

000 001 002 003 004 005 006 007 **GRAPHQ-LM: SCALABLE GRAPH REPRESENTATION** 008 **FOR LARGE LANGUAGE MODELS VIA RESIDUAL VEC-** 009 **TOR QUANTIZATION**

010
011 **Anonymous authors**
012

013 Paper under double-blind review

014 ABSTRACT

015 Large Language Models (LLMs) have demonstrated remarkable proficiency in
016 diverse language-centric tasks, yet their application to structured graph data presents
017 unique challenges, particularly in efficiently tokenizing graph elements. While
018 graphs offer powerful structural representations, existing methods for interfacing
019 them with LLMs, such as creating distinct token embeddings for every node,
020 face significant scalability limitations: *the input vocabulary for the LLM grows*
021 *linearly with the number of nodes, hindering applicability to large-scale graphs.*
022 Drawing inspiration from vector quantization’s success in compressing information
023 in domains like audio and vision, we introduce a novel approach to represent
024 graph node features for LLMs. Our method, GraphQ-LM, employs Residual
025 Vector Quantization (RVQ) to encode continuous node features into a compact
026 sequence of discrete tokens derived from fixed-size codebooks. These “*graph*
027 *tokens*,” representing structural feature information, are seamlessly integrated with
028 textual attributes of nodes and their neighborhoods, forming a rich, multimodal
029 input for the LLM. By aligning the codebook’s embedding dimension with that
030 of the LLM and jointly training the RVQ module with the LLM, we learn graph-
031 aware representations optimized for downstream tasks like node classification.
032 Extensive experiments demonstrate that GraphQ-LM not only achieves state-of-
033 the-art performance but, crucially, offers a scale-free tokenization strategy.

034 1 INTRODUCTION

035 Graph Neural Networks (GNNs) have emerged as a pivotal technology in machine learning for
036 structured data, experiencing significant evolution from early message-passing frameworks—such as
037 Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017), ChebNet (Defferrard et al., 2016),
038 and GraphSAGE (Hamilton et al., 2017)—to models that integrate powerful attention mechanisms,
039 like Graph Attention Networks (GAT) (Veličković et al., 2018). This evolution has culminated in
040 advanced Graph Transformers (Yun et al., 2019; Ying et al., 2021; Yang et al., 2021; Chen et al., 2022;
041 2023) as shown in Figure 1 (a), which demonstrate exceptional capabilities in learning rich node
042 representations by aggregating information from local neighborhoods, often employing transformer
043 encoders to discern intricate structural dependencies critical for downstream tasks such as node
044 classification or link prediction. However, a substantial portion of valuable information often remains
045 underutilized—*the rich semantic contents embedded within the nodes themselves*. For example, in
046 prevalent benchmarks like ogbn-arxiv and ogbn-products from the Open Graph Benchmark
047 (OGB) (Hu et al., 2020), the former consists of nodes representing scientific papers with titles
048 and abstracts, whereas the latter comprises large-scale e-commerce graphs with nodes representing
049 products characterized by textual descriptions and names. This discrepancy naturally leads to a
050 critical question: *How can we effectively leverage this inherent semantic and textual information*
051 *within graph structures to enhance performance on downstream tasks?*

052 The remarkable advancements in Large Language Models (LLMs) (Vaswani et al., 2017; Brown
053 et al., 2020; Kaplan et al., 2020; Touvron et al., 2023b; Team et al., 2023) have unveiled new frontiers
054 for integrating rich textual data with structured representations. Their profound ability to understand
055 and generate human language offers a promising avenue to imbue GNNs with semantic awareness. A

Figure 1: **Overview of GraphQ-LM and comparison with prior approaches.** (a) Graph Transformers model structure but underuse node text. (b) InstructGLM allocates one new token per node, so the LLM vocabulary grows as $O(n)$ and memory scales with graph size. (c) GraphQ-LM encodes continuous features with an encoder and quantizes them into a length- d sequence of shared code indices using residual vector quantization. The same d codebooks are reused for all nodes, giving at most $O(dK) = O(d n^{1/d})$ learned token types instead of $O(n)$ and only a few bytes per node. These feature tokens are interleaved with titles and sampled neighbors to form a compact prompt, preserving semantics while enabling accurate and scalable inference on large graphs.

Table 1: **Discrete RVQ tokens preserve accuracy while slashing per-node storage.** On ogbn-arxiv, replacing continuous features with depth-4 RVQ codes ($d=4$) keeps test accuracy on par with or slightly above the original features across GCN, ChebNet, GraphSAGE, and GAT. Bold numbers mark the best per row. This supports our claim that node features can be discretized into short code sequences without loss, using shared codebooks reused for all nodes and requiring only a few bytes per node (4 bytes when $K \leq 256$).

Model	Original	Codebook size					
		32	64	128	256	512	1024
GCN (Kipf & Welling, 2017)	71.74 ± 0.30	70.75 ± 0.27	70.72 ± 0.27	71.84 ± 0.22	71.29 ± 0.16	71.63 ± 0.17	71.61 ± 0.21
ChebNet (Defferrard et al., 2016)	72.25 ± 0.28	71.67 ± 0.51	72.05 ± 0.37	72.37 ± 0.33	72.39 ± 0.29	72.20 ± 0.30	72.04 ± 0.33
GraphSAGE (Hamilton et al., 2017)	71.76 ± 0.39	71.86 ± 0.34	71.40 ± 0.28	71.55 ± 0.26	71.29 ± 0.21	71.25 ± 0.28	71.67 ± 0.26
GAT(Veličković et al., 2018)	71.67 ± 0.27	71.56 ± 0.18	71.58 ± 0.33	71.80 ± 0.32	71.77 ± 0.12	71.54 ± 0.31	71.42 ± 0.45

natural first thought might be to directly concatenate all semantic information from a node and its neighbors into the LLM’s input context. However, integrating extensive neighborhood information leads to excessively long context lengths, making LLM inference computationally expensive and slow, often exceeding the practical context window limitations of most models. Initial explorations, such as InstructGLM (Ye et al., 2024) as shown in Figure 1 (b), have attempted to bridge this gap by treating *each node* in a graph as an individual “language” token within the LLM’s vocabulary. While this approach demonstrates potential, it introduces a severe scalability bottleneck: **for a graph with one million nodes, the LLM’s vocabulary would also need to expand by one million new tokens.** This linear growth in vocabulary size with the number of nodes renders such methods impractical for the increasingly large graphs encountered in real-world applications.

Concurrently, Vector Quantization (VQ) techniques have been extensively and successfully employed in diverse domains like audio (Zeghidour et al., 2021), speech (Van Den Oord et al., 2017), image (Razavi et al., 2019), and video (Yan et al., 2021) as a powerful mechanism for data compression and discrete representation learning. The core idea behind VQ is to map continuous input vectors to a finite set of learned prototype vectors, known as a codebook. Specifically, each continuous latent vector produced by the encoder is quantized by finding its nearest neighbor in the codebook, replacing the original vector with that prototype. This yields a discrete representation that can be stored or transmitted efficiently. Residual Vector Quantization (RVQ) (Zeghidour et al., 2021) further extends this by applying quantization in a staged, residual manner. Instead of quantizing a vector once, RVQ uses multiple codebooks (quantizers); after the first quantization, the residual error is passed to the

108 next quantizer, allowing for a finer-grained and more accurate discrete representation with a richer
 109 effective vocabulary from a combination of smaller codebooks. Despite their proven efficacy in other
 110 fields, the exploration of VQ for graph data—particularly for tokenizing node features in large-scale
 111 graphs—remains less systematically explored, with only a few emerging efforts (Yang et al., 2023;
 112 Kong et al., 2023; Dwivedi et al., 2023). In this vein, we made an intriguing preliminary finding
 113 on the ogbn-arxiv dataset, which comprises 169,343 nodes and 1,166,243 edges. As shown
 114 in Table 1, we observed that by first encoding raw node features using a RVQ encoder and then
 115 feeding these quantized embeddings—instead of the original continuous features—into traditional
 116 GNN models (e.g., GCN, ChebNet, GraphSAGE, and GAT), performance on node classification tasks
 117 remained on par, or even slightly improved. With four quantizers ($d=4$) and codebook size 32, RVQ
 118 learns 128 shared codes and provides up to $32^4=1,048,576$ signatures, indicating that the compact
 119 discrete representation preserves salient features while filtering noise and improving learning.
 120

121 This observation—that node features can be effectively compressed into a discrete vocabulary
 122 without hampering, and sometimes even benefiting, standard GNN performance—serves as a strong
 123 motivation for our work. It suggests a pathway to address the scalability challenges of integrating
 124 graph data with LLMs. If node features can be represented by a small, fixed set of discrete tokens,
 125 we can potentially create a graph representation that is *both rich in information (by including
 126 text) and compact enough for LLM processing*, thereby unlocking superior scaling ability when
 127 dealing with graphs of increasing size and complexity. Therefore, we propose GraphQ-LM as
 128 shown in Figure 1 (c), a novel framework designed to tokenize node features from large graphs and
 129 seamlessly integrate them with textual node attributes for effective LLM-based inference. Specifically,
 130 GraphQ-LM leverages the RVQ encoder to transform the original node features into a sequence
 131 of discrete codes, where each code is drawn from one of the multiple fixed-size codebooks within
 132 the RVQ. These quantized “*graph tokens*” are then combined with the original textual descriptions
 133 of nodes and their sampled neighborhoods, forming a unified, multimodal input sequence for an
 134 LLM. This approach not only preserves crucial structural and feature information but also unlocks
 135 the potential for LLMs to perform efficient inference over large-scale graph data in a scalable
 136 manner. The efficacy and scalability of GraphQ-LM are starkly highlighted by its performance on
 137 the ogbn-arxiv benchmark: our method, using just **4 quantizers with a codebook size of 64 per
 138 quantizer (compressing node features to a mere 4 bytes per node)**, achieves **76.63%** accuracy
 139 with a small Qwen2.5-1.5B-Instruct (Yang et al., 2024) model. In contrast, InstructGLM (Ye
 140 et al., 2024) achieves **75.70%** accuracy but requires a significantly larger Llama-7B (Touvron
 141 et al., 2023a) model and a staggering **16,384 bytes per node for its token embeddings** (totaling
 142 approximately 2.6 GB for all nodes). This comparison underscores GraphQ-LM’s ability to achieve
 143 superior or comparable performance with dramatically reduced computational and storage overhead,
 144 demonstrating a critical advancement for practical, large-scale graph-based LLM applications.
 145

