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ABSTRACT

Attention mechanisms have shown promising results in sequence modeling tasks
that require long-term memory. Recent work has investigated mechanisms to re-
duce the computational cost of preserving and storing the memories (Rae et al.,
2020). However, not all content in the past is equally important to remember.
We propose Expire-Span, a method that learns to retain the most important infor-
mation and expire the irrelevant information. This enables Transformers to scale
to attend to tens of thousands of previous timesteps efficiently, as not all hidden
states from previous timesteps are preserved. We demonstrate that Expire-Span
can help models identify and retain critical information and show it can achieve
state of the art results on long-context language modeling, reinforcement learning,
and algorithmic tasks. Finally, we show that Expire-Span can scale to memories
that are tens of thousands in size, which is helpful on incredibly long context tasks
such as character-level PG-19 and a frame-by-frame moving objects task.

1 INTRODUCTION

Transformer architectures (Vaswani et al.,|2017) have demonstrated strong performance across a va-
riety of tasks (Devlin et al.,2019;Roller et al.,|2020; Brown et al., 2020), including those that require
learning long term relationships (Zhang et al.,|2018; Fan et al., [2019a; Izacard & Grave}|2020). Re-
cent work has focused on scaling attention mechanisms efficiently to longer memory sizes, enabling
large improvements on long context tasks (Dai et al.| |2019; |Sukhbaatar et al.,[2019a). However, a
critical component of human memory is not just the ability to remember, but also forgetting irrele-
vant information to focus on the salient, relevant bits. Most studies of long-term memory in humans
indicate that not everything is remembered (Murre & Dros||2015) — instead, only vivid, remarkable
memories are retained from the far past (Wixted, 2004).

Standard Transformer architectures lack the ability to search over extremely large memories, as the
self-attention mechanism is computationally intensive and the storage cost of preserving the large
memory grows quickly. Recent work (Child et al., 2019; Rae et al.,[2020) has proposed learning how
to extend to greater context through sparse mechanisms or through compression, to more compactly
represent the past. However, there exists a fundamental problem with large memories beyond strict
computational concerns: as the amount of information stored increases, deciding which information
is relevant becomes more challenging. Other work (Lample et al.| |2019) approaches this by consid-
ering how to efficiently search large memories. We will focus on learning what to forget, and thereby
reducing the computational burden of the model easing the challenges of the search problem.

We propose EXPIRE-SPAN, a straightforward extension to attention mechanisms, that learns when to
expire unneeded memories. By expiring memories that are no longer useful, EXPIRE-SPAN enables
scaling to memories tens of thousands of timesteps long. This learnable mechanism allows the model
to adjust the span size as needed, selecting which information is critical to retain and forgetting
the rest. More concretely, we augment the self-attention with a simple predictor that outputs an
expiration value for each hidden state that determines how long a memory should be retained and
accessible to the model. After the EXPIRE-SPAN runs out, the memory will be forgotten, but in
a gradually differentiable way to retain end-to-end training with backpropagation. This process is
done independently for each layer, allowing different layers to specialize in different time-scales.

We demonstrate that EXPIRE-SPAN can distinguish between critical and irrelevant information on
several illustrative tasks in natural language processing and reinforcement learning. We then show
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Figure 1: EXPIRE-SPAN. For every memory h;, we compute an EXPIRE-SPAN e¢; that determines
how long it should stay in memory. Here, memories ho, hs are already expired at time ¢, so the
query g; can only access {h1, hg, hy} in self-attention.

on long-context language modeling benchmarks and a frame-by-frame colliding objects task that
EXPIRE-SPAN can scale to memories in the tens of thousands — by expiring irrelevant information,
capacity is freed to have even larger memory. Finally, we analyze the information retained and
expired by EXPIRE-SPAN models, to understand the importance of long context memory.

2 RELATED WORK

Memory is crucial for many tasks and has been studied in recurrent networks (Elman/ |1990; Hochre-
iter & Schmidhuber |1997; Mikolov et al) 2010) for a long time. The development of memory
augmented networks (Graves et al., 2014} |Sukhbaatar et al., 2015b)) made it possible to store large
quantities of information and selectively access them using attention (Bahdanau et al.| 2015). The
Transformer (Vaswani et al., 2017)) took full advantage of this approach. Processing long sequences
with Transformers is an active area with applications in language understanding (Brown et al.,|2020),
reinforcement learning (Parisotto et al., 2019), video processing (Wu et al.| 2019), and protein fold-
ing (Rives et al.,2019). However, extending the memory span is computationally expensive due to
the quadratic time and space complexity of self-attention.

Various work has focused on reducing this complexity and increasing memory capacity. Dynamic
attention spans, such as Adaptive-Span (Sukhbaatar et al.| 2019a)) and Adaptively Sparse Trans-
former (Correia et al.,|2019), focus on learning which heads can have shorter spans of attention, but
can only extend to spans of a few thousand. Other work sparsifies attention by computing fewer to-
kens (Fan et al., 2019c), often by using fixed attention masks (Child et al.|[2019) or sliding windows
and dilation (Beltagy et al., [2020). The BP Transformer (Ye et al., 2019) structures tokens as a
binary tree, so some tokens have coarse attention. These works focus on learning what to attend to,
but searching larger and larger memories is very difficult. In contrast, we focus on learning to expire
what is irrelevant. Compressive Transformer (Rae et al., [2020) reduces the number of memories
by replacing every few memories with a single compressed one. A disadvantage of this is that all
memories have the same compression ratio, so relevant memories are equally compressed.

