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ABSTRACT

Object removal requires eliminating not only the target object but also its asso-
ciated visual effects, such as shadows and reflections. However, diffusion-based
inpainting methods often produce artifacts, hallucinate contents, alter background,
and struggle to remove object effects accurately. To overcome these limitations,
we present a new dataset for OBject-Effect Removal, named OBER, which pro-
vides paired images with and without object-effects, along with precise masks
for both objects and their effects. The dataset comprises high-quality captured
and simulated data, covering diverse objects, effects, and complex multi-object
scenes. Building on OBER, we propose a novel framework, ObjectClear, which
incorporates an object-effect attention mechanism to guide the model toward the
foreground removal regions by learning attention masks, effectively decoupling
foreground removal from background reconstruction. Furthermore, the predicted
attention map enables an attention-guided fusion strategy at inference, greatly pre-
serving background details. Extensive experiments demonstrate that ObjectClear
outperforms existing methods, achieving superior object-effect removal quality and
background fidelity, especially in challenging real-world scenarios.

1 INTRODUCTION

Recent advances in generative models (Rombach et al., 2022; Podell et al., 2024; Meng et al., 2021),
such as GPT-4o, have shown strong capabilities in image editing and are widely adopted in real-world
applications. Among these tasks, object removal has become a key task, allowing users to erase
unwanted content from images. However, seamlessly removing both the object and its effects (e.g.,
shadows and reflections) while preserving the background remains a challenging problem.

While diffusion-based methods (Podell et al., 2024; Zhuang et al., 2024; Ju et al., 2024; Li et al.,
2025; Sun et al., 2025; Ekin et al., 2024; Jia et al., 2025; Chen et al., 2024) have advanced the object
removal task, they still struggle with high-fidelity results. As shown in Figs. 1 and 5, existing methods
often leave residual artifacts, hallucinate unwanted content, alter backgrounds details, mistakenly
remove other objects, and fail to eliminate objects’ effects. This is partly because, in existing models,
the input mask typically fully occludes the target object, preventing the model from perceiving its
surrounding context and associated effects. In addition, the lack of large-scale and publicly available
training datasets for object-effect removal also limits further progress in the field.

Existing object removal datasets can be categorized into simulated and camera-captured data. (1) Sim-
ulated data. These datasets are often constructed by copy-pasting objects (Jiang et al., 2025; Li
et al., 2024) or using pretrained inpainting models to generate pseudo ground truth (Tudosiu et al.,
2024). While this allows low-cost generation of large-scale data, such datasets typically lack object
effects such as shadows and reflections, causing models trained on them to struggle with effect
removal. (2) Camera-captured data. Some works (Sagong et al., 2022; Wei et al., 2025) leverage
fixed-viewpoint videos to extract paired frames, but this approach limits the foreground to moving
objects only and makes it difficult to ensure background consistency between paired samples. Oth-
ers (Winter et al., 2024; Yu et al., 2025; Yang et al., 2025) capture image pairs before and after object
removal, but these datasets are often not publicly available and small in scale due to the high costs.

Achieving complete removal of objects and effects while preserving background consistency remains
challenging, especially with limited high-quality training data. In this study, we focus on both dataset
construction and network design (training and inference), explicitly targeting these two goals.
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Figure 1: Object Removal Comparison. Given an object mask, prior methods often leave residual
artifacts or hallucinate undesirable content, change background, and typically fail to remove associated
effects such as shadows and reflections. In contrast, our ObjectClear precisely eliminates both the
object and its associated effects, achieving seamless object removal results even in challenging cases.

Dataset - we present OBER, a hybrid dataset for OBject-Effect Removal, which combines both
camera-captured and simulated data with diverse foreground objects, background scenes, and object
effects (e.g., indoor/outdoor shadows and reflections). For the camera-captured data, we annotate
precise object and object-effect masks, which serve as critical supervision during training. For the
simulated data, we leverage these masks to compute accurate alpha maps, enabling realistic alpha
blending of RGBA object layers with effects and high-quality backgrounds. We further extend the
simulation pipeline to include multi-object scenarios, enhancing model robustness in challenging
cases involving occlusion and object interactions, as shown in the last two rows of Fig. 5. By
combining the realism of captured data with the scalability of simulation, OBER offers a high-quality,
large-scale, and diverse dataset with a total of 12,715 training samples. In addition, we introduce two
new benchmarks: OBER-Test and OBER-Wild, to support future research.

Network - built upon OBER, we propose a novel framework, ObjectClear. (a) During training, we
introduces an Object-Effect Attention (OEA) mechanism that adaptively focuses on the foreground
removal region (object and its effects), by supervising cross-attention maps with object-effect masks.
The OEA module effectively decouples foreground removal from background reconstruction, enabling
more precise and complete object elimination. (b) During inference, the predicted attention map
supports an Attention-Guided Fusion (AGF) module, helping to preserve background details, as
shown in Fig. 7. We further propose a Spatially-Varying Denoising Strength (SVDS) strategy to
address incomplete object removal and inconsistent background colors caused by a uniform denoising
strength (See Fig. 11). These designs enable the model to adaptively handle removal regions,
achieving precise and complete object-effect removal while preserving background details.

Our contributions are summarized as follows:

• We propose OBER, a high-quality and large-scale hybrid dataset for object removal, featuring
diverse objects, fine-grained annotations of object-effect masks, and complex multi-object
scenarios across both simulated and camera-captured settings.

• We introduce a novel framework, ObjectClear, which incorporates an Object-Effect Atten-
tion (OEA) mechanism that adaptively focuses on foreground removal regions, together with
an Attention-Guided Fusion (AGF) and a Spatially-Varying Denoising Strength (SVDS)
strategy, thereby improving object removal quality and background fidelity.

• Our approach achieves superior performance on all benchmarks, outperforming existing
approaches in terms of both quantitative metrics and visual quality.
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2 RELATED WORK

Image Inpainting. Image inpainting is a long-standing visual editing task that aims to seamlessly
reconstruct pixels within a given mask. Early approaches predominantly adopt generative adversarial
networks (GANs) (Goodfellow et al., 2014), but often suffer from limited realism and diversity (Liu
et al., 2020; Pathak et al., 2016; Ren et al., 2019; Zeng et al., 2019). With the rapid advances in
diffusion models (Rombach et al., 2022; Song et al., 2020; Ho et al., 2020; Podell et al., 2024), many
methods (Avrahami et al., 2022; Lugmayr et al., 2022; Meng et al., 2021; Zhuang et al., 2024; Ju
et al., 2024; Yang et al., 2023) have begun leveraging their strong generative priors to synthesize
high-fidelity content, achieving state-of-the-art results in image inpainting. In this work, we adapt the
SDXL-Inpainting model (Podell et al., 2024) for photorealistic completion. However, despite their
strong generative capabilities, existing inpainting models often lack awareness of object-induced
effects (e.g., shadows and reflections), leading to incomplete or inconsistent object removal results.

