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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable proficiency in
diverse language-centric tasks, yet their application to structured graph data presents
unique challenges, particularly in efficiently tokenizing graph elements. While
graphs offer powerful structural representations, existing methods for interfacing
them with LLMs, such as creating distinct token embeddings for every node,
face significant scalability limitations: the input vocabulary for the LLM grows
linearly with the number of nodes, hindering applicability to large-scale graphs.
Drawing inspiration from vector quantization’s success in compressing information
in domains like audio and vision, we introduce a novel approach to represent
graph node features for LLMs. Our method, GraphQ-LM, employs Residual
Vector Quantization (RVQ) to encode continuous node features into a compact
sequence of discrete tokens derived from fixed-size codebooks. These “graph
tokens,” representing structural feature information, are seamlessly integrated with
textual attributes of nodes and their neighborhoods, forming a rich, multimodal
input for the LLM. By aligning the codebook’s embedding dimension with that
of the LLM and jointly training the RVQ module with the LLM, we learn graph-
aware representations optimized for downstream tasks like node classification.
Extensive experiments demonstrate that GraphQ-LM not only achieves state-of-
the-art performance but, crucially, offers a scale-free tokenization strategy.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as a pivotal technology in machine learning for
structured data, experiencing significant evolution from early message-passing frameworks—such as
Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017), ChebNet (Defferrard et al., 2016),
and GraphSAGE (Hamilton et al., 2017)—to models that integrate powerful attention mechanisms,
like Graph Attention Networks (GAT) (Veličković et al., 2018). This evolution has culminated in
advanced Graph Transformers(Yun et al., 2019; Ying et al., 2021; Yang et al., 2021; Chen et al., 2022;
2023) as shown in Figure 1 (a), which demonstrate exceptional capabilities in learning rich node
representations by aggregating information from local neighborhoods, often employing transformer
encoders to discern intricate structural dependencies critical for downstream tasks such as node
classification or link prediction. However, a substantial portion of valuable information often remains
underutilized—the rich semantic contents embedded within the nodes themselves. For example, in
prevalent benchmarks like ogbn-arxiv and ogbn-products from the Open Graph Benchmark
(OGB) (Hu et al., 2020), the former consists of nodes representing scientific papers with titles
and abstracts, whereas the latter comprises large-scale e-commerce graphs with nodes representing
products characterized by textual descriptions and names. This discrepancy naturally leads to a
critical question: How can we effectively leverage this inherent semantic and textual information
within graph structures to enhance performance on downstream tasks?

The remarkable advancements in Large Language Models (LLMs) (Vaswani et al., 2017; Brown
et al., 2020; Kaplan et al., 2020; Touvron et al., 2023b; Team et al., 2023) have unveiled new frontiers
for integrating rich textual data with structured representations. Their profound ability to understand
and generate human language offers a promising avenue to imbue GNNs with semantic awareness. A

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) Graph Transformer (b) InstructGLM

(c) GraphQ-LM (ours)
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Figure 1: Overview of GraphQ-LM and comparison with prior approaches. (a) Graph Transformers model
structure but underuse node text. (b) InstructGLM allocates one new token per node, so the LLM vocabulary
grows as O(n) and memory scales with graph size. (c) GraphQ-LM encodes continuous features with an
encoder and quantizes them into a length-d sequence of shared code indices using residual vector quantization.
The same d codebooks are reused for all nodes, giving at most O(dK) = O(dn1/d) learned token types instead
of O(n) and only a few bytes per node. These feature tokens are interleaved with titles and sampled neighbors
to form a compact prompt, preserving semantics while enabling accurate and scalable inference on large graphs.

Table 1: Discrete RVQ tokens preserve accuracy while slashing per-node storage. On ogbn-arxiv,
replacing continuous features with depth-4 RVQ codes (d=4) keeps test accuracy on par with or slightly above
the original features across GCN, ChebNet, GraphSAGE, and GAT. Bold numbers mark the best per row. This
supports our claim that node features can be discretized into short code sequences without loss, using shared
codebooks reused for all nodes and requiring only a few bytes per node (4 bytes when K≤256).

Model Original Codebook size
32 64 128 256 512 1024

GCN (Kipf & Welling, 2017) 71.74± 0.30 70.75± 0.27 70.72± 0.27 71.84± 0.22 71.29± 0.16 71.63± 0.17 71.61± 0.21
ChebNet (Defferrard et al., 2016) 72.25± 0.28 71.67± 0.51 72.05± 0.37 72.37± 0.33 72.39± 0.29 72.20± 0.30 72.04± 0.33
GraphSAGE (Hamilton et al., 2017) 71.76± 0.39 71.86± 0.34 71.40± 0.28 71.55± 0.26 71.29± 0.21 71.25± 0.28 71.67± 0.26
GAT(Veličković et al., 2018) 71.67± 0.27 71.56± 0.18 71.58± 0.33 71.80± 0.32 71.77± 0.12 71.54± 0.31 71.42± 0.45

natural first thought might be to directly concatenate all semantic information from a node and its
neighbors into the LLM’s input context. However, integrating extensive neighborhood information
leads to excessively long context lengths, making LLM inference computationally expensive and
slow, often exceeding the practical context window limitations of most models. Initial explorations,
such as InstructGLM (Ye et al., 2024) as shown in Figure 1 (b), have attempted to bridge this gap by
treating each node in a graph as an individual “language” token within the LLM’s vocabulary. While
this approach demonstrates potential, it introduces a severe scalability bottleneck: for a graph with
one million nodes, the LLM’s vocabulary would also need to expand by one million new tokens.
This linear growth in vocabulary size with the number of nodes renders such methods impractical for
the increasingly large graphs encountered in real-world applications.