Another line of work investigates linear-time attention mechanisms. Wu et al.| (2018) replace self-
attention with convolutions that run in linear time, but the scalability to long context tasks remains
limited. [Wang et al.| (2020) propose linear time attention by decomposing attention into multiple
smaller attentions, that recombine to form a low-rank factorization of the original attention. Those
methods, however, focus on making attention more efficient without actually reducing the number
of memories. Further, as our goal is to reduce the number of memories that feed to self-attention by
learning to expire, EXPIRE-SPAN can be easily combined with these efficiency improvements. For
a review of further recent Transformer variants, see|Tay et al.| (2020).

3 BACKGROUND

Transformer architectures have been widely used as decoder-only auto-regressive models for se-
quential tasks. Each Transformer decoder is made of a stack of identical layers, composed of a
multi-head self-attention sublayer followed by a feedforward sublayer. The output of each timestep
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is the hidden state k! at layer [, which is then projected to key k, value v, and query ¢ vectors:
! 131 l 171 ! 171
q = Wyhy,  ky =Wihy, v =W, h.
where W represents the weight. Going forward, we focus on a single layer and omit the layer index
[ for brevity. Information from previous timesteps is accessed through attention « to create output o:
ari = Softmaxicc, (¢, ki), 0 =Wo Y arvi.
i€Cy
The set C; indicates which memories can be accessed at time ¢, which is the focus on this work.

The space and time complexity of self-attention is linearly correlated to |C}|, making it an important
metric of efficiency. For the rest of the paper, we will refer to |Cy| as the memory size.

Including all previous timesteps in self-attention by setting C; = {1, ...,¢t— 1} results in a quadratic
complexity O(T?) to compute the full attention over a sequence of length T'. Fixed-spans (Dai et al.,
2019) take a more scalable approach such that C; = {t — L, ..., t — 1} so the attention is restricted
to previous L steps. The total complexity in this case is O(T'L), where L is the attention span.

Adaptive-Span (Sukhbaatar et al.| |2019a) further improves upon this by learning an optimal span
L per attention head from data, which results in small L values for many heads. Compression ap-
proaches (Rae et al.l 2020) reduce memory size by compressing multiple timesteps into a single
memory, with complexity O(T'L/c), where c is the compression rate. However, in all these ap-
proaches, all memories are treated equally without regards to their importance to the task. In this
work, we focus on distinguishing between relevant and irrelevant memories by learning to expire
unneeded information — by expiring, the remaining attention on relevant information can scale
beyond existing long context memory approaches.

4 EXPIRE-SPAN

We detail the EXPIRE-SPAN mechanism and how to integrate it into Transformer architectures to
focus attention on relevant information and expire the rest. We describe how to scale EXPIRE-SPAN
and practically train with drastically longer memory spans.

4.1 METHOD

EXPIRE-SPAN, depicted in Figure[l] allows models to selectively forget memories that are no longer
relevant. We describe it in the context of a single Transformer layer and omit the layer index [
for brevity. Our goal is to reduce the size of C; defined in Section [3| for more efficiency without
performance degradation. For each memory h;, we will compute a scalar EXPIRE-SPAN ¢; € [0, L]:

e; = Lo(w' h; +b).

Here w, b represent trainable parameters, o is the sigmoid function, and L is the maximum span.
This expire-span e; determines how long h; should be kept and included in C}.

At time ¢, the remaining span of h; is r; ; = e; — (t —%). When r ; becomes negative, it indicates the
memory h; is expired and can be removed from C}. This can be implemented by updating attention
weights with a binary masking function my ;:

), = =i = E d, v where my, = 4 - 16> 0
;= t = i Vi ti = ;
BN mujan] - b 0 otherwise,

However, with such a discrete masking, the expire-span e; will not receive any gradient for training.
Therefore, we use a masking function that smoothly transitions from O to 1 as shown in Figure

my; = max(0, min(1, 1+ r.;/R)),

where R is a hyper-parameter that determines the length of a ramp that is bounded between O to 1.
This function has non-zero gradient for values in [— R, 0] to train e;, but also can take a value of 0,
which is necessary for expiring memories. Thus C; = {i | m;; > 0}. Since m, ; is a monotonically
decreasing function of ¢, once a memory is expired, it can be permanently deleted.
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Our goal is to reduce average memory size, which is directly related
with the average EXPIRE-SPAN.

;; Cy| = ;221mt,i>o = %Z <R+ 21”,90)
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t>1

Thus, we add an auxiliary term to the loss function to penalize the L1-norm of EXPIRE-SPANS:
Liotal = Liask + @), €;/T, where o > 0 is a hyperparameter. This loss term will decrease the span
of memories that contribute less to the main task, resulting in a model with a small memory that
focuses on the most relevant information. Note that w and b are the only new parameters, and are
negligible in size compared to the total number of parameters in standard neural models.

4.2 ADDING EXPIRE-SPAN TO TRANSFORMERS

We describe how EXPIRE-SPAN can be utilized within Transformer self-attention layers to decrease
the memory size and focus the memory on the most salient, relevant information, expiring the rest.
We also discuss practical training concerns, such as efficiency and regularization.