Object Removal. Object removal is a specialized branch of image inpainting that requires explicit
consideration of object effects to achieve complete removal, a task currently dominated by diffusion-
based models (Winter et al., 2024; Jiang et al., 2025; Liu et al., 2025; Yu et al., 2025; Li et al., 2025;
Chen et al., 2025; Zhuang et al., 2024; Ekin et al., 2024; Chen et al., 2024; Yang et al., 2025; Jia
et al., 2025; Sun et al., 2025; Wei et al., 2025). A common strategy involves curating high-quality
triplet datasets. For instance, ObjectDrop (Winter et al., 2024) builds a real-world dataset by having
photographers capture the same scene before and after the removal of a single object. However, its
limited scale and lack of public availability hinder broader adoption. To address data scalability,
methods like SmartEraser (Jiang et al., 2025) and Erase Diffusion (Liu et al., 2025) rely on synthetic
datasets using segmentation or matting techniques to extract foreground objects, but these typically
lack annotations of object effects, limiting the models’ ability to remove shadows or reflections. To
enhance realism, methods such as LayerDecomp (Yang et al., 2025) and OmniPaint (Yu et al., 2025)
create costly camera-captured data. OmniPaint (Yu et al., 2025) takes one step further to annotate
unlabeled images by a model trained on small-scale real data, while RORem (Li et al., 2025) involves
human annotators to ensure the quality of annotated data. In parallel, works like RORD (Sagong
et al., 2022) and OmniEraser (Wei et al., 2025) scale data generation by mining realistic video frames
with fixed viewpoints, selectively pairing frames with and without target objects while preserving
natural object effects. To eliminate reliance on curated datasets altogether, other methods opt for
test-time optimization (Chen et al., 2024; Sun et al., 2025; Jia et al., 2025) or providing plug-and-play
solutions (Ekin et al., 2024). However, these models rely on implicitly learning object effects without
explicitly modeling effect maps, which makes it difficult to maintain background consistency.

3 METHODOLOGY

To achieve accurate removal of target objects along with their associated visual effects, such as
shadow and reflection, we propose a comprehensive framework consisting of a data curation pipeline
(OBER Dataset, Sec. 3.1) and a dedicated object removal model (ObjectClear, Sec. 3.2).

3.1 OBER DATASET

ObjectDrop (Winter et al., 2024) shows that even small-scale datasets, when captured with careful
camera control over scene consistency, can significantly enhance model generalizability in object
removal tasks. However, due to the lack of public access to such datasets and the high cost of
real-world data collection, subsequent works often face limitations in dataset scale. To address this
challenge, we introduce the OBER dataset (OBject-Effect Removal), designed to balance data realism
and scalability. As illustrated in Fig. 2, OBER is a hybrid dataset consisting of two parts: (1) a
small set of camera-captured images adhering to physical realism, and (2) a larger set of simulated
images generated by compositing foreground objects, extracted from the real data in (1), onto diverse
background scenes.

Camera-Captured Data. (1) Capture Paired Images. Following the approach of ObjectDrop (Winter
et al., 2024), we use fixed cameras to construct a counterfactual dataset by capturing each scene
before and after the removal of a single object, while keeping all the other factors unchanged. For
each pair, the image with the object is used as the input Iin, and the image without the object serves
as the ground truth Igt. In total, we collected 2,878 such counterfactual pairs with 2,715 for training
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(a) Camera-Captured Data (b) Simulated Data
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Figure 2: Dataset Construction Pipeline of OBER. The dataset combines both camera-captured
and simulated data, featuring diverse foreground objects and background scenes. It provides rich
annotations, including object masks, object-effect masks, transparent RGBA object layers, and
complex multi-object scenarios for training and evaluation. (See sample data in Fig. 8)

and 163 for testing. Our dataset encompasses a wide variety of everyday objects commonly found
in indoor (e.g., benches, cups, dolls) and outdoor scenes (e.g., pedestrians, vehicles). These image
pairs also preserve visual effects such as shadows and reflections. To reduce potential pixel-level
misalignment, we downsample and crop all images to a fixed training resolution (i.e., 512 × 512).
(2) Segment Object Mask Mo. To obtain the object mask Mo as network input alongside the input
image Iin, we apply off-the-shelf detection and segmentation models, such as DINO (Zhang et al.,
2023) and SAM (Kirillov et al., 2023) to Iin. (3) Segment Object-Effect Mask Mo ∪Me. Different
from previous methods, we propose to explicitly model the object effects. Therefore, we introduce
an object-effect mask Mfg that covers both the object Mo and its associated visual effects Me in
our dataset. Unlike the coarse object-effect masks provided in the RORD dataset (Sagong et al.,
2022), we construct Mfg in an efficient and accurate way by computing the pixel-wise difference
between Iin and Igt. Pixels with differences above a predefined threshold are regarded as part of the
object-effect mask. This object-effect mask provides crucial supervision during training, allowing the
network to adaptively learn to focus on the target removal regions, including both the object itself
and its associated effects.

Simulated Data. With the high-quality real data collected, we further scale up the dataset with
a carefully designed simulation pipeline. (1) Collect Background Images. We begin by down-
loading high-quality background images from the Internet, which offer a diverse range of back-
ground scenes. To select backgrounds with flat regions suitable for object placement, we first apply
Mask2Former (Cheng et al., 2022) to segment flat areas corresponding to semantic classes such as
“road, sidewalk, grass, floor”, as illustrated in Fig. 2(b). We then refine the selection by computing the
gradient of the depth map generated by Depth Anything V2 (Yang et al., 2024), filtering out regions
with significant depth variation to ensure that the inserted objects are placed on visually flat surfaces.
(2) Collect Foreground Objects with Effects. Based on the camera-captured paired data (Iin, Igt),
along with the object mask Mo and effect mask Me, we compute the alpha map of the foreground
object with effects Ioe using Eq. 1, where ε is a small constant added to avoid division by zero. For
subsequent compositing, we manually categorize the foreground objects into eight groups based on
their shadow direction (Fig. 2(b)).

α(p) =


0, if pixel p ∈ background area Mo ∩Me

1, if pixel p ∈ object area Mo

(Igt − Iin)/(Igt + ε), if pixel p ∈ effect area Me

(1)

(3) Blend Objects with Backgrounds. We randomly sample a background image Ibg and a foreground
object image with effects Ioe, and synthesize a composite image using alpha blending: Icomp =
(1−α) ·Ibg+α ·Ioe. Beyond single-object cases, we also synthesize multi-object data by compositing
multiple foreground objects with the same lighting directions, thereby covering scenarios involving
object occlusions, as illustrated in Fig. 2(b). These designs ensure physically plausible placement
and consistent lighting, reducing the domain gap between simulated and real data. Synthetic data
also overcomes challenges in real-world collection, such as limited scale and complex cases (e.g.,
multi-object occlusions, reflections), while its controllability expands coverage and diversity. In total,
we generate 10,000 composite images, significantly enriching the diversity and scalability of our
dataset. In particular, the simulation of multi-object compositions leads to notable improvements in
object removal robustness and background preservation, as discussed and compared in Table 2.
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Figure 3: The Framework of ObjectClear. Given an input image and a target object mask, Object-
Clear employs an Object-Effect Attention mechanism to guide the model toward foreground removal
regions by learning attention masks. The predicted mask further enables an Attention-Guided Fusion
strategy during inference, which substantially preserves background details.

