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Abstract001

Reinforcement learning struggles in the face002
of long-horizon tasks and sparse goals due to003
the difficulty in manual reward specification.004
While existing methods address this by adding005
intrinsic rewards, they may fail to provide006
meaningful guidance in long-horizon decision-007
making tasks with large state and action spaces,008
lacking purposeful exploration. Inspired by hu-009
man cognition, we propose a new multi-modal010
model-based RL approach named Dreaming011
with Large Language Models (DLLM). DLLM012
integrates the proposed hinting subgoals from013
the LLMs into the model rollouts to encour-014
age goal discovery and reaching in challenging015
tasks. By assigning higher intrinsic rewards016
to samples that align with the hints outlined017
by the language model during model rollouts,018
DLLM guides the agent toward meaningful and019
efficient exploration. Extensive experiments020
demonstrate that the DLLM outperforms recent021
methods in various challenging, sparse-reward022
environments such as HomeGrid, Crafter, and023
Minecraft by 41.8%, 21.1%, and 9.9%, respec-024
tively.025

1 Introduction026

Reinforcement learning (RL) is effective when the027

agents receive rewards that propel them towards028

desired behaviors (Silver et al., 2021; Ladosz et al.,029

2022). However, the manual engineering of suit-030

able reward functions presents substantial chal-031

lenges, especially in complex environments (Xie032

et al., 2023; Dubey et al., 2018). Therefore, solving033

tasks with long horizons and sparse rewards has034

long been desired in RL (Bai et al., 2023; Wu and035

Chen, 2023).036

Existing RL methods address this issue by sup-037

plementing the extrinsic rewards provided by the038

environment with an intrinsic reward as an auxil-039

iary objective such as novelty (Burda et al., 2019b;040

Zhang et al., 2019, 2021), surprise (Achiam and041

Sastry, 2017), uncertainty (Bellemare et al., 2017;042

Moerland et al., 2017; Janz et al., 2019), and pre- 043

diction errors (Stadie et al., 2015; Pathak et al., 044

2017; Burda et al., 2019a). Nonetheless, there exist 045

scenarios wherein only a limited set of elements 046

possess inherent factors that are truly valuable to 047

the agent’s target objective, rendering the explo- 048

ration of additional aspects inconsequential or po- 049

tentially detrimental to the overall system perfor- 050

mance (Dubey et al., 2018; Colas et al., 2018; Du 051

et al., 2023). Some recent researches employ large 052

language models (LLMs) to explore new solutions 053

for this issue (Du et al., 2023; Zhou et al., 2023; 054

Zhang and Lu, 2023). Leveraging prior knowledge 055

from extensive corpus data, these methods aim 056

to encourage the exploration of meaningful states. 057

While these approaches have demonstrated impres- 058

sive results, they depend on querying the LLM for 059

any unknown environmental conditions, which lim- 060

its their ability to generalize the acquired language 061

information to other steps. Additionally, due to 062

their model-free nature, these approaches cannot 063

capture the underlying relationships between dy- 064

namics and language-based hints. They also fail 065

to leverage planning mechanisms or synthetic data 066

generation to enhance sample efficiency. 067

To address this issue, we draw inspiration from 068

how humans solve long-horizon tasks efficiently. 069

Humans excel at breaking down overall goals into 070

several sub-goals and strive to plan a reasonable 071

route to accomplish these goals sequentially (Fer- 072

nando et al., 2018). These goals are often associ- 073

ated with specific actions or environmental dynam- 074

ics and can ideally be expressed in concise natu- 075

ral language. For example, experienced Minecraft 076

players can naturally connect the action “obtaining 077

iron” with its prerequisite actions “find an iron ore” 078

and “breaking iron ore”. 079

Consequently, we propose Dreaming with Large 080

Language Model (DLLM), a multi-modal model- 081

based RL approach that integrates language hints 082

(i.e., goals) from LLMs into the rollouts to encour- 083
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Figure 1: The algorithmic overall structure diagram of DLLM, where WM denotes the world model, ol represents
the natural language caption of the observation, u denotes the transition, and ik corresponds to the intrinsic reward
for the k-th goal.

age goal discovery and reaching in challenging084

and sparse-reward tasks, as illustrated in Figure085

1. DLLM’s world model processes visual inputs086

and sentence embeddings of natural language de-087

scriptions for transitions and learns to predict both.088

It then rewards the agent when the predicted em-089

beddings are close enough to the goal, facilitating090

the agents’ use of inductive bias to achieve task091

goals. Thanks to the power of prompt-based LLMs,092

DLLM can influence agents’ behaviors in distinct093

manners based on the prompts provided for identi-094

cal tasks, resulting in multiple styles of guidance095

for the agents. For example, when an agent needs096

to obtain iron in Minecraft, it can be guided directly097

to break iron ore, explore more for a better policy,098

or try interpolating both strategies.099

Empirically, we evaluate DLLM on various100

sparse-reward environments, including Home-101

grid (Lin et al., 2023), Crafter (Hafner, 2022), and102

Minecraft (Guss et al., 2019). Experimental results103

demonstrate that DLLM outperforms recent strong104

methods in task-oriented and exploration-oriented105

environments, showcasing robust performance in106

guiding exploration and training of the agent within107

highly complex scenarios. In Homegrid, Crafter108

and Minecraft environments, we successfully im-109

prove the performance by 41.8%, 21.1% and110

9.9%, respectively, compared to the strongest111

baseline Dynalang (Lin et al., 2023), Achieve-112

ment Distillation (Moon et al., 2024), and Dream-113

erV3 (Hafner et al., 2023). We also observe that114

leveraging more powerful language models and115

providing the agent with comprehensive language116

information results in even better performance.117

Our contributions are as follows: (a) we pro- 118

pose DLLM, a multi-modal model-based reinforce- 119

ment learning approach that utilizes human nat- 120

ural language to describe environmental dynam- 121

ics, and incorporates LLM’s guidance in model 122

rollouts to improve the agent’s exploration and 123

goal-completion capabilities; (b) based on goals ex- 124

tracted by LLMs, DLLM can generate meaningful 125

intrinsic rewards through an automatic descending 126

mechanism to guide policy learning; (c) experimen- 127

tal results demonstrate that DLLM outperforms re- 128

cent strong baselines across diverse environments. 129

2 Background and Related Work 130

Model-based RL. Model-based RL (MBRL) trains 131

a world model through online interactions with 132

the environment to predict rewards and next-step 133

states (Silver et al., 2016, 2017, 2018). With the 134

world model, the agent can plan and optimize its 135

policy from imagined sequences (Hansen et al., 136

2022; Lowrey et al., 2018). Amidst recent advance- 137

ments, specific contemporary MBRL methods have 138

acquired a world model that is capable of han- 139

dling high-dimensional observations and intricate 140

dynamics, achieving notable milestones in vari- 141

ous domains (Ha and Schmidhuber, 2018; Schrit- 142

twieser et al., 2020; Hafner et al., 2019a, 2020, 143

2023; Hansen et al., 2022). Akin to our approach, 144

the work of Lin et al. (Lin et al., 2023) constructs 145

a multimodal world model capable of predicting 146

future visual and textual representations, thereby 147

enabling agents to ground their language gener- 148

ation capabilities within an imagined, simulated 149

environment. We employ the same implementation 150
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approach, but further integrate the generated natu-151

