Enabling
subjective vision classi cation with minimal human effort
via llm tool-use. InProceedings of the IEEE/CVF Interna-
tional Conference on Computer Visid?024. 7
Guanzhi Wang, Yugi Xie, Yunfan Jiang, Ajay Mandlekar,
Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima Anandku-
mar. Voyager: An open-ended embodied agent with large 4. Supplementary
language modelsarXiv preprint arXiv:2305.162912023. 7
Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, A. Related work
Ji_ngsen Zhang, Zhiyuan Chen, Jiakai Tang, Xu Chen, Yankai \pfe situate our work amongst tool-use research.
Lin, et al. A survey on large language model based au- pjanning evaluations. Although many tool-use variants
tonomous agentsarXiv preprint arXiv:2308.114322023. have been proposed, evaluating LLMs on tool-use still
7. i . . i Ch . lacks a standardized protocol. For instance, VisProg and
gr?g%?;nwﬁgg’ Iflenzn ZY\Zn?—ieJr:Zti?g k/:;#t-\(aEr:/%ﬁacmnegn’u::; ViperGPT evaluate their plan'sxecutionson vision tasks

' ’ . i using a Python-likeodeformat [7, 28]. HuggingGPT eval-

in multi-turn interaction with tools and language feedback.) .
arXiv preprint arXiv:2309.106912023. 7 uates only th@lanaccuracy (did the agent choose the right

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed tools) without executing the proposed plans [22]. Tool-
Chi, Sharan Narang, Aakanksha Chowdhery, and Denny FOrmer [21] and ToolLLaMA [17] both useatural lan-
Zhou. Self-consistency improves chain of thought reason- guageinstead ofcodeto interface with tools; while Tool-

ing in language models, 2023. 7 Former generatesraulti-stepplan all at once and evaluates
Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, the program'sexecution ToolLLaMA generates the plan
Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang, Xiaoyun step-by-stepwith self-feedbacko correct mistakes. ToolL-
Zhang, and Chi Wang. Autogen: Enabling next-gen lim ap- LaMA evaluates only thelanswhile ToolFormer evaluates
plications via multi-agent conversation frameworlarXiv bothplansand executions. Unfortunately, no single bench-
preprint arXiv:2308.081552023. 12 mark evaluates planning agents along this combinatorial dex
Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, sign space, which is what we contribute.
Prithviraj Ammanabrolu, Noah A. Smith, Mari Ostendorf, T40|-yse benchmarks.Today, tool-use evaluation is spread
and Hannaneh Hajishirzi. = Fine-grained human feedback .+ 5cross a number of diverse benchmarks, including Hot:
gives better rewards for language model training, 2023. 14 POtQA, WebShop, GQA, RefCOCO, and NLVR [10, 11, 26,
Willam Coien, Rsian Salaknutdinov, and Chistopher b. 20 37J: None of these contains ground truth plans, con at-
X ' " ing planning errors with execution error. In other words,

Manning. HotpotQA: A dataset for diverse, explainable . = .
multi-hop question answering. IRroceedings of the 2018 't IS hard to separate whether an LLM failed to propose

Conference on Empirical Methods in Natural Language Pro- the correct plan or whether one of the tools used in the
cessing pages 2369-2380, Brussels, Belgium, 2018. Asso- plan failed. In response, recent concurrent efforts have pro+
ciation for Computational Linguistics. 6 posed new benchmarks, such as ToolEmu, TaskBench, and
Shunyu Yao, Howard Chen, John Yang, and Karthik GAIA [14, 20, 23]. They do contain ground truth plans but
Narasimhan. Webshop: Towards scalable real-world web in- fail to support evaluating plans' execution results (Table 2).

[41]

[42]

Table 2. Compared to previous tool planning benchmari&m's contains multimodal queries that are more realistic and executable. *:
MetaTool only considers Open Al plugins as tools. #: The queries of TaskBench contain textural placeholder of other modality data such
as images, while queries of& m's come with real images.