3.2 OBJECTCLEAR

Our ObjectClear is built upon SDXL-Inpainting (Podell et al., 2024). While SDXL-Inpainting uses
a noise map zt, a masked image Im, a corresponding mask Mo, and a text prompt c as inputs, we
feed the original image Iin instead of Im into the model, and our inputs are expressed as a tuple
< zt, Iin,Mo, c >. This design encourages the model to better attend to the effect of the target object
by leveraging its visual features. Moreover, it facilitates more effective utilization of background
information behind the object when transparent objects are to be removed, such as glass cups. To
achieve precise and complete object removal while enhancing background preservation, we introduce
Object-Effect Attention (OEA), Attention-Guided Fusion (AGF), and Spatially-Varying Denoising
Strength (SVDS) strategy, which explicitly attend to object-effect regions.

Object-Effect Attention. To enable the model to better attend to both the target object region and
its associated effect regions, We integrate text and object image as an object prompt for the cross-
attention layers in the base model. Specifically, the text prompt is expressed as “remove the instance
of ”, and the visual object is obtained by applying a dot product between the input image Iin and Mo,
as illustrated in Fig. 3(a). These two modalities are then encoded into text embeddings and visual
embeddings using the CLIP (Radford et al., 2021) text and vision encoders, respectively. To unify
their representation spaces, the visual embeddings are further projected into the same dimensional
space as the text embeddings using a lightweight trainable MLP composed of two linear layers. The
resulting text embeddings and projected object embeddings are then stacked and used as guidance
in the cross-attention blocks of the base model. To encourage the model to focus more accurately
on the object and its effect regions, we introduce a mask loss Lmask. Concretely, we extract the
cross-attention maps corresponding to the visual embedding tokens and denote them as A, which we
supervise with the annotated foreground object-effect masks Mfg from our OBER dataset. Lmask is
designed to minimize the attention values in the background regions while maximizing those in the
foreground. This objective can be formulated as:

Lmask = mean(A[1−Mfg])−mean(A[Mfg]), (2)

where [·] denotes indexing operator, and A[Mfg] refers to the attention values within the foreground
regions specified by the mask Mfg .

Attention-Guided Fusion. Interestingly, we observe that applying Object-Effect Attention not only
improves ObjectClear’s precision in object removal, but also produces attention maps that accurately
capture both the object and its effects. Based on this observation, we propose an Attention-Guided
Fusion strategy that leverages the predicted attention maps during inference to seamlessly blend the
generated result with the original image. Specifically, we extract the first-layer cross-attention map
corresponding to the object embedding during inference. This attention map is then upsampled to
match the resolution of the original image, forming a soft estimate of the object-effect region. To avoid
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edge artifacts during blending, we apply a Gaussian blur to the upsampled attention map, producing
a soft-edged object-effect mask. This mask is then used in an alpha-blending operation to fuse the
generated image with the original input. This strategy significantly reduces undesired background
changes introduced by the diffusion denoising process and VAE reconstruction, achieving high-
fidelity object removal. Unlike BrushNet (Ju et al., 2024), which relies on user-provided object masks
that usually exclude effect regions, our approach leverages precise object-effect masks adaptively
generated by Object-Effect Attention.

Spatially-Varying Denoising Strength. In diffusion-based image editing, the initial latent for
denoising is typically obtained by adding a certain amount of noise to the input image latent. The
denoising strength (DS) DS ∈ [0, 1] controls the noise level: a larger value injects more noise, thereby
pushing the initial latent zt closer to the pure-noise prior. When DS = 1.0, the diffusion process
starts entirely from noise and discards information from inputs. As shown in Fig. 11, DS = 1.0
achieves complete object removal but may introduce noticeable global color shifts. Conversely, using
a slightly lower denoising strength (e.g., DS = 0.99) preserves color consistency but may lead to
incomplete object removal or hallucinated unwanted objects. Motivated by these observations, we
propose Spatially-Varying Denoising Strength (SVDS), which applies DS = 1.0 within the masked
object region and DS = 0.99 in the unmasked background, via re-injecting the background during
inference. This strategy achieves complete object-effect removal while maintaining background color
consistency and preventing edge artifacts in Attention-Guided Fusion.

4 EXPERIMENTS

Implementation. Our proposed method is built on SDXL-Inpainting (Podell et al., 2024) and fine-
tuned with our OBER dataset with an input resolution of 512× 512. Training is conducted with a
total batch size of 32 on 8 A100 GPUs for 100k iterations and a learning rate of 1e-5. All experiment
results are attained with a guidance scale of 7.5 and 20 denoising steps.

Evaluation Data. We evaluate the object removal performance of our method, ObjectClear, against
existing approaches on three test datasets: (1) RORD-Val: RORD (Sagong et al., 2022) is a widely
used object removal dataset. Each sample contains an image pair (images with and without the target
object) and a coarse mask covering both the target object and its associated effect. To avoid duplicated
scenarios, we randomly select one image per scene, resulting in a RORD-Val with 343 samples. Since
most of the object removal methods, including ObjectClear, require only the object mask as input, we
augment RORD-Val with accurate object masks manually to enable a more comprehensive evaluation.
(2) OBER-Test: As described in Sec. 3.1, we split our collected OBER dataset into a training set and a
test set. The test set contains 163 samples, each comprising image pairs along with precise masks for
both the object and its effect. (3) OBER-Wild: To further assess the performance of different methods
on out-of-distribution scenarios in the wild, we collect 302 high-quality images featuring objects with
associated effects (shadows or reflections) from the Internet. We annotate the object masks using
DINO (Zhang et al., 2023) and SAM (Kirillov et al., 2023), and manually annotate the effect masks.
Note that the OBER-Wild set does not include the removal ground truth.

Evaluation Metrics. For RORD-Val and OBER-Test, where ground truth is available, we evaluate
performance using fidelity metrics: PSNR and PSNR-BG (computed only on background regions), as
well as two perceptual metrics: LPIPS (Zhang et al., 2018) and CLIP (Radford et al., 2021) (feature
distance). For OBER-Wild, which lacks ground truth, we employ ReMOVE (Chandrasekar et al.,
2024) to measure the consistency between the object removal region in the result and the surrounding
background of the intput. To better assess visual harmony, we modify original ReMOVE to compare
the output’s removal region with the input background instead of the output background.

4.1 COMPARISONS WITH STATE-OF-THE-ART METHODS

We compare ObjectClear with open-source state-of-the-art methods in both image inpainting and
object removal. The inpainting methods include SDXL-INP (Podell et al., 2024), PowerPaint (Zhuang
et al., 2024), and BrushNet (Ju et al., 2024). The object removal methods include CLIP-Away (Ekin
et al., 2024), DesignEdit (Jia et al., 2025), RORem (Li et al., 2025), FreeCompose (Chen et al., 2024),
Attentive Eraser (Sun et al., 2025), and OmniEraser (Wei et al., 2025). Following MULAN (Tudosiu
et al., 2024), we use the text prompt “an empty scene” for the text-guided baselines when necessary.

Quantitative Evaluation. Unlike our ObjectClear, which explicitly handles both the target object
and its associated effects, most baseline methods operate only within the masked regions, overlooking
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Table 1: Quantitative Comparisons with State-of-the-Art Methods. The best and second perfor-
mances are marked in red and orange , respectively. Although ObjectClear takes only the object
mask as input, it outperforms previous methods, even when those methods are provided with masks
that cover both the object and its associated effect regions.