146 Our contributions are summarized as follows:

- 147 • We are the first to explore the use of RVQ to encode node features into compact, discrete tokens,
 148 enabling scalable graph integration with LLMs and allowing for free scaling with graph size.
 149 Specifically, with the base LLM as Qwen2.5-1.5B-Instruct, on Cora and PubMed (less
 150 than 20K nodes), GraphQ-LM requires only **1.51 MB** and **1.54 MB** respectively, compared to
 151 **58.2 MB** and **345.7 MB** for InstructGLM. On ogbn-arxiv (around 170K nodes), GraphQ-LM
 152 needs just **2.2 MB** versus InstructGLM’s **2,728.7 MB**.
- 153 • GraphQ-LM creates rich, multimodal LLM inputs by effectively combining learned discrete
 154 graph tokens (which capture node features and structural information) with explicit textual
 155 attributes (such as titles and abstracts) of the nodes and their surrounding neighborhoods.
- 156 • GraphQ-LM adopts a joint training strategy where the RVQ encoder within GraphQ-LM is
 157 optimized end-to-end with the LLM, enhancing training efficiency and improving the representa-
 158 tiveness of learned tokens.
- 159 • GraphQ-LM achieves state-of-the-art or competitive results on node classification benchmarks
 160 using significantly smaller LLMs and much more compact node representations, demon-
 161 strating superior practical efficiency. Specifically, with Qwen2.5-3B-Instruct, GraphQ-LM
 162 achieves **87.82%** accuracy on Cora compared to 87.08% with InstructGLM (Llama-7B),
 163 **95.02%** on PubMed compared to 93.84%, and **76.78%** on ogbn-arxiv compared to 75.70%,
 164 while requiring substantially less storage for node representations.

162 2 RELATED WORK
163
164

165 **Graph Neural Networks.** Graphs, a unique data structure consisting of nodes and edges, have demon-
166 strated expressive power in representing various fields across social science (social networks (Tang
167 & Liu, 2009)), natural science (biology (Fout et al., 2017), chemistry (Duvenaud et al., 2015)), and
168 other areas (Wu et al., 2020; Zhou et al., 2020). To effectively process graph data and capture rich
169 relational information among graph elements, Graph Neural Networks (GNNs) have been developed
170 as the standard deep learning-based methods for operating on graph domains. Early GNNs relied on
171 message-passing frameworks, where nodes iteratively updated by exchanging information with their
172 neighbors, such as Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017), ChebNet (Deff-
173 errard et al., 2016), and GraphSAGE (Hamilton et al., 2017). The integration of attention mechanisms,
174 like Graph Attention Networks (GAT) (Veličković et al., 2018), has further enhanced the capabilities
175 of GNNs. This evolution has led to the development of advanced Graph Transformers (Yun et al.,
176 2019; Ying et al., 2021; Yang et al., 2021; Chen et al., 2022; 2023) that can learn rich node represen-
177 tations. In contrast, our work explores the application of Large Language Models (LLMs) to leverage
178 the semantic content embedded within graph nodes, offering a novel perspective on graph analysis.

179 **LLMs on Graphs.** Large language models (LLMs) (Vaswani et al., 2017; Brown et al., 2020; Kaplan
180 et al., 2020; Touvron et al., 2023b; Team et al., 2023) have proven effective in scaling and exhibit
181 strong capabilities in addressing natural language processing (NLP) tasks. While LLMs are widely
182 used for processing pure text, there is an increasing number of applications of LLMs on the text data
183 associated with structural information in the form of graphs. (Jin et al., 2024) provides a taxonomy of
184 LLMs on graphs, whereas our paper focuses on utilizing LLMs as predictors (Zeng et al., 2022; Fang
185 et al., 2023; Guo et al., 2023) for text-attributed graphs (Jin et al., 2023a; Yang et al., 2021; Jin et al.,
186 2023b). In this context, LLMs are employed to process nodes or edges enriched with semantic text
187 information to make predictions. However, previous methods, such as InstructGLM (Ye et al., 2024),
188 which treat each node in a graph as an individual language token within the LLM’s vocabulary, often
189 encounter scalability issues, rendering them impractical for large graphs. Our approach effectively
190 represents discrete graph tokens with rich textual attributes for LLMs while preserving a scale-free
strategy.

191 **Vector Quantization.** Vector quantization (VQ) was first introduced in the 1980s as a method to
192 compress data while preserving signal fidelity (Buzo et al., 1980). The traditional VQ approach uses
193 a compact codebook to compress the entire feature space where each vector is approximated by a
194 single code. Subsequent improvements have been made through product quantization (Sabin & Gray,
195 2003; Jegou et al., 2010) and residual quantization (Juang & Gray, 1982; Martinez et al., 2014),
196 which employ parallel and sequential strategies, respectively. In addition, neural network-based
197 versions, such as VQ-VAE (Van Den Oord et al., 2017), PQ-VAE (Van Balen & Levy, 2019), and
198 RQ-VAE (Lee et al., 2022), have also been developed. These VQ methods have shown remarkable
199 effectiveness across various domains, including audio (Zeghidour et al., 2021), speech (Van Den Oord
200 et al., 2017), image (Razavi et al., 2019), and video (Yan et al., 2021). VQGraph (Yang et al., 2023)
201 introduces a structure-aware tokenizer based on VQ-VAE to encode each node’s local substructure
202 into discrete codes, while GOAT (Kong et al., 2023) leverages a codebook of fixed-size centroids to
203 enable scalable global attention through node-to-centroid interactions. In contrast, LargeGT (Dwivedi
204 et al., 2023) employs an approximate global codebook updated via EMA K-Means to efficiently
205 capture and integrate global graph context. Notably, we are the first to investigate the use of Residual
206 Vector Quantization (RVQ) for encoding node features into compact, discrete tokens specifically
207 for integration with LLMs, thereby enabling scalable graph-LLM integration and facilitating free
208 scaling with graph size. **Concurrently, GQT (Wang et al., 2024) applies RVQ to learn graph**
209 **tokenizers on top of GNN-derived node representations for Graph Transformers, Dr.E (Liu**
210 **et al., 2025) applies RVQ to GNN-based node embeddings and reuses a subset of the LLM**
211 **vocabulary as the codebook to obtain interpretable graph tokens, and Lin et al. (2025) provide**
212 **a comprehensive survey of quantized graph representations, including such graph-to-LLM**
213 **interfaces. In contrast, GraphQ-LM explicitly targets text-attributed graphs with long node**
214 **texts and performs multi-codebook RVQ directly on text-derived node features, mapping each**
215 **node’s textual attributes into only a few discrete tokens. These graph-specific tokens extend the**
LLM vocabulary without being tied to natural-language words, and are designed to keep the
overall graph-token budget compact and sublinear in the number of nodes, enabling scalable
LLM-based inference while still leveraging rich semantic information from the original texts.

216 **3 GRAPHQ-LM**
 217

218 The challenge of effectively integrating graph-structured data with the advanced capabilities of
 219 LLMs necessitates frameworks that are both *representationally rich* and *computationally scalable*.
 220 Current paradigms often struggle with an $O(n)$ complexity concerning the number of nodes n
 221 when incorporating node-specific information into LLMs, posing a significant barrier for large-scale
 222 graphs. To address this, we propose GraphQ-LM, an end-to-end framework designed for scalable
 223 and effective graph representation learning. The core of GraphQ-LM lies in its ability to tokenize
 224 continuous node features into a compact, discrete sequence using Residual Vector Quantization (RVQ).
 225 This sequence of quantized tokens, when combined with textual attributes, forms a rich multimodal
 226 input for the LLM, allowing the model to scale efficiently to large graphs while simultaneously
 227 harnessing the sophisticated contextual understanding offered by LLMs.

228 **3.1 NOTATION AND HIGH-LEVEL WORKFLOW**
 229

230 We primarily focus on the task of node classification on attributed graphs $G = (V, E, X, T)$, where
 231 V is the set of nodes, E is the set of edges, $X = \{x_i \in \mathbb{R}^{D_{\text{feat}}} \mid v_i \in V\}$ is the set of raw continuous
 232 node features, and $T = \{t_i \mid v_i \in V\}$ represents textual attributes associated with each node (e.g.,
 233 titles, abstracts). The goal is to predict a label y_i for a given target node v_i .

234 The GraphQ-LM pipeline comprises three main steps as shown in Figure 1:
 235

- 236 **1. Neighborhood Sampling:** Similar to GraphSAGE (Hamilton et al., 2017), a multi-hop neighbor-
 237 hood around the ego node v_i is sampled to gather local context.
- 238 **2. Node Feature Processing:** (a) Encode each sampled node feature x_j with an MLP f_{enc} to obtain
 z_j . (b) Quantize z_j via residual vector quantization into a fixed-length sequence of discrete *graph
 tokens* $(e_{j,1}, \dots, e_{j,d})$, using d codebooks of size K each from the RVQ module.
- 239 **3. Soft Prompting for Classification:** Interleave system instructions, node textual attributes, and
 240 the graph token sequences of the target and its neighbors into a compact prompt for the LLM,
 241 which then predicts the class label.