Concurrently, Vector Quantization (VQ) techniques have been extensively and successfully employed
in diverse domains like audio (Zeghidour et al., 2021), speech (Van Den Oord et al., 2017), im-
age (Razavi et al., 2019), and video (Yan et al., 2021) as a powerful mechanism for data compression
and discrete representation learning. The core idea behind VQ is to map continuous input vectors to a
finite set of learned prototype vectors, known as a codebook. Specifically, each continuous latent
vector produced by the encoder is quantized by finding its nearest neighbor in the codebook, replacing
the original vector with that prototype. This yields a discrete representation that can be stored or
transmitted efficiently. Residual Vector Quantization (RVQ) (Zeghidour et al., 2021) further extends
this by applying quantization in a staged, residual manner. Instead of quantizing a vector once, RVQ
uses multiple codebooks (quantizers); after the first quantization, the residual error is passed to the
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next quantizer, allowing for a finer-grained and more accurate discrete representation with a richer
effective vocabulary from a combination of smaller codebooks. Despite their proven efficacy in other
fields, the exploration of VQ for graph data—particularly for tokenizing node features in large-scale
graphs—remains less systematically explored, with only a few emerging efforts (Yang et al., 2023;
Kong et al., 2023; Dwivedi et al., 2023). In this vein, we made an intriguing preliminary finding
on the ogbn-arxiv dataset, which comprises 169, 343 nodes and 1, 166, 243 edges. As shown
in Table 1, we observed that by first encoding raw node features using a RVQ encoder and then
feeding these quantized embeddings—instead of the original continuous features—into traditional
GNN models (e.g., GCN, ChebNet, GraphSAGE, and GAT), performance on node classification tasks
remained on par, or even slightly improved. With four quantizers (d=4) and codebook size 32, RVQ
learns 128 shared codes and provides up to 324=1,048,576 signatures, indicating that the compact
discrete representation preserves salient features while filtering noise and improving learning.

This observation—that node features can be effectively compressed into a discrete vocabulary
without hampering, and sometimes even benefiting, standard GNN performance—serves as a strong
motivation for our work. It suggests a pathway to address the scalability challenges of integrating
graph data with LLMs. If node features can be represented by a small, fixed set of discrete tokens,
we can potentially create a graph representation that is both rich in information (by including
text) and compact enough for LLM processing, thereby unlocking superior scaling ability when
dealing with graphs of increasing size and complexity. Therefore, we propose GraphQ-LM as
shown in Figure 1 (c), a novel framework designed to tokenize node features from large graphs and
seamlessly integrate them with textual node attributes for effective LLM-based inference. Specifically,
GraphQ-LM leverages the RVQ encoder to transform the original node features into a sequence
of discrete codes, where each code is drawn from one of the multiple fixed-size codebooks within
the RVQ. These quantized “graph tokens” are then combined with the original textual descriptions
of nodes and their sampled neighborhoods, forming a unified, multimodal input sequence for an
LLM. This approach not only preserves crucial structural and feature information but also unlocks
the potential for LLMs to perform efficient inference over large-scale graph data in a scalable
manner. The efficacy and scalability of GraphQ-LM are starkly highlighted by its performance on
the ogbn-arxiv benchmark: our method, using just 4 quantizers with a codebook size of 64 per
quantizer (compressing node features to a mere 4 bytes per node), achieves 76.63% accuracy
with a small Qwen2.5-1.5B-Instruct (Yang et al., 2024) model. In contrast, InstructGLM (Ye
et al., 2024) achieves 75.70% accuracy but requires a significantly larger Llama-7B (Touvron
et al., 2023a) model and a staggering 16,384 bytes per node for its token embeddings (totaling
approximately 2.6 GB for all nodes). This comparison underscores GraphQ-LM’s ability to achieve
superior or comparable performance with dramatically reduced computational and storage overhead,
demonstrating a critical advancement for practical, large-scale graph-based LLM applications.

Our contributions are summarized as follows:

• We are the first to explore the use of RVQ to encode node features into compact, discrete tokens,
enabling scalable graph integration with LLMs and allowing for free scaling with graph size.
Specifically, with the base LLM as Qwen2.5-1.5B-Instruct, on Cora and PubMed (less
than 20K nodes), GraphQ-LM requires only 1.51 MB and 1.54 MB respectively, compared to
58.2 MB and 345.7 MB for InstructGLM. On ogbn-arxiv (around 170K nodes), GraphQ-LM
needs just 2.2 MB versus InstructGLM’s 2,728.7 MB.

• GraphQ-LM creates rich, multimodal LLM inputs by effectively combining learned discrete
graph tokens (which capture node features and structural information) with explicit textual
attributes (such as titles and abstracts) of the nodes and their surrounding neighborhoods.

• GraphQ-LM adopts a joint training strategy where the RVQ encoder within GraphQ-LM is
optimized end-to-end with the LLM, enhancing training efficiency and improving the representa-
tiveness of learned tokens.

• GraphQ-LM achieves state-of-the-art or competitive results on node classification benchmarks
using significantly smaller LLMs and much more compact node representations, demonstrat-
ing superior practical efficiency. Specifically, with Qwen2.5-3B-Instruct, GraphQ-LM
achieves 87.82% accuracy on Cora compared to 87.08% with InstructGLM (Llama-7B),
95.02% on PubMed compared to 93.84%, and 76.78% on ogbn-arxiv compared to 75.70%,
while requiring substantially less storage for node representations.
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2 RELATED WORK

Graph Neural Networks. Graphs, a unique data structure consisting of nodes and edges, have demon-
strated expressive power in representing various fields across social science (social networks (Tang
& Liu, 2009)), natural science (biology (Fout et al., 2017), chemistry (Duvenaud et al., 2015)), and
other areas (Wu et al., 2020; Zhou et al., 2020). To effectively process graph data and capture rich
relational information among graph elements, Graph Neural Networks (GNNs) have been developed
as the standard deep learning-based methods for operating on graph domains. Early GNNs relied on
message-passing frameworks, where nodes iteratively updated by exchanging information with their
neighbors, such as Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017), ChebNet (Deffer-
rard et al., 2016), and GraphSAGE (Hamilton et al., 2017). The integration of attention mechanisms,
like Graph Attention Networks (GAT) (Veličković et al., 2018), has further enhanced the capabilities
of GNNs. This evolution has led to the development of advanced Graph Transformers (Yun et al.,
2019; Ying et al., 2021; Yang et al., 2021; Chen et al., 2022; 2023) that can learn rich node represen-
tations. In contrast, our work explores the application of Large Language Models (LLMs) to leverage
the semantic content embedded within graph nodes, offering a novel perspective on graph analysis.