ral language from the LLMs during the planning152

process into constructing the intrinsic rewards.153

Intrinsically motivated RL. Intrinsically mo-154

tivated RL is proposed to encourage exploration155

in sparse-reward, large state-action space en-156

vironments by providing additional dense re-157

wards (Reynolds, 2002; Yang et al., 2021). Pathak158

et al. (2017) use curiosity as an intrinsic reward,159

measuring prediction proficiency within a self-160

supervised model, while Burda et al. (2018) pro-161

pose random network distillation (RND), which162

uses prediction error from a fixed random neu-163

ral network and performs well in Montezuma’s164

Revenge. Subsequent studies improve RND with165

methods like distributional modeling (Yang et al.,166

2024). There are also other approaches focused167

on maximizing state diversity (Linke et al., 2020;168

Wang et al., 2023b) and skill diversity (Baranes and169

Oudeyer, 2013; Colas et al., 2022).170

Despite their success, intrinsically motivated171

RL methods may struggle with large state-action172

spaces and complex tasks since they focus on ex-173

ploring novel states, not necessarily useful ones.174

This purposeless exploration can hinder perfor-175

mance. Therefore, integrating meaningful guid-176

ance, such as commonsense knowledge and explicit177

subgoals, is crucial (Dubey et al., 2018; Du et al.,178

2023). DLLM considers these factors with a spe-179

cific focus on long-term decision-making. During180

rollouts, DLLM applies intrinsic rewards when the181

agent achieves goals set by LLM in previous steps,182

strengthening the understanding of the agent’s con-183

textual connections.184

Leveraging large language models (LLMs) for185

language goals. Pre-trained LLMs showcase re-186

markable capabilities, particularly in understanding187

common human knowledge. Naturally, LLMs can188

generate meaningful and human-recognizable in-189

trinsic rewards for intelligent agents. Choi et al.190

(2022) leverage pre-trained LLMs as task-specific191

priors for managing text-based metadata within the192

context of supervised learning. Kant et al. (2022)193

utilize LLMs as commonsense priors for zero-shot194

planning. Similar efforts are made by Yao et al.195

(2022); Shinn et al. (2023); Wu et al. (2023); Wang196

et al. (2023a), who propose diverse prompt meth-197

ods and algorithmic structures to mitigate the prob-198

lems of hallucination and inaccuracy when employ-199

ing LLMs directly for decision-making. Carta et al.200

(2023) examine an approach where an agent uti-201

lizes an LLM as a policy that undergoes progres-202

sive updates as the agent engages with the envi- 203

ronment, employing online reinforcement learn- 204

ing to enhance its performance in achieving objec- 205

tives. Zhang et al. (2023) propose to leverage the 206

LLMs to guide skill chaining. Du et al. propose 207

ELLM (Du et al., 2023), which leverages LLMs 208

to generate intrinsic rewards for guiding agents, 209

integrating LLM with RL. However, the guidance 210

obtained using this approach is only effective in the 211

short term. DLLM draws inspiration from ELLM 212

and endeavors to extend the guidance from LLMs 213

into long-term decision-making. 214

3 Preliminaries 215

We consider a partially observable Markov de- 216

cision process (POMDP) defined by a tuple 217

(S,A,O,Ω, P, γ,R), where s ∈ S represents the 218

states of the environment, a ∈ A represents the 219

actions, and observation o ∈ Ω is obtained from 220

O(o|s, a). P (s′|s, a) represents the dynamics of 221

the environment, R and γ are the reward function 222

and discount factor, respectively. During train- 223

ing, the agent’s goal is to learn a policy π that 224

maximizes discounted cumulative rewards, i.e., 225

maxEπ
[∑∞

t=0 γ
tR(st, at)

]
. 226

Additionally, we define two sets of natural lan- 227

guage sentence embeddings: the set of sentence 228

embeddings for transitions, denoted as U , and the 229

set of sentence embeddings for goals, denoted as G. 230

In this context, each u ∈ U represents a sentence 231

embedding describing the environmental changes 232

from the previous step to the current step, while 233

g ∈ G represents a sentence embedding of a goal 234

the LLM intends for the agent to achieve. We 235

permit the LLM to output any content within speci- 236

fied formats, thereby enlarging the support of the 237

goal distribution to encompass the space of natural 238

language strings. Thus, G should encompass all 239

possible u ∈ U , i.e., U ⊂ G. 240

We also define the goal-conditioned intrinsic re- 241

ward function Rint(u|g), and the DLLM agent opti- 242

mizes for an intrinsic reward Rint alongside the re- 243

ward R from the environment. Assuming that goals 244

provided by natural language are diverse, common- 245

sense sensitive, and context-sensitive, we expect 246

that maximizing Rint alongside R ensures that the 247

agent maximizes the general reward function R 248

without getting stuck in local optima. 249
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4 Dreaming with LLMs250

This section systematically introduces how DLLM251

obtains guiding information (goals) from LLMs252

and utilizes them to incentivize the agent to manage253

long-term decision-making.254

4.1 Goal Generation by Prompting LLMs255

To generate the natural language representations256

of goals and their corresponding vector embed-257

dings, DLLM utilizes a pretrained Sentence-258

Bert model (Reimers and Gurevych, 2019) and259

GPT (Ouyang et al., 2022). For GPT, we use two260

versions including GPT-3.5-turbo-0315 and GPT-261

4-32k-0315, which we will refer to as GPT-3.5 and262

GPT-4 respectively in the following text.263

We initially obtain the natural language repre-264

sentation, denoted as ol (l denotes language, and265

ol means natural language description of o), corre-266

sponding to the information in the agent’s current267

observation o. This ol may include details such as268

the agent’s position, inventory, health status, and269

field of view. We use an observation captioner to270

obtain the ol following ELLM (Du et al., 2023)271

(see Appendix D for more details of captioners).272

Subsequently, we provide ol and other possible lan-273

guage output from the environment (e.g., the task274

description in HomeGrid) and the description of275

environmental mechanisms to LLMs to get a fixed276

number of goals gl1:K in the form of natural lan-277

guage, where K is a hyperparameter representing278

the expected number of goals returned by the LLM.279

We utilize SentenceBert to convert these goals from280

natural language into vector embeddings g1:K . For281

different environments, we utilize two specific ap-282

proaches to obtain goals: 1) having the LLM gener-283

ate responses for K arbitrary types of goals and 2)284

instructing the LLM to provide a goal for K speci-285

fied types (e.g., determining which room to enter286

and specifying the corresponding action). The sec-287

ond approach is designed to standardize responses288

from the LLM and ensure that the goals outputted289

by the LLM cover all necessary aspects for task290

completion in complex scenarios.291

4.2 Incorporating Decreased Intrinsic292

Rewards into Dreaming Processes293

At each online interaction step, we have a transi-294

tion captioner that gives a language description ul295

of the dynamics between the observation and the296

next observation; the language description ul is297

then embedded into a vector embedding u. Given298

the sensory representation x0, language description 299

embedding of transition u0, embeddings of goals 300

g1:K , and intrinsic rewards for each goal i1:K of 301

replay inputs, the world model and actor produce 302

a sequence of imagined latent states ŝ1:T , actions 303

â1:T , rewards r̂1:T , transitions û1:T and continua- 304

tion flags ĉ1:T , where T represents the total length 305

of model rollouts. We use cosine similarity to mea- 306

sure the matching score w between transitions and 307

goals: 308

w (û | g) =

{
û·g

∥û∥∥g∥ if û·g
∥û∥∥g∥ > M

0 otherwise
, (1) 309

where M is a similarity threshold hyperparam- 310

eter. In this step, we aim to disregard low cosine 311

similarities to some extent, thereby preventing mis- 312

leading guidance. Moreover, within a sequence, a 313

goal may be triggered multiple times. We aim to 314

avoid assigning intrinsic rewards to the same goal 315

multiple times during a single rollout process, as it 316

could lead the agent to perform simple actions re- 317

peatedly and eventually diminish the exploration of 318

more complex behaviors. Hence, we only retain a 319

specific goal’s matching score when it first exceeds 320

M in the sequence. The method to calculate the 321

intrinsic reward for step t in one model rollout is 322

written as: 323

rint
t = α ·

K∑
k=1

wkt · ik ·

{
1 if t′k exists and t = t′k
0 otherwise

, (2) 324

where α is the hyperparameter that controls the 325

scale of the intrinsic rewards, t′k represents the time 326

step t when the wkt first exceeds M within the range 327

of 1 to T . 328

Then, we give the method to calculate and de- 329

crease i1:K . If each goal’s reward is constant, the 330

agent will tend to repeat learned skills instead of 331

exploring new ones. We use the novelty mea- 332

sure RND (Burda et al., 2018) to generate and 333

reduce the intrinsic rewards from LLMs, which 334

effectively mitigates the issue of repetitive com- 335

pletion of simple tasks. To be more specific, after 336

sampling a batch from the replay buffer, we extract 337

the sentence embeddings of the goals from them: 338

g1:B,1:L,1:K , where B is the batch size, and L is the 339

batch length. Given the target network f : G→ R 340

and the predictor neural network f̂θ : G→ R, we 341

calculate the prediction error: 342

e1:B,1:L,1:K = ∥f̂θ(g)− f(g)∥2. (3) 343
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Subsequently, we update the predictor neural net-344