242 All components are jointly trained in an end-to-end manner. We next introduce the details of the
 243 Residual Vector Quantization in Section 3.2 and the soft prompting in Section 3.3.

244 **3.2 RESIDUAL VECTOR QUANTIZATION OF NODE FEATURES**
 245

246 Let $x \in \mathbb{R}^{D_{\text{feat}}}$ be a raw node feature. An MLP encoder f_{enc} maps it to a latent

$$247 \quad \mathbf{z}_0 = f_{\text{enc}}(x) \in \mathbb{R}^h, \quad (1)$$

248 where h equals the LLM’s token-embedding dimension.

249 **Multi-stage quantization. Residual Vector Quantization (RVQ) (Zeghidour et al., 2021) uses d
 250 learnable codebooks $\{\mathcal{C}^{(1)}, \dots, \mathcal{C}^{(d)}\}$, where each $\mathcal{C}^{(q)} = \{\mathbf{e}_1^{(q)}, \dots, \mathbf{e}_K^{(q)}\} \subset \mathbb{R}^h$ contains unit- ℓ_2
 251 vectors. Given an input embedding \mathbf{z}_0 , we set the initial residual $\mathbf{r}_0 = \mathbf{z}_0$ and quantize it
 252 sequentially. At stage $q \in \{1, \dots, d\}$:**

$$253 \quad \widehat{\mathbf{r}}_{q-1} = \text{l2norm}(\mathbf{r}_{q-1}), \quad (2)$$

$$254 \quad \mathbf{k}^{(q)} = \arg \max_{k \in [K]} \left\langle \widehat{\mathbf{r}}_{q-1}, \mathbf{e}_k^{(q)} \right\rangle, \quad (3)$$

$$255 \quad \mathbf{q}^{(q)} = \mathbf{e}_{k^{(q)}}^{(q)}, \quad (4)$$

$$256 \quad \mathbf{r}_q = \mathbf{r}_{q-1} - \text{sg}[\mathbf{q}^{(q)}]. \quad (5)$$

257 Here $\text{l2norm}(\cdot)$ denotes ℓ_2 normalization, so the selection in Eq. (2) is equivalent to nearest-
 258 neighbor search under cosine similarity. The stop-gradient operator $\text{sg}[\cdot]$ prevents collapsing
 259 the residual during backpropagation. Gradients through the discrete index $k^{(q)}$ are estimated
 260 using the rotation-trick straight-through estimator (Fifty et al., 2024).

261 The discrete *graph-token* sequence for node x is $(k^{(1)}, k^{(2)}, \dots, k^{(d)})$. Each index $k^{(q)}$ is treated as
 262 a language token in the LLM prompt and is mapped to its code embedding $\mathbf{q}^{(q)}$, which serves as the
 263 LLM input embedding. In the worst case with no signature collisions, d codebooks yield K^d distinct
 264 signatures, so uniquely encoding n nodes requires $K^d \geq n$, that is $K = n^{1/d}$. The number of learned
 265 token types is then $dK = d n^{1/d}$, which is sublinear in n rather than $O(n)$.

270 **Training objective.** We optimize two loss terms over a mini-batch of size B and average across the d
 271 quantization stages:

$$272 \quad L_{\text{commit}} = \frac{1}{Bd} \sum_{i=1}^B \sum_{q=1}^d \|\mathbf{r}_{i,q-1} - \mathbf{q}_i^{(q)}\|_2^2, \quad (6)$$

$$273 \quad L_{\text{div}} = \frac{1}{d} \sum_{q=1}^d \left(- \sum_{k=1}^K \bar{p}_k^{(q)} \log(\bar{p}_k^{(q)}) \right), \quad (7)$$

274 where $p_{i,k}^{(q)} = \text{softmax}(\langle \hat{\mathbf{r}}_{i,q-1}, \mathbf{e}_k^{(q)} \rangle / \tau)$ and $\bar{p}_k^{(q)} = \frac{1}{B} \sum_{i=1}^B p_{i,k}^{(q)}$.

275 The *commitment loss* L_{commit} encourages each encoder residual to remain close to its selected
 276 code vector, stabilizing the assignment, while the *diversity loss* L_{div} maximizes the entropy of the
 277 average code-usage distribution to prevent collapse onto a small subset of codes and τ represents the
 278 temperature, which is set to 100 consistently across our experiments.

279 Thus, the full quantization objective is

$$280 \quad L_{\text{RVQ}} = \lambda_c L_{\text{commit}} + \lambda_d L_{\text{div}}, \quad (8)$$

281 with λ_c and λ_d weighting the commitment and diversity terms.

282 3.3 SOFT PROMPTING FOR LLM CLASSIFICATION

283 To enable the LLM to perform graph-based inference, we employ a two-part soft prompt that
 284 interweaves system instructions with node-specific text and quantized graph feature tokens.

- 285 • **System prompt:** A fixed instruction that defines the LLM's role and task, e.g., "You are an
 286 expert classifier for arXiv's Computer Science domain, charged
 287 with assigning exactly one of {categories} to a central paper."
- 288 • **User prompt:** A structured mixture of textual attributes and graph tokens for a seed node v_s :
 - 289 (1) **Central node:** Central node: $\langle \text{title}_s \rangle \langle \text{abstract}_s \rangle$
 - 290 (2) **Neighborhood entries:** For each hop $h = 1, \dots, H$, prepend the literal marker " h -hop
 291 neighborhood:" and then list each neighbor $v \in \mathcal{N}_h(v_s)$ as $\langle \text{title}_v \rangle (k_v^{(1)}, \dots, k_v^{(d)})$,
 292 joined by commas. Here $\{k_v^{(q)}\}$ is the discrete graph-token index sequence.
 - 293 (3) **Token embedding:** All natural language tokens (titles, abstracts, markers) are mapped
 294 via the LLM's native embedding function $\text{TokenEmb}(\cdot)$, whereas each graph-token index
 295 $k_v^{(q)}$ is directly substituted with the corresponding quantized embedding $\mathbf{q}_v^{(q)}$ from the RVQ
 296 codebook.

300 The final model input is the concatenation of (i) the system-prompt embeddings and (ii) the user-
 301 prompt embeddings, which the LLM consumes to predict the class label via cross-entropy on the
 302 generated label tokens.

303 3.4 JOINT OPTIMIZATION STRATEGY

304 We use LoRA (Hu et al., 2022) for parameter-efficient adaptation of the pre-trained LLM to our
 305 graph-augmented prompts. GraphQ-LM is then trained end-to-end by jointly updating the MLP
 306 encoder, the RVQ codebooks, and the LoRA adapters of the LLM, while all other LLM parameters
 307 (including its input embedding matrix) remain frozen.

308 The total loss combines a cross-entropy classification term with the quantization regularizers:

$$309 \quad L_{\text{ce}} = -\log p_{\text{LLM}}(y_s \mid \text{prompt embeddings}), \quad L_{\text{total}} = L_{\text{ce}} + w_{\text{RVQ}} L_{\text{RVQ}}.$$

310 where w_{RVQ} balances the influence of the commitment and diversity losses.

311 By minimizing L_{total} , the encoder, codebooks, and LoRA adapters co-adapt so that the quantized
 312 graph tokens become maximally informative for the classification task.

313 4 EXPERIMENTS

314 In this section, we present a systematic evaluation of GraphQ-LM on three standard citation network
 315 benchmarks. All experiments are conducted on a single NVIDIA RTX A6000 GPU.

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
Table 2: Summary of dataset statistics.

Dataset	#Nodes	#Edges	#Features	Feature Extraction	Train/Val/Test	#Classes
Cora	2,708	5,429	1,433	Bag of Words	60%/20%/20% (random)	7
PubMed	19,717	44,338	500	TF-IDF	60%/20%/20% (random)	3
ogbn-arxiv	169,343	1,166,243	128	Skip-gram	54%/18%/28% (official)	40

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
Table 3: **Accuracy and node-representation cost on ogbn-arxiv.** GNNs appear first, graph transformers next, and LLM-based methods last. GraphQ-LM uses shared RVQ codebooks to tokenize features, which yields higher accuracy than InstructGLM while cutting storage by orders of magnitude. Ablations without RVQ (same backbones, text only) show clear gains from RVQ: +7.93 pp (0.5B), +2.96 pp (1.5B), and +2.86 pp (3B). Bold denotes the best in each LLM backbone.