LLMs on Graphs. Large language models (LLMs) (Vaswani et al., 2017; Brown et al., 2020; Kaplan
et al., 2020; Touvron et al., 2023b; Team et al., 2023) have proven effective in scaling and exhibit
strong capabilities in addressing natural language processing (NLP) tasks. While LLMs are widely
used for processing pure text, there is an increasing number of applications of LLMs on the text data
associated with structural information in the form of graphs. (Jin et al., 2024) provides a taxonomy of
LLMs on graphs, whereas our paper focuses on utilizing LLMs as predictors (Zeng et al., 2022; Fang
et al., 2023; Guo et al., 2023) for text-attributed graphs (Jin et al., 2023a; Yang et al., 2021; Jin et al.,
2023b). In this context, LLMs are employed to process nodes or edges enriched with semantic text
information to make predictions. However, previous methods, such as InstructGLM (Ye et al., 2024),
which treat each node in a graph as an individual language token within the LLM’s vocabulary, often
encounter scalability issues, rendering them impractical for large graphs. Our approach effectively
represents discrete graph tokens with rich textual attributes for LLMs while preserving a scale-free
strategy.

Vector Quantization. Vector quantization (VQ) was first introduced in the 1980s as a method to
compress data while preserving signal fidelity (Buzo et al., 1980). The traditional VQ approach uses
a compact codebook to compress the entire feature space where each vector is approximated by a
single code. Subsequent improvements have been made through product quantization (Sabin & Gray,
2003; Jegou et al., 2010) and residual quantization (Juang & Gray, 1982; Martinez et al., 2014),
which employ parallel and sequential strategies, respectively. In addition, neural network-based
versions, such as VQ-VAE (Van Den Oord et al., 2017), PQ-VAE (Van Balen & Levy, 2019), and
RQ-VAE (Lee et al., 2022), have also been developed. These VQ methods have shown remarkable
effectiveness across various domains, including audio (Zeghidour et al., 2021), speech (Van Den Oord
et al., 2017), image (Razavi et al., 2019), and video (Yan et al., 2021). VQGraph (Yang et al., 2023)
introduces a structure-aware tokenizer based on VQ-VAE to encode each node’s local substructure
into discrete codes, while GOAT (Kong et al., 2023) leverages a codebook of fixed-size centroids to
enable scalable global attention through node-to-centroid interactions. In contrast, LargeGT (Dwivedi
et al., 2023) employs an approximate global codebook updated via EMA K-Means to efficiently
capture and integrate global graph context. Notably, we are the first to investigate the use of Residual
Vector Quantization (RVQ) for encoding node features into compact, discrete tokens specifically for
integration with LLMs, thereby enabling scalable graph-LLM integration and facilitating free scaling
with graph size.

3 GRAPHQ-LM

The challenge of effectively integrating graph-structured data with the advanced capabilities of
LLMs necessitates frameworks that are both representationally rich and computationally scalable.
Current paradigms often struggle with an O(n) complexity concerning the number of nodes n
when incorporating node-specific information into LLMs, posing a significant barrier for large-scale
graphs. To address this, we propose GraphQ-LM, an end-to-end framework designed for scalable
and effective graph representation learning. The core of GraphQ-LM lies in its ability to tokenize
continuous node features into a compact, discrete sequence using Residual Vector Quantization (RVQ).
This sequence of quantized tokens, when combined with textual attributes, forms a rich multimodal
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input for the LLM, allowing the model to scale efficiently to large graphs while simultaneously
harnessing the sophisticated contextual understanding offered by LLMs.

3.1 NOTATION AND HIGH-LEVEL WORKFLOW

We primarily focus on the task of node classification on attributed graphs G = (V,E,X, T ), where
V is the set of nodes, E is the set of edges, X = {xi ∈ RDfeat | vi ∈ V } is the set of raw continuous
node features, and T = {ti | vi ∈ V } represents textual attributes associated with each node (e.g.,
titles, abstracts). The goal is to predict a label yi for a given target node vi.
The GraphQ-LM pipeline comprises three main steps as shown in Figure 1:

1. Neighborhood Sampling: Similar to GraphSAGE (Hamilton et al., 2017), a multi-hop neighbor-
hood around the ego node vi is sampled to gather local context.

2. Node Feature Processing: (a) Encode each sampled node feature xj with an MLP fenc to obtain
zj . (b) Quantize zj via residual vector quantization into a fixed-length sequence of discrete graph
tokens (ej,1, . . . , ej,d), using d codebooks of size K each from the RVQ module.

3. Soft Prompting for Classification: Interleave system instructions, node textual attributes, and
the graph token sequences of the target and its neighbors into a compact prompt for the LLM,
which then predicts the class label.

All components are jointly trained in an end-to-end manner. We next introduce the details of the
Residual Vector Quantization in Section 3.2 and the soft prompting in Section 3.3.

3.2 RESIDUAL VECTOR QUANTIZATION OF NODE FEATURES

Let x ∈ RDfeat be a raw node feature. An MLP encoder fenc maps it to a latent

z0 = fenc(x) ∈ Rh, (1)

where h equals the LLM’s token-embedding dimension.

Multi-stage quantization. RVQ (Zeghidour et al., 2021) maintains d learnable, unit-ℓ2 codebooks
{C(1), . . . , C(d)}, each C(q) = {e(q)1 , . . . , e

(q)
K } ⊂ Rh with ∥e(q)k ∥2 = 1. At stage q (1 ≤ q ≤ d):

r̂q−1 = l2norm
(
rq−1

)
, ê

(q)
k = e

(q)
k , ∥ê(q)k ∥2 = 1, (2)

k(q) = argmax
k

〈
r̂q−1, ê

(q)
k

〉
, q(q) = e

(q)

k(q) , (3)

rq = rq−1 − sg
[
q(q)

]
, r0 = z0, (4)

where l2norm(·) denotes ℓ2-normalization of the residual, and sg[·] is stop-gradient. Distances are
computed via the inner product of normals, equivalent to cosine similarity. Gradients through the
discrete choice use the rotation-trick straight-through estimator (Fifty et al., 2024).

The discrete graph-token sequence for node x is
(
k(1), k(2), . . . , k(d)

)
. Each index k(q) is treated as

a language token in the LLM prompt and is mapped to its code embedding q(q), which serves as the
LLM input embedding. In the worst case with no signature collisions, d codebooks yield Kd distinct
signatures, so uniquely encoding n nodes requires Kd≥ n, that is K = n1/d. The number of learned
token types is then dK = dn1/d, which is sublinear in n rather than O(n).

Training objective. We optimize two loss terms over a mini-batch of size B and average across the d
quantization stages:

Lcommit =
1

B d

B∑
i=1

d∑
q=1

∥∥ri,q−1 − q
(q)
i

∥∥2
2
, (5)

Ldiv =
1

d

d∑
q=1

(
−

K∑
k=1

p̄
(q)
k log

(
p̄
(q)
k )

)
, (6)

where p
(q)
i,k = softmax

(
⟨r̂i,q−1, e

(q)
k ⟩/τ

)
and p̄

(q)
k = 1

B

∑B
i=1 p

(q)
i,k .