work and the running estimates of reward standard345

deviation, then standardize the intrinsic reward:346

i1:B,1:L,1:K = (e1:B,1:L,1:K −m)/σ, (4)347

where m and σ stand for the running estimates of348

the mean and standard deviation of the intrinsic349

returns.350

4.3 World Model and Actor Critic Learning351

We implement a multi-model world model with Re-352

current State-Space Model (RSSM) (Hafner et al.,353

2019b), with an encoder that maps sensory in-354

puts xt (e.g., image frame or language) and ut355

to stochastic representations zt. Afterward, zt is356

combined with past action at and recurrent state ht357

and fed into a sequence model, denoted as “seq”,358

to predict ẑt+1:359

ẑt, ht = seq (zt−1, ht−1, at−1) , (5)360
361

zt ∼ encoder (xt, ut, ht) , (6)362
363

x̂t, ût, r̂t, ĉt = decoder (zt, ht) , (7)364

where ẑt, x̂t, ût, r̂t, ĉt denotes the world model pre-365

diction for the stochastic representation, sensory366

representation, transition, reward, and the episode367

continuation flag. The encoder and decoder employ368

convolutional neural networks (CNN) for image in-369

puts and multi-layer perceptrons (MLP) for other370

low-dimensional inputs. After obtaining multi-371

modal representations from the decoder and se-372

quence model, we employ the following objective373

to train the entire world model in an end-to-end374

manner:375

Ltotal = Lx + Lu + Lr + Lc + β1Lpred + β2Lreg, (8)376

in which β1 = 0.5, β2 = 0.1. Refer to Appendix377

A.1 for more details of all the sub-loss terms.378

We adopt the widely used actor-critic architec-379

ture for learning policies, where the actor executes380

actions and collects samples in the environment381

while the critic evaluates whether the executed382

action is good. We denote the model state as383

st = concat(zt, ht). The actor and the critic give:384

Actor: πθ(at | st), Critic: Vψ(st). (9)385

Note that both the actor network and the critic net-386

work are simple MLPs. The actor aims to maxi-387

mize the cumulative returns with the involvement388

of intrinsic reward, i.e.,389

Rt
.
=

∞∑
τ=0

γτ (rt+τ + rintt+τ ). (10)390

Intrinsic rewards beyond the prediction horizon T 391

are not accessible, so we set them to zero. Details 392

on the utilization of bootstrapped λ-returns (Sut- 393

ton and Barto, 2018) for updating the actor and 394

networks are provided in Appendix A.2. Addi- 395

tionally, the pseudocode for DLLM is outlined in 396

Appendix C. 397

5 Experiments 398

The primary goal of our experiments is to substan- 399

tiate the following claim: DLLM helps the agent 400

by leveraging the guidance from the LLM during 401

the dreaming process, thereby achieving improved 402

performance in tasks. Specifically, our experiments 403

test the following hypotheses: 404

• (H1) Through proper prompting, DLLM can 405

comprehend complex environments and gen- 406

erate accurate instructions to assist intelligent 407

agents in multi-task environments. 408

• (H2) DLLM can leverage the generative ca- 409

pabilities of LLMs to obtain reasonable and 410

novel hints, aiding agents in exploration 411

within challenging environments. 412

• (H3) DLLM can significantly accelerate the 413

exploration and training of agents in highly 414

complex, large-scale, near-real environments 415

that necessitate rational high-dimensional 416

planning. 417

• (H4) DLLM can be more powerful when lever- 418

aging stronger LLMs or receiving additional 419

language information. 420

Baselines. Since we include natural language 421

information in our experiments, we consider em- 422

ploying ELLM (Du et al., 2023) and Dynalang (Lin 423

et al., 2023) as baselines.1 We also compare against 424

other recent strong baseline algorithms that do not 425

utilize natural language in each environment. 426

Environments. We conduct experiments 427

on three environments: HomeGrid (Lin et al., 428

2023), Crafter (Hafner, 2022), and Minecraft Dia- 429

mond (Hafner et al., 2024) based on MineRL (Guss 430

et al., 2019). These environments span first-person 431

to third-person perspectives, 2D or 3D views, and 432

various types and levels of task complexity. 433

1For ELLM and Dynalang, we utilize their official imple-
mentations for experimentation. For ELLM, we prompt the
LLM and obtain goals following the same procedure as in our
method. All language information, including the goals ob-
tained from the LLMs, is encoded into sentence embeddings
to feed Dynalang.
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Captioner and Language Encodings. Within434

each environment, we deploy an observation cap-435

tioner and a transition captioner to caption ob-436

servations and transitions, respectively. Transi-437

tion captions are stored in the replay buffer for438

the agent’s predictive learning, while observation439

captions provide pertinent information for LLM.440

For language encoding, we employ SentenceBert441

all-MiniLM-L6-v2 (Wang et al., 2020) to convert442

all natural language inputs into embeddings.443

The Quality of Generated Goals. To measure444

the quality of goals generated by LLMs during on-445

line interaction in the environment, we selected446

the following metrics: novelty, correctness, con-447

text sensitivity, and common-sense sensitivity. See448

the detailed explanations and experiments in Ap-449

pendix E.450

Cache. As each query to the LLM consists of451

an object-receptacle combination, we implement452

a cache for each experiment to efficiently reuse453

queries, thereby reducing both time and monetary454

cost.455

5.1 HomeGrid456

Environment description. HomeGrid is a multi-457

task reinforcement learning environment structured458

as a grid world, where agents get partial pixel ob-459

servations and language hints (e.g., the descriptions460

of tasks). We adopt the “task only” setting from461

the original HomeGrid paper (Lin et al., 2023) but462

add icon signals to guide actions for opening bins.463

For each step, we have the captioners to caption464

the observation and transition. More details can be465

seen in Appendix B.1.1.466

To support our claims, we design various settings467

where the environment provides different levels468

of information along with distinct language hints469

for each, as outlined in Table 1, to help address470

hypothesis H4.471

Query prompts, LLM choices, and Goals Gen-472

erated. Each query prompt consists of the caption473

of the agent’s current observation and a request for474

the LLM to generate a goal for each of the two475

types: “where to go” and “what to do”, respec-476

tively. For full prompts and examples, please see477

Appendix B.1.2. We select GPT-4 as the base LLM478

for all experiments in HomeGrid. Queries to the479

GPT are made every ten steps. We test the quality480

of the goals generated in the Appendix E.1.481

Performance. The overall results are depicted482

in Figure 2. The baseline algorithm ELLM un-483

derperforms in the HomeGrid environment, likely484

0M 25M 50M
0

2

4

6

HomeGrid Reward
DLLM (oracle)
DLLM (fullinfo)
DLLM (keyinfo)
DLLM (standard)
Dynalang
ELLM

Figure 2: HomeGrid experiments results. Curves aver-
aged over 5 seeds with shading representing the standard
deviation.

due to difficulties in understanding the sentence 485

embeddings necessary for task description. Our 486

method outperforms baseline algorithms utilizing 487

the same information in the standard setting, show- 488

ing strong evidence for H1 and H3. Moreover, in 489

the Key info, Full info, and Oracle settings, DLLM 490

demonstrates enhanced performance with increas- 491

ing information. In the Full info setting, where 492

error prompts are minimized, DLLM consistently 493

shows a clear advantage throughout the training 494

period. The performance in the Full info setting is 495

comparable to the Oracle setting, with no signif- 496

icant difference observed. These results support 497

hypothesis H4. 498

5.2 Crafter 499

DreamerV3 14.5

AdaRefiner 15.8

Dynalang 16.4

AD 21.8

DLLM (w/ GPT-3.5) 24.4

DLLM (w/ GPT-4) 26.4

Crafter Score

Figure 3: The bar chart comparison of the means and
standard deviations between DLLM and baselines at
1M steps. DLLM generally exhibits higher average
performance, surpassing baselines by a large margin.