Model	Base LLM	Acc. (%)	Node Representation Cost
Node2vec (Grover & Leskovec, 2016)	–	70.07 ± 0.13	
GraphSAGE (Hamilton et al., 2017)	–	71.49 ± 0.27	
GCN (Kipf & Welling, 2017)	–	71.74 ± 0.29	
DeeperGCN (Li et al., 2020)	–	71.92 ± 0.16	
SIGN (Frasca et al., 2020)	–	71.95 ± 0.11	
UniMP (Shi et al., 2021)	–	73.11 ± 0.20	82.69 MB
LEGNN (Yu et al., 2022)	–	73.37 ± 0.07	
GAT (Wang et al., 2021)	–	73.66 ± 0.11	
AGDN (Sun et al., 2020)	–	73.75 ± 0.21	
DRGAT (Zhang et al., 2023)	–	74.16 ± 0.07	
RevGAT (Li et al., 2021)	–	74.26 ± 0.17	
CoarFormer (Kuang et al., 2021)	–	71.66 ± 0.24	
GOAT (Kong et al., 2023)	–	72.41 ± 0.40	
SGFormer (Wu et al., 2023)	–	72.63 ± 0.13	82.69 MB
Graphormer (Ying et al., 2021)	–	72.81 ± 0.23	
Polynormer (Deng et al., 2024)	–	73.46 ± 0.16	
E2EG (Dinh et al., 2023)	–	73.62 ± 0.14	
InstructGLM (Ye et al., 2024)	LLaMA-7B	75.70 ± 0.12	2,728.67 MB
GraphGPT (Tang et al., 2024)	Vicuna-7B	75.11	–
GraphLLM (Li et al., 2024)	PLM	74.65	–
GraphQ-LM (w/o RVQ)	Qwen-2.5-0.5B-Instruct	60.70 ± 3.52	–
GraphQ-LM	Qwen-2.5-0.5B-Instruct	68.63 ± 0.41 ($d=2, K=1024$)	0.32 MB (Node Tokens) + 7.00 MB (RVQ)
GraphQ-LM (w/o RVQ)	Qwen-2.5-1.5B-Instruct	73.67 ± 0.52	–
GraphQ-LM	Qwen-2.5-1.5B-Instruct	76.63 ± 0.20 ($d=4, K=64$)	0.65 MB (Node Tokens) + 1.50 MB (RVQ)
GraphQ-LM (w/o RVQ)	Qwen-2.5-3B-Instruct	73.92 ± 0.63	–
GraphQ-LM	Qwen-2.5-3B-Instruct	76.78 ± 0.17 ($d=2, K=256$)	0.32 MB (Node Tokens) + 3.32 MB (RVQ)

Datasets. We evaluate on three widely used node-classification datasets: ogbn-arxiv from the Open Graph Benchmark (Hu et al., 2020), and the Cora and PubMed citation networks (Yang et al., 2016). In each dataset, nodes represent papers (with title and abstract) and edges denote citation links. Node features are pre-extracted from title and abstract: ogbn-arxiv uses 128-dimensional average Skip-Gram embeddings, Cora uses 1,433-dimensional bag-of-words vectors, and PubMed uses 500-dimensional TF-IDF. Detailed dataset statistics are summarized in Table 2.

Training details. **(a) RVQ encoder.** Each dataset uses a three-layer MLP with LayerNorm to produce the latent vectors that are fed to the residual VQ module. The commitment, diversity loss weights and the RVQ loss weight are fixed to 1.0, 0.25, and 1.0 respectively. During neighborhood sampling, we consistently draw 20 one-hop, 10 two-hop, and 5 three-hop neighbors for each node. Full soft prompt templates are given in Appendix A. **(b) Backbone LLMs.** We study three sizes of Qwen-2.5 Instruct as the backbone language model—0.5B, 1.5B, and 3B parameters—to gauge the impact of LLM scale. **(c) LoRA fine-tuning.** The LLM is adapted with LoRA (Hu et al., 2022) (rank=64, $\alpha = 256$), we train for 40 epochs on Cora, 5 epochs on PubMed, and 2 epochs on ogbn-arxiv with batch size as 128, 128, and 256 respectively. All results are obtained over five random seeds, and more details are deferred to Appendix B.

Evaluation metrics. We report (i) *accuracy* (Acc.)—node-classification accuracy on the test set (mean \pm std over runs)—and (ii) *Node-Representation Cost* (NRC), i.e., the total number of bytes needed to store all node representations. We assume float32 storage for float numbers, giving 4 bytes per feature dimension. For GraphQ-LM, the cost consists of the bytes required for each node’s length- d integer token sequence plus the shared parameters of the embeddings of the learnable codebooks from the RVQ.

Baselines. We benchmark GraphQ-LM against strong convolutional GNNs (GAT, DRGAT, RevGAT), transformer-style architectures (Graphormer, GT, NAGphormer, GOAT), and the recent LLM-based

378
 379 Table 4: **Accuracy and node-representation cost on Cora and PubMed.** GNNs appear first, graph transform-
 380 ers next, and LLM-based methods last. GraphQ-LM replaces continuous features with shared RVQ codebooks,
 381 which yields consistent gains over text-only LLM baselines and reduces storage by orders of magnitude. Ab-
 382 lations without RVQ (same backbones, text only) confirm the contribution of RVQ: on Cora the gains are
 383 +3.70 pp (0.5B), +1.96 pp (1.5B), +2.36 pp (3B); on PubMed the gains are +2.91 pp, +2.88 pp, +2.89 pp. Bold
 384 numbers indicate the best accuracy within each LLM backbone and dataset.

Method	Base LLM	Acc. (%)	Cora Node Representation Cost	Acc. (%)	PubMed Node Representation Cost
MixHop (Abu-El-Haija et al., 2019)	–	65.65 ± 1.31		87.04 ± 4.10	
GAT (Veličković et al., 2018)	–	76.70 ± 0.42		83.28 ± 0.12	
GPRGNN (Chien et al., 2021)	–	79.51 ± 0.36		85.07 ± 0.09	
SGC-2 (Wu et al., 2019)	–	85.48 ± 1.48		85.36 ± 0.52	
GraphSAGE (Hamilton et al., 2017)	–	86.58 ± 0.26		86.85 ± 0.11	
GCN (Kipf & Welling, 2017)	–	87.78 ± 0.96	15.84 MB	88.90 ± 0.32	37.61 MB
BernNet (He et al., 2021)	–	88.52 ± 0.95		88.48 ± 0.41	
FAGCN (Bo et al., 2021)	–	88.85 ± 1.36		89.98 ± 0.54	
GCNII (Chen et al., 2020)	–	88.98 ± 1.33		89.80 ± 0.30	
RevGAT (Li et al., 2021)	–	89.11 ± 0.00		88.50 ± 0.05	
Snowball-3 (Luan et al., 2019)	–	89.33 ± 1.30		88.80 ± 0.82	
ACM-GCN++ (Luan et al., 2022)	–	89.33 ± 0.81		90.39 ± 0.33	
Graphomer (Ying et al., 2021)	–	80.41 ± 0.30		88.24 ± 1.50	
NAGPhomer (Chen et al., 2023)	–	82.10 ± 0.60		89.70 ± 0.19	
GT (Dwivedi & Bresson, 2020)	–	86.42 ± 0.82	15.84 MB	88.75 ± 0.16	37.61 MB
GOAT	–	87.86 ± 1.31		86.87 ± 0.24	
Polynormer (Deng et al., 2024)	–	88.11 ± 1.08		87.34 ± 0.43	
CoarFormer (Kuang et al., 2021)	–	88.69 ± 0.82		89.75 ± 0.31	
InstructGLM (Ye et al., 2024)	LLaMA-7B	87.08 ± 0.32	58.15 MB	93.84 ± 0.25	345.69 MB
GraphLM (Li et al., 2024)	PLM	86.52	–	94.65	–
GraphQ-LM (w/o RVQ)	Qwen-2.5-0.5B-Instruct	82.62 ± 1.54	–	91.53 ± 0.49	–
GraphQ-LM	Qwen-2.5-0.5B-Instruct	86.31 ± 1.98	0.005 MB (Node Tokens) ($d=2, K=32$)	94.44 ± 0.41	0.038 MB (Node Tokens) ($d=2, K=128$)
GraphQ-LM (w/o RVQ)	Qwen-2.5-1.5B-Instruct	85.09 ± 1.01	–	91.80 ± 0.57	–
GraphQ-LM	Qwen-2.5-1.5B-Instruct	87.05 ± 1.01	0.005 MB (Node Tokens) ($d=2, K=128$)	94.68 ± 0.21	0.038 MB (Node Tokens) ($d=2, K=128$)
GraphQ-LM (w/o RVQ)	Qwen-2.5-3B-Instruct	85.46 ± 0.54	–	92.13 ± 0.63	–
GraphQ-LM	Qwen-2.5-3B-Instruct	87.82 ± 0.77	0.005 MB (Node Tokens) ($d=2, K=256$)	95.02 ± 0.22	0.038 MB (Node Tokens) ($d=2, K=128$)
			+ 4.000 MB (RVQ)		+ 2.000 MB (RVQ)

404 InstructGLM. Reported scores are taken from the public leaderboards¹ or from the original papers
 405 when not listed.
 406

407 **Main Results.** Table 3 reports our performance on ogbn-arxiv, while Table 4 sum-
 408 marizes results on Cora and PubMed. We highlight three key observations: (a) **Effectiveness of**
 409 **language-enhanced models.** Once textual information is incorporated, LLM-based approaches
 410 surpass both traditional GNNs and recent graph transformers. Concretely, GraphQ-LM attains
 411 **76.78%** accuracy on ogbn-arxiv—about 2.5% higher than the strongest GNN and 3.0% above
 412 the best graph transformer. On PubMed we observe a consistent 5% improvement over all these
 413 models, and on Cora we can still match those baselines while requiring far smaller cost on node
 414 representations. (b) **Advantage over InstructGLM with far lower representation cost.** Across all
 415 three datasets, GraphQ-LM outperforms InstructGLM despite using a much smaller LLM backbone.
 416 On ogbn-arxiv, our 1.5B model reaches **76.63%** accuracy versus InstructGLM’s 75.70% with 7B
 417 model. Crucially, our entire graph is stored in just 0.65 MB of integer node tokens plus 1.5 MB for
 418 the embedding of the codebooks from the RVQ, whereas InstructGLM requires 2,728.67 MB to keep
 419 both the raw features and per-node language embeddings. Similar memory savings accompany our
 420 superior accuracy on Cora and PubMed, we typically require less than 1% of InstructGLM’s cost
 421 while still achieving superior performance. Our tokenization likely improves accuracy through an
 422 implicit denoising effect: *by preserving only the most salient aspects of the raw features, it filters out*
 423 *irrelevant noise.* (c) **Scalability of GraphQ-LM.** Moving from small graphs (Cora and PubMed;
 424 <20 K nodes) to the much larger ogbn-arxiv (170 K nodes), the memory needed for node tokens
 425 grows modestly—from <0.1 MB to <0.7 MB—while the RVQ encoder remains under at most 4
 426 MB throughout. These results demonstrate that GraphQ-LM scales gracefully with graph size,
 427 delivering strong accuracy without sacrificing efficiency. (d) **Contribution of RVQ tokenization.**
 428 Ablations without RVQ (text only, same backbones) show that RVQ accounts for most of the gains:
 429 on ogbn-arxiv the improvements are +7.93 pp for 0.5B, +2.96 pp for 1.5B, and +2.86 pp for 3B;
 430 on Cora they are +3.70 pp, +1.96 pp, and +2.36 pp; on PubMed they are +2.91 pp, +2.88 pp, and
 431 +2.89 pp. This confirms that discretizing node features into shared codebooks both improves accuracy
 432 and enables compact storage.