The commitment loss Lcommit encourages each encoder residual to remain close to its selected
code vector, stabilizing the assignment, while the diversity loss Ldiv maximizes the entropy of the
average code-usage distribution to prevent collapse onto a small subset of codes and τ represents the
temperature, which is set to 100 consistently across our experiments.
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Table 2: Summary of dataset statistics.

Dataset #Nodes #Edges #Features Feature Extraction Train/Val/Test #Classes

Cora 2,708 5,429 1,433 Bag of Words 60%/20%/20% (random) 7
PubMed 19,717 44,338 500 TF–IDF 60%/20%/20% (random) 3
ogbn-arxiv 169,343 1,166,243 128 Skip-gram 54%/18%/28% (official) 40

Thus, the full quantization objective is

LRVQ = λc Lcommit + λd Ldiv, (7)

with λc and λd weighting the commitment and diversity terms.

3.3 SOFT PROMPTING FOR LLM CLASSIFICATION

To enable the LLM to perform graph-based inference, we employ a two-part soft prompt that
interweaves system instructions with node-specific text and quantized graph feature tokens.

• System prompt: A fixed instruction that defines the LLM’s role and task, e.g., "You are an
expert classifier for arXiv’s Computer Science domain, charged
with assigning exactly one of {categories} to a central paper."

• User prompt: A structured mixture of textual attributes and graph tokens for a seed node vs:
(1) Central node: Central node: ⟨titles⟩

(
⟨abstracts⟩

)
(2) Neighborhood entries: For each hop h = 1, . . . ,H , prepend the literal marker "h-hop

neighborhood:" and then list each neighbor v ∈ Nh(vs) as ⟨titlev⟩
(
k
(1)
v , . . . , k

(d)
v

)
,

joined by commas. Here {k(q)v } is the discrete graph-token index sequence.
(3) Token embedding: All natural language tokens (titles, abstracts, markers) are mapped

via the LLM’s native embedding function TokenEmb(·), whereas each graph-token index
k
(q)
v is directly substituted with the corresponding quantized embedding q

(q)
v from the RVQ

codebook.

The final model input is the concatenation of (i) the system-prompt embeddings and (ii) the user-
prompt embeddings, which the LLM consumes to predict the class label via cross-entropy on the
generated label tokens.

3.4 JOINT OPTIMIZATION STRATEGY

We use LoRA (Hu et al., 2022) for parameter-efficient adaptation of the pre-trained LLM to our
graph-augmented prompts. GraphQ-LM is then trained end-to-end by jointly updating the MLP
encoder, the RVQ codebooks, and the LoRA adapters of the LLM, while all other LLM parameters
(including its input embedding matrix) remain frozen.

The total loss combines a cross-entropy classification term with the quantization regularizers:

Lce = − log pLLM(ys | prompt embeddings), Ltotal = Lce + wRVQ LRVQ.

where wRVQ balances the influence of the commitment and diversity losses.

By minimizing Ltotal, the encoder, codebooks, and LoRA adapters co-adapt so that the quantized
graph tokens become maximally informative for the classification task.

4 EXPERIMENTS

In this section, we present a systematic evaluation of GraphQ-LM on three standard citation network
benchmarks. All experiments are conducted on a single NVIDIA RTX A6000 GPU.

Datasets. We evaluate on three widely used node-classification datasets: ogbn-arxiv from the
Open Graph Benchmark (Hu et al., 2020), and the Cora and PubMed citation networks (Yang et al.,
2016). In each dataset, nodes represent papers (with title and abstract) and edges denote citation
links. Node features are pre-extracted from title and abstract: ogbn-arxiv uses 128-dimensional
average Skip-Gram embeddings, Cora uses 1,433-dimensional bag-of-words vectors, and PubMed
uses 500-dimensional TF–IDF. Detailed dataset statistics are summarized in Table 2.

Training details. (a) RVQ encoder. Each dataset uses a three-layer MLP with LayerNorm to produce
the latent vectors that are fed to the residual VQ module. The commitment, diversity loss weights and
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Table 3: Accuracy and node–representation cost on ogbn-arxiv. GNNs appear first, graph transformers
next, and LLM-based methods last. GraphQ-LM uses shared RVQ codebooks to tokenize features, which yields
higher accuracy than InstructGLM while cutting storage by orders of magnitude. Ablations without RVQ (same
backbones, text only) show clear gains from RVQ: +7.93 pp (0.5B), +2.96 pp (1.5B), and +2.86 pp (3B). Bold
denotes the best in each LLM backbone.

Model Base LLM Acc. (%) Node Representation Cost

Node2vec (Grover & Leskovec, 2016) – 70.07 ± 0.13

82.69 MB

GraphSAGE (Hamilton et al., 2017) – 71.49 ± 0.27
GCN (Kipf & Welling, 2017) – 71.74 ± 0.29
DeeperGCN (Li et al., 2020) – 71.92 ± 0.16
SIGN (Frasca et al., 2020) – 71.95 ± 0.11
UniMP (Shi et al., 2021) – 73.11 ± 0.20
LEGNN (Yu et al., 2022) – 73.37 ± 0.07
GAT (Wang et al., 2021) – 73.66 ± 0.11
AGDN (Sun et al., 2020) – 73.75 ± 0.21
DRGAT (Zhang et al., 2023) – 74.16 ± 0.07
RevGAT (Li et al., 2021) – 74.26 ± 0.17

CoarFormer (Kuang et al., 2021) – 71.66 ± 0.24

82.69 MB

GOAT (Kong et al., 2023) – 72.41 ± 0.40
SGFormer (Wu et al., 2023) – 72.63 ± 0.13
Graphormer (Ying et al., 2021) – 72.81 ± 0.23
Polynormer (Deng et al., 2024) – 73.46 ± 0.16
E2EG (Dinh et al., 2023) – 73.62 ± 0.14