Environment description. The Crafter environ- 500

ment is a grid world that features top-down graph- 501

ics and discrete action space. Crafter is designed 502

similarly to a 2D Minecraft, featuring a procedu- 503

rally generated, partially observable world where 504

players can collect or craft a variety of artifacts. 505

6



Table 1: Description of different environment settings

Setting Description

Standard The environment provides task descriptions in natural language form.
Key info The environment additionally provides task-relevant objects’ location and status informa-

tion.
Full info The environment additionally provides the location and status information of all objects on

the map. For bins, the correct opening actions will also be instructed.
Oracle The agent will always receive accurate instructions.

In Crafter, the player’s goal is to unlock the en-506

tire achievement tree, which consists of 22 achieve-507

ments. As the map is designed with entities capable508

of harming the player (e.g., zombies, skeletons),509

the player must also create weapons or place barri-510

ers to ensure survival.511

Extra baselines. We compared three addi-512

tional types of baselines: (1) LLM-based solutions:513

SPRING (Wu et al., 2023), Reflexion (Shinn et al.,514

2023), ReAct (Yao et al., 2022), standalone GPT-515

4 (step-by-step instructions)2, (2) model-based516

RL baseline: DreamerV3 (Hafner et al., 2023),517

(3) model-free methods: Achievement Distilla-518

tion (Moon et al., 2024), PPO (Schulman et al.,519

2017), Rainbow (Hessel et al., 2017). We also add520

human experts (Hafner, 2022) and random policy521

as additional references.522

Query prompts, LLM choices, and Goals Gen-523

erated. Each query prompt contains the caption524

of the agent’s current observation description and525

a request to have the LLM generate five goals. In526

this portion, we conduct evaluations using two pop-527

ular LLMs, GPT-3.5 and GPT-4. Through these528

assessments, we explore whether a more robust529

LLM contributes to enhanced agent performance,530

addressing hypothesis H4. Queries to the GPT are531

made every ten steps. We test the quality of the532

goals generated in the Appendix E.2.533

Performance. DLLM outperforms all RL-based534

baseline algorithms at 1M and 5M steps. As shown535

in Figure 3 and Table 2, DLLM exhibits a signif-536

icant advantage compared to baselines. The loga-537

rithmic scale success rates for unlocking achieve-538

ments at 1M and 5M refer to appendix G, shows539

that DLLM is good at medium to high difficulty540

2For these LLM-based baselines, an oracle captioner is
utilized to translates environmental states into natural language
for LLMs, and an oracle translator converts LLM outputs into
specific actions. It is worth noting that, oracle captioner and
translator are not provided for RL-based algorithms including
DLLM.

Method Score Reward Steps
DLLM (w/ GPT-4) 38.1±1.2 15.4±1.1 5M

DLLM (w/ GPT-3.5) 37.6±1.6 14.5±1.5 5M
AdaRefiner (w/ GPT-4) 28.2±1.8 12.9±1.2 5M

AdaRefiner (w/ GPT-3.5) 23.4±2.2 11.8±1.7 5M
ELLM - 6.0±0.4 5M

DLLM (w/ GPT-4) 26.4±1.3 12.4±1.3 1M
DLLM (w/ GPT-3.5) 24.4±1.8 12.2±1.6 1M

Achievement Distillation 21.8±1.4 12.6±0.3 1M
Dynalang 16.4±1.7 11.5±1.4 1M

AdaRefiner (w/ GPT-4) 15.8±1.4 12.3±1.3 1M
PPO (ResNet) 15.6±1.6 10.3±0.5 1M
DreamerV3 14.5±1.6 11.7±1.9 1M

PPO 4.6±0.3 4.2±1.2 1M
Rainbow 4.3±0.2 5.0±1.3 1M

SPRING (w/ GPT-4) 27.3±1.2 12.3±0.7 -
Reflexion (w/ GPT-4) 12.8±1.0 10.3±1.3 -

ReAct (w/ GPT-4) 8.3±1.2 7.4±0.9 -
Vanilla GPT-4 3.4±1.5 2.5±1.6 -

Human Experts 50.5±6.8 14.3±2.3 -
Random 1.6±0.0 2.1±1.3 -

Table 2: The results indicate that DLLM with GPT-4 and
GPT-3.5 outperforms baseline algorithms, achieving
superiority at 1M and 5M training steps.

tasks like “make stone pickaxe/sword” and “col- 541

lect iron” while maintaining stable performance in 542

less challenging tasks at 1M; when the steps reach 543

5M, the performance of DLLM significantly sur- 544

passes the LLM-based algorithm SPRING. These 545

findings show strong evidence for hypotheses H2 546

and H3. In all experiments of Crafter, DLLM (w/ 547

GPT-4) demonstrates a more robust performance 548

than DLLM (w/ GPT-3.5), indicating that DLLM 549

can indeed achieve better performance with the 550

assistance of a more powerful LLM. This finding 551

aligns with the results presented in Appendix E.2, 552

where GPT-4 consistently identifies exploration- 553

beneficial goals, thus confirming hypothesis H4. 554

In Crafter, We also include ablation studies on the 555

scale of intrinsic rewards in Appendix F.1, not de- 556

creasing intrinsic rewards in Appendix F.2, utiliz- 557

ing random goals in Appendix F.3, and allowing 558

repeated intrinsic rewards in Appendix F.4. 559
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5.3 Minecraft560

Environment description. Several RL environ-561

ments, e.g., MineRL (Guss et al., 2019), have been562

constructed based on Minecraft, a popular video563

game that features a randomly initialized open564

world with diverse biomes. Minecraft Diamond is565

a challenging task based on MineRL, with the pri-566

mary objective of acquiring a diamond. Progress-567

ing through the game involves the player collecting568

resources to craft new items, ensuring his survival,569

unlocking the technological progress tree, and ulti-570

mately achieving the goal of obtaining a diamond571

within 36000 steps. In Minecraft Diamond, we572

also have captioners to provide the captions of the573

observation and transition in natural language form574

at each step. The environment settings completely575

mirror those outlined in DreamerV3 (Hafner et al.,576

2023), which includes awarding a +1 reward for577

each milestone achieved, which encompasses col-578

lecting or crafting a log, plank, stick, crafting table,579

wooden pickaxe, cobblestone, stone pickaxe, iron580

ore, furnace, iron ingot, iron pickaxe, and diamond.581

Several pure LLM-based approaches (BAAI, 2023;582

Wang et al., 2023c; Cai et al., 2023; Qin et al.,583

2024) have been developed to solve this environ-584

ment, while we give an RL-based solution aug-585

mented with language hints from LLMs.586

0M 20M 40M 60M 80M 100M
0

2

4

6

8

10

Minecraft Reward

DLLM (w/ GPT-4)
DreamerV3
Dynalang
IMPALA
Rainbow
R2D2
PPO
ELLM

Figure 4: The episode returns in Minecraft Diamond.
The curves indicate that DLLM enjoys a consistent ad-
vantage throughout the entire learning process, thanks
to its utilization of an LLM for exploration and training.
All algorithms undergo experiments using 5 different
seeds.

Extra baselines. To fully compare DLLM587

with current popular methods from model-based588

algorithms to model-free algorithms on Minecraft,589

we include DreamerV3 (Hafner et al., 2023),590

IMPALA (Espeholt et al., 2018), R2D2 (Liu591

et al., 2003), Rainbow (Hessel et al., 2017) and592

PPO (Schulman et al., 2017) as our extra base-593

lines, along with ELLM (Du et al., 2023) and Dy-594

Method Reward Method Reward
DLLM (w/ GPT-4) 10.0±0.3 Rainbow 6.3±0.3

DreamerV3 9.1±0.3 R2D2 5.0±0.5
Dynalang 8.9±0.4 PPO 4.1±0.2
IMPALA 7.4±0.2 ELLM 0.3±0.0

Table 3: Comparison between DLLM (w/ GPT-4) and
baselines in Minecraft at 100M. DLLM (w/ GPT-4)
surpasses all baselines, including those that also involve
LLMs or natural languages in policy learning.