Mask Datasets RORD-Val OBER-Test OBER-Wild

Types Metrics PSNR ↑ PSNR-BG ↑ LPIPS ↓ CLIP ↓ PSNR ↑ PSNR-BG ↑ LPIPS ↓ CLIP ↓ ReMOVE↑

O
bj

ec
t-

E
ff

ec
tM

as
k

SDXL-INP (Podell et al., 2024) 19.39 22.98 0.2432 0.1024 24.07 26.93 0.1296 0.0579 0.6983

PowerPaint (Zhuang et al., 2024) 19.87 21.98 0.2303 0.0776 26.20 27.41 0.1243 0.0409 0.8044

BrushNet (Ju et al., 2024) 16.82 18.87 0.3434 0.1692 20.96 23.69 0.2052 0.1180 0.5358

DesignEdit (Jia et al., 2025) 20.69 22.49 0.2946 0.1200 26.59 27.63 0.1777 0.0629 0.8215

CLIPAway (Ekin et al., 2024) 18.87 20.78 0.3328 0.0969 25.38 26.28 0.1039 0.0349 0.7705

FreeCompose (Chen et al., 2024) 19.67 21.72 0.3316 0.1110 23.39 25.15 0.1305 0.0629 0.7555

Attentive Eraser (Sun et al., 2025) 20.33 21.98 0.2545 0.1015 27.42 29.27 0.1114 0.0249 0.7940

RORem (Li et al., 2025) 21.61 23.11 0.3224 0.0767 27.23 27.95 0.1042 0.0234 0.8164

O
bj

ec
tM

as
k

SDXL-INP (Podell et al., 2024) 20.23 24.83 0.2042 0.0868 22.42 25.77 0.1428 0.0771 0.6971

PowerPaint (Zhuang et al., 2024) 21.46 24.62 0.1801 0.0648 22.76 24.67 0.1544 0.0729 0.7699

BrushNet (Ju et al., 2024) 18.06 23.44 0.2757 0.1821 21.19 24.38 0.1822 0.1123 0.6341

DesignEdit (Ekin et al., 2024) 22.09 24.26 0.2501 0.1021 24.63 25.48 0.1870 0.0788 0.8163

CLIPAway (Jia et al., 2025) 20.58 23.21 0.2770 0.0785 22.32 24.05 0.1357 0.0765 0.7705

FreeCompose (Chen et al., 2024) 20.39 22.91 0.3015 0.0897 22.77 24.46 0.1393 0.0690 0.7451

Attentive Eraser (Sun et al., 2025) 22.17 24.59 0.1883 0.0643 25.70 27.08 0.1201 0.0437 0.8080

RORem (Li et al., 2025) 22.49 24.10 0.2943 0.0634 24.51 25.28 0.1288 0.0460 0.8121

OmniEraser (Wei et al., 2025) 21.79 22.98 0.2195 0.0542 24.44 24.87 0.1783 0.0142 0.7655

ObjectClear (Ours) 26.24 29.78 0.1157 0.0299 33.04 35.62 0.0342 0.0103 0.8470

PowerPaint Attentive Eraser DesignEdit RORemInput with Mask SDXL-INP ObjectClear (Ours) Ground TruthOmniEraser

Figure 4: Object Removal on OBER-Test and RORD-Val. Our ObjectClear effectively removes
both the masked objects and their associated effects, including shadows and mirror reflections.

surrounding areas that are visually affected by the object but not explicitly included in the mask. To
ensure a fair and comprehensive comparison, we evaluate all methods under two mask conditions:
(1) the input mask covers only the target object, and (2) the input mask covers both the target object
and its visual effects. These are referred as Object Mask and Object-Effect Mask settings in Table 1,
respectively. As shown in Table 1, ObjectClear achieves state-of-the-art performance across all test
sets and metrics. Notably, even when using only the object mask, ObjectClear surpasses methods
that rely on both object and effect masks. In particular, it achieves a significant advantage in the
PSNR-BG metric, highlighting its superior ability to preserve background consistency with the input.

Qualitative Evaluation. Qualitative results are shown in Fig. 4 and Fig. 5. Generation-based
inpainting approaches, such as SDXL-INP (Podell et al., 2024), and PowerPaint (Zhuang et al.,
2024), often generate new objects within the masked regions while fail to remove the effects of the
removed objects. In contrast, previous object removal methods, such as Attentive Eraser (Sun et al.,
2025), DesignEdit (Jia et al., 2025), and RORem (Li et al., 2025) demonstrate strong performance
in removing the target object itself, but still fail to eliminate the associated effects. OmniEraser
shows the capability to remove both objects and their effects, but certain limitations remain: it may
not completely remove effects, occasionally erase non-target objects, or alter background details.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Input with Mask RORem ObjectClear (Ours)DesignEditAttentive EraserPowerPaint OmniEraser

Figure 5: Object Removal on OBER-Wild. Our ObjectClear not only effectively removes single
objects with their shadows and reflections (top five samples), but also accurately removes the target
object when multiple mutually occluding objects exist (bottom two samples).

Thanks to our carefully curated training data and the proposed object-effect attention mechanism,
ObjectClear effectively removes not only the target object but also its associated shadows and
reflections. Moreover, as shown in the last two rows of Fig. 5, ObjectClear effectively handles
complex cases involving multiple mutually occluding objects.

4.2 ABLATION STUDIES

The Effectiveness of the Object-Effect Mask Loss Lmask. The object-effect mask loss is designed
to explicitly guide ObjectClear to attend to both the target object and its effects, leading to more
complete and precise removal. From Table 2 (a) to (b), improvements can be seen across all metrics
with Lmask added, indicating its effectiveness in improving object removal accuracy (see visual
comparison in Fig. 9). Besides, as shown in the plot of Fig. 6 (left), the predicted object-effect
attention map achieves a high recall of 0.97. In Fig. 6 (right), the attention map from the final
denoising step (Step 20) effectively reveals object’s shadow (red box) and mirror reflection (green
box), altogether leading to complete and visually coherent object removal results.

The Effectiveness of Simulated Data. The simulated data effectively enhances the scale and
diversity of the training data, leading to notable improvements in object removal performance and
better background preserving, as shown in Table 2(c). The visual comparisons are provided in Fig. 10.
Our carefully designed simulation pipeline, especially the multi-object data synthesis, further enables
ObjectClear to tackle challenging scenarios involving multiple occluded objects with intersecting
effects, as illustrated in the last two rows of Fig. 5.

8
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Table 2: Quantitative Results of Ablation Studies. Based on our camera-captured data (CC Data),
object removal performance improves progressively by adding the object-effect mask loss (Lmask)
and simulated training data (Sim. Data). Further improvement is achieved through the proposed
Attention-Guided Fusion (AG Fusion) and Spatially-Varying Denoising Strength (SVDS) strategy.