¹ ogbn-arxiv leaderboard; Cora leaderboard; PubMed leaderboard.

Figure 2: Accuracy vs. RVQ capacity on **ogbn-arxiv**. Varying codebook size K and depth d shows a clear sweet spot: moderate capacity works best. Performance rises from small K then plateaus, with best results around $d=4$ and K in the 64–512 range. Larger K or deeper d does not yield consistent gains, which supports using compact codebooks for strong accuracy with low storage.

5 ABLATION STUDIES.

In this section, we examine how the backbone LLM size, the RVQ depth d , and the codebook size K affect classification accuracy.

Backbone LLM Size. Across all three benchmarks, larger LLMs consistently yield higher accuracy. On **ogbn-arxiv**, accuracy improves from 68.63% with **Qwen-2.5-0.5B-Instruct** to 76.78% with **Qwen-2.5-3B-Instruct**. On **Cora**, it rises from 86.31% to 87.82%, and on **PubMed**, from 94.44% to 95.02%. This confirms that stronger language backbones enhance our graph-augmented soft prompting. Inference latencies are reported in Appendix B, and more results are shown in Appendix C.

Influence of Depth d . Figure 2 shows accuracy curves for depths $d \in \{2, 3, 4, 5\}$ as the codebook size K varies. Shallow quantization ($d = 2$) underperforms at both very small and very large K , peaking at 76.5% when $K = 256$. Increasing to $d = 3$ yields more robust gains, also reaching 76.5% at $K = 512$. Further depth ($d = 4$) shifts the optimum toward smaller codebooks ($K = 64$), achieving 76.6%, while very deep ($d = 5$) prefers larger K like 2048. In practice, $d = 3$ or 4 offers the best balance between accuracy and efficiency. Detailed statistics are deferred to Appendix C.

Influence of Codebook Size K . Moderate codebook sizes ($K = 128$ – 512) consistently deliver strong performance for $d \leq 3$. Very small codebooks ($K < 64$) lack sufficient representational granularity, while extremely large ones ($K > 1024$) can sparsify assignments or overfit. Deeper RVQ stages ($d \geq 4$) partially compensate for smaller K via additional residual corrections, but at higher representation cost.

Correlation between graph tokens and class labels. Figure 3 plots the per-class distributions of token indices assigned by quantizers 1 (top) and 3 (bottom) in a RVQ module ($d = 4, K = 64$) trained with **Qwen-2.5-1.5B-Instruct** on the **ogbn-arxiv** training set. Notice every one of the 64 codebook entries is used in both quantizers, indicating full utilization of the code space. Besides, the kernel density shapes vary significantly across class labels: some classes concentrate on a narrow index range, while others exhibit broader spreads. When we examine the joint index combinations from all quantizers, each class exhibits a distinctive pattern of quantizer assignments—highlighting GraphQ-LM’s ability to produce compact, class-specific representations with strong discriminative power.

RVQ vs. VQ. To better understand the role of residual vector quantization in **GraphQ-LM**, we compare our multi-stage RVQ design with a single-codebook VQ baseline under the same architecture and training protocol. In the VQ variant, we replace the RVQ module with a

Figure 3: RVQ tokens are discriminative and do not collapse. Violin plots of token indices per class for quantizers 1 (top) and 3 (bottom) with $d=4, K=64$ show class-dependent usage rather than uniform collapse. Early quantizers capture broad groupings and later quantizers refine class-specific patterns, indicating complementary codebooks and label-aligned discrete structure.

486 single codebook of size 2048 and keep all other components (Qwen-1.5B backbone, optimization
 487 settings, and prompt construction) unchanged. On ogbn-arxiv, this VQ baseline achieves
 488 74.91% test accuracy, which is comparable to the baseline InstructGLM. In contrast, our RVQ
 489 configuration with depth $d = 4$ and per-stage codebook size $K = 64$ attains 76.63% accuracy,
 490 despite using much smaller codebooks per stage and a fixed-length token sequence per node.
 491 We hypothesize that this difference stems from the nature of the inputs: the quantized vectors
 492 are embeddings of long texts (e.g., node abstracts), whose rich semantic content is difficult to
 493 capture with a single discrete code. Multi-stage RVQ, on the other hand, can represent different
 494 aspects of the text via multiple codes, yielding a more expressive compositional code space while
 495 keeping the total number of learnable codewords modest. This ablation supports our claim that
 496 the improvements of GraphQ-LM do not come from discretization alone, but from the specific
 497 use of multi-codebook RVQ, which offers better feature approximation and accuracy while
 498 preserving the desired sublinear vocabulary and storage properties.

DISCUSSION AND LIMITATION.

501 We have presented GraphQ-LM, a novel framework that scales LLM-based graph learning to large
 502 graphs by tokenizing continuous node features into compact discrete codes via Residual Vector
 503 Quantization and combining these “graph tokens” with textual attributes in a soft-prompt. Unlike
 504 prior methods that suffer an $O(n)$ vocabulary blow-up, GraphQ-LM requires only $O(d n^{1/d})$ tokens
 505 and a small RVQ encoder, enabling graphs with hundreds of thousands of nodes to be handled by
 506 modestly-sized LLMs. Empirically, GraphQ-LM matches or exceeds the accuracy of leading GNNs
 507 and graph transformers on ogbn-arxiv, Cora, and PubMed, while reducing node-representation
 508 storage from gigabytes to mere megabytes.

509 Although GraphQ-LM achieves significant storage savings and scales gracefully to large graphs,
 510 it is currently trained solely with a classification loss and does not explicitly encourage multi-step
 511 reasoning over the graph-token sequence. Developing prompt designs or auxiliary objectives that
 512 steer the LLM to integrate structural and semantic cues in a systematic, step-by-step manner remains
 513 an important direction. Furthermore, because we rely on full LLM inference, latency is higher than
 514 that of lightweight GNNs or graph transformers. Finally, extending GraphQ-LM to other graph
 515 tasks—such as link prediction, subgraph classification, or whole-graph property prediction—will
 516 require new prompt formats and training strategies, which we leave to future work.

REPRODUCIBILITY STATEMENT

521 We commit to releasing all training and evaluation code for GraphQ-LM, together with data download
 522 scripts, preprocessing, RVQ tokenization, prompt construction, and end-to-end training and inference
 523 pipelines. The repository will include the exact hyperparameters and configurations used in the paper,
 524 aligned with Sections 3.2, 3.3 and 4, with prompt templates in Appendix A, implementation details in
 525 Appendix B, and ablations in Appendix C. We will provide seed control and deterministic flags, and
 526 we report mean and standard deviation over five seeds throughout. The release will contain scripts to
 527 reproduce all main tables and figures, compute the Node Representation Cost as defined in Section 4,
 528 and export checkpoints and logs. We will include environment files and a one-click runner to recreate
 529 results on a single NVIDIA RTX A6000 or a compatible GPU. All datasets are public benchmarks.

REFERENCES

533 Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
 534 Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
 535 architectures via sparsified neighborhood mixing. In *international conference on machine learning*,
 536 pp. 21–29. PMLR, 2019.

538 Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph
 539 convolutional networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35,
 pp. 3950–3957, 2021.

540 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 541 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 542 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

543 Andrés Buzo, A Gray, R Gray, and John Markel. Speech coding based upon vector quantization.
 544 *IEEE Transactions on Acoustics, Speech, and Signal Processing*, 28(5):562–574, 1980.

545 Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
 546 representation learning. In *International conference on machine learning*, pp. 3469–3489. PMLR,
 547 2022.

548 Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer
 549 for node classification in large graphs. In *The Eleventh International Conference on Learning
 550 Representations*, 2023.

551 Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
 552 convolutional networks. In *International conference on machine learning*, pp. 1725–1735. PMLR,
 553 2020.

554 Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
 555 graph neural network. In *International Conference on Learning Representations*, 2021.

556 Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
 557 graphs with fast localized spectral filtering. *Advances in neural information processing systems*,
 558 29, 2016.

559 Chenhui Deng, Zichao Yue, and Zhiru Zhang. Polynormer: Polynomial-expressive graph transformer
 560 in linear time. In *The Twelfth International Conference on Learning Representations*, 2024.

561 Tu Anh Dinh, Jeroen den Boef, Joran Cornelisse, and Paul Groth. E2eg: End-to-end node classifica-
 562 tion using graph topology and text-based node attributes. In *2023 IEEE International Conference
 563 on Data Mining Workshops (ICDMW)*, pp. 1084–1091. IEEE, 2023.

564 David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
 565 Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
 566 fingerprints. *Advances in neural information processing systems*, 28, 2015.

567 Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
 568 *arXiv preprint arXiv:2012.09699*, 2020.

569 Vijay Prakash Dwivedi, Yozen Liu, Anh Tuan Luu, Xavier Bresson, Neil Shah, and Tong Zhao.
 570 Graph transformers for large graphs. *arXiv preprint arXiv:2312.11109*, 2023.