Modifications to Multi-Head Attention Self-attention consists of multiple heads that have differ-
ent keys, values, and queries. However, they all share one underlying memory, so a memory cannot
be removed if it is used by any of the heads. Thus, we compute an EXPIRE-SPAN at each layer that
is shared amongst the heads.

Block Parallel We use the caching mechanism (Dai et al.l [2019), where a block of timesteps
B =[t,...,t+b— 1] is processed in parallel for efficiency — once a block is computed, its hidden
states [hy, ..., hy1p—1] are cached so that future blocks can attend to them. This means a memory
can only be deleted if it is not used by any of the queries in B. Concretely, h; will be deleted when
my; = 0 where ¢ is the first token of B. However, this is not a concern for very long-term memories
where L > B.

Position Embedding Relative position embeddings (Shaw et al.| 2018 make it possible to con-
dition on the ordering of inputs by modifying the attention to a;; = Softmax(q, k; + ¢ pi—i)-
However, because this second term is computed for the whole block in parallel for efficiency, it can
become expensive for a large L even when the average memory size |Cy| is small. Our solution is
to remove position embeddings from older memories ¢ < t — b (where b is the block size), which
empirically does not affect performance. The computational complexity of the position embeddings
is then O(b), thus allowing us to increase the maximum span L.

Loss Computation The L1-norm loss for EXPIRE-SPAN must be computed for every memory h;.
A simple way is to compute it on tokens within the current block B. This empirically results in poor
performance — a possible explanation is that the time between positive and negative gradients on
e; may become too distant. Negative gradients that increase e; only come from the main loss Ly,
through the masking function m; ;, which has non-zero gradients only when memory h; is about to
expire with 0 < m;; < 1fort € B. For alarge L > B, h; may have been computed many blocks
before and since then the model weights would have changed. In contrast, the positive gradients that
decrease e; are computed on the current block 7 € B. To remove this discrepancy, we compute the
auxiliary loss on e; at the same time as negative gradients when 0 < m; ; < 1fort € B.

Regularization A potential challenge in exceptionally long memory is greater capacity to overfit.
As EXPIRE-SPAN can scale to memories in the tens of thousands, it can overfit to learning specific
span sizes on the training set that do not generalize. As a form of regularization, we propose to
randomly shorten the memory during training. For each batch, we sample [ ~ (0, L) and set
a;; = 0 for all ¢ — % > [ only during training. This way, the model cannot assume the memory will
always contain specific information, as the memory is randomly shortened. This can be seen as a
form of structured dropout (Fan et al., 2019b)) applied to the memory size.
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Figure 3: Corridor Task (left)- Agents must memorize the color of an object and walk through the
door of the corresponding color at the end of a long corridor. Instruction Task (right)- A model
must recognize instructions, memorize them, and execute when at the correct location.
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Figure 4: Success on Corridor task as a function of the Memory Size (left) — We trained 10
baseline models with different memory sizes, and five EXPIRE-SPAN models with different random
seeds. Corridors are randomly sampled with length between [3, 200]. Performance on Instruction
task as a function of the Memory size (right) — We trained 6 baseline models with different
memory sizes, and five EXPIRE-SPAN models with different random seeds.

Training with Small Initial Spans EXPIRE-SPAN scales to long attention spans as it quickly
learns to expire irrelevant content. However, at the beginning of training, the long span can use large
quantities of GPU memory. To circumvent this, we initialize the bias term with a negative value.
This prevents large memory usage at the beginning of training, after which the model quickly learns
to expire and the memory usage is no longer problematic.

5 EXPERIMENTS AND RESULTS

We show that EXPIRE-SPAN can focus on salient information on various constructed tasks that
necessitate expiration. Then, we highlight the scalability of EXPIRE-SPAN when operating on ex-
tremely large memories on different tasks. Additional experiments and details are in the Appendix.

5.1 BASELINES

We compare our method against several baselines from Section |3|that takes different approaches to
limit the memory size. Transformer-XL (Dai et al., [2019) corresponds to the fixed-spans approach
where simply the last L memories are kept. Our Transformer-XL implementation also serves as a
base model for all the other baselines to guarantee that the only difference among them is how memo-
ries are handled. The other baselines are Adaptive-Span (Sukhbaatar et al.||2019a) and Compressive
Transformer (Rae et al., [2020). For Compressive Transformer, we implemented the mean-pooling
version, which is shown to give a good performance despite its simplicity.

5.2 IMPORTANCE OF EXPIRATION: ILLUSTRATIVE TASKS

Walking down a Corridor To illustrate a case where proper expiration of unnecessary memories
is critical, we begin with an RL gridworld task. In the Corridor task, depicted in Figure [3] (left), the
agent is placed at one end of a very long corridor, next to an object that is either red or blue. The
agent must walk down the corridor and go to the door that corresponds to the color of the object
that it saw at the beginning to receive +1 reward. The requirement on the memory is low: the agent
should remember the object color so it can walk through the correct door.
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Figure 5: Portal Task (left)- An agent must trial-and-error to memorize the right sequence of doors.
Performance as a function of Memory Size on Portal Task (right)- We train multiple models
with different memory sizes and random seeds.

EXPIRE-SPAN models can take advantage of this fact and keep the memory size small regardless
of the corridor length, which can vary between 3 and 200. This is confirmed in the results shown
in Figure [ (left) where the EXPIRE-SPAN models achieve high performance on this task with very
small memories. Without the ability to forget, the Transformer-XL models require large memory
for storing all navigation steps that grow with the corridor length.

