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ABSTRACT

We introduce a diffusion transformer architecture, AROMA (Attentive Reduced
Order Model with Attention), for dynamics modeling of complex systems. By em-
ploying a discretization-free encoder and a local neural field decoder, we construct
a latent space that accurately captures spatiality without requiring traditional space
discretization. The diffusion transformer models the dynamics in this latent space
conditioned on the previous state. It refines the predictions providing enhanced
stability compared to traditional transformers and then enabling longer rollouts.
AROMA demonstrates superior performance over existing neural field methods
in simulating 1D and 2D equations, highlighting the effectiveness of our approach
in capturing complex dynamical behaviors.

1 INTRODUCTION

In recent years, many deep learning (DL) surrogate models have been introduced to approximate
solutions to partial differential equations (PDEs) (Lu et al., 2021; Li et al., 2021; Brandstetter et al.,
2022; Stachenfeld et al., 2022). Amongst them, the family of neural operators and operator networks
has been extensively adopted and tested in various scientific domains, showing the potential of data-
centric DL models in science (Pathak et al., 2022; Vinuesa & Brunton, 2022).

In essence, neural operators adopt the functional formulation of a PDE problem, yet they are imple-
mented with architectures that exhibit constraints with respect to the discretization of the data and the
geometry of the domain. To alleviate these issues, neural-field based methods have been proposed
to model the dynamics of a system that follows PDEs (Yin et al., 2022; Chen et al., 2022) or more
generally to learn operators between functions (Serrano et al., 2023). These models are discretiza-
tion free, they can be applied on regular and irregular grids, with different samplings. However,
they still face some challenges in applicability: (i) they work with auto-decoding which can be un-
stable during training and computationally intensive at inference, (ii) they unroll the dynamics in a
latent-space over a trajectory of global codes that ignore the spatial information of the data.

In this paper, we propose a discretization-free model that offers a solution to both of these issues
by taking a different approach. Our hypothesis is that considering spatiality is essential to modeling
spatiotemporal phenomena, and therefore the latent space should conserve a spatial structure. For
instance, state-of-the-art latent U-Net (Rombach et al., 2022) and transformer (Peebles & Xie, 2023)
diffusion models operate respectively on latent images or sequences of smaller dimensions that keep
a spatial property. However, in the literature these latent representations are mostly obtained with
traditional convolutional neural networks (CNNs) (He et al., 2016) which are not compatible with
our discretization-free constraint. For the same reason, patching observations Lee et al. (2023) is
not aligned with our objective. Therefore, there is no existing architecture capable of encoding
without discretization constraints function values into a latent representation that conserves a spatial
dimension.
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Our work presents:

• A novel architecture for latent-space modeling of dynamical systems, combining local neu-
ral fields with a diffusion transformer for enhanced stability.

• A discretization-free encoder that captures spatially-aware tokens from data, bypassing
traditional patching, and a decoder that uses cross-attention with local neural fields for
accurate, continuous data reconstruction.

• An innovative method for modeling dynamics in latent space, utilizing a diffusion trans-
former for iterative refinement.

• Detailed validation of our model’s superior performance over existing frameworks, evi-
denced by results on two datasets and supported by a perturbation analysis showcasing the
spatial significance of our latent tokens.

2 PROBLEM SETTING

In this paper, we focus on time-dependent PDEs defined over a spatial domain Ω (with boundary
∂Ω) and temporal domain [0, T ]. In the general form, their solutions u(x, t) satisfy the following
constraints :

∂u

∂t
= F

(
ν, t, x,u,

∂u

∂x
,
∂2u

∂x2
, . . .

)
, ∀x ∈ Ω,∀t ∈ (0, T ] (1)

B(u)(t, x) = 0 ∀x ∈ ∂Ω,∀t ∈ (0, T ] (2)

u(0, x) = u0 ∀x ∈ Ω (3)

Where ν represents a set of PDE coefficients, Equations (2) and (3) represent the constraints with
respect to the boundary and initial conditions. We aim to learn from solutions data obtained with
classical solvers the evolution operator G that predicts the state of the system at the next time step:
ut+∆t = G(ut). We have access to training trajectories obtained with different initial conditions,
and we want to generate accurate trajectory rollouts for new initial conditions at test time. A rollout
is obtained by the iterative application of the evolution operator um∆t = Gm(u0).

3 MODEL DESCRIPTION

Our model comprises key components to enhance the latent-space modeling of dynamical systems.