Exp. CC Data Lmask Sim. Data AG Fusion DS PSNR ↑ PSNR-BG ↑ LPIPS ↓ CLIP ↓

(a) ✓ 0.99 27.29 27.96 0.0910 0.0247
(b) ✓ ✓ 0.99 27.56 28.37 0.0845 0.0217
(c) ✓ ✓ ✓ 0.99 28.04 28.80 0.0805 0.0196
(d) ✓ ✓ ✓ ✓ 0.99 32.77 35.50 0.0348 0.0106
(e) ✓ ✓ ✓ ✓ 1.00 31.49 33.46 0.0375 0.0120
(f) ✓ ✓ ✓ ✓ SVDS 33.04 35.62 0.0342 0.0103

Step 1 Step 13 Step 20Input with Mask OE Mask (GT)Output

Figure 6: Object-Effect Attention Map. ObjectClear achieves a relatively high recall in the object-
effect attention map, with recall values increasing as the denoising step progresses. The attention map
obtained in the final step effectively covers both the target object and its associated effects, including
the object’s shadow (red box) and its reflection in the mirror (green box).

RORem

output difference

Input Mask ObjectDrop

output difference

ObjectClear (Ours)

output difference

Figure 7: Effectiveness of Attention-Guided Fusion. The difference maps visualize the pixel-wise
differences between input and output. RORem (Li et al., 2025) fails to remove the reflection and alters
the background, yielding low differences in the reflection area and high values in the background.
In contrast, both ObjectDrop (Winter et al., 2024) and our ObjectClear successfully remove the
reflection, with ObjectClear better preserving the background as indicated by lower differences.

Effectiveness of the Attention-Guided Fusion. The attention-guided fusion is designed to preserve
background consistency after object removal, a common challenge in generation-based methods like
ObjectDrop (Winter et al., 2024) and RORem (Li et al., 2025), as illustrated in Fig. 7. As the denoising
process, our object-effect attention yields increasingly accurate attention maps (Fig.6), which we
leverage to guide the fusion of input background. This strategy significantly improves background
preservation, as evidenced by large gains in PSNR-BG. Consequently, we observe a marked boost in
overall performance, with PSNR increasing from 28.04 to 32.77, as shown in Table 2(c–d).

Effectiveness of the Spatial-Varying Denoising Strength. The proposed Spatially-Varying Denois-
ing Strength (SVDS) addresses two major issues: incomplete object removal or hallucinated objects
when using DS = 0.99, and global color shifts when using DS = 1.0, as illustrated in Fig. 11. As
shown in Table 2(d–f, SVDS (f) outperforms both DS = 0.99 (d) and DS = 1.0 (e). It effectively
facilitates complete object removal while maintaining consistent background colors and details.

5 CONCLUSION

We introduce ObjectClear, a practical framework for object removal that achieves high-quality object-
effect removal while maintaining background consistency across diverse real-world scenarios. The
framework employs an Object-Effect Attention to adaptively focus on removal regions, along with
Attention-Guided Fusion and Spatial-Varying Denoising Strength strategy to preserve background
details. In addition, we present OBER, a large-scale and diverse hybrid dataset that integrates camera-
captured and simulated data. Thanks to our dataset and network designs, ObjectClear demonstrates
robust and superior performance, effectively overcoming key challenges in object removal task.
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APPENDIX

In this supplementary material, we provide additional discussions and results to complete the main
paper. In Sec. A, we present further details on data augmentation during training and other extended
applications. In Sec. B, we provide more details of the proposed OBER dataset, including statistics
and some examples for demonstration. In Sec. C, we report additional results, such as more results
on ablation studies, a user study, experiments with user strokes, more results of object insertion and
movement, and additional comparisons on in-the-wild data.

A MORE DETAILS OF OBJECTCLEAR

A.1 TRAINING AUGMENTATIONS

During training, we apply on-the-fly random cropping to enable the network to learn object removal
across varying object sizes. We also apply color augmentation and random flipping to enhance model
robustness. To improve the model’s robustness to the estimated or user-provided coarse mask, several
previous methods (Winter et al., 2024; Jiang et al., 2025; Wei et al., 2025) have introduced mask
augmentation techniques. In line with these approaches, we also apply dilation and erosion to the
input mask during training. Different from previous practice, our method employs an object-aware
dilation and erosion strategy, where the dilation and erosion kernel size is adaptively determined
based on the size of the object. As demonstrated in the qualitative results in Sec. C.6, our method
effectively handles coarse user-drawn masks by implicitly completing and refining them, showcasing
strong robustness to imprecise inputs.

A.2 MORE DETAILS FOR EXTENDED APPLICATIONS

ObjectClear can be flexibly extended to various applications. In this section, we provide the imple-
mentation details of object insertion and object movement.

Object Insertion. The insertion network also leverages the OBER dataset for training and adopts
the same architecture as ObjectClear (Fig. 3 of the main paper), thus receiving the input tuple of
< zt, Iin,Mo, c > and supervised by IGT (for output image) and Mfg (for object-effect attention).
However, Iin, IGT , and c are constructed in an “reverse” way compared with the removal network.

While the ground truth IGT is the original image with the object accompanied by natural effects, Iin
is the one with the object simply copied and pasted on the background. Specifically, to generate Iin,
we first extract the object from IGT with the object mask Mo only, and then we paste it onto the
corresponding background image. In addition to the image pair, the input text c is also reversed to
“insert the instance of ”. Notably, the object-effect attention map is still supervised by Mfg. In this
context, Mfg refers to the mask that covers both the object and its generated effects (e.g., shadows or
reflections).

During inference, we directly paste an object (without effects) onto the background scene, along with
its object mask Mo, which forms the input image Iin. The network then generates the output image
where both the object and its generated effects are harmoniously inserted. Since the insertion network
also integrates the object-effect attention, we can also apply Attention-Guided Fusion to preserve the
background fidelity while generating realistic object effects.

Object Movement. To enable object movement, we combine the ObjectClear and insertion network
introduced above. Specifically, we first apply ObjectClear to remove the target object along with its
associated effects, resulting in a clean object-free background. The object is then extracted using its
given object mask. Users are allowed to specify a new location and optionally adjust the object scale
before the object is re-inserted into the clean background. With our insertion network, the object is
harmonized with the new context by generating realistic effects. This two-stage approach supports
controllable object movement while ensuring visual realism and consistency.

We provide the visual results of object insertion and object removal in Fig. 16, ObjectClear is capable
of generating natural visual effects accordingly.
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Table 3: Dataset Overview. The OBER dataset consists of camera-captured and simulated training
data, as well as two testing sets: OBER-Test (w/ ground truth) and OBER-Wild (w/o ground truth).
All data subsets are annotated with object masks and object-effect masks.

Properties Training Set Testing Set
Camera-Captured Simulated OBER-Test OBER-Wild

#Image Pairs 2,715 10,000 163 302
w/ Ground Truth ✓ ✓ ✓ ×
w/ Object Mask ✓ ✓ ✓ ✓
w/ Object-Effect Mask ✓ ✓ ✓ ✓

Table 4: Comparison of OBER Dataset with Existing Datasets. ∗ indicates that the dataset is not
publicly available.