Multi-Room Portal Task Next, we analyze the performance of EXPIRE-SPAN on a reinforcement
learning memorization task. Agents in a gridworld are tasked with navigating through multiple
rooms separated by different doors, depicted in Figure [5] (left). Each room has two exit doors with
different colors — one door portals to the adjacent room, while the other portals the agent back to
the start. However, which door works in which room is randomized for each episode. Thus, the
only way to visit more rooms is by trial-and-error, where agents need to remember the sequence of
correct doors to successfully navigate to the end.

We show results in Figure[3] (right). Transformer-XL models need longer memory to perform better
and visit more rooms — as each room requires many navigation steps, this requires more memory.
However, those navigation steps are irrelevant because the agent only needs to memorize which
doors are visited. Since EXPIRE-SPAN models can discard irrelevant memories and focus its mem-
ory on memorizing the exact sequence of doors, they achieve strong performance with much smaller
memory compared to the Transformer-XL baseline.

Receiving and Executing Instructions To illustrate a more difficult task where a model must
learn to recognize relevant memories and expire the rest, we use a dialogue-based story generation
task from the LIGHT (Urbanek et al., 2019) text world game environment. The model visits various
locations and receives instructions of the form can you tell the [butler] that the [town official] wants
to see them?. When the model is in a location where the butler is present, they must execute the
instruction by generating You tell the butler “town official wants to see you!”. Between receiving
and executing, thousands of words of distractor text exist. The model must learn what is relevant to
retain and expire the distractors. Note multiple instructions can be in queue for execution.

We experiment with a dataset where the average distance between receiving and executing instruc-
tions is around 950 distractor sequences. Models are trained as language models, but evaluated only
on their success in executing the instruction. Task details and model architecture are provided in
the Appendix. We illustrate in Figure [] (right) and Table [] that EXPIRE-SPAN is much more suc-
cessful at solving this task than Transformer-XL, Adaptive-Span, and Compressive Transformer as
it can focus on the specific instruction lines. For Adaptive-Span and Compressive Transformer, we
experiment with various memory sizes to tune the maximum span.

5.3 SCALABILITY OF EXPIRE-SPAN

We analyze the scalability of EXPIRE-SPAN. On a copy task, we train models with spans up to 128K
timesteps. Then, we show the utility of EXPIRE-SPAN on two character-level language modeling
tasks — enwiki8 and PG-19, and colliding objects task that is processed frame by frame.

Extremely Long Copy To illustrate the scalability of EXPIRE-SPAN, we construct a copy task
where the model sees a sequence of A very far in the past. The rest of the characters are B. The
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Model Copy Acc (%) 5 110

Transformer-XL 26.7 5 108

EXPIRE-SPAN 16K 29.4 2

EXPIRE-SPAN 128K 52.1 B o . .

Trans-XL (1) Trans-XL (2k)  Expi

P pire-sp: pire-sp:
(8K) (16k) (32K)

Table 1: Copy Task. We report

copy accuracy on the test set. Figure 6: Performance on character-level PG-19. We re-
port bit-per-byte on test.

Model Params Test
Trans-XL 24L (Dai et al, 2019) 277M 0.99 @ Trans XL ® Adaptspan A Exprre-span
Sparse Trans. (Child et al.[[2019) 95M  0.99 12
Adapt-Span 24L (Sukhbaatar et al.|[2019a) 209M 0.98 o 110 °
All-Attention (Sukhbaatar et al[2019b) — 114M  0.98 - °
Compressive Trans. (Rae et al.,[2020) 27T 0.97 g °
Routing Trans. (Roy et al.[202 - 0.99 g 108| =
Feedback Trans. (Fan et al., 0 7IM  0.96 g,' 104 ALt R =. -
Trans-XL 12L (Dai et al.} 2019 41IM  1.06 1.02 1 .
Adapt-Span 12L (Sukhbaatar et al.|[2019a) 39M  1.02 200 400 600 800 1000
Our Trans-XL 12L baseline 38M  1.06

Average Memory Span
EXPIRE-SPAN 12L 38M  0.994

Figure 7: Performance as a function of
Table 2: Enwiki8 Results. We report bit-per-byte Memory Size on enwikiS8.

(bpb) on test and the number of parameters.

model must copy the correct quantity of A. We design the task such that long span (up to 128K)
can be required, as the A tokens are very far into the past. In Table[I] we show that only by scal-
ing the attention span to 128K is it possible to achieve improved performance. We compare to a
Transformer-XL baseline with 2048 attention limit and a EXPIRE-SPAN model with smaller span.

enwiki8 We test on the enwiki8 character-level language modeling benchmark 2011).
We set the maximum span L for EXPIRE-SPAN to 16K. We compare EXPIRE-SPAN to existing work
in Table 2] EXPIRE-SPAN outperforms similarly sized baselines by a large margin, and matches the
performances of much larger models. This indicates that models can learn to expire relevant infor-
mation and encode long context effectively, even on competitive language modeling benchmarks.