InstructGLM (Ye et al., 2024) LLaMA-7B 75.70 ± 0.12 2,728.67 MB
GraphQ-LM (w/o RVQ) Qwen-2.5-0.5B-Instruct 60.70 ± 3.52 –
GraphQ-LM Qwen-2.5-0.5B-Instruct 68.63 ± 0.41 (d=2,K=1024) 0.32 MB (Node Tokens) + 7.00 MB (RVQ)
GraphQ-LM (w/o RVQ) Qwen-2.5-1.5B-Instruct 73.67 ± 0.52 –
GraphQ-LM Qwen-2.5-1.5B-Instruct 76.63 ± 0.20 (d=4,K=64) 0.65 MB (Node Tokens) + 1.50 MB (RVQ)
GraphQ-LM (w/o RVQ) Qwen-2.5-3B-Instruct 73.92 ± 0.63 –
GraphQ-LM Qwen-2.5-3B-Instruct 76.78 ± 0.17 (d=2,K=256) 0.32 MB (Node Tokens) + 3.32 MB (RVQ)

the RVQ loss weight are fixed to 1.0, 0.25, and 1.0 respectively. During neighborhood sampling, we
consistently draw 20 one-hop, 10 two-hop, and 5 three-hop neighbors for each node. Full soft prompt
templates are given in Appendix A. (b) Backbone LLMs. We study three sizes of Qwen-2.5 Instruct
as the backbone language model—0.5B, 1.5B, and 3B parameters—to gauge the impact of LLM
scale. (c) LoRA fine-tuning. The LLM is adapted with LoRA (Hu et al., 2022) (rank=64, α = 256),
we train for 40 epochs on Cora, 5 epochs on PubMed, and 2 epochs on ogbn-arxiv with batch
size as 128, 128, and 256 respectively. All results are obtained over five random seeds, and more
details are deferred to Appendix B.

Evaluation metrics. We report (i) accuracy (Acc.)—node-classification accuracy on the test set
(mean ± std over runs)—and (ii) Node-Representation Cost (NRC), i.e., the total number of bytes
needed to store all node representations. We assume float32 storage for float numbers, giving
4 bytes per feature dimension. For GraphQ-LM, the cost consists of the bytes required for each
node’s length-d integer token sequence plus the shared parameters of the embeddings of the learnable
codebooks from the RVQ.

Baselines. We benchmark GraphQ-LM against strong convolutional GNNs (GAT, DRGAT, RevGAT),
transformer-style architectures (Graphormer, GT, NAGphormer, GOAT), and the recent LLM-based
InstructGLM. Reported scores are taken from the public leaderboards1 or from the original papers
when not listed.

Main Results. Table 3 reports our performance on ogbn-arxiv, while Table 4 summa-
rizes results on Cora and PubMed. We highlight three key observations: (a) Effectiveness of
language-enhanced models. Once textual information is incorporated, LLM-based approaches
surpass both traditional GNNs and recent graph transformers. Concretely, GraphQ-LM attains
76.78% accuracy on ogbn-arxiv—about 2.5% higher than the strongest GNN and 3.0% above
the best graph transformer. On PubMed we observe a consistent 5% improvement over all these
models, and on Cora we can still match those baselines while requiring far smaller cost on node
representations. (b) Advantage over InstructGLM with far lower representation cost. Across all
three datasets, GraphQ-LM outperforms InstructGLM despite using a much smaller LLM backbone.
On ogbn-arxiv, our 1.5B model reaches 76.63% accuracy versus InstructGLM’s 75.70% with 7B
model. Crucially, our entire graph is stored in just 0.65 MB of integer node tokens plus 1.5 MB for
the embedding of the codebooks from the RVQ, whereas InstructGLM requires 2,728.67 MB to keep

1ogbn-arxiv leaderboard; Cora leaderboard; PubMed leaderboard.
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Table 4: Accuracy and node–representation cost on Cora and PubMed. GNNs appear first, graph transform-
ers next, and LLM-based methods last. GraphQ-LM replaces continuous features with shared RVQ codebooks,
which yields consistent gains over text-only LLM baselines and reduces storage by orders of magnitude. Ab-
lations without RVQ (same backbones, text only) confirm the contribution of RVQ: on Cora the gains are
+3.70 pp (0.5B), +1.96 pp (1.5B), +2.36 pp (3B); on PubMed the gains are +2.91 pp, +2.88 pp, +2.89 pp. Bold
numbers indicate the best accuracy within each LLM backbone and dataset.

Method Base LLM Cora PubMed
Acc. (%) Node Representation Cost Acc. (%) Node Representation Cost

MixHop (Abu-El-Haija et al., 2019) – 65.65 ± 1.31

15.84 MB

87.04 ± 4.10

37.61 MB

GAT (Veličković et al., 2018) – 76.70 ± 0.42 83.28 ± 0.12
GPRGNN (Chien et al., 2021) – 79.51 ± 0.36 85.07 ± 0.09
SGC-2 (Wu et al., 2019) – 85.48 ± 1.48 85.36 ± 0.52
GraphSAGE (Hamilton et al., 2017) – 86.58 ± 0.26 86.85 ± 0.11
GCN (Kipf & Welling, 2017) – 87.78 ± 0.96 88.90 ± 0.32
BernNet (He et al., 2021) – 88.52 ± 0.95 88.48 ± 0.41
FAGCN (Bo et al., 2021) – 88.85 ± 1.36 89.98 ± 0.54
GCNII (Chen et al., 2020) – 88.98 ± 1.33 89.80 ± 0.30
RevGAT (Li et al., 2021) – 89.11 ± 0.00 88.50 ± 0.05
Snowball-3 (Luan et al., 2019) – 89.33 ± 1.30 88.80 ± 0.82
ACM-GCN++ (Luan et al., 2022) – 89.33 ± 0.81 90.39 ± 0.33

Graphormer (Ying et al., 2021) – 80.41 ± 0.30

15.84 MB

88.24 ± 1.50

37.61 MB

NAGphormer (Chen et al., 2023) – 82.10 ± 0.60 89.70 ± 0.19
GT (Dwivedi & Bresson, 2020) – 86.42 ± 0.82 88.75 ± 0.16
GOAT – 87.86 ± 1.31 86.87 ± 0.24
Polynormer (Deng et al., 2024) – 88.11 ± 1.08 87.34 ± 0.43
CoarFormer (Kuang et al., 2021) – 88.69 ± 0.82 89.75 ± 0.31

InstructGLM (Ye et al., 2024) LLaMA-7B 87.08 ± 0.32 58.15 MB 93.84 ± 0.25 345.69 MB
GraphQ-LM (w/o RVQ) Qwen-2.5-0.5B-Instruct 82.62 ± 1.54 – 91.53 ± 0.49 –