nalang (Lin et al., 2023). 595

Query prompts, LLM choices, and Goals Gen- 596

erated. During each query to the GPT, we provide 597

it with information about the player’s status, in- 598

ventory, and equipment and request the GPT to 599

generate five goals. We choose GPT-4 as our lan- 600

guage model for the DLLM experiment. Please 601

see Appendix B.3.1 for specific details. We make a 602

query to the GPT every twenty steps. We also test 603

the quality of the generated goals in Appendix E.3. 604

Performance. In Figure 4 and Table 3, we 605

present empirical results in Minecraft Diamond. 606

Baseline algorithm ELLM struggles in this com- 607

plex environment, possibly due to high task com- 608

plexity. DLLM demonstrates higher data efficiency 609

in the early training stages, facilitating quicker 610

acquisition of basic skills within fewer training 611

steps compared to baseline methods. DLLM also 612

maintains a significant advantage in later stages, 613

indicating its ability to still derive reasonable and 614

practical guidance from the LLM during the post- 615

exploration training process. These findings under- 616

score the effectiveness of DLLM in guiding explo- 617

ration and training in highly complex environments 618

with the support of the LLM, providing compelling 619

evidence for hypothesis H3. 620

6 Conclusion and Discussion 621

We propose DLLM, a multi-modal model-based 622

RL method that leverages the guidance from LLMs 623

to provide hints (goals) and generate intrinsic re- 624

wards in model rollouts. DLLM outperforms recent 625

strong baselines in multiple challenging tasks with 626

sparse rewards. Our experiments demonstrate that 627

DLLM effectively utilizes language information 628

from the environment and LLMs, and enhances its 629

performance by improving language information 630

quality. 631

8



7 Limitations632

DLLM relies on the guidance provided by a large633

language model (LLM), making it susceptible to634

the inherent instability of LLM outputs. This intro-635

duces a potential risk to the stability of DLLM’s636

performance, even though the prompts used in our637

experiments contributed to relatively stable model638

outputs. Unreasonable goals may encourage the639

agent to make erroneous attempts, and correcting640

such misguided behavior may take time. We expect641

to address these challenges in future work.642

8 Broader Impacts643

LLMs have the potential to produce harmful or644

biased information. We have not observed LLMs645

generating such content in our current experimental646

environments, including HomeGrid, Crafter, and647

Minecraft. However, applying DLLM in other con-648

texts, especially real-world settings, requires in-649

creased attention to social safety concerns. Imple-650

menting necessary safety measures involves screen-651

ing LLM outputs, incorporating restrictive state-652

ments in LLM prompts, or fine-tuning with curated653

data.654
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A More Details on Methodology984

A.1 Formulas for Sub Losses of World Model985

All the formulas for sub terms, including sensa-986

tion loss Lx, transition loss Lu, reward loss Lr,987

continue loss Lc, prediction loss Lpred, regularizer988

Lreg, can be written as:989

Lx = ∥x̂t − xt∥22 , (11)990

991
Lu = catxent (ût, ut) , (12)992

993
Lr = catxent (r̂t, twohot (rt)) , (13)994

995
Lc = binxent (ĉt, ct) , (14)996

997
Lpred = max (1,KL [sg (zt) ∥ẑt]) , (15)998

999
Lreg = max (1,KL [zt∥ sg (ẑt)]) , (16)1000

where catxent is the categorical cross-entropy1001

loss, binxent is the binary cross-entropy loss, sg1002

is the stop gradient operator, KL refers to the1003

Kullback-Leibler (KL) divergence. We adopt1004

twohot(·) from the DreamerV3 approach for re- 1005

ward prediction, utilizing a softmax classifier with 1006

exponentially spaced bins. This classifier is em- 1007

ployed to regress the two-hot encoding of real- 1008

valued rewards, ensuring that the gradient scale 1009

remains independent of the arbitrary scale of the 1010

rewards. Additionally, we apply a regularizer with 1011

a cap at one free nat (Kingma et al., 2016) to avoid 1012

over-regularization, a phenomenon known as pos- 1013

terior collapse. 1014

A.2 The Update of the Actor and Critic 1015

Networks. 1016

The bootstrapped λ-returns (Sutton and Barto, 1017

2018) used to update the actor and critic networks 1018

could be written as: 1019

Rλ
t

.
= rt + γct

[
(1− λ)Vψ (st+1)

+ λRλ
t+1

]
.

(17) 1020

Rλ
T

.
= Vψ (sT ) . (18) 1021

The actor and the critic are updated via the fol- 1022

lowing losses: 1023

LV = catxent (Vψ(st),

sg
(
twohot

(
Rλ
t

)))
.

(19) 1024

Lπ = −
sg

(
Rλ
t − V (st)

)
max(1, S)

log πθ (at | st)

− ηH [πθ (at | st)] .
(20) 1025

where S is the exponential moving average be- 1026

tween the 5th and 95th percentile of Rt. 1027

B Environment Details 1028

B.1 HomeGrid 1029

B.1.1 Details of Environmental Adjustments 1030

“HomeGrid” is introduced by Dynalang (Lin et al., 1031

2023), and our modified version is based on the 1032

“homegrid-task” setting. Aside from the pixel ob- 1033

servation, this setting additionally provides lan- 1034

guage information describing the task assigned to 1035

the robotic agent. However, HomeGrid does not 1036

provide any visual signal when the robot takes the 1037

actions, including “pedal”, “lift”, and “grasp”, rep- 1038

resenting the different actions to open the bins, so 1039

the trained transition captioner needs additional in- 1040

formation in the pixel observation. We add icons 1041
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(pedal), (lift), and (grasp)3 for1042

each of the three actions and make them appear1043

on the head of the robot when the related action1044

is taken and the robot succeeds in opening any1045

bin. Furthermore, there have been no alterations to1046

HomeGrid’s task assignments, reward mechanisms,1047

or total step count.1048

B.1.2 Full Prompt Details1049

During each query to the LLM, we provide the1050

agent with a concise overview of the fundamental1051

aspects of the HomeGrid environment. The obser-1052

vation captioner interprets the current observational1053

state of the environment into natural language, and1054

we provide this to the LLM. We then direct the1055

LLM to choose one goal for “what to do” and an-1056

other for “where to go.” In order to ensure con-1057

sistency in agent responses, we have incorporated1058

mandatory statements and provided illustrative ex-1059

amples. GPT’s performance can fluctuate, mani-1060

festing as inconsistent quality in generated outputs1061

at different times of the day. We recommend capi-1062

talizing all the warning text. This can help alleviate1063

the issue.1064

The actual input provided to the LLM is divided1065

into two parts: system information and game infor-1066

mation. The part of system information is:1067

3All assets of the icons are collected from https://
fontawesome.com/.

You are engaged in a game
resembling AI2-THOR. You will
receive details about your
task, interactive items in view,
carried items, and your current
room. State the goals you wish
to achieve from now on. Please
select one thing to do and one
room to go, and return them to me,
with the format including:

go to the [room],
[action] the [object],
[action] to [change the status
of] (e.g., open) the [bin],
[action] the [object] in/to the
[bin/room].

Commas should separate goals
and should not contain any
additional characters.

An example is:
get the bottle, go to the kitchen.

1068

The format for game information is as follows: 1069

Your task is [text],
You see [objects],
Your carrying is [object],
[Extra information based on the
setting of standard, key info, and
full info].

1070

B.2 Crafter 1071

Crafter (Hafner, 2022) serves as a platform for 1072

reinforcement learning research drawing inspira- 1073

tion from Minecraft, featuring a 2D world where 1074

players engage in various survival activities. This 1075

game simplifies and optimizes familiar mechanics 1076

to enhance research productivity. Players explore a 1077

broad world comprising diverse terrains like forests, 1078

lakes, mountains, and caves. The game challenges 1079

players to maintain health, food, and water, with 1080

consequences for neglecting these essentials. The 1081

interaction with various creatures, which vary in be- 1082

havior based on the time of day, adds to the game’s 1083

complexity. 1084
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B.2.1 Full Prompt Details1085

During each query to the LLM, we start by pre-1086

senting the framework of the Crafter environment,1087

employing Minecraft as an analogy. Subsequently,1088

we furnish the current observation information to1089

the LLM, encompassing objects/creatures within1090

the player’s field of view, the details of the player’s1091

inventory, and the player’s status.1092

In Crafter, we also divide the prompt for the1093

LLM into two sections: system information and1094

game information. The system information is as1095

follows:1096

As a professional game analyst,
you oversee an RL agent or a player
in a game resembling Minecraft.
You will receive a starting point
that includes information about
what the player sees, what the
player has in his inventory, and
the player’s status. For this
starting point, please provide the
top 5 key goals the player should
achieve in the next several steps
to maximize its game exploration.