Description RORD
(Sagong et al., 2022)

MULAN
(Tudosiu et al., 2024)

DESOBAv2
(Liu et al., 2024)

Counterfactual∗
(Winter et al., 2024)

Video4Removal∗
(Wei et al., 2025) OBER (ours)

Ta
sk

s Object Removal × ✓ × ✓ ✓ ✓

Effect Removal × × ✓ ✓ ✓ ✓

Object-Effect Removal ✓ × × ✓ ✓ ✓

A
nn

ot
at

io
ns

Object Mask × ✓ ✓ ✓ ✓ ✓

Effect Mask × × ✓ × × ✓

Object-Effect Mask ✓(Coarse) × ✓ × × ✓

RGBA Objects × × × × × ✓

Multi Objects ✓ ✓ × ✓ ✓ ✓

Camera-Captured GT ✓ × × ✓ ✓ ✓

B MORE DETAILS OF OBER DATASET

Overview. Table 3 provides an overview of our OBER dataset. The training set consists of 2,715
camera-captured image pairs and 10,000 simulated pairs, all annotated with object masks and object-
effect masks. For evaluation, we provide two test subsets: OBER-Test (includes 163 pairs with
ground truth) and OBER-Wild (includes 302 pairs without ground truth), where object masks and
object-effect masks are also available. In addition, we showcase some samples from our OBER
dataset in Fig. 8, including camera-captured data and simulated data, alongside with their annotations
such as object masks, object-effect masks, and RGBA object foregrounds.

Reflection Pair Simulation. Thanks to the strong priors of generative models, we observed that the
model trained without reflection data was still able to remove some simple reflection effects, a finding
consistent with the conclusions drawn in ObjectDrop (Winter et al., 2024). However, the model often
struggled with more challenging reflection removal cases, such as when the object and its reflection
were spatially separated or when the reflection was heavily distorted by surface ripples. To address
this limitation, we adopted a human-in-the-loop strategy to collect paired reflection data. Specifically,
we used our trained model to perform inference on 200 real-world reflection images and manually
selected 50 high-quality results (as shown in Fig. 8(b)), which were then added as an important
supplement to the training data. We found that even a small amount of high-quality reflection data
pairs could considerably improve the model’s ability to generalize across diverse reflection scenarios.

Comparison with Existing Datasets. We compare our OBER dataset with existing datasets, includ-
ing those focused on object removal (RORD (Sagong et al., 2022), MULAN (Tudosiu et al., 2024),
Counterfactual Dataset (Winter et al., 2024)) and one on shadow removal (DESOBA-v2 (Liu et al.,
2024)). As summarized in Table 4, our OBER is the only dataset that includes all three types of mask
annotations and RGBA foreground objects, enabling a wide range of tasks such as object removal,
effect removal, and joint object-effect removal.

While RORD (Sagong et al., 2022) is among the first to provide object-effect masks, those masks
are coarse without separate annotations for objects and their effects. As a result, it cannot support
independent removal of either the object or the effect, but only their joint removal. In contrast, our
OBER dataset provides precise and separate masks for objects and their effects, enabling more flexible
and fine-grained removal tasks. In addition, MULAN (Tudosiu et al., 2024) focuses solely on object
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Input GT Object Mask Obj-Eff Mask RGBA Object

Input GT Object Mask Obj-Eff Mask RGBA Object

(a) Camera-Captured Samples (b) Simulated Samples

Input GT Object Mask Obj-Eff Mask

Figure 8: Samples from our OBER Dataset. We provide some samples from our OBER dataset
including both camera-captured data and simulated data. While all data from both categories are
annotated with fine-grained object masks and object-effect masks, we also extract RGBA foreground
objects with associated effects from camera-captured data (as discussed in Sec. 3.1 in the main paper),
which could be used to construct realistic simulated samples. In the simulated samples, we not only
include the shadow effects but also the reflection effects, which are rarely included in other datasets
(Table 4), thanks to our reflection pair simulation strategy detailed in Sec. B.

removal without addressing associated effects such as shadows or reflections. DESOBA-v2 (Liu
et al., 2024) targets only effect removal and thus does not handle the objects. Moreover, the ground
truth images in both datasets are not captured by cameras but are instead synthesized using generative
models, which may limit their realism. The Counterfactual Dataset proposed in ObjectDrop (Winter
et al., 2024) is not publicly available, and it only includes object masks without object-effect masks.
It also lacks foreground RGBA data for objects and associated effects, limiting its extensibility and
applicability to more advanced object editing tasks.

C MORE RESULTS

C.1 RESULTS FOR ABLATION STUDY

Effectiveness of Lmask. Thanks to the rich annotations in our OBER dataset, the object-effect mask
enables a supervision loss, denoted as Lmask, which guides the cross-attention layers to focus on
both the object and its associated effects, while preserving background textures. This supervision
facilitates a decoupled optimization of object removal and background reconstruction. As shown in
Fig. 9, with the mask loss Lmask, the network can adaptively identify the object-effect regions to be
removed, as reflected in the attention mask (shown in yellow boxes). This leads to more accurate
and complete removal of objects and their shadow effects, without mistakenly erasing unrelated
background content.

Effectiveness of Simulated Data. To balance data realism and scalability, in addition to the camera-
captured data, we scale up our OBER dataset with a carefully designed simulation pipeline. Our
simulation data is generated by compositing the foreground RGBA object (extracted from camera-
captured data) onto diverse backgrounds. In particular, the simulation of multi-object compositions
leads to notable improvements in object removal robustness when mutually occluding objects exist, as
shown in Fig. 10 (left). Furthermore, our simulated reflection image pairs (discussed in Sec B) greatly
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Input with Mask w/o 𝓛𝑚𝑎𝑠𝑘 w/ 𝓛𝑚𝑎𝑠𝑘Input with Mask w/o 𝓛𝑚𝑎𝑠𝑘 w/ 𝓛𝑚𝑎𝑠𝑘

Input with Mask w/o simulated data w simulated dataw/o simulated data w simulated dataInput with Mask

Figure 9: Effectiveness of Lmask. It could be observed that when training without the Lmask

supervision, the model struggles to accurately remove the target object and its effects, leading to
mistakenly erasing unrelated background object (right) or effects (left). In contrast, when supervised
with Lmask, the attention mask (shown in yellow boxes) could identify the removal regions well,
thus leading to more accurate and complete removal results.

Input with Mask w/o 𝓛𝑚𝑎𝑠𝑘 w/ 𝓛𝑚𝑎𝑠𝑘Input with Mask w/o 𝓛𝑚𝑎𝑠𝑘 w/ 𝓛𝑚𝑎𝑠𝑘

Input with Mask w/o simulated data w simulated dataw/o simulated data w simulated dataInput with Mask

Figure 10: Effectiveness of Simulated Data. Since our simulation data includes multi-object
compositions, training with such data enables the model to accurately remove the target object and its
associated effects while preserving unrelated object effects (left). In addition, adding the reflection
data pairs during training greatly enhances the model capability of removing reflections, including
challenging cases with significant distortion due to water surface ripples (right).

Spatially-Varying Denoising Strength

Input with Mask DS = 0.99 DS = 1.0 w/ SVDS Input with Mask DS = 0.99 DS = 1.0 w/ SVDS

Figure 11: Effectiveness of Spatially-Varying Denoising Strength (SVDS). DS = 0.99 often leads
to incomplete removal or hallucinated objects, while DS = 1.0 causes noticeable color inconsistency
(shown after AGF, where the background is from the input image and the object/affected areas are
from the removal results). In contrast, SVDS achieves complete object removal with consistent
background colors.

improve the model capability of removing reflections, including challenging cases with significant
distortion due to water surface ripples, as shown in Fig. 10 (right).