• Encoder : utX → Zt. The encoder takes input values over a grid X and reduces the dimension
to a set of M multivariate normal statistics Ew(utX ) = (µtj , σ

t
j)
M
j=1 from which latent tokens

can be sampled ztj ∼ N (µtj , (σ
t
j)

2). We note the mean, standard deviation and latent tokens
µt = (µt1, · · · , µtM ), σt = (σt1, · · · , σtM ), Zt = (zt1, · · · , ztM ). Each token is d-dimensional.

• Latent refiner : Zt → Ẑt+∆t. We model the dynamics in the latent space through a latent
conditional diffusion model rθ. The diffusion model rθ is used to predict the next set of latent
tokens by denoising them in K steps. Starting from pure gaussian noise Z̃t+∆t

K ∼ N (0, I), we
reverse the diffusion process: Z̃t+∆t

k−1 = DENOISE(Z̃t+∆t
k , rθ(Z

t, Z̃t+∆t
k , k)) for 1 ≤ k ≤

K and set the prediction as Ẑt+∆t = Z̃t+∆t
0 . We note Rθ this denoising operation. The diffusion

model enables a ”refinement process” throughout the denoising, improving the prediction at each
denoising step. This is inspired by Lippe et al. (2023), as we experimentally observed that a
probabilistic model was more robust than a deterministic one for temporal extrapolation.

• Decoder : Ẑt+∆t → ût+∆t. The decoder uses the latent tokens Ẑt+∆t to approximate the
function value ût+∆t(x) = Dψ(x, Ẑt+∆t) for each query coordinate x ∈ Ω. We therefore note
ût+∆t = Dψ(Zt+∆t) the predicted function, and ût+∆t

X = Dψ(Zt+∆t,X ) the predicted values
over the grid X .
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Figure 1: AROMA inference: The discretization-free encoder compresses the information of a set
of N input values to a sequence of M latent tokens, where M < N . The conditional diffusion trans-
former is used to model the dynamics, acting as a latent refiner. The continuous decoder leverages
self-attentions (SA), cross-attention (CA) and a local INR to get back to the physical space.

Inference We encode the initial condition and unroll the dynamics in the latent space by succes-
sive denoisings: ûm∆t = Dψ ◦ Rm

θ ◦ Ew(u0). We then decode along the trajectory to get the
reconstructions. We outline the full inference pipeline in Figure 1

Training We do a two-stage training: first train the encoder and decoder, second train the refiner.

3.1 ENCODER-DECODER WITH LOCAL IMPLICIT NEURAL REPRESENTATION

Encoder The encoder architecture efficiently processes input functions irrespective of their dis-
cretization (Figure 5). It shares some similarities with the Perceiver architecture (Jaegle et al., 2021)
but is uniquely designed for our setting. (i) context embedding creation: Given an input sequence
of coordinate-value pairs (x1,u(x1)), . . . , (xN ,u(xN )), we construct high-dimensional context
embeddings. Each embedding cl is obtained as cl = fu(u(xl)) + fx(xl) , where fu and fx are
feedforward neural networks. (ii) information aggregation: The sequence of context embeddings
c = (c1, . . . , cN ) is aggregated onto a smaller set of learnable query tokens T = (T1, . . . , TM ).
This is achieved using a multihead cross-attention layer and a feedforward (FF) network, expressed
as T′ = FF(CrossAttention(Q = WQT,K = WKc,V = WV c)). (iii) channel dimension com-
pression: Finally, the information in the channel dimension of T′ is compressed using a bottleneck
linear layer, yielding the mean and standard deviation tokens µ = WµT

′ and σ = WσT
′.

Decoder The decoder architecture proceeds as follows (Figure 5). (i) latent tokens processing:
The decoder first lifts the latent tokens Z - sampled from a multivariate gaussian with parameters µ
and σ - to a higher channel dimension. (ii) self-attention layers: Several layers of self-attention are
then applied to get processed tokens Z

′
. (iii) cross-attention: The decoder applies cross-attention

to obtain a modulation vector that depends on the query coordinate ϕu(x) = CrossAttention(Q =

WQγq(x),K = WKZ
′
,V = WVZ

′
), where γq is a feed forward neural network with fourier

features of bandwidth ωq . (iv) local implicit neural representation (INR) decoding: Finally, an
INR is used to decode the local modulation vector to obtain the output of the neural field. As in Lee
et al. (2023) this INR employs a two-level decoding with two frequency bandwidths ω1, ω2 such that
ωq ≤ ω2 ≤ ω1. We refer the reader to additional details regarding its implementation in Appendix
B. In contrast with existing neural field methods for dynamics modeling, the modulation vector here
is local, i.e. it does not modify the weights of the INR for the whole coordinate space.
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Training The encoder and decoder are jointly optimized as a variational autoencoder (VAE)
(Kingma & Welling, 2013) to minimize the following objective : L = Lrecon + β · LKL;
where Lrecon = MSE(utX , ûtX ) is the reconstruction loss between the input and Dψ(Z

t,X ), with
Zt ∼ N (µt, (σt)2) and µt,σt = Ew(utX ). The KL loss LKL = DKL(N (µt, (σt)2) || N (0, I))
helps regularizing the network and prevents overfitting.