GraphQ-LM Qwen-2.5-0.5B-Instruct 86.31 ± 1.98
(d=2,K=32)

0.005 MB (Node Tokens)
+ 0.219 MB (RVQ)

94.44 ± 0.41
(d=2,K=128)

0.038 MB (Node Tokens)
+ 0.875 MB (RVQ)

GraphQ-LM (w/o RVQ) Qwen-2.5-1.5B-Instruct 85.09 ± 1.01 – 91.80 ± 0.57 –

GraphQ-LM Qwen-2.5-1.5B-Instruct 87.05 ± 1.01
(d=2,K=128)

0.005 MB (Node Tokens)
+ 1.500 MB (RVQ)

94.68 ± 0.21
(d=2,K=128)

0.038 MB (Node Tokens)
+ 1.500 MB (RVQ)

GraphQ-LM (w/o RVQ) Qwen-2.5-3B-Instruct 85.46 ± 0.54 – 92.13 ± 0.63 –

GraphQ-LM Qwen-2.5-3B-Instruct 87.82 ± 0.77
(d=2,K=256)

0.005 MB (Node Tokens)
+ 4.000 MB (RVQ)

95.02 ± 0.22
(d=2,K=128)

0.038 MB (Node Tokens)
+ 2.000 MB (RVQ)

both the raw features and per-node language embeddings. Similar memory savings accompany our
superior accuracy on Cora and PubMed, we typically require less than 1% of InstructGLM’s cost
while still achieving superior performance. Our tokenization likely improves accuracy through an
implicit denoising effect: by preserving only the most salient aspects of the raw features, it filters out
irrelevant noise. (c) Scalability of GraphQ-LM. Moving from small graphs (Cora and PubMed;
<20 K nodes) to the much larger ogbn-arxiv ( 170 K nodes), the memory needed for node tokens
grows modestly—from <0.1 MB to <0.7 MB—while the RVQ encoder remains under at most 4
MB throughout. These results demonstrate that GraphQ-LM scales gracefully with graph size,
delivering strong accuracy without sacrificing efficiency. (d) Contribution of RVQ tokenization.
Ablations without RVQ (text only, same backbones) show that RVQ accounts for most of the gains:
on ogbn-arxiv the improvements are +7.93 pp for 0.5B, +2.96 pp for 1.5B, and +2.86 pp for 3B;
on Cora they are +3.70 pp, +1.96 pp, and +2.36 pp; on PubMed they are +2.91 pp, +2.88 pp, and
+2.89 pp. This confirms that discretizing node features into shared codebooks both improves accuracy
and enables compact storage.

5 ABLATION STUDIES.
In this section, we examine how the backbone LLM size, the RVQ depth d, and the codebook size K
affect classification accuracy.

Backbone LLM Size. Across all three benchmarks, larger LLMs consistently yield higher accu-
racy. On ogbn-arxiv, accuracy improves from 68.63% with Qwen-2.5-0.5B-Instruct
to 76.78% with Qwen-2.5-3B-Instruct. On Cora, it rises from 86.31% to 87.82%, and on
PubMed, from 94.44% to 95.02%. This confirms that stronger language backbones enhance our
graph-augmented soft prompting. Inference latencies are reported in Appendix B, and more results
are shown in Appendix C.

Influence of Depth d. Figure 2 shows accuracy curves for depths d ∈ {2, 3, 4, 5} as the codebook
size K varies. Shallow quantization (d = 2) underperforms at both very small and very large K,
peaking at 76.5% when K = 256. Increasing to d = 3 yields more robust gains, also reaching
76.5% at K = 512. Further depth (d = 4) shifts the optimum toward smaller codebooks (K = 64),
achieving 76.6%, while very deep (d = 5) prefers larger K like 2048. In practice, d = 3 or 4 offers
the best balance between accuracy and efficiency. Detailed statistics are deferred to Appendix C.
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Figure 2: Accuracy vs. RVQ capacity on
ogbn-arxiv. Varying codebook size K and depth
d shows a clear sweet spot: moderate capacity works
best. Performance rises from small K then plateaus,
with best results around d=4 and K in the 64–512
range. Larger K or deeper d does not yield consistent
gains, which supports using compact codebooks for
strong accuracy with low storage.
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Figure 3: RVQ tokens are discriminative and do
not collapse. Violin plots of token indices per class for
quantizers 1 (top) and 3 (bottom) with d=4, K=64
show class-dependent usage rather than uniform col-
lapse. Early quantizers capture broad groupings and
later quantizers refine class-specific patterns, indicat-
ing complementary codebooks and label-aligned dis-
crete structure.

Influence of Codebook Size K. Moderate codebook sizes (K = 128–512) consistently deliver
strong performance for d ≤ 3. Very small codebooks (K < 64) lack sufficient representational
granularity, while extremely large ones (K > 1024) can sparsify assignments or overfit. Deeper RVQ
stages (d ≥ 4) partially compensate for smaller K via additional residual corrections, but at higher
representation cost.

Correlation between graph tokens and class labels. Figure 3 plots the per-class distributions of
token indices assigned by quantizers 1 (top) and 3 (bottom) in a RVQ module (d = 4,K = 64) trained
with Qwen-2.5-1.5B-Instruct on the ogbn-arxiv training set. Notice every one of the 64
codebook entries is used in both quantizers, indicating full utilization of the code space. Besides, the
kernel density shapes vary significantly across class labels: some classes concentrate on a narrow
index range, while others exhibit broader spreads. When we examine the joint index combinations
from all quantizers, each class exhibits a distinctive pattern of quantizer assignments—highlighting
GraphQ-LM ’s ability to produce compact, class-specific representations with strong discriminative
power.

DISCUSSION AND LIMITATION.

We have presented GraphQ-LM, a novel framework that scales LLM-based graph learning to large
graphs by tokenizing continuous node features into compact discrete codes via Residual Vector
Quantization and combining these “graph tokens” with textual attributes in a soft-prompt. Unlike
prior methods that suffer an O(n) vocabulary blow-up, GraphQ-LM requires only O(dn1/d) tokens
and a small RVQ encoder, enabling graphs with hundreds of thousands of nodes to be handled by
modestly-sized LLMs. Empirically, GraphQ-LM matches or exceeds the accuracy of leading GNNs
and graph transformers on ogbn-arxiv, Cora, and PubMed, while reducing node-representation
storage from gigabytes to mere megabytes.