Effectiveness of Attention-Guided Fusion. The attention map supervised by Lmask supports the
Attention-Guided Fusion (AG Fusion) strategy during inference. It helps to blend the generated image
with the original input via a copy-and-paste operation, where pixels within the object-effect region
are taken from the generated result, and the rest are preserved from the original image. Such practice
effectively reduces undesired background detail changes caused by VAE reconstruction errors and
the diffusion process, thereby greatly preserving the background fidelity. In Fig. 12, we visualize
the background detail changes by showing the difference maps between the generated image and the
corresponding input, where a clear improvement on background preservation could be observed.

Effectiveness of Spatially-Varying Denoising Strength. As described in the manuscript, in diffusion-
based image editing, the initial latent for denoising is typically obtained by adding noise to the input
image latent. The denoising strength (DS), DS ∈ [0, 1], controls the noise level: a larger value
injects more noise, thereby pushing the initial noisy latent closer to the pure-noise prior. When
DS = 1.0, the diffusion process starts entirely from noise, discarding information from the input.
In this paper, we propose Spatial-Varying Denoising Strength (SVDS), which applies DS = 1.0
within the masked object region and DS = 0.99 (an empirical setting commonly adopted by previous
methods (Podell et al., 2024)) outside in the unmasked background, ensuring complete object removal
while maintaining color consistency. As shown in Fig. 11, setting DS = 0.99 often leads to incomplete
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Input with Mask w/o AG Fusion Difference Map Predicted Attn. Mapw/ AG Fusion Difference Map

Figure 12: Effectiveness of Attention-Guided Fusion (AG Fusion). We visualize the background
detail changes by showing the difference maps between the generated image and the corresponding
input. In ideal cases, the difference maps should show large values only in the object removal regions,
including the object and its effects, while showing little difference in the unrelated background. It
could be observed that when AG Fusion is not employed, although the difference in object removal
regions is significant, the difference in the unrelated background is also noticeable. However, with
the AG Fusion strategy, we almost eliminate the undesirable background difference thanks to the
accurate attention map predicted.

removal or hallucinated objects, whereas DS = 1.0 results in noticeable color inconsistency. To
highlight this inconsistency, the results of DS = 1.0 in Fig. 11 are obtained after the Attention-
Guided Fusion (AGF) operation, where the background is taken from the original input image,
while the object and affected areas are taken from the removal results. In contrast, our method with
SVDS achieves superior performance in both object removal and preservation of background color
consistency.

C.2 GENERALIZATION TO MULTI-OBJECT REMOVAL

Although the OBER dataset contains only a small number of multi-object removal cases, we observe
that our model generalizes well to multi-object cases (Fig. 13). This can be attributed to the robust
generalization capability of the network trained on our dataset.

C.3 FAIR COMPARISON WITH OBJECT-EFFECT MASK

Our Attention-Guided Fusion (AGF) module leverages object-effect masks predicted by the proposed
Object-Effect Attention to blend the original input background back into the generated result. Im-
portantly, these masks are predicted by our model rather than taken from annotations, ensuring that
we do not use any privileged information unavailable to other approaches. Furthermore, existing
baseline methods do not have the capability to predict object–effect masks and therefore cannot
perform background blending in the same way. This makes AGF an integral part of our model design
rather than an external post-processing step, and the comparisons in the main paper are therefore fair.
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Input: #1 Output: #1 Input: #2 Output: #2

Input: #1 Output: #1 Input: #2 Output: #2

Input: #1 Output: #1 Input: #2 Output: #2 Input: #3 Output: #3

Figure 13: Multi-object removal. Our method removes one or multiple objects simultaneously using
masks to indicate the targets.

Table 5: Quantitative results on RORD-Val with object-effect masks for blending. All baseline
methods are equipped with background blending using ground-truth object-effect masks. The best
and second performances are marked in red and orange , respectively. Our method using our
predicted object-effect masks achieves the best performance across all metrics.

Method PSNR↑ LPIPS↓ DINO↓ CLIP↓

SDXL-INP (w/b) 21.67 0.1592 0.0688 0.0932
PowerPaint (w/b) 22.51 0.1472 0.0560 0.0606
BrushNet (w/b) 18.48 0.2421 0.1572 0.1465
DesignEdit (w/b) 23.73 0.1580 0.0721 0.0755
CLIPAway (w/b) 21.96 0.1735 0.0666 0.0734
FreeCompose (w/b) 23.08 0.1603 0.0829 0.0834
Attentive Eraser (w/b) 22.90 0.1700 0.0880 0.0854
RORem (w/b) 25.24 0.1398 0.0387 0.0498
Ours 26.24 0.1157 0.0191 0.0299

To further demonstrate that the performance gain is not solely due to the background blending, we
perform an additional experiment where all baseline methods are given the ground-truth object-effect
mask for blending. As shown in Table 5, our method continues to outperform all baselines under
this setting, indicating that our superior results primarily come from more effective object–effect
generation rather than the availability of blending masks.

C.4 COMPARISONS ON ADDITIONAL BENCHMARKS

To further evaluate the robustness and generalization ability of our method, we conduct two additional
benchmarks, i.e., MULAN (Tudosiu et al., 2024) and RemovalBench (Wei et al., 2025), under the
object-only mask setting, where only object regions are provided and effect masks are unavailable.

MULAN Dataset. The ground truth of some samples in MULAN (Tudosiu et al., 2024) retains shad-
ows, which may introduce bias when evaluating object-effect removal. To enable a fair comparison
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Table 6: Quantitative comparison on Object-Only Mask Benchmark. The best and second
performances are marked in red and orange , respectively.

Methods MULAN (500 w/o shadow) RemovalBench (object mask)

PSNR↑ LPIPS↓ DINO↓ CLIP↓ PSNR↑ LPIPS↓ DINO↓ CLIP↓
SDXL-INP 19.91 0.2494 0.1324 0.1312 21.26 0.1968 0.0938 0.0926
PowerPaint 21.18 0.2449 0.1087 0.0962 22.21 0.2001 0.0911 0.0907
BrushNet 18.22 0.3181 0.2062 0.1893 20.58 0.2098 0.1182 0.1098
DesignEdit 23.26 0.2375 0.1114 0.0725 23.87 0.2168 0.1020 0.0755
CLIPAway 20.08 0.2666 0.1180 0.1152 20.78 0.2035 0.0934 0.0956
FreeCompose 21.30 0.2337 0.0828 0.0703 22.60 0.1782 0.0733 0.0688
Attentive Eraser 23.96 0.1960 0.0551 0.0397 24.77 0.1538 0.0463 0.0388
RORem 23.53 0.2369 0.0571 0.0438 23.70 0.1746 0.0532 0.0416
OmniEraser 21.56 0.2642 0.0728 0.0682 23.83 0.1766 0.0460 0.0481
Ours 24.89 0.1586 0.0468 0.0373 27.90 0.0942 0.0230 0.0142

focusing solely on object removal, we randomly sampled 500 shadow-free image pairs from MULAN
for testing. As shown in Table 6, our method achieves the best performance across all metrics, even
surpassing RORem (Li et al., 2025), which was trained on MULAN, thereby demonstrating the strong
object removal capability of our approach.