Next, we compare the performance of EXPIRE-SPAN with Adaptive-Span and Transformer-XL
baselines when we vary the average span size (see Figure [7). Models with EXPIRE-SPAN achieve
stronger results — when comparing at any given memory size, EXPIRE-SPAN has better perfor-
mance than both baselines. Further, the performance of models with EXPIRE-SPAN does not vary
widely even if the memory size is drastically reducecﬂ

Finally, we compare the performance of EXPIRE-SPAN with the Compressive Transformer base-
line. We vary the memory size of Compressive Transformer and compress with rate 4. We find
that EXPIRE-SPAN models achieve much better performance, as shown in Table [] with less GPU
memory and faster training time per batch.

Character Level PG-19 We use the PG-19 language modeling benchmark and
convert it to model characters. We use all characters in the training set, creating a vocabulary size
of 3506 characters. We compare the performance of Transformer-XL with an attention over the last
1K and 2K timesteps with an EXPIRE-SPAN model with maximum spans at 8K, 16K, and 32K. As
shown in Figure [6] EXPIRE-SPAN models train stably with very long span, and EXPIRE-SPAN is
substantially better than the Transformer baseline. The performance improves with larger spans,

!"The results in Figureare not finetuned with a smaller learning rate, thus have slightly worse performances
than Table 2]
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Figure 8: Object Collision: task is to remember Table 3: Colliding Objects Results. We report

the location of specified colored collisions. error on the test set.
Model Performance GPU Memory Time/Batch
Compressive Transformer ~ 71% Acc 9.8 GB 210 ms
Instruction Task Adaptive-Span 64% Acc 14.2 GB 240 ms
EXPIRE-SPAN 74% Acc 8.4GB 90 ms
Compressive Transformer 63.8% Error 11.6 GB 327 ms
Collision Task ~ Adaptive-Span 59.8% Error 17.2 GB 365 ms
EXPIRE-SPAN 52.2% Error 11.9GB 130 ms
Compressive Transformer  1.015 bpb 21.3 GB 805 ms
Enwiki8 Adaptive-Span 1.036 bpb 203 GB 483 ms
EXPIRE-SPAN 1.034 bpb 14.6 GB 408 ms
PG19 Adaptive-Span 1.12 bpc 13.5 GB 515 ms
EXPIRE-SPAN 1.12 bpc 12.9 GB 585 ms

Table 4: Efficiency of EXPIRE-SPAN. We report peak GPU memory usage and per-batch training
time, fixing the batch size. We evaluate the mean pooling version of the Compressive Transformer.

though extending to 32K does not increase performance beyond 16K. When comparing to Adaptive
Span in Table[d] Adaptive-Span has the same performance but requires slightly more memory while
running bit faster.

Colliding Objects Another setting where learning which long context may be important is in
video understanding. Despite video data being memory intensive, salient events might be localized
in space and time. We test our model on a task where two objects move around and collide, and
the goal is to reason about the location of specified-color collisions. Objects have a color that can
randomly change. We divide a grid into four quadrants and the model is asked to recall the quadrants
of the last collision of a specified-color pair. Because the collisions are rare, and collisions of specific
colors are even rarer, the model must process a large quantity of frames.

We display the task in Figure [§] and results in Table [3] The task requires many frames, so long
context is very beneficial — we see that as the EXPIRE-SPAN maximal span increases, performance
steadily rises. We train the 64K with the random drop regularization method described in Section
4.2. When extending to extremely long span, 64k in size, we find the strongest performance, which
matches the size of the largest attention limit reported to date (Kitaev et al., 2019).

As a baseline, we train an Adaptive-Span model with maximum spans limited to 16k. While this
model perform similar to the 16k EXPIRE-SPAN model, it uses 44% more memory (17.2gb com-
pared to 11.9gb) and takes 2.8 x longer to train on a batch (365ms compared to 130ms). A 32k
Adaptive-Span model run out of memory in the same setting where we trained our 64k EXPIRE-
SPAN model, which shows the efficiency of our approach.

We also included a Compressive Transformer baseline with a maximum span of 8.5k (512 normal
memories and 2k memories compressed by 4x). This model performs worse than our model, and
increasing its span does not help. It uses the same GPU memory as our 16k model, but runs 2.5 X%
slower, despite having a smaller span.

5.4 EFFICIENCY OF EXPIRE-SPAN

We describe the efficiency of EXPIRE-SPAN compared to various baselines, including Adaptive-
Span, Compressive Transformer, and Transformer-XL. We quantify with two metrics: (1) Peak
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Figure 9: Expiration in EXPIRE-SPAN on enwiki8. In  Figure 10: Prediction Accuracy
(a), one layer of the model has two focus areas, “Egypt”  Needs Memory. As the memory
and “Alexander”. In (b), we replace “Egypt” with “some-  size is artificially decreased at in-
where” and the focus disappears. In (¢), we insert “SpongeBob  ference to 1024, the prediction is
SquarePants” and the model attends to the full entity. less accurate (smaller is better).

GPU memory usage and (2) training time per batch (comparing fixed batch size). Results are shown
in Table[]and indicate that across all tasks, EXPIRE-SPAN uses substantially less GPU memory and
processes each batch more quickly than all baselines, while achieving better performance in most
of the tasks. Transformer-XL as a baseline cannot adapt to the data at all, so it becomes slow and
inefficient quite quickly. Adaptive-Span can adapt to the data and adjust its memory size, but this
memory size is fixed after training and does not have the dynamic adjustment of Expire-Span (where
memory depends on context). Finally, Compressive Transformer does compress the past memories,
but it compresses them all the same amount. In contrast, EXPIRE-SPAN can forget irrelevant content,
which both improves performance by focusing on salient information, but also reduces the load on
the GPU and allows for faster processing per batch. Overall, across all tasks, we find that EXPIRE-
SPAN achieves strong performance with GPU memory savings and low time per batch.