Although GraphQ-LM achieves significant storage savings and scales gracefully to large graphs,
it is currently trained solely with a classification loss and does not explicitly encourage multi-step
reasoning over the graph-token sequence. Developing prompt designs or auxiliary objectives that
steer the LLM to integrate structural and semantic cues in a systematic, step-by-step manner remains
an important direction. Furthermore, because we rely on full LLM inference, latency is higher than
that of lightweight GNNs or graph transformers. Finally, extending GraphQ-LM to other graph
tasks—such as link prediction, subgraph classification, or whole-graph property prediction—will
require new prompt formats and training strategies, which we leave to future work.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We commit to releasing all training and evaluation code for GraphQ-LM, together with data download
scripts, preprocessing, RVQ tokenization, prompt construction, and end-to-end training and inference
pipelines. The repository will include the exact hyperparameters and configurations used in the paper,
aligned with Sections 3.2, 3.3 and 4, with prompt templates in Appendix A, implementation details in
Appendix B, and ablations in Appendix C. We will provide seed control and deterministic flags, and
we report mean and standard deviation over five seeds throughout. The release will contain scripts to
reproduce all main tables and figures, compute the Node Representation Cost as defined in Section 4,
and export checkpoints and logs. We will include environment files and a one-click runner to recreate
results on a single NVIDIA RTX A6000 or a compatible GPU. All datasets are public benchmarks.

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In international conference on machine learning,
pp. 21–29. PMLR, 2019.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph
convolutional networks. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pp. 3950–3957, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Andrés Buzo, A Gray, R Gray, and John Markel. Speech coding based upon vector quantization.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(5):562–574, 1980.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In International conference on machine learning, pp. 3469–3489. PMLR,
2022.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer
for node classification in large graphs. In The Eleventh International Conference on Learning
Representations, 2023.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International conference on machine learning, pp. 1725–1735. PMLR,
2020.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In International Conference on Learning Representations, 2021.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Chenhui Deng, Zichao Yue, and Zhiru Zhang. Polynormer: Polynomial-expressive graph transformer
in linear time. In The Twelfth International Conference on Learning Representations, 2024.

Tu Anh Dinh, Jeroen den Boef, Joran Cornelisse, and Paul Groth. E2eg: End-to-end node classifica-
tion using graph topology and text-based node attributes. In 2023 IEEE International Conference
on Data Mining Workshops (ICDMW), pp. 1084–1091. IEEE, 2023.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. Advances in neural information processing systems, 28, 2015.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Vijay Prakash Dwivedi, Yozen Liu, Anh Tuan Luu, Xavier Bresson, Neil Shah, and Tong Zhao.
Graph transformers for large graphs. arXiv preprint arXiv:2312.11109, 2023.

Yin Fang, Xiaozhuan Liang, Ningyu Zhang, Kangwei Liu, Rui Huang, Zhuo Chen, Xiaohui Fan, and
Huajun Chen. Mol-instructions: A large-scale biomolecular instruction dataset for large language
models. arXiv preprint arXiv:2306.08018, 2023.

Christopher Fifty, Ronald G Junkins, Dennis Duan, Aniketh Iyengar, Jerry W Liu, Ehsan Amid,
Sebastian Thrun, and Christopher Ré. Restructuring vector quantization with the rotation trick.
arXiv preprint arXiv:2410.06424, 2024.

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using graph
convolutional networks. Advances in neural information processing systems, 30, 2017.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Federico
Monti. Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198, 2020.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
855–864, 2016.

Taicheng Guo, Kehan Guo, Zhengwen Liang, Zhichun Guo, Nitesh V Chawla, Olaf Wiest, Xiangliang
Zhang, et al. What indeed can gpt models do in chemistry? a comprehensive benchmark on eight
tasks. arXiv preprint arXiv:2305.18365, 3, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning arbitrary graph spectral filters via
bernstein approximation. Advances in Neural Information Processing Systems, 34:14239–14251,
2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search.
IEEE transactions on pattern analysis and machine intelligence, 33(1):117–128, 2010.

Bowen Jin, Wentao Zhang, Yu Zhang, Yu Meng, Xinyang Zhang, Qi Zhu, and Jiawei Han. Patton:
Language model pretraining on text-rich networks. arXiv preprint arXiv:2305.12268, 2023a.

Bowen Jin, Yu Zhang, Yu Meng, and Jiawei Han. Edgeformers: Graph-empowered transformers for
representation learning on textual-edge networks. arXiv preprint arXiv:2302.11050, 2023b.

Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. Large language models on
graphs: A comprehensive survey. IEEE Transactions on Knowledge and Data Engineering, 2024.

Biing-Hwang Juang and A Gray. Multiple stage vector quantization for speech coding. In ICASSP’82.
IEEE International Conference on Acoustics, Speech, and Signal Processing, volume 7, pp. 597–
600. IEEE, 1982.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C Bayan Bruss, and Tom Goldstein. Goat:
A global transformer on large-scale graphs. In International Conference on Machine Learning, pp.
17375–17390. PMLR, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Weirui Kuang, WANG Zhen, Yaliang Li, Zhewei Wei, and Bolin Ding. Coarformer: Transformer for
large graph via graph coarsening. 2021.

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
generation using residual quantization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11523–11532, 2022.

Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. Deepergcn: All you need to train
deeper gcns. arXiv preprint arXiv:2006.07739, 2020.

Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training graph neural networks
with 1000 layers. In International conference on machine learning, pp. 6437–6449. PMLR, 2021.

Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and Doina Precup. Break the ceiling: Stronger multi-
scale deep graph convolutional networks. Advances in neural information processing systems, 32,
2019.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. Advances in neural
information processing systems, 35:1362–1375, 2022.

Julieta Martinez, Holger H Hoos, and James J Little. Stacked quantizers for compositional vector
compression. arXiv preprint arXiv:1411.2173, 2014.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2. Advances in neural information processing systems, 32, 2019.

ML Sabin and R Gray. Product code vector quantizers for waveform and voice coding. IEEE
transactions on acoustics, speech, and signal processing, 32(3):474–488, 2003.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. In Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence, pp. 1548–1554. International
Joint Conferences on Artificial Intelligence Organization, 2021.

Chuxiong Sun, Jie Hu, Hongming Gu, Jinpeng Chen, and Mingchuan Yang. Adaptive graph diffusion
networks. arXiv preprint arXiv:2012.15024, 2020.