RemovalBench Dataset. RemovalBench was proposed by OmniEraser (Wei et al., 2025) as a
benchmark for object-effect removal, which aligns with our task setting. For a fair comparison, all
methods use their default input sizes, then resize the outputs to the same size (short side 512) for
evaluation. Table 6 shows our approach outperforms all baselines across metrics on this dataset.

C.5 USER STUDY

To enable a more comprehensive evaluation, we conducted a user study on object removal results for
in-the-wild images. We compared ObjectClear with three representative state-of-the-art methods:
PowerPaint (Zhuang et al., 2024), RORem (Li et al., 2025), and OmniEraser (Wei et al., 2025). For
a fair comparison, we evaluated PowerPaint and RORem under two settings: (1) conditioned on
the object mask and (2) conditioned on the object-effect mask, while OmniEraser was conditioned
only on the object mask. All ObjectClear results were generated using only the object mask, and we
compared our outputs against both settings of PowerPaint and RORem, as well as the object-mask
setting of OmniEraser.

We invite a total of 30 participants for this user study. Each volunteer was presented 60 randomly
selected image quadruples, consisting of: an input image, two results from a baseline method under
different mask conditions, and our result (for OmniEraser, only the object-mask result was provided,
consistent with our setting, thus forming a triple set). Participants were asked to select the best removal
result based on two criteria: the realism of the object region and the preservation of background
details. As summarized in Fig 14, ObjectClear outperforms the baselines under both mask settings.
Notably, although baseline methods benefited from access to object-effect masks, our ObjectClear
won more user preference with the object mask only.

C.6 RESULTS WITH USER STROKES

In practical applications, users often interact with visual systems through imprecise or casually drawn
inputs, such as rough scribbles or incomplete masks. These inputs may vary significantly in shape,
location, and accuracy. Therefore, it is essential for a robust object removal network to effectively
process such arbitrary mask inputs without relying on carefully crafted annotations. Benefiting from
our mask augmentation strategy and object-effect attention mechanism, our network demonstrates
strong robustness to diverse mask inputs. In this subsection, we simulate user strokes and feed them
into the network along with the images. The resulting outputs and attention maps show that our
network can accurately identify and attend to the object and its associated effects, even with imprecise
masks, as illustrated in Fig. 15.
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Figure 14: User Study. Our ObjectClear is preferred by human voters over three representative state-
of-the-art methods (PowerPaint (Zhuang et al., 2024), RORem (Li et al., 2025), and OmniEraser (Wei
et al., 2025)). Results of OmniEraser and our method use only the object mask, while PowerPaint
and RORem are evaluated with and without the effect mask.

Input w/ Strokes Removal Output Pred. Attn. Mask Input w/ Strokes Removal Output Predicted Attention Mask

Input w/ Strokes Removal Output Predicted Attention Mask

Figure 15: Results with User Strokes. We simulate user strokes and feed them into the network
along with the images. The resulting outputs and attention maps show that our network can accurately
identify and attend to the object and its associated effects, even with imprecise masks.

C.7 OBJECT INSERTION AND MOVEMENT.

As shown in Fig. 16, even when only the target objects are specified for insertion and movement,
ObjectClear is capable of generating plausible and natural shadows and reflections accordingly.

(a) Object Insertion (b) Object Movement

Figure 16: Object Insertion and Movement. In addition to accurately inserting or repositioning
objects, our ObjectClear also generates plausible and natural shadows and reflections accordingly.

C.8 LIMITATIONS

While ObjectClear exhibits strong performance in removing objects and their associated effects, it
still faces challenges in highly complex scenarios. Specifically, in cases with overlapping shadows
from multiple objects or complex lighting conditions, it can be difficult to disentangle which shadows
belong to which objects. As a result, the model may fail to remove the shadows of the target object
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(Fig. 17a) or remove shadows of other objects (Fig. 17b). Effectively disentangling object-specific
shadows in such complex scenes remains an important direction for future work.

(b) Over-Removal with Effect Interactions(a) Under-Removal with Effect Interactions

Figure 17: Limitations. In complex scenes where multiple objects may produce overlapping or
intertwined effects (e.g., shadows and reflections), our method can consistently remove the objects
but may sometimes fail to precisely eliminate the associated effects. This results in either (a) under-
removal of the target effect or (b) over-removal of effects belonging to nearby objects.

C.9 MORE COMPARISONS ON IN-THE-WILD DATA

In this subsection, we compare ObjectClear with state-of-the-art methods, including Power-
Paint (Zhuang et al., 2024), Attentive Eraser (Sun et al., 2025), DesignEdit (Jia et al., 2025),
RORem (Li et al., 2025), and OmniEraser (Wei et al., 2025), on in-the-wild data. To ensure a
fair comparison, we consider two settings: (1) All methods use the same object mask; (2) While
other methods are provided with finely annotated object-effect masks, both our ObjectClear and
OmniEraser use only the object mask. The results under these two settings are shown in Fig. 18
and Fig. 19, respectively. Under the first setting, when given the object mask only, our ObjectClear
effectively removes the shadow and reflection associated with the target object. Other methods fail to
remove these effects or hallucinate undesirable content. OmniEraser can partially remove object and
effects, but sometimes fails to remove them completely or over-removes unintended regions. Under
the second setting, while some previous methods can remove shadows when given the effect region,
they often alter or remove the original background content undesirably. OmniEraser, which uses only
the object mask, can also remove some object effects but sometimes modifies the background or
fails to fully remove the object and its effects. In contrast, our ObjectClear removes the object effect
accurately with the object mask only while preserving the background with high fidelity.

D USE OF LARGE LANGUAGE MODELS

The large language models (LLMs), i.e., GPT-4o and Gemini 2.5 Pro, are solely used for polishing
some paragraphs in this paper for clarity of expression and avoidance of minor grammar errors. They
were not involved in the design of the methodology, execution of experiments, analysis of results, or
any other aspect of the scientific contribution.
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RORemDesignEditAttentive EraserPowerPaintInput with Mask ObjectClear (Ours)OmniEraser

Figure 18: Object Removal on OBER-Wild - Condition on Object Mask. Given the object mask
only, our ObjectClear effectively removes shadow and reflection associated with the target object,
while all the other methods fail to remove those effects and tend to hallucinate undesirable content or
create artifacts.
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Input Image RORem ObjectClear (Ours)DesignEditAttentive EraserMask OmniEraser

RORemDesignEditAttentive EraserPowerPaintInput with Mask ObjectClear (Ours)OmniEraser

Figure 19: Object Removal - Condition on Object-Effect Mask (others) and Object Mask (ours).
Since some methods struggle to remove object effects when provided with only the object mask, we
supply them with our annotated object-effect masks for a fair comparison. Although these methods
are able to remove shadows with the additional effect region, they often introduce undesirable changes
to the original background. In contrast, ObjectClear effectively removes the object and its associated
effects using only the object mask, while preserving the background content with high fidelity.
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