Consider the feasibility of each
action in the current state
and its importance to achieving
the achievement. The response
should only include valid actions
separated by ’,’. Do not include
any other letters, symbols, or
words.

An example is:
collect wood, place table, collect
stone, attack cow, attack zombie.

1097

The format for game information is as follows:1098

You see [objects/creatures],
Your have[objects],
Your status is [text].

1099

B.3 Minecraft1100

Minecraft Diamond (Hafner et al., 2023) is an in-1101

novative environment developed on top of Min-1102

eRL (Guss et al., 2019), gaining significant atten-1103

tion in the research community within the expan-1104

sive universe of Minecraft. Minecraft offers a pro-1105

cedurally generated 3D world with diverse biomes, 1106

such as forests, deserts, and mountains, all com- 1107

posed of one-meter blocks for player interaction. 1108

The primary challenge in this environment is the 1109

pursuit of diamonds, a rare and valuable resource 1110

found deep underground (Luo et al., 2023). This 1111

quest tests players’ abilities to navigate and survive 1112

in the diverse Minecraft world, requiring progres- 1113

sion through a complex technology tree. Players 1114

interact with various creatures, gather resources, 1115

and craft items from over 379 recipes, ensuring 1116

their survival by managing food and safety. 1117

Developers have meticulously addressed game- 1118

play nuances identified through extensive human 1119

playtesting in the Minecraft Diamond environment. 1120

Key improvements include modifying the episode 1121

termination criteria based on player death or a fixed 1122

number of steps and refining the jump mechanism 1123

to enhance player interaction and strategy develop- 1124

ment. The environment, built on MineRL v0.4.415 1125

and Minecraft version 1.11.2, offers a more consis- 1126

tent and engaging experience. The reward system 1127

is thoughtfully structured, encouraging players to 1128

reach 12 significant milestones culminating in ac- 1129

quiring a diamond. This system, while straightfor- 1130

ward, requires strategic planning and resource man- 1131

agement, as each item provides a reward only once 1132

per episode. The environment’s sensory inputs and 1133

action space are comprehensive and immersive, of- 1134

fering players a first-person view and a wide range 1135

of actions, from movement to crafting. 1136

B.3.1 Full Prompt Details 1137

In Minecraft, we also split the LLM prompt into 1138

system and game info sections. The system infor- 1139

mation is as follows: 1140
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As a professional game analyst,
you oversee an RL agent or a player
in Minecraft, and your final goal
is to collect a diamond. You
will receive a starting point
that includes information about
what the player sees, what the
player has in his inventory, and
the player’s status. For this
starting point, please provide
the top 5 key goals the player
should achieve in the next several
steps to achieve his final goal.

Take note of the game mechanics
in Minecraft; you need to
progressively accomplish goals.
Each goal should be in the form
of an action with an item after
it. Please do not add any extra
numbers or words.

An example is:
pick up log, attack creepers, drop
cobblestone, craft wooden pickaxe,
craft arrows.

1141

An example of game information is as follows:1142

You have [objects]
You have equipped [objects]
The status of you is [text].

1143

C Pseudo Code1144

The pseudocode is presented in Algorithm 1.1145

D Details of Captioners1146

For the implementation of the captioners, DLLM1147

generally follows ELLM (Du et al., 2023), except1148

that we use trained transition captioners throughout1149

all our experiments to get the language description1150

of the dynamics between two observations. We1151

split the captions into two different parts: semantic1152

parts and dynamic parts.1153

D.1 Hard-coded Captioner for Semantic Parts1154

The captioner of semantic parts follows the hard-1155

coded captioner implementation outlined in Ap-1156

pendix I of ELLM (Du et al., 2023). The overall1157

semantic captions include the following categories:1158

• Field of view. In the grid world environments1159

(HomeGrid and Crafter), we collect the text1160

Algorithm 1 Dreaming with Large Language Mod-
els (DLLM)

while acting do
Observe in the environment
rt, ct, xt, ut, o

l
t ← env (at−1).

Acquire goals gt1:K ← embed(LLM
(
olt
)
).

Encode observations zt ∼ enc (xt, ut, ht).
Execute action at ∼ π (at | ht, zt).
Add

(
rt, ct, xt, ut, at, g

t
1:K

)
to replay buffer.

end while
while training do

Draw batch
{(

rt, ct, xt, ut, at, g
t
1:K

)}
from

replay buffer.
Calculate intrinsic rewards i1:K for each goal
using the RND method and update the RND
network.
Use world model to compute representa-
tions zt, future predictions ẑt+1, and decode
x̂t, ût, r̂t, ĉt.
Update world model to minimize Ltotal.
Imagine rollouts from all zt using π.
Calculate match scores w and the intrinsic
reward rint for each step.
Update actor to minimize Lπ.
Update critic to minimize LV .

end while

description of all the interactable objects in 1161

the agent’s view, regardless of the object’s 1162

quantity, to form the caption for this section. 1163

Similarly, in the Minecraft Diamond environ- 1164

ment, we obtain the list of all visible objects 1165

from the simulator’s semantic sensor. 1166

• Inventory. For HomeGrid, this will only in- 1167

clude the item the robot carries. For Crafter 1168

and Minecraft, we convert each inventory 1169

item to the corresponding text descriptor. For 1170

Minecraft, we get this information directly 1171

from interpreting the observation. 1172

• Health Status. In Crafter and Minecraft, if 1173

any health statuses are below the maximum, 1174

we convert each to a corresponding language 1175

description (e.g., we say the agent is “hungry” 1176

if the hunger status is less than 9). There is 1177

no such information in HomeGrid, so we do 1178

not provide related captions. Note that the 1179

observation directly gives related information 1180

in Minecraft, so we simply translate them into 1181

natural language. 1182
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D.2 Trained Transition Captioner for1183

Dynamics Parts1184

The captioner for transitions (dynamics parts) is1185

designed to translate the dynamics between two1186

adjacent observations into natural language form.1187

For convenience, we modify the original simulator1188

to generate language labels for the training of the1189

transition captioner. All language labels use a pre-1190

determined and fixed format established by humans.1191

These language labels succinctly describe the dy-1192

namics of the environment in the most straight-1193

forward manner possible. Notably, these human-1194

designed labels aid the agent in utilizing a similar1195

approach to describe the environment dynamics1196

with concise key words. The designs of all possible1197

formats of language descriptions for transitions in1198

each environment are as follows:1199

• HomeGrid.1200

– go to the [room].1201

– [action] the [object]. (e.g.,1202

pick up the plates)1203

– [action] to [change the status1204

of] (e.g., open) the [bin].1205

– [action] the [object] in/to the1206

[bin/room].1207

• Crafter.1208

– [action] (e.g., sleep, wake up)1209

– [action] the [item/object].1210

(e.g., attack the zombie)1211

• Minecraft.1212

– [action] (e.g., forward, jump,1213

sneak)1214

– [action] the [object]. (e.g.,1215

craft the torch)1216

The training process of the captioner mainly fol-1217

lows the methodology outlined in Appendix J of1218

ELLM (Du et al., 2023); we similarly apply a mod-1219

ified ClipCap algorithm (Mokady et al., 2021) to1220

datasets of trajectories generated by trained agents,1221

with details provided in Table 4. Specifically, we1222

embed the visual observations at timestep t and1223

t + 1 with a pre-trained and frozen CLIP ViT-B-1224

32 model (Radford et al., 2021); the embedding1225

is then concatenated together with the difference1226

in semantic embeddings between the correspond-1227

ing states. Semantic embeddings encompass the1228

inventory and a multi-hot embedding of the set of1229

objects/creatures present in the agent’s local view. 1230

The concatenated representation of the transition 1231

is then mapped through a learned mapping func- 1232

tion to a sequence of 32 tokens. We use these 1233

tokens as a prefix and decode them with a trained 1234

and frozen GPT-2 to generate the caption (Radford 1235

et al., 2019).

Table 4: The algorithm used to generate samples, total
steps, and scale of the generated dataset for each envi-
ronment are as follows. We capture one sample every
1K steps during training.