Lei Tang and Huan Liu. Relational learning via latent social dimensions. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 817–826,
2009.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Jan Van Balen and Mark Levy. Pq-vae: Efficient recommendation using quantized embeddings. In
RecSys (Late-Breaking Results), pp. 46–50, 2019.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026
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A PROMPTS

In this section, we present the system and user prompts used for different datasets. The system
prompts on different datasets are shown below:

System Prompt for ogbn-arxiv

You are an expert classifier for arXiv’s Computer Science domain, charged with assigning
exactly one of the 40 official CS categories (i.e., algorithm, artificial intelligence, automata,
complexity, computation and language, computational engineering, computer vision, control,
database, digital library, discrete mathematics, distributed computing, emerging, game, gen-
eral, geometry, graphics, hardware, human computer interaction, information theory, internet,
logic, machine learning, mathematical software, multiagent, multimedia, neural computing,
numerical analysis, operating system, other, performance, programming, retrieval, robotics,
security, social network, society, software engineering, sound, symbolic) to a central paper.
The graph is directed, with edges representing citations. Input is a comma-separated list of
nodes, each formatted as Title(feature), where the feature comprises special abstract-feature
tokens. Use the titles and feature tokens of the central paper and its multi-hop neighbors to
determine the most appropriate category.

System Prompt for Cora

You are an expert classifier for the Cora citation network, charged with assigning exactly
one of the seven research-topic labels—case based, genetic algorithms, neural networks,
probabilistic methods, reinforcement learning, rule learning, theory—to a central paper. The
graph is directed, with edges representing citations. The input is a comma-separated list of
nodes, each formatted as Title(feature), where the feature contains special abstract-feature
tokens. Use the titles and feature tokens of the central paper and its multi-hop neighbors to
determine the most appropriate category.

System Prompt for PubMed

You are an expert biomedical article classifier for the PubMed Diabetes citation network,
charged with assigning exactly one of three disease categories—experimental, first, sec-
ond—to a central article. The graph is directed, with edges representing citations. The
input is a comma-separated list of nodes, each formatted as Title(feature), where the feature
contains special abstract-feature tokens. Use the titles and feature tokens of the central
article and its multi-hop neighbors to determine the most appropriate category.

The corresponding user prompt used across all three datasets is as follows:

Central node: <title> (<abstract>)
1-hop neighborhood: <title> (<graph tokens>), <title> (<graph tokens>), ...
2-hop neighborhood: <title> (<graph tokens>), <title> (<graph tokens>), ...
3-hop neighborhood: <title> (<graph tokens>), <title> (<graph tokens>), ...

Each line specifies the central node and its multi-hop neighbors, with each node represented by its
title and associated graph tokens based on the node features.

B EXPERIMENT DETAILS

We use a consistent learning rate of 1× 10−4 for all components, including both the encoder and the
LoRA adapter, across all datasets and experimental settings. For LoRA, the target modules include
q_proj, k_proj, v_proj, o_proj, and lm_head. The AdamW optimizer is employed for all
experiments.
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Encoder. For all datasets, we utilize a three-layer multilayer perceptron (MLP) as the encoder, with
ReLU activations and LayerNorm for normalization. The input dimension is set to match the number
of features in the dataset, while the output dimension is aligned with the language embedding size of
the base LLM. For the ogbn-arxiv dataset, the hidden dimensions are set to [256, 512]; for the Cora
and PubMed datasets, the hidden dimensions are set to [512, 512].

Inference latency. The inference latency on different datasets with various base LLMs is reported
in Table 5. For simplicity, we consistently use RVQ with a depth of 2 and a codebook size of 256 in
all the experiments here.

Table 5: Inference latency (ms per query) on different datasets and base LLMs.

Base LLM ogbn-arxiv Cora PubMed

Qwen-2.5-0.5B-Instruct 14.38 7.07 12.55
Qwen-2.5-1.5B-Instruct 39.18 25.38 32.86
Qwen-2.5-3B-Instruct 75.06 47.70 62.30

C ADDITIONAL EXPERIMENTS

In this section, we present detailed statistics for GraphQ-LM under various RVQ configurations,
including different values of depth d and codebook size K, as described in Section 5. Specifically, test
accuracies for different RVQ settings using Qwen2.5-1.5B-Instruct on the ogbn-arxiv
dataset with different depth and codebook size are reported in Table 6.

When consistently using RVQ with depth d = 2, the corresponding test accuracies for different
LLM sizes and codebook sizes K are shown in Table 7,Table 8, andTable 9 for the ogbn-arxiv,
Cora, and PubMed datasets, respectively. Notably, for the ogbn-arxiv dataset, we found that
the original LoRA fine-tuning configuration (rank = 64, α = 256) yielded a highest test accuracy of
only 68.63%. However, increasing the rank to 256 and α to 1024 improved the highest accuracy
to 73.71%. This is likely due to the larger scale of the ogbn-arxiv dataset, which requires more
extensive fine-tuning to achieve optimal performance. For consistency and fair comparison, we report
all main results in the paper based on the original configuration.

Table 6: Test accuracy for different settings of RVQ (varying depth d and codebook size K) using
Qwen2.5-1.5B-Instruct as the base LLM on the ogbn-arxiv dataset.

Depth d K = 32 K = 64 K = 128 K = 256 K = 512 K = 1024 K = 2048

2 0.7617 0.7477 0.7588 0.7649 0.7519 0.7500 0.7303
3 0.7547 0.7622 0.7542 0.7604 0.7644 0.7547 0.7490
4 0.7509 0.7663 0.7641 0.7550 0.7512 0.7600 0.7489
5 0.7600 0.7512 0.7564 0.7565 0.7603 0.7597 0.7646

Table 7: Test accuracy for different base LLM sizes (Qwen2.5-0.5B-Instruct,
Qwen2.5-1.5B-Instruct, Qwen2.5-3B-Instruct) on ogbn-arxiv with RVQ depth
d = 2 and varying codebook size K.

Base LLM K = 32 K = 64 K = 128 K = 256 K = 512 K = 1024 K = 2048

Qwen2.5-0.5B-Instruct 0.6049 0.5803 0.6048 0.6019 0.6801 0.6863 0.6350
Qwen2.5-0.5B-Instruct

(lora rank=256, α=1024) 0.6540 0.6816 0.6420 0.7371 0.6967 0.7259 0.7107

Qwen2.