6 ANALYSIS AND DISCUSSION

We analyze the information retained and expired by EXPIRE-SPAN models. See the appendix for
more analysis and ablations on the importance of regularization.

Retaining Salient Information We analyze what is retained by an EXPIRE-SPAN model on en-
wiki8. In Figure[9] (a), we show that the model retains information about named entities Egypt and
Alexander the Great by attending to them (darker color). Next, we analyze how attention changes
when we artificially edit the past text. In Figure[9](b), we replace Egypt with somewhere, and this
generic word is expired. In Figure 9] (c), we edit Egypt to Spongebob SquarePants, which is a rare
named entity, and the model attends strongly to this rather than expiring. In addition to named en-
tities, EXPIRE-SPAN also focuses on spaces, newlines, and section titles, all of which can retain
information about words, sentences or sections. These can vary between different layers, indicating
that EXPIRE-SPAN models use the memory at each layer differently. See the Appendix for details.

Importance of Long Term Memory Lastly, we analyze which predictions benefit the most from
memory capacity. We take an EXPIRE-SPAN model trained on enwiki8 and artificially limit the span
size at inference. We compare which predictions decreased in accuracy. In Figure[I0] we limit the
span to 1024 tokens, and see that models have a higher loss when predicting the named entity Guinea
coast compared to the 16k span. Guinea coast was mentioned 3584 tokens earlier, which indicates
that long attention is often necessary to predict words mentioned in far away context. In general,
we found that rare tokens and structural information about documents, such as section headings or
document titles, required longer attention span.

7 CONCLUSION

We present EXPIRE-SPAN, an operation that can be added to any attention mechanism to enable
models to learn what to forget. By expiring irrelevant information, models can scale attention to tens
of thousands of past memories. We highlight the strong performance of EXPIRE-SPAN in language
modeling, reinforcement learning, object collision, and algorithmic tasks, and use it to attend to
over tens of thousands of past memories. The scalability of EXPIRE-SPAN has strong potential for
allowing models to be applied to more challenging, human-like tasks that would require expiration.



Under review as a conference paper at ICLR 2021

REFERENCES

Alexei Baevski and Michael Auli. Adaptive input representations for neural language modeling. In
ICLR, 2019.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In /CLR, 2015.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In Advances in Neural
Information Processing Systems, pp. 688—699, 2019.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Gongalo M Correia, Vlad Niculae, and André FT Martins. Adaptively sparse transformers. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp.
2174-2184, 2019.

Zihang Dai, Zhilin Yang, Yiming Yang, William W Cohen, Jaime Carbonell, Quoc V Le, and Ruslan
Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv
preprint arXiv:1901.02860, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT (1), 2019.

J. Elman. Finding structure in time. Cogn. Sci., 14:179-211, 1990.

Angela Fan, Claire Gardent, Chloé Braud, and Antoine Bordes. Using local knowledge graph con-
struction to scale seq2seq models to multi-document inputs. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-1JCNLP), pp. 4177-4187, 2019a.

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. arXiv preprint arXiv:1909.11556, 2019b.

Angela Fan, Mike Lewis, and Yann Dauphin. Strategies for structuring story generation. In Proceed-
ings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2650-2660,
2019c.

Angela Fan, Thibaut Lavril, Edouard Grave, Armand Joulin, and Sainbayar Sukhbaatar. Accessing
higher-level representations in sequential transformers with feedback memory. arXiv preprint
arXiv:2002.09402, 2020.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249-256, 2010.

Edouard Grave, Armand Joulin, Moustapha Cissé, and Hervé Jégou. Efficient softmax approxima-
tion for gpus. In ICML, 2017.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

10



Under review as a conference paper at ICLR 2021

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
domain question answering. arXiv preprint arXiv:2007.01282, 2020.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations, 2019.

Guillaume Lample, Alexandre Sablayrolles, Marc’ Aurelio Ranzato, Ludovic Denoyer, and Hervé
Jégou. Large memory layers with product keys. In Advances in Neural Information Processing
Systems, pp. 8548-8559, 2019.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Matt Mahoney. Large text compression benchmark. URL: http://www. mattmahoney. net/text/text.
html, 2011.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Tomés Mikolov, Martin Karafiat, Luk4$ Burget, Jan Cernocky, and Sanjeev Khudanpur. Recurrent
neural network based language model. In Eleventh annual conference of the international speech
communication association, 2010.

J. Murre and Joeri Dros. Replication and analysis of ebbinghaus’ forgetting curve. PLoS ONE, 10,
2015.

Emilio Parisotto, H. Song, Jack W. Rae, Razvan Pascanu, Caglar Giilcehre, Siddhant M. Jayakumar,
Max Jaderberg, Raphael Lopez Kaufman, A. Clark, Seb Noury, M. Botvinick, N. Heess, and Raia
Hadsell. Stabilizing transformers for reinforcement learning. ArXiv, abs/1910.06764, 2019.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, Chloe Hillier, and Timothy P. Lilli-
crap. Compressive transformers for long-range sequence modelling. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
Sy1KikSYDH!