3.2 TRANSFORMER-BASED REFINER

As the latent tokens Zt have a sequential structure, we use a conditional diffusion transformer
architecture close to Peebles & Xie (2023) for rθ. At diffusion step k, the input to the network is a
sequence stacking the tokens and the current noisy target estimate (Zt, Z̃t+∆t

k ). See Appendix B,
Figure 3 and Figure 2 for more details. To train the refiner rθ, we freeze the encoder and decoder, and
use the encoder to sample pairs of successive latent tokens (Zt,Zt+∆t). We employ the ”v-predict”
formulation of DDPM (Salimans & Ho (2022)) for training and sampling.

4 EXPERIMENTS

Datasets To evaluate our framework, we utilized two fluid dynamics datasets with unique initial
conditions for each trajectory: • 1D Burgers’ Equation (Burgers): Models shock waves, using
a dataset with periodic initial conditions and forcing term. It includes 2048 training and 128 test
trajectories, at resolutions of (250, 100). Training involves 10 sub-trajectories of 25 timestamps
each, using only the first 20 for training and all 25 for evaluation on test trajectories. • 2D Navier-
Stokes Equation (Navier-Stokes): Focuses on viscous, incompressible fluid flow, with training and
test sets of 256 and 16 trajectories of 40 timestamps. The original 256 × 256 resolution data is
subsampled to 64×64, using the first 20 timestamps for training and all 40 timestamps for evaluation.

Baselines We compare our model to FNO (Li et al., 2021), and choose DINo (Yin et al., 2022)
and CORAL (Serrano et al., 2023) as the neural field baselines. We also include a deterministic
AROMA without diffusion as an ablaton study.

Training and evaluation During training, we use only the data fromn the training horizon (In-t).
At test time, we evaluate the models to unroll the dynamics for new initial conditions in the training
horizon (In-t) and for temporal extrapolation (Out-t).

Results Table 1 showcases the performance of our model against various models on both datasets.
The results are evaluated using the mean squared error (MSE) metric. Notably, AROMA demon-
strates superior performance for Navier-Stokes dataset, achieving the lowest MSE scores in both In-t
and Out-t scenarios. It also shows competitive results on Burgers, outperforming other INR-based
models and closely following FNO. AROMA without diffusion obtains good results in the training
horizon but is particularly less robust on longer rollouts (Figure 7, Figure 8, Figure 9).

Table 1: Dynamics modeling - Test results. Metrics in MSE. Lower the better.
dataset → Navier-Stokes Burgers

model ↓ In-t Out-t In-t Out-t

FNO 5.68e-4 8.95e-3 3.76e-4 1.08e-3
DINo 1.27e-3 1.11e-2 5.82e-2 6.50e-2

CORAL 1.86e-4 1.02e-3 8.24e-4 2.56e-3
AROMA 6.95e-5 1.02e-3 3.96e-4 1.29e-3

AROMA no refiner 8.21e-5 1.70e-3 5.79e-4 2.04e-3

5 CONCLUSION

AROMA offers a novel approach to neural field modeling, incorporating attention mechanisms and
a latent diffusion transformer for spatio-temporal dynamics. It has shown improved performance on
small-size datasets and holds potential for effective scaling to larger datasets, thanks to its use of
transformer blocks.
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Vittaut, and Patrick Gallinari. Operator learning with neural fields: Tackling pdes on general
geometries. Advances in Neural Information Processing Systems, 2023.

Kimberly Stachenfeld, Drummond B. Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff,
Jonathan Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez. Learned
coarse models for efficient turbulence simulation. International Conference on Learning Repre-
sentation, 2022.

Ricardo Vinuesa and Steven L Brunton. Enhancing computational fluid dynamics with machine
learning. Nature Computational Science, 2(6):358–366, 2022.

Yuan Yin, Matthieu Kirchmeyer, Jean-Yves Franceschi, Alain Rakotomamonjy, and Patrick Galli-
nari. Continuous pde dynamics forecasting with implicit neural representations. International
Conference on Learning Representations, 9 2022. URL http://arxiv.org/abs/2209.
14855.