571 Yin Fang, Xiaozhuan Liang, Ningyu Zhang, Kangwei Liu, Rui Huang, Zhuo Chen, Xiaohui Fan, and
 572 Huajun Chen. Mol-instructions: A large-scale biomolecular instruction dataset for large language
 573 models. *arXiv preprint arXiv:2306.08018*, 2023.

574 Christopher Fifty, Ronald G Junkins, Dennis Duan, Aniketh Iyengar, Jerry W Liu, Ehsan Amid,
 575 Sebastian Thrun, and Christopher Ré. Restructuring vector quantization with the rotation trick.
 576 *arXiv preprint arXiv:2410.06424*, 2024.

577 Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using graph
 578 convolutional networks. *Advances in neural information processing systems*, 30, 2017.

579 Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Federico
 580 Monti. Sign: Scalable inception graph neural networks. *arXiv preprint arXiv:2004.11198*, 2020.

581 Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In *Proceedings
 582 of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining*, pp.
 583 855–864, 2016.

584 Taicheng Guo, Kehan Guo, Zhengwen Liang, Zhichun Guo, Nitesh V Chawla, Olaf Wiest, Xiangliang
 585 Zhang, et al. What indeed can gpt models do in chemistry? a comprehensive benchmark on eight
 586 tasks. *arXiv preprint arXiv:2305.18365*, 3, 2023.

594 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
 595 *Advances in neural information processing systems*, 30, 2017.
 596

597 Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning arbitrary graph spectral filters via
 598 bernstein approximation. *Advances in Neural Information Processing Systems*, 34:14239–14251,
 599 2021.

600 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 601 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

602 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
 603 and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. *Advances in
 604 neural information processing systems*, 33:22118–22133, 2020.

605

606 Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search.
 607 *IEEE transactions on pattern analysis and machine intelligence*, 33(1):117–128, 2010.

608 Bowen Jin, Wentao Zhang, Yu Zhang, Yu Meng, Xinyang Zhang, Qi Zhu, and Jiawei Han. Patton:
 609 Language model pretraining on text-rich networks. *arXiv preprint arXiv:2305.12268*, 2023a.

610

611 Bowen Jin, Yu Zhang, Yu Meng, and Jiawei Han. Edgeformers: Graph-empowered transformers for
 612 representation learning on textual-edge networks. *arXiv preprint arXiv:2302.11050*, 2023b.

613 Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. Large language models on
 614 graphs: A comprehensive survey. *IEEE Transactions on Knowledge and Data Engineering*, 2024.

615

616 Biing-Hwang Juang and A Gray. Multiple stage vector quantization for speech coding. In *ICASSP'82.*
 617 *IEEE International Conference on Acoustics, Speech, and Signal Processing*, volume 7, pp. 597–
 618 600. IEEE, 1982.

619 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
 620 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
 621 *arXiv preprint arXiv:2001.08361*, 2020.

622

623 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 624 In *International Conference on Learning Representations*, 2017.

625

626 Kezhi Kong, Juhai Chen, John Kirchenbauer, Renkun Ni, C Bayan Bruss, and Tom Goldstein. Goat:
 627 A global transformer on large-scale graphs. In *International Conference on Machine Learning*, pp.
 628 17375–17390. PMLR, 2023.

629

630 Weirui Kuang, WANG Zhen, Yaliang Li, Zhewei Wei, and Bolin Ding. Coarformer: Transformer for
 631 large graph via graph coarsening. 2021.

632

633 Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
 634 generation using residual quantization. In *Proceedings of the IEEE/CVF Conference on Computer
 635 Vision and Pattern Recognition*, pp. 11523–11532, 2022.

636

637 Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. Deepgcn: All you need to train
 638 deeper gcns. *arXiv preprint arXiv:2006.07739*, 2020.

639

640 Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training graph neural networks
 641 with 1000 layers. In *International conference on machine learning*, pp. 6437–6449. PMLR, 2021.

642

643 Yuhang Li, Peisong Wang, Xiao Zhu, Aochuan Chen, Haiyun Jiang, Deng Cai, Victor W Chan, and
 644 Jia Li. Glbench: A comprehensive benchmark for graph with large language models. *Advances in
 645 Neural Information Processing Systems*, 37:42349–42368, 2024.

646

647 Qika Lin, Zhen Peng, Kaize Shi, Kai He, Yiming Xu, Erik Cambria, and Mengling Feng. A survey of
 648 quantized graph representation learning: Connecting graph structures with large language models.
 649 *arXiv preprint arXiv:2502.00681*, 2025.

650

651 Zipeng Liu, Likang Wu, Ming He, Zhong Guan, Hongke Zhao, and Nan Feng. Multi-view empowered
 652 structural graph wordification for language models. In *Proceedings of the AAAI Conference on
 653 Artificial Intelligence*, volume 39, pp. 24714–24722, 2025.

648 Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and Doina Precup. Break the ceiling: Stronger multi-
 649 scale deep graph convolutional networks. *Advances in neural information processing systems*, 32,
 650 2019.

651 Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
 652 Chang, and Doina Precup. Revisiting heterophily for graph neural networks. *Advances in neural*
 653 *information processing systems*, 35:1362–1375, 2022.

654 Julieta Martinez, Holger H Hoos, and James J Little. Stacked quantizers for compositional vector
 655 compression. *arXiv preprint arXiv:1411.2173*, 2014.

656 Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
 657 vq-vae-2. *Advances in neural information processing systems*, 32, 2019.

658 ML Sabin and R Gray. Product code vector quantizers for waveform and voice coding. *IEEE*
 659 *transactions on acoustics, speech, and signal processing*, 32(3):474–488, 2003.

660 Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked label
 661 prediction: Unified message passing model for semi-supervised classification. In *Proceedings of*
 662 *the Thirtieth International Joint Conference on Artificial Intelligence*, pp. 1548–1554. International
 663 Joint Conferences on Artificial Intelligence Organization, 2021.

664 Chuxiong Sun, Jie Hu, Hongming Gu, Jinpeng Chen, and Mingchuan Yang. Adaptive graph diffusion
 665 networks. *arXiv preprint arXiv:2012.15024*, 2020.

666 Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
 667 Graphgpt: Graph instruction tuning for large language models. In *Proceedings of the 47th*
 668 *International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp.
 669 491–500, 2024.

670 Lei Tang and Huan Liu. Relational learning via latent social dimensions. In *Proceedings of the 15th*
 671 *ACM SIGKDD international conference on Knowledge discovery and data mining*, pp. 817–826,
 672 2009.

673 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 674 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 675 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

676 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 677 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 678 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.

679 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 680 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 681 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.

682 Jan Van Balen and Mark Levy. Pq-vae: Efficient recommendation using quantized embeddings. In
 683 *RecSys (Late-Breaking Results)*, pp. 46–50, 2019.

684 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in*
 685 *neural information processing systems*, 30, 2017.

686 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 687 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*
 688 *systems*, 30, 2017.

689 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 690 Bengio. Graph attention networks. In *International Conference on Learning Representations*,
 691 2018.

692 Limei Wang, Kaveh Hassani, Si Zhang, Dongqi Fu, Baichuan Yuan, Weilin Cong, Zhigang Hua,
 693 Hao Wu, Ning Yao, and Bo Long. Learning graph quantized tokenizers. *arXiv preprint*
 694 *arXiv:2410.13798*, 2024.

702 Yangkun Wang, Jiarui Jin, Weinan Zhang, Yong Yu, Zheng Zhang, and David Wipf. Bag of tricks for
 703 node classification with graph neural networks. *arXiv preprint arXiv:2103.13355*, 2021.

704

705 Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying
 706 graph convolutional networks. In *International conference on machine learning*, pp. 6861–6871. Pmlr, 2019.

707

708 Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian, and
 709 Junchi Yan. Sgformer: Simplifying and empowering transformers for large-graph representations.
 710 *Advances in Neural Information Processing Systems*, 36:64753–64773, 2023.

711

712 Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
 713 Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
 714 *Chemical science*, 9(2):513–530, 2018.

715 Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
 716 comprehensive survey on graph neural networks. *IEEE transactions on neural networks and
 717 learning systems*, 32(1):4–24, 2020.

718

719 Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation using
 720 vq-vae and transformers. *arXiv preprint arXiv:2104.10157*, 2021.

721

722 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 723 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 724 arXiv:2412.15115*, 2024.

725

726 Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal, Amit Singh,
 727 Guangzhong Sun, and Xing Xie. Graphformers: Gnn-nested transformers for representation
 728 learning on textual graph. *Advances in Neural Information Processing Systems*, 34:28798–28810,
 2021.

729

730 Ling Yang, Ye Tian, Minkai Xu, Zhongyi Liu, Shenda Hong, Wei Qu, Wentao Zhang, Bin Cui,
 731 Muhan Zhang, and Jure Leskovec. Vqgraph: Rethinking graph representation space for bridging
 732 gnns and mlps. *arXiv preprint arXiv:2308.02117*, 2023.

733

734 Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
 735 graph embeddings. In *International conference on machine learning*, pp. 40–48. PMLR, 2016.

736

737 Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, and Yongfeng Zhang. Language is all a graph
 738 needs. In *EACL (Findings)*, 2024.

739

740 Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
 741 Tie-Yan Liu. Do transformers really perform badly for graph representation? *Advances in neural
 742 information processing systems*, 34:28877–28888, 2021.

743

744 Le Yu, Leilei Sun, Bowen Du, Tongyu Zhu, and Weifeng Lv. Label-enhanced graph neural network
 745 for semi-supervised node classification. *IEEE Transactions on Knowledge and Data Engineering*,
 746 35(11):11529–11540, 2022.

747

748 Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
 749 networks. *Advances in neural information processing systems*, 32, 2019.

750

751 Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi. Sound-
 752 stream: An end-to-end neural audio codec. *IEEE/ACM Transactions on Audio, Speech, and
 753 Language Processing*, 30:495–507, 2021.