A. Rives, S. Goyal, J. Meier, Demi Guo, Myle Ott, C. L. Zitnick, Jerry Ma, and R. Fergus. Bio-
logical structure and function emerge from scaling unsupervised learning to 250 million protein
sequences. bioRxiv, 2019.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle
Ott, Kurt Shuster, Eric M Smith, et al. Recipes for building an open-domain chatbot. arXiv
preprint arXiv:2004.13637, 2020.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse
attention with routing transformers. arXiv preprint arXiv:2003.05997, 2020.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-
tions. In NAACL-HLT (2), 2018.

Sainbayar Sukhbaatar, Arthur Szlam, Gabriel Synnaeve, Soumith Chintala, and R. Fergus. Maze-
base: A sandbox for learning from games. ArXiv, abs/1511.07401, 2015a.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end memory networks.
In NIPS, 2015b.

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, and Armand Joulin. Adaptive attention
span in transformers. In Proceedings of the 57th Annual Meeting of the Association for Compu-
tational Linguistics, pp. 331-335, 2019a.

Sainbayar Sukhbaatar, Edouard Grave, Guillaume Lample, Herve Jegou, and Armand Joulin. Aug-
menting self-attention with persistent memory. arXiv preprint arXiv:1907.01470, 2019b.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey. arXiv
preprint arXiv:2009.06732, 2020.

11


https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH

Under review as a conference paper at ICLR 2021

Jack Urbanek, Angela Fan, Siddharth Karamcheti, Saachi Jain, Samuel Humeau, Emily Dinan, Tim
Rocktischel, Douwe Kiela, Arthur Szlam, and Jason Weston. Learning to speak and act in a
fantasy text adventure game. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 673—683, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998-6008, 2017.

Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

John T Wixted. The psychology and neuroscience of forgetting. Annu. Rev. Psychol., 55:235-269,
2004.

Chao-Yuan Wu, Christoph Feichtenhofer, Haoqi Fan, Kaiming He, Philipp Krahenbuhl, and Ross
Girshick. Long-term feature banks for detailed video understanding. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 284-293, 2019.

Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin, and Michael Auli. Pay less attention with
lightweight and dynamic convolutions. In International Conference on Learning Representations,
2018.

Zihao Ye, Qipeng Guo, Quan Gan, Xipeng Qiu, and Zheng Zhang. Bp-transformer: Modelling
long-range context via binary partitioning. arXiv preprint arXiv:1911.04070, 2019.

Jiacheng Zhang, Huanbo Luan, Maosong Sun, Feifei Zhai, Jingfang Xu, Min Zhang, and Yang Liu.
Improving the transformer translation model with document-level context. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, pp. 533542, 2018.

12



Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 ADDITIONAL EXPERIMENTAL RESULTS

A.1.1 WIKITEXT-103 LANGUAGE MODELING

The Wikitext-103 word-level language modeling benchmark (Merity et al., 2016)) consists of a col-
lection of Wikipedia articles and a fixed vocabulary size of 270K. We set the max attention span
for EXPIRE-SPAN to 8K. We compare EXPIRE-SPAN to existing work in Table [5] and show that
even fairly small models trained with EXPIRE-SPAN achieve competitive results. Next, we analyze
the performance of EXPIRE-SPAN on Wikitext-103 as the memory size increases. We compare to a
standard Transformer model in Figure|l I|— even with far smaller memory, EXPIRE-SPAN performs
much better.

A.1.2 EXPIRE-SPAN ANALYSIS ON ENWIKS8

In Figure[I2] we analyze multiple layers of the model and show that different layers identify different
types of information. Several layers retain summarizing information about sentences or sections by
attending strongly to spaces, new lines, and section titles.

A.1.3 IMPORTANCE OF STRUCTURED DROPOUT FOR REGULARIZATION

We analyze the importance of structured dropout to regularize the large memory capacity provided
by EXPIRE-SPAN. In an experiment on enwiki8, Figure[I3]|shows that loss on a portion of validation
data was incredibly large. This part corresponds to a 66K token long table. We hypothesize that the
model likely never encountered such a table during training. During validation, this caused all non-
table tokens to expire. Without regularizing the model memory size during training, the model can
easily overfit.

@ baseline A expire-span

Model Params Test 205
DEQ-Trans. (Bai et al.,[2019) 110M 23.3 200 .
Trans-XL (Dai et al.,[2019)) 257M 18.3 z . °
Feedback Trans. (Fan et al., 2020) 7IM  18.3 é 195 A2z
Trans.+LayerDrop (Fan et al., 2019b) 423M 17.7 % 190 . *
Compressive Trans. (Rae et al.,[2020) 277M 17.1 e “
Routing Trans. (Roy et al.} 2020) - 15.8 18.5

50 100 500 1000

EXPIRE-SPAN 140M 19.6

Average Memory Span

Table 5: Wikitext-103 Results. We report per- Figure 11: Performance as a function of
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Figure 12: Per-Layer Expiration in EXPIRE-SPAN on enwiki8. We visualize the expire-spans of
different layers: layer 6 gives long span to spaces, layer 9 favorites special tokens like newlines and
section titles, and layer 10 pays attention to named entities.