Biao Zhang, Jiapeng Tang, Matthias Niessner, and Peter Wonka. 3dshape2vecset: A 3d shape rep-
resentation for neural fields and generative diffusion models. arXiv preprint arXiv:2301.11445,
2023.

A RELATED WORK

Our model differs from existing models in the field of operator learning and more broadly from
existing neural field architectures. The works most related to ours are the following.

Transformer for PDE Hao et al. (2023) introduced a versatile transformer architecture specifi-
cally tailored for operator learning. Their design incorporates an attention mechanism and employs
a mixture of experts strategy, effective in addressing multi-scale challenges. However, their archi-
tecture resorts to linear attention as they do not reduce spatial dimensions, and each attention layer
has a linear complexity in the sequence size, which can be prohibitive for very deep networks.

Local Neural Fields We are not the first work that proposes to leverage locality to improve the de-
sign of neural fields. In a different approach, Bauer et al. (2023) proposed a grid-based latent space
where the modulation function ϕ is dependent on the query coordinate x. This concept enables
the application of architectures with spatial inductive biases for generation on the latent represen-
tations, such as a U-Net Denoiser for diffusion processes. Similarly, Lee et al. (2023) developed a
locality-aware, generalizable Implicit Neural Representation (INR) with demonstrated capabilities
in generative modeling. Both of these architectures assume regular input structures, be it through
patching methods or grid-based layouts. Expanding on this theme, Zhang et al. (2023) explored an
analogous concept but diverged by implementing an aggregating process inspired from the Perceiver
architecture Jaegle et al. (2021). Their approach also leverages cross-attention instead of patching
but their architecture differs from ours as it is designed for processing point-cloud shapes while our
blocks can be used with arbitrary functions.

B ARCHITECTURE DETAILS

Diffusion transformer We illustrate how our diffusion transformer is trained and used at inference
in Figure 2 and Figure 3. We provide the diffusion step k which acts as a conditioning input for the
diffusion model. We use an exponential decrease for the noise level as in Lippe et al. (2023) i.e.
αk = 1− σ

k/K
min .

Encoder-Decoder We provide a more detailed description of the encoder-decoder pipeline in Fig-
ure 5.
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Figure 2: During training, we noise the next-step latent tokens Zt+∆t and train the transformer to
predict the ”velocity” of the noise. Each DIT block is implemented as in Peebles & Xie (2023).

... ...

Latent Refiner

...output tokens

DENOISE

noisy estimateprevious latent token diffusion step

Figure 3: At inference, we start from Z̃t+∆t
K ∼ N (0, I) and reverse the diffusion process to denoise

our prediction. We set our prediction Ẑt+∆t = Z̃t+∆t
0 .

Local INR We show the implementation of the local INR from Lee et al. (2023) in Figure 4.

C DATASET DETAILS

1D Burgers’ Equation (Burgers): This equation models shock waves without diffusion, ex-
pressed as ∂u

∂t + 0.5∂u
2

∂x = f . We take the same dataset as in Brandstetter et al. (2022) to guarantee
periodicity of the initial conditions and forcing term f . Our training and test sets consist of 2048
and 128 trajectories, respectively, reduced to temporal and spatial resolutions of (250, 100). For
training, we create 10 sub-trajectories of size 25, from which we keep only the first 20 timestamps.
For evaluation we use the 25 timestamps.

2D Navier-Stokes Equation (Navier-Stokes): This dataset (Yin et al., 2022) deals with the flow
of viscous, incompressible fluid and is represented by the equation ∂w

∂t + u · ∇w = ν∆w + f ,
∇u = 0 for x ∈ Ω, t > 0, where ω is the vorticity, ν = 10−3 is the viscosity and f is a forcing term.
The training and testing datasets have 256 and 16 trajectories. We keep the first 20 timestamps for

7



Accepted at the ICLR 2024 Workshop on AI4Differential Equations In Science

Skip connections

Element-wise addition

ReLU activation

Li
ne

ar

Li
ne

ar

Li
ne

ar

Li
ne

ar

Li
ne

ar
Li
ne

ar

modulation vector

frequency embedding

frequency embedding

output value

Local
INR

Figure 4: Architecture of the local INR. γ1 and γ2 are fourier embeddings of the coordinate x with
bandwidths ω2 ≤ ω1. The output of the INR is residual as we use skip connections.
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Figure 5: Architecture of our encoder and decoder. We regularize the architecture as a variational
auto-encoder. Cross-attention layers are used to aggregate the N observations into M latent tokens,
and to expand the M processed tokens to the queried values. We use a bottleneck layer to reduce
the channel dimension of the latent space.

training and evaluate over 40 timestamps. The original data is at a 256 × 256 resolution, which we
sub-sample to achieve a frame size of 64× 64.