754

755 Zheni Zeng, Yuan Yao, Zhiyuan Liu, and Maosong Sun. A deep-learning system bridging molecule
 756 structure and biomedical text with comprehension comparable to human professionals. *Nature
 757 communications*, 13(1):862, 2022.

758

759 Lei Zhang, Xiaodong Yan, Jianshan He, Ruopeng Li, and Wei Chu. Drgcn: Dynamic evolving
 760 initial residual for deep graph convolutional networks. In *Proceedings of the AAAI conference on
 761 artificial intelligence*, volume 37, pp. 11254–11261, 2023.

756 Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
757 Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
758 *AI open*, 1:57–81, 2020.

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 **A PROMPTS**
811812 In this section, we present the system and user prompts used for different datasets. The system
813 prompts on different datasets are shown below:
814815 **System Prompt for ogbn-arxiv**
816817 *You are an expert classifier for arXiv’s Computer Science domain, charged with assigning
818 exactly one of the 40 official CS categories (i.e., algorithm, artificial intelligence, automata,
819 complexity, computation and language, computational engineering, computer vision, control,
820 database, digital library, discrete mathematics, distributed computing, emerging, game, gen-
821 eral, geometry, graphics, hardware, human computer interaction, information theory, internet,
822 logic, machine learning, mathematical software, multiagent, multimedia, neural computing,
823 numerical analysis, operating system, other, performance, programming, retrieval, robotics,
824 security, social network, society, software engineering, sound, symbolic) to a central paper.
825 The graph is directed, with edges representing citations. Input is a comma-separated list of
826 nodes, each formatted as Title(feature), where the feature comprises special abstract-feature
827 tokens. Use the titles and feature tokens of the central paper and its multi-hop neighbors to
828 determine the most appropriate category.*830 **System Prompt for Cora**
831832 *You are an expert classifier for the Cora citation network, charged with assigning exactly
833 one of the seven research-topic labels—case based, genetic algorithms, neural networks,
834 probabilistic methods, reinforcement learning, rule learning, theory—to a central paper. The
835 graph is directed, with edges representing citations. The input is a comma-separated list of
836 nodes, each formatted as Title(feature), where the feature contains special abstract-feature
837 tokens. Use the titles and feature tokens of the central paper and its multi-hop neighbors to
838 determine the most appropriate category.*841 **System Prompt for PubMed**
842843 *You are an expert biomedical article classifier for the PubMed Diabetes citation network,
844 charged with assigning exactly one of three disease categories—experimental, first, sec-
845 ond—to a central article. The graph is directed, with edges representing citations. The
846 input is a comma-separated list of nodes, each formatted as Title(feature), where the feature
847 contains special abstract-feature tokens. Use the titles and feature tokens of the central
848 article and its multi-hop neighbors to determine the most appropriate category.*850 The corresponding user prompt used across all three datasets is as follows:
851852 Central node: <title> (<abstract>)
853 1-hop neighborhood: <title> (<graph tokens>), <title> (<graph tokens>), ...
854 2-hop neighborhood: <title> (<graph tokens>), <title> (<graph tokens>), ...
855 3-hop neighborhood: <title> (<graph tokens>), <title> (<graph tokens>), ...
856857 Each line specifies the central node and its multi-hop neighbors, with each node represented by its title and
858 associated graph tokens based on the node features.
859860 **B EXPERIMENT DETAILS**
861862 We use a consistent learning rate of 1×10^{-4} for all components, including both the encoder and the LoRA
863 adapter, across all datasets and experimental settings. For LoRA, the target modules include `q_proj`, `k_proj`,
864 `v_proj`, `o_proj`, and `lm_head`. The AdamW optimizer is employed for all experiments.

864 **Encoder.** For all datasets, we utilize a three-layer multilayer perceptron (MLP) as the encoder, with ReLU
 865 activations and LayerNorm for normalization. The input dimension is set to match the number of features in
 866 the dataset, while the output dimension is aligned with the language embedding size of the base LLM. For the
 867 ogbn-arxiv dataset, the hidden dimensions are set to [256, 512]; for the Cora and PubMed datasets, the hidden
 868 dimensions are set to [512, 512].

869 **Inference latency.** The inference latency on different datasets with various base LLMs is reported in Table 5.
 870 For simplicity, we consistently use RVQ with a depth of 2 and a codebook size of 256 in all the experiments
 871 here.

873 Table 5: Inference latency (ms per query) on different datasets and base LLMs.

875 Base LLM	876 ogbn-arxiv	877 Cora	878 PubMed
879 Qwen-2.5-0.5B-Instruct	14.38	7.07	12.55
880 Qwen-2.5-1.5B-Instruct	39.18	25.38	32.86
881 Qwen-2.5-3B-Instruct	75.06	47.70	62.30

882 To better reflect end-to-end efficiency, we additionally report the total time required to classify the entire
 883 ogbn-arxiv test set. Using Qwen-2.5-1.5B-Instruct with vLLM, GraphQ-LM takes 450.45 seconds to
 884 process all test nodes, while a fast GNN baseline (GraphSAGE) requires 0.89 seconds under the same
 885 hardware and batching configuration. Although GraphQ-LM is slower in wall-clock time, as it inherits the
 886 computational cost of LLM inference, our primary contribution is not to outperform GNNs in raw speed
 887 but to enable scalable graph reasoning with LLMs under controlled memory and vocabulary growth.

888 Beyond LLM inference, the proposed RVQ tokenization also improves efficiency for conventional GNN
 889 pipelines. As shown in Table 1, replacing continuous node features with discrete RVQ codes preserves
 890 accuracy across GCN, ChebNet, GraphSAGE, and GAT. This has a direct implication for inference
 891 efficiency: since each node is represented by a small number of discrete indices (4 bytes per node when
 892 $K \leq 256$) instead of high-dimensional floating-point vectors, both memory bandwidth and feature loading
 893 overhead are significantly reduced. In large-scale graphs such as ogbn-arxiv, feature access often becomes
 894 a major bottleneck during inference; RVQ compression alleviates this by reducing memory footprint and
 895 enabling cache-friendly access patterns.

896 Importantly, this improvement is achieved without modifying the GNN architecture or increasing model
 897 complexity. When RVQ codes are used as input features for GraphSAGE, inference time remains
 898 essentially unchanged relative to the original model, while the per-node storage cost is reduced by orders
 899 of magnitude. This demonstrates that GraphQ-LM not only enables scalable LLM-based graph inference,
 900 but also provides a practical tool for accelerating deployment and reducing memory pressure in standard
 901 GNN systems.

900 C ADDITIONAL EXPERIMENTS

901 In this section, we present detailed statistics for GraphQ-LM under various RVQ configurations, including
 902 different values of depth d and codebook size K , as described in Section 5. Specifically, test accuracies for
 903 different RVQ settings using Qwen2.5-1.5B-Instruct on the ogbn-arxiv dataset with different depth
 904 and codebook size are reported in Table 6.

905 When consistently using RVQ with depth $d = 2$, the corresponding test accuracies for different LLM sizes
 906 and codebook sizes K are shown in Table 7, Table 8, and Table 9 for the ogbn-arxiv, Cora, and PubMed
 907 datasets, respectively. Notably, for the ogbn-arxiv dataset, we found that the original LoRA fine-tuning
 908 configuration (rank = 64, $\alpha = 256$) yielded a highest test accuracy of only 68.63%. However, increasing the
 909 rank to 256 and α to 1024 improved the highest accuracy to 73.71%. This is likely due to the larger scale of
 910 the ogbn-arxiv dataset, which requires more extensive fine-tuning to achieve optimal performance. For
 911 consistency and fair comparison, we report all main results in the paper based on the original configuration.

912 **LLM without textual input.** To further disentangle the contributions of textual features and learned
 913 graph tokens, we conduct an additional ablation where the LLM receives only graph tokens in the prompt,
 914 without any natural language text. Concretely, we train GraphQ-LM from scratch under the same
 915 architecture, LoRA fine-tuning setup, and hyperparameters, but remove all textual node attributes from
 916 the input and retain only the RVQ-derived graph tokens. Using Qwen-2.5-1.5B-Instruct, this “graph
 917 tokens only” variant attains 46.24% accuracy on Cora, 41.04% on PubMed, and 32.60% on ogbn-arxiv,
 918 which is noticeably lower than the full GraphQ-LM model. This is expected: in this setting the input

918 consists entirely of synthetic graph tokens rather than natural language tokens, and adapting the LLM to
 919 operate solely on such tokens would likely require much stronger finetuning (e.g., full finetuning instead
 920 of our lightweight LoRA setup).

921 At the same time, Table 1 provides complementary evidence for a “w/o Text” scenario in a GNN setting.
 922 There, we replace the original continuous node features with only RVQ graph tokens and train GCN,
 923 ChebNet, GraphSAGE, and GAT directly on these discrete codes. On ogbn-arxiv, these GNNs achieve
 924 around 72% test accuracy using only graph tokens, while the LLM variant without text but with RVQ
 925 graph tokens reaches 73.67%. When we combine both textual input and graph tokens in GraphQ-LM,
 926 the accuracy further improves to 76.63%. Together, these results indicate that (i) the learned graph tokens
 927 alone already carry meaningful structural and semantic information, and (ii) textual features and graph
 928 tokens are complementary modalities whose combination yields the best performance.

929 Table 6: Test accuracy for different settings of RVQ (varying depth d and codebook size K) using
 930 Qwen2.5-1.5B-Instruct as the base LLM on the ogbn-arxiv dataset.