ToolBench ToolEmu TaskBench MetaTool m&m's

[17] [20] [23] [9] (ours)
Query Real multi-modal inputs? 7 7 7# 7
Veri ed by human? 7
Tools Are gll tools executable? 7 7
Multi-modal models 7 7 *
Plan Format JSON JSON JSON JSON JSON/Code
Scale Number of uniqge tools 3,451 36 103 390 33
Number of queries 126k 144 17K 20k 1.5k

Table 3. We list all 33 tools across three categories - ML models, public APIs, and image processing modu&sisin

Tool category Tool name

ML model text generation, text summarization, text classi cation, question answering,
optical character recognition, image generation, image editing, image
captioning, image classi cation, image segmentation, object detection, visual
guestion answering, automatic speech recognition

Public APIs get weather, get location, get math fact, get trivia fact, get year fact, get date
fact, search movie, love calculator, wikipedia simple search

Image processing image crop, image crop top, image crop bottom, image crop left, image crop
right, select object, count, tag, color pop, emoji, background blur

Planning strategies.There are multiple strategies for plan- this work, we compare plan parsing/veri cation feedback
ning. For instance, Psychology literature reveals that peo-as well as tool execution feedback.

ple rarely plan tasks in their entirety due to the cognitive

cost of planning long-range tasks [3]. Instead, they plan
the rst couple of subtasks, and execute them before plan-
ning the rest [1, 3]. In the tool-use literature, we iden-

tify two primary forms of planning strategiestep-by-step .0 First mems only considers sequential task plans

g’i?lnalrr]?o[&s’eé7I’egglearjgnig:gﬁtelzn?wl'?]nn”(]a%;’razts,s Zﬁa]ﬁs Se_/vhich represent a majority of real-world user requests:
imiiar to peopie, step-by-step planning g P ~“However, some tasks might require dynamic task plans de+
guentially with one subtask at a time. By contrast, multi-

step planning creates the entire plan before executing ampendlng on the output for one subtask [6]. Dynamic plans

. require a more complex tool graph sampling procedure:
subtask. Unfortunately, these two strategies have not bee d P grap Ping b

systematically compared; we systematically compare both econd, as our main goal is to study the effects of differ-
y uy P ’ Y y P ent planning formulations and types of feedback, we do not
across multiple open-source and close-source LLMs.

investigate another dimension of planning design: prompt
style. We use direct and ReACT-style [39] prompting and
exclude more sophisticated prompting strategies such as
tree-of-thoughts prompting [33, 38]. Third, a few tools
in our benchmark are generative, which makes the eval4

nism to align plans with human expectations and pref- .) L
erences [2, 32], they require real users, making evalua-uat'on of the actual execution results subjective (See Ap4
' ' ' pendix) [25, 29].

tion stochastic. However, there have been several auto-
matic mechanisms that can improve plans [31, 40]. For
instance, syntactic mistakes can easily be detected usingC. Additional data

externalveri ers and can guide planners to iterate on their

plans [8, 13, 15, 24]. Others require examining the output We present more examples of query-plan pains&in's in
of individual subtaskexecutiong19, 27, 30, 39, 42]. In Figure 5, and a complete list of all 33 tools in Table 3.

B. Limitations

There are a few limitations to our benchmark and evalu-

Feedback mechanisms. LLM planners make mistakes,
stitching together tools that fail to execute or worse, fail
to compile. Although human feedback is one mecha-

	. Introduction
	. m&m's: the benchmark
	. Dataset generation
	. Dataset quantity and quality

	. Experiment
	. Setup
	. Evaluation metrics
	. Results

	. Supplementary
	. Related work
	. Limitations
	. Additional data
	. Dataset generation
	. Prompts
	. Human verification statistics
	. Data filtering
	. Alternative plans

	. Planning agent
	. Qualitative analysis
	. Additional plan evaluation results
	. Pass rate vs. tool-F1
	. No feedback
	. Step-level metrics
	. Plan-level accuracy
	. Code-specific metrics: AST accuracy and CodeBLEU
	. Efficiency

	. Human evaluation of plan execution results