D ADDITIONAL RESULTS

D.1 LONG ROLLOUTS

On Burgers, we test the capacity of the models to unroll the dynamics from the 50th timestamp
for 200 steps up to timestamp 250. Note that none of the models have been trained for this task,
and that the models have not seen 20% of the data within this horizon. As showcased in Table 1
the performance on this dataset quickly deteriorates in extrapolation as the intensity and location
of the shocks are hard to predict, and therefore the performance of all models is relatively poor.
Still, AROMA performs the best with a test MSE over the whole trajectory of 0.119 compared to
0.142 for FNO. Most notably this analysis helps in motivating the modeling choice of our diffusion
transformer. While the predictions with FNO and AROMA are relatively close to each other in
Figure 6 and Figure 7, AROMA without diffusion quickly diverges from the ground truth (Figure 8)
highlighting the increased stability with the refinement process. We show in Figure 9 that AROMA’s
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and FNO’s predictions are still highly correlated at the end of the trajectory while AROMA without
diffusion cannot cope with long rollouts.

For Navier-Stokes, we show an example of test trajectory in the training horizon (Figure 10) and in
extrapolation (Figure 11).
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Figure 6: Test example long rollout trajectory with AROMA on Burgers. Left is the predicted
trajectory and right is the ground truth.
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Figure 7: Test example long rollout trajectory with FNO on Burgers. Left is the predicted trajectory
and right is the ground truth.
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Figure 8: Test example long rollout trajectory with AROMA without diffusion on Burgers. Left is
the predicted trajectory and right is the ground truth.

D.2 PERTURBATION ANALYSIS

To validate the spatial interpretation of our latent tokens, we establish a baseline code Z0, and
introduce perturbations by sequentially replacing the j-th token, z0

j , with subsequent tokens along
the trajectory, denoted as z1

j , z
2
j , . . . ,z

t
j . Thus, the perturbed tokens mirrors Z0 in all aspects except

for the j-th token, which evolves according to the true token dynamics. We show reconstruction
visualizations of the perturbed tokens in Figure 12, Figure 13, Figure 14, Figure 15, Figure 16,
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Figure 10: Test example rollout trajectory with AROMA on Navier-Stokes and In-t. The first row is
the prediction and the second row is the ground truth.
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Figure 11: Test example rollout trajectory with AROMA on Navier-Stokes and Out-t. The first row
is the prediction and the second row is the ground truth.

Figure 17, Figure 18, Figure 19. As evidenced in these figures, the perturbation of a token changes
only locally the reconstructed field, which validates the spatial structure of our tokens. Notice in
Figure 14 and in Figure 19 how these token affect the reconstruction in regions close to the boundary
conditions. Our encoder-decoder has discovered from data and without explicit supervision that the
solutions had periodic boundary conditions.

D.3 LATENT SPACE DYNAMICS

For Navier-Stokes, we show how the mean (Figure 20) and standard deviation tokens (Figure 21)
evolve over time for a given test trajectory. We show the predicted trajectory in the latent space in
Figure 22.
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Figure 12: Perturbation analysis on Burgers. Token 0.
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Figure 13: Perturbation analysis on Burgers. Token 1.
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Figure 14: Perturbation analysis on Burgers. Token 2.
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Figure 15: Perturbation analysis on Burgers. Token 3.
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Figure 16: Perturbation analysis on Burgers. Token 5.

0 20 40 60 80 100
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5
pred

0 20 40 60 80 100

gt

0

25

50

75

100

125

150

175

200

Tim
estam

p

0

25

50

75

100

125

150

175

200

Tim
estam

p

Figure 17: Perturbation analysis on Burgers. Token 6.
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Figure 18: Perturbation analysis on Burgers. Token 7.
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Figure 19: Perturbation analysis on Burgers. Token 8.
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Figure 20: Latent space dynamics on Navier-Stokes - Mean tokens over time. Each color line is a
different token channel.
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Figure 21: Latent space dynamics on Navier-Stokes - Logvar tokens over time. Each color line is a
different token channel.
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Figure 22: Latent space dynamics on Navier-Stokes - Predicted tokens over time. Each color line is
a different token channel.
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