Environment Algorithm Steps Scale
HomeGrid Dynalang 10M 10K

Crafter Achievement Distillation 1M 1K
Minecraft DreamerV3 100M 100K

1236
We employ a reward confusion matrix in Fig- 1237

ure 5 to illustrate the accuracy of our trained tran- 1238

sition captioner on HomeGrid, depicting the prob- 1239

ability of each achieved goal being correctly re- 1240

warded or incorrectly rewarded for another goal 1241

during real interactions with the environment. De- 1242

spite being based on a limited dataset, the captioner 1243

demonstrates strong accuracy even when extrapo- 1244

lated beyond the dataset distribution. 1245

E Metrics to Test the Quality of Goals 1246

Generated by LLMs and Goal Analysis. 1247

Despite the superiority of GPT-3.5 and GPT-4, they 1248

may still output impractical or unachievable goals 1249

within the game mechanics. This section of abla- 1250

tion experiments primarily investigates the quality 1251

of guidance provided by different versions of LLMs 1252

in all the environments in which DLLM was con- 1253

ducted. A detailed explanation of the metrics for 1254

measuring the generated goals’ quality is shown in 1255

Table 5. 1256

E.1 HomeGrid 1257

In HomeGrid, given the current observation (includ- 1258

ing the information about the task and the world 1259

state), there is a unique correct answer for “where 1260

to go” and “what to do”. To assess the quality of 1261

the generated goals, we conducted tests as shown in 1262

Table 6. In this task-oriented environment, we do 1263

not test the novelty of goals. The statistical results 1264

for each setting were obtained using 1M training 1265

samples generated from real interactions. The cor- 1266

rectness of goals provided in the standard setting is 1267

low since the agent’s observation may lack relevant 1268

information. There is a noticeable improvement in 1269

the Key info setting and extra improvement in the 1270
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go to the dining room
go to the living room

go to the kitchen
pick the bottle
drop the bottle

pick the fruit
drop the fruit

pick the papers
drop the papers
pick the plates
drop the plates

pedal to open the compost bin
grasp to open the compost bin

lift to open the compost bin
pedal to open the recycle bin
grasp to open the recycle bin

lift to open the recycle bin
pedal to open the trash bin
grasp to open the trash bin

lift to open the trash bin
put the bottle in the compost bin

put the fruit in the compost bin
put the papers in the compost bin
put the plates in the compost bin

put the bottle in the recycle bin
put the fruit in the recycle bin

put the papers in the recycle bin
put the plates in the recycle bin

put the bottle in the trash bin
put the fruit in the trash bin

put the papers in the trash bin
put the plates in the trash bin

do nothing 0.0

0.2

0.4

0.6

0.8

1.0

In
te

ns
ity

Figure 5: The reward confusion matrix of the trained transition captioner on HomeGrid. Each square’s color
indicates the probability that the action in the row will be rewarded with the achievement labels on the column. For
example, if all action “go to the dining room” is recognized as the achievement “go to the dining room”, we will
receive a 100% on the square corresponding to this row and column. The total in each row does not equal 100%
because multiple rewards may be activated by a single achievement, depending on its description.
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Table 5: Explanation of the metrics.

Metrics Explanation

Novelty In exploratory environments like Crafter and Minecraft, a goal is “novel” when its prerequi-
sites are fulfilled, but the goal remains unaccomplished in the current episode. For example,
in Crafter, the goal “place table” is “novel” when it is unfulfilled when there are sufficient
resources available to achieve it.

Correctness In task-oriented environments like HomeGrid, each situation has finite correct answers for
goals, and other goals may be useless or even lead to task failure. A goal is considered
“correct” if it is one of the correct answers. For example, “go to the kitchen” in HomeGrid is
correct if the task is to “find the papers” and the papers are located in the kitchen.

Context sensitivity A goal is “context sensitivity” when the player’s current field of view and inventory satisfy
all the conditions necessary for this goal, regardless of whether these goals are right or
novel. e.g., “make wood pickaxe” when you have enough resources but already have a wood
pickaxe in your inventory, and you see a table.

Common-sense sensitivity A goal is “common-sense sensitive” when it is feasible in the environment in at least one
situation. A counterexample is “make path” in Crafter, which is impossible. Sometimes,
the LLM may not fully understand a previously unknown environment (such as HomeGrid)
through concise descriptions, leading to such situations.

Full info setting. Note that in the Oracle setting,1271

the goals provided to the agent are always correct,1272

so we do not include this setting.

Table 6: Testing the quality of goals provided by LLM
in each setting of HomeGrid. Ideally, the goals should
exhibit high correctness, low context insensitivity, and
low commonsense insensitivity.

Setting Standard Key info Full info

Correctness 52.55% 61.64% 66.92%
Context insensitivity 24.30% 18.34% 18.95%

Common-sense insensitivity 3.45% 4.17% 5.63%

1273

E.2 Crafter1274

Given the exploratory nature of the environment, it1275

is hard to say if a goal is “correct” or not. There-1276

fore, in evaluating Crafter’s goal quality, assessing1277

its correctness holds minimal significance. Instead,1278

our evaluation approach prioritizes novelty over1279

correctness. Through testing various scenarios,1280

the results presented in Table 7 indicate that GPT-1281

3.5 tends to offer practical suggestions, demon-1282

strating a context-sensitive ratio of up to 79.41%.1283

Conversely, GPT-4 leans towards proposing more1284

radical and innovative recommendations, priori-1285

tizing novelty. Notably, a goal can exhibit both1286

novelty and context sensitivity concurrently. There-1287

fore, the proportions of “context insensitivity” and1288

“common-sense insensitivity” in the table are ac-1289

ceptable. Despite GPT-4 showing higher ratios1290

in both context insensitivity and common-sense1291

insensitivity, experimental results underscore its1292

exceptional assistance in enhancing performance.1293

Statistical results for each choice of LLMs were de-1294

rived from 1M training samples generated from real1295

interactions, with scripts devised to assess these 1296

samples without humans in the loop. 1297

Table 7: Testing the quality of goals provided by GPT-
3.5 and GPT-4 in Crafter.

LLM Novelty Context insensitivity

GPT-3.5 17.44% 20.59%
GPT-4 38.15% 38.80%

LLM Common-sense Insensitivity

GPT-3.5 8.26%
GPT-4 10.78%

E.3 Minecraft 1298

Despite Minecraft’s relative complexity, GPT pos- 1299

sesses a wealth of pretrained knowledge about it 1300

due to the abundance of relevant information in its 1301

training data. Similar to Crafter, correctness is not 1302

the primary focus in Minecraft. During the train- 1303

ing process of the DLLM, we randomly sampled 1304

1024 steps to collect an equal number of observa- 1305

tions, resulting in 5120 goals (1024 multiplied by 1306

5) aligned with the observations. Due to the com- 1307

plexity of elements encompassed within Minecraft, 1308

writing scripts to label the quality of goals proves 1309

exceedingly challenging. In light of this, we opted 1310

for a manual annotation process. This involved 1311

a detailed examination of each goal using human 1312

labeling. The results are presented in Table 8.

Table 8: Testing the quality of goals provided by GPT-4
in Minecraft.

Novelty Context insensitivity Common-sense insensitivity

73.63% 7.66% 0.53%

1313
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F Additional Ablation Studies1314

F.1 Ablations of the Intrinsic Reward Scale in1315

Crafter1316

In our work, a Random Network Distillation (RND)1317

network is employed to progressively reduce the1318

intrinsic reward corresponding to each goal. We1319

conduct an ablation experiment to illustrate the ne-1320

cessity of this measure. We set the hyperparameter1321

α ∈{0.5, 2} and perform experiments for each1322

value. α = 2 resulted in catastrophic outcomes,1323

whereas α = 0.5 only led to a slight performance1324

decrease. We conclude that excessively large intrin-1325

sic rewards tend to mislead the agent, e.g., try to1326

obtain intrinsic rewards instead of environmental1327

rewards. Conversely, excessively small intrinsic1328

rewards result in inadequate guidance the DLLM1329

provides, undermining its effectiveness in directing1330

the agent’s behavior. Please refer to Figures 6(a)1331

and 6(b) for the results.

DLLM ( =2.0) 20.3

AD 21.8

DLLM ( =0.5) 23.9

DLLM (w/ GPT-4) 26.4

Crafter Score

(a) Crafter scores.