A.1.4 COLLIDING OBJECTS EASY

We experiment with an easier version of the Colliding Objects task where objects do not have colors.
The model has to predict either the last collision, or a mapping of the last 3 collisions. In contrast to
the harder task, there are no color switches and any collision prediction is valid.
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—— baseline
——— expire-span

Validation Loss

Timestep

| Long Table of 66K Tokens F—————>

Figure 13: Extreme Overfitting on part of validation occurs without proper regularization.

Model Maximum Span  Test Error
Transformer 1024 39.1
Expire-Span 1024 19.5
Expire-Span 2048 9.1
Expire-Span 4096 32

Table 6: Colliding Objects Results. We report test error.

A.2 ADDITIONAL IMPLEMENTATION DETAILS

A.2.1 LIGHT TASKS

Instruction Following Task We train 6-layer models with a hidden size of 512 and 8 attention
heads. To train, we use the Adam optimizer with a learning rate of 7e-4 and 8000 warmup updates.
We set the Expire-Span ramp to 64 and the Expire-Span loss to 2e-6.

A.2.2 REINFORCEMENT LEARNING

We used MazeBase (Sukhbaatar et al., | 2015a) to construct tasks in grid world. Agents can observe
its surrounding 3 x 3 area and move in the four cardinal directions. Every objects and their properties
are described by words such as “agent”,“block”, “blue”, etc. Thus, the input to the model is a binary
tensor of size 3 X 3 X vocabulary-size.

We train 2-layer Transformers with 64 hidden units using actor-critic algorithm. We used a BPTT
length of 100, and an entropy cost of 0.0005.

Corridor Task The corridor length is sampled from ¢/(3, 200). All models are trained for 100M
steps. We used RMSProp optimizer with a learning rate of 0.0001 and a batch size of 64. For the
expire-span models, we set the maximum span L to 200, the loss coefficient o to Se-6 and the ramp
length R to 16.

Multi-Room Portal In this task, there are 50 rooms sequentially connected together. Each room
is 5 X 5 in size, and have two doors with different colors. If agent go to the correct door, it will be
teleported to the next room, but if it is the wrong door, the agent will be teleported back to the first
room and have to start over. Which of the two doors is correct in each room is randomly decided
and fixed throughout the episode. This information is not visible to the agent, thus can only be
discovered by trial and error within each episode. The current room number is visible to the agent.

When the agent successfully transitions from the k-th room to the next, it receives a reward of 0.1k%.
The episode ends if the agent makes two mistakes in the same room, reaches the last room, or when
the number of steps reach 1000. A reward discount of 0.98 is used. All models are trained with
Adam optimizer with a learning rate of 0.0005, and a batch size of 1024, with gradients are clipped
at 0.1. We set L = 100, R = 16 and e =1e-6 for the expire-span models.

A.2.3 COLLISION TASK

At the start of the simulation, each particle samples a Gaussian Normal velocity and position uniform
inside a 16 x 16 grid. At each time step the particles’ position is updated by adding its velocity (unless
it would go off the grid, in which case its velocity is re-sampled). There are 5 different colors, and a
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particle can change its color randomly at each step with 0.05 probability. A collision happens when
the two particles have the same rasterized locations, but it does not affect the movement.

Given a question specifying two colors, the task is to report in which of the four quadrants of the
grid the last collision of the specified-colors occurred. To make the task easier to learn, 40% of the
queries will have the matching colors as the last collision.

The model is given an input sequence of tokens that has 8 entries per timestep. The first 4 are
the rounded and rasterized (z,y) locations of the two particles, and next 2 are tokens representing
the colors of the particles. The last 2 entries are “question” tokens that specify the colors of the
collision. The output sequence has a token for each quadrant. We generate SOM steps for training,
which equals to 400M entries.

Easy Version: The particles have no color in this version. There are two types of questions, in
which the task is to report either

1. in which of the four quadrants of the grid the last collision occurred.

2. the label mapping of the last 3 collisions.

A.2.4 LANGUAGE MODELING DETAILS

enwiki8 We train 12-layer models with a hidden size of 512 and 8 attention heads. To train, we
use Adam optimizer with a learning rate of 7e-4, a batch size of 512, a block size of 512 and 8000
warmup updates. All models are trained for 100k updates. The model in Table[2]is further fine-tuned
for another 10k updates with a 10x smaller LR. The baseline models used for comparison are the
same size model following the same training protocol.

PG-19 Besides the attention span, all model parameters and training parameters were held con-
stant. Each model had 12 layers, a hidden size of 512, a feed forward hidden size of 2048, 8 attention
heads, and processed 512 characters at a time. We initialized the weights using a uniform distribu-
tion as described by (Glorot & Bengio|(2010), used dropout and attention dropout of 0.2, clipped the
gradients at 0.3, warmed up the learning rate linearly for 8000 steps, and used cosine annealing to
decay the learning rate after warmup (Loshchilov & Hutter, [2016). For the EXPIRE-SPAN models,
we used a ramp of 128 and an expiration loss coefficient of 1e-6.

Wikitext-103  All models have 8 layers and 1024 hidden units (4096 in ReLLU layers). In addition
to the dropout of 0.3 applied to attention and ReLU activation, outputs from the embedding layer
and the last layer had a dropout of 0.2. We used the adaptive input [Baevski & Auli|(2019) and the
adaptive softmax Grave et al.| (2017) for reducing the number of parameters within word embed-
dings. The models are trained for 300k updates with a block size of 256, and gradients are clipped
at 0.1. The other hyperparameters are the same as the enwik8 experiments.
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