Depth d	$K = 32$	$K = 64$	$K = 128$	$K = 256$	$K = 512$	$K = 1024$	$K = 2048$
2	0.7617	0.7477	0.7588	0.7649	0.7519	0.7500	0.7303
3	0.7547	0.7622	0.7542	0.7604	0.7644	0.7547	0.7490
4	0.7509	0.7663	0.7641	0.7550	0.7512	0.7600	0.7489
5	0.7600	0.7512	0.7564	0.7565	0.7603	0.7597	0.7646

939 Table 7: Test accuracy for different base LLM sizes (Qwen2.5-0.5B-Instruct,
 940 Qwen2.5-1.5B-Instruct, Qwen2.5-3B-Instruct) on ogbn-arxiv with RVQ depth
 941 $d = 2$ and varying codebook size K .

Base LLM	$K = 32$	$K = 64$	$K = 128$	$K = 256$	$K = 512$	$K = 1024$	$K = 2048$
Qwen2.5-0.5B-Instruct	0.6049	0.5803	0.6048	0.6019	0.6801	0.6863	0.6350
Qwen2.5-0.5B-Instruct (lora rank=256, $\alpha=1024$)	0.6540	0.6816	0.6420	0.7371	0.6967	0.7259	0.7107
Qwen2.5-1.5B-Instruct	0.7617	0.7477	0.7588	0.7649	0.7519	0.7500	0.7303
Qwen2.5-3B-Instruct	0.7676	0.7497	0.7570	0.7678	0.7521	0.7604	0.7641

949 Table 8: Test accuracy for different base LLM sizes (Qwen2.5-0.5B-Instruct,
 950 Qwen2.5-1.5B-Instruct, Qwen2.5-3B-Instruct) on Cora with RVQ depth $d = 2$
 951 and varying codebook size K .

Base LLM	$K = 32$	$K = 64$	$K = 128$	$K = 256$
Qwen2.5-0.5B-Instruct	0.8631	0.8587	0.8528	0.8550
Qwen2.5-1.5B-Instruct	0.8657	0.8686	0.8705	0.8686
Qwen2.5-3B-Instruct	0.8727	0.8694	0.8749	0.8782

959 Table 9: Test accuracy for different base LLM sizes (Qwen2.5-0.5B-Instruct,
 960 Qwen2.5-1.5B-Instruct, Qwen2.5-3B-Instruct) on PubMed with RVQ depth $d = 2$
 961 and varying codebook size K .

Base LLM	$K = 32$	$K = 64$	$K = 128$	$K = 256$
Qwen2.5-0.5B-Instruct	0.9436	0.9434	0.9444	0.9429
Qwen2.5-1.5B-Instruct	0.9456	0.9467	0.9468	0.9467
Qwen2.5-3B-Instruct	0.9484	0.9494	0.9502	0.9493

972 D EXTENDING GRAPHQ-LM TO OTHER GRAPH TASKS 973

974 GraphQ-LM can be naturally extended beyond node classification to other graph learning tasks. For link
975 prediction, GraphQ-LM can be used to predict whether an edge exists between two nodes by encoding their
976 neighborhoods and querying the LLM. For graph classification, GraphQ-LM encodes the entire graph structure
977 into a compact set of graph tokens and asks the LLM to predict graph-level properties. Here, we provide a
978 preliminary exploration of extending GraphQ-LM to graph-level molecular property prediction.

979 D.1 GRAPH CLASSIFICATION ON OGBG-MOLHIV 980

981 **Dataset.** We evaluate on `ogbg-molhiv` (Wu et al., 2018), a molecular property prediction benchmark from
982 the Open Graph Benchmark (Hu et al., 2020). The dataset contains 41,127 molecules represented as graphs,
983 where atoms are nodes and chemical bonds are edges. The task is to predict whether a molecule inhibits HIV
984 virus replication. The dataset is highly imbalanced with only 3.5% positive samples, making it challenging for
985 standard classification approaches. Following the official evaluation protocol, we use ROC-AUC as the primary
986 metric.

987 **Separate tokenizers for atoms and bonds.** Unlike node classification where GraphQ-LM only encodes
988 node features, molecular graphs contain rich information in both atoms (nodes) and bonds (edges). We therefore
989 adopt two separate GraphQ-LM tokenizers: one for atom features and one for bond features. Each tokenizer is
990 implemented as an RVQ encoder but learns its own specialized codebook tailored to its input domain.

991 For atoms, we first embed the 9-dimensional discrete atomic features (atomic number, chirality, hybridization,
992 etc.) using OGB’s AtomEncoder into a 256-dimensional space, then apply an RVQ-based tokenizer with $Q = 2$
993 quantizers and codebook size $K = 512$. For bonds, we similarly embed the 3-dimensional bond features (bond
994 type, stereochemistry, conjugation) using OGB’s BondEncoder, and apply a separate tokenizer with identical
995 hyperparameters but independent codebooks. In this way, GraphQ-LM produces compact graph tokens for both
996 atoms and bonds without relying on explicit textual descriptions.

997 **Prompt construction.** We construct the input prompt so that GraphQ-LM can leverage both the learned
998 graph tokens and domain-specific molecular features. The prompt consists of:

1000 System Prompt for `ogbg-molhiv`

1001 You are an expert medicinal chemist specializing in HIV drug discovery. You analyze molecular struc-
1002 tures encoded with learned atom and bond tokens, along with molecular fingerprints (Morgan/MACCS)
1003 and chemical descriptors. Key features for HIV inhibition include: aromatic rings, nitrogen-containing
1004 heterocycles, hydrogen bond donors/acceptors, and specific pharmacophores. Analyze the given
1005 molecule and predict if it inhibits HIV replication.

1007 User Message Structure for `ogbg-molhiv`

1008 SMILES: CC(C)CC(NC(=O)C(CC1=CC=CC=C1)NC(=O) ...
1009
1010 Properties: MW=628, LogP=4.2, HBD=3, HBA=8, TPSA=142, Rings=5 (3
1011 arom, 2 hetero), Lipinski=3/4
1012 Fingerprints: Morgan(45 bits): [23, 56, 89, ...], MACCS(18 bits):
1013 [2, 7, 15, ...]
1014 Molecule (32 atoms):
1015 Atoms: [0: <node tokens>] [1: <node tokens>] [2: <node tokens>]
1016 ...
1017 Bonds: [0-1: <bond tokens>] [1-2: <bond tokens>]
1018 [2-3: <bond tokens>] ...
1019 Summary: 12 aromatic, 18 ring, 2 chiral, 5 N, 6 O, 1 S, 2 halogen,
1020 8 conjugated bonds
1021 Does this molecule inhibit HIV? Answer Yes or No:

1022 where `<node tokens>` denotes Q consecutive graph tokens from the atom tokenizer and
1023 `<bond tokens>` denotes tokens from the bond tokenizer. The learned tokens encode all atomic/bond
1024 chemical information, eliminating the need for redundant textual descriptions of every atom and bond.

1025 We additionally include:

- **SMILES string:** The canonical molecular representation that the LLM can directly interpret.
- **Molecular descriptors:** Key physicochemical properties including molecular weight (MW), LogP, hydrogen bond donors/acceptors (HBD/HBA), topological polar surface area (TPSA), and Lipinski’s Rule of Five compliance.
- **Fingerprints:** Morgan fingerprints (ECFP4-like, radius=2) and MACCS keys, which are proven predictive features for drug activity.
- **Structural summary:** Counts of aromatic atoms, ring atoms, chiral centers, heteroatoms (N, O, S), halogens, and conjugated bonds.

Training details. We use balanced sampling to address the class imbalance, ensuring each batch contains 50% positive and 50% negative samples by oversampling the minority class. Table 10 summarizes the hyperparameters used by GraphQ-LM on `ogbg-molhiv`.

Table 10: Hyperparameters for graph classification on `ogbg-molhiv`.

Hyperparameter	Value
Base LLM	Qwen2.5-3B-Instruct
LoRA rank / alpha	128 / 512
LoRA dropout	0.05
Atom embedding dim	256
Bond embedding dim	256
RVQ quantizers (Q)	2
Codebook size (K)	512
RVQ MLP hidden dims	[512, 512]
Batch size	128
Learning rate (LLM)	1×10^{-4}
Learning rate (encoders)	1×10^{-4}
Weight decay	0.01
RVQ loss weight	1.0
Commitment weight	1.0
Diversity weight	0.25
Epochs	10
Max atoms per molecule	100
Max bonds per molecule	80

Experimental results. Following the official evaluation protocol, we use ROC-AUC as the primary metric. On `ogbg-molhiv`, GraphQ-LM achieves a ROC-AUC of 0.7712. When we remove the graph tokens and keep only the textual and global molecular features in the prompt, the ROC-AUC drops to 0.7503. This gap indicates that the learned atom and bond tokens provide complementary structural information beyond what is captured by SMILES, descriptors, and fingerprints alone. In other words, GraphQ-LM is able to encode useful graph-level chemistry into a compact token set that the LLM can effectively exploit, and this graph-token signal remains beneficial even in the presence of strong hand-crafted features, further supporting the generality and usefulness of our tokenization framework beyond node classification.

Discussion. This preliminary study indicates that GraphQ-LM can be naturally extended beyond node classification to graph-level tasks by reusing the same design principles: compact tokenization of structured inputs and LLM-based reasoning over a mixed set of graph tokens and high-level textual descriptors. In `ogbg-molhiv`, GraphQ-LM treats atoms and bonds symmetrically via separate tokenizers, turning both node- and edge-level chemistry into short discrete token sequences, while the LLM operates only on these tokens plus lightweight global features (SMILES, fingerprints, descriptors). This shows that GraphQ-LM is not limited to text-attributed graphs: as long as graph elements (nodes, edges, or subgraphs) can be embedded into a continuous space, they can be quantized into a small number of tokens and injected into an LLM under a controlled token budget. We view this as evidence that GraphQ-LM provides a general, scalable interface between structured graph information and LLMs, and we leave more extensive evaluations on additional graph tasks (e.g., link prediction and graph generation) as promising future work.