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
0.0
2.5
5.0
7.5

10.0
12.5

Crafter Reward

DLLM (w/ GPT4) DLLM ( =0.5) DLLM ( =2.0)

(b) Reward curves.

Figure 6: Experimental results of (a) the mean score
values and standard deviations; (b) the reward curves
for DLLM with different α comparing against baselines
in Crafter, averaged across 5 seeds. “AD” refers to
Achievement Distillation (Moon et al., 2024).

1332

F.2 Decrease or not to decrease intrinsic1333

rewards in Crafter1334

This ablation study aims to demonstrate our claim1335

in the paper that repeatedly providing the agent1336

with a constant intrinsic reward for each goal will 1337

result in the agent consistently performing simple 1338

tasks (Riedmiller et al., 2018; Trott et al., 2019; 1339

Devidze et al., 2022), thereby reducing its explo- 1340

ration efficiency and the likelihood of acquiring 1341

new skills. We still use an RND network to pro- 1342

vide intrinsic rewards in this experiment. However, 1343

by preventing the RND network from updating 1344

throughout the training process, we ensure that the 1345

intrinsic rewards corresponding to all goals remain 1346

constant and do not decrease over time. We ob- 1347

serve a slight increase in performance during the 1348

earlier stages and a significant decline in the later 1349

stages, which is consistent with our claim. Please 1350

refer to Figures 7(a) and 7(b) for the results.

DLLM (ND) 14.3

Dynalang 16.4

AD 21.8

DLLM (w/ GPT-4) 26.4

Crafter Score

(a) Crafter scores.

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
0.0
2.5
5.0
7.5

10.0
12.5

Crafter Reward

DLLM (w/ GPT4) DLLM (no decrease)

(b) Reward curves.

Figure 7: Experimental results consist of (a) the mean
score values and standard deviations; (b) the reward
curves for DLLM with decreasing or not decreasing
intrinsic rewards, denoted as “ND” for “no decrease”,
compared to baselines, averaged across 5 seeds. “AD”
refers to Achievement Distillation (Moon et al., 2024).

1351

F.3 Random Goals in Crafter 1352

In this ablation study, we investigate the effec- 1353

tiveness of guidance from the LLM using its pre- 1354

trained knowledge compared to randomly sampled 1355

goals. In this experiment, we instruct the LLM to 1356

sample goals without providing any information 1357

about the agent, resulting in entirely random goal 1358
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sampling. However, we still require the LLM to ad-1359

here to the format specified in Appendix B.2.1. The1360

results are presented in Figure 8(a) and 8(b). We1361

find that using random goals significantly reduces1362

the performance of DLLM. Nonetheless, DLLM1363

still maintains a certain advantage over recent pop-1364

ular algorithms like Dynalang. This is because1365

providing basic information about the environment1366

to the LLM still generates some reasonable goals in1367

uncertain player conditions. These goals continue1368

to provide effective guidance for the agent through1369

the intrinsic rewards generated in model rollouts.

Dynalang 16.4

DLLM (w/ RG) 19.2

AD 21.8

DLLM (w/ GPT-4) 26.4

Crafter Score

(a) Crafter scores.

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
0.0
2.5
5.0
7.5

10.0
12.5

Crafter Reward

DLLM (w/ GPT4) DLLM (w/ random goals)

(b) Reward curves.

Figure 8: Experimental results consist of (a) the mean
score values and standard deviations; (b) the reward
curves for DLLM with random goals, denoted as “RG”
for “random goals”, compared to baselines, averaged
across 5 seeds. “AD” refers to Achievement Distilla-
tion (Moon et al., 2024).

1370

F.4 Allow Repetition in Crafter1371

In Method, we assert that when rewarding the same1372

goal repeatedly within a single model rollout, there1373

is a risk that the agent may tend to repetitively trig-1374

ger simpler goals instead of attempting to unlock1375

unexplored parts of the technology tree. Conse-1376

quently, this may lead to decreased performance1377

within Crafter environments primarily focused on1378

exploration. This viewpoint aligns with ELLM (Du1379

et al., 2023). Here, we conducted experiments to1380

substantiate this claim, with results presented in 1381

Figure 9(a) and 9(b). We observed a significant 1382

performance decline in DLLM when repetitive re- 1383

wards for the same goal were allowed. 1384

Dynalang 16.4

DLLM (AR) 17.1

AD 21.8

DLLM (w/ GPT-4) 26.4

Crafter Score

(a) Crafter scores.

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
0.0
2.5
5.0
7.5

10.0
12.5

Crafter Reward

DLLM (w/ GPT4) DLLM (allow repetition)

(b) Reward curves.

Figure 9: Experimental results comprise: (a) the mean
score values and standard deviations; (b) the reward
curves for DLLM allowing repeated intrinsic rewards
for goals, denoted as “AR” for “allow repetition”, com-
pared to baselines, averaged across 5 seeds. “AD” refers
to Achievement Distillation (Moon et al., 2024).

G Additional results in Crafter 1385

Figure 10 presents the comparison of success rates 1386

on the total 22 achievements between DLLM and 1387

other baselines in Crafter at 1M and 5M steps. 1388

DLLM exhibits a higher success rate in unlocking 1389

fundamental achievements and outperforms other 1390

baselines. 1391

H Status of Exemption from Institutional 1392

Review Board 1393

Before starting any segments of the study involving 1394

human evaluation, the research team completed and 1395

submitted a “Human Subjects Research Determina- 1396

tion" form to the appropriate Institutional Review 1397

Board (IRB). We obtained a determination letter 1398

from the IRB before any human study activities 1399

commenced, indicating that our project proposal 1400
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Figure 10: (a) The logarithmic scale success rates for unlocking 18 in 22 achievements at 1M (with the remaining four
never achieved otherwise). DLLM surpasses baselines in most achievements, particularly excelling in challenging
tasks such as “make stone pickaxe/sword” and “collect iron”. “AD” refers to Achievement Distillation (Moon et al.,
2024). (b) Logarithmic scale success rates for unlocking 22 distinct achievements at 5M steps.

had been granted ‘Exempt’ status. This classifica-1401

tion implies that the proposed research was deemed1402

‘Not Human Subjects Research’.1403

I Implementation Details1404

For all the experiments, We employ the de-1405

fault hyperparameters for the XL DreamerV31406

model (Hafner et al., 2024). Other hyperparam-1407

eters are specified below. A uniform learning rate1408

of 3e-4 is applied across all environments for the1409

RND networks. Regarding the scale for intrinsic1410

reward α, we consistently set α to be 1. We use 11411

Nvidia A100 GPU for each single experiment. The1412

training time includes the total GPT querying time,1413

which should be near zero when reusing a cache to1414

obtain the goals. More details are shown on table 9. 1415

J Licenses 1416

In our code, we have used the following libraries 1417

covered by the corresponding licenses: 1418

• HomeGrid, with MIT license 1419

• Crafter, with MIT license 1420

• Minecraft, with Attribution-NonCommercial- 1421

ShareAlike 4.0 International 1422

• OpenAI GPT, with CC BY-NC-SA 4.0 license 1423

• SentenceTransformer, with Apache-2.0 li- 1424

cense 1425
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Table 9: Hyperparameters and training information for DLLM.

HomeGrid Crafter Minecraft
Imagination horizon T 15 15 15
Language MLP layers 5 5 5
Language MLP units 1024 1024 1024

Image Size (64, 64, 3) (64, 64, 3) (64, 64, 3)
Train ratio 32 512 32
Batch size 16 16 16

Batch length 256 64 64
GRU recurrent units 4096 4096 8192

Learning rate for RND 3e-4 3e-4 3e-4
The scale for intrinsic rewards α 1.0 1.0 1.0

Similarity threshold M 0.5 0.5 0.5
Max goal numbers K 2 5 5

Env steps 50M 5M 100M
Number of envs 80 1 64

Training Time (GPU days) 11.25 10.75 16.50
Total GPT querying Time (days) 7.50 0.75 7.50

temperature of GPT 0.5
top_p of GPT 1.0

max_tokens of GPT 500
CPU device AMD EPYC 7452 32-Core Processor

CUDA device Nvidia A100 GPU
RAM 256G

• DreamerV3, with MIT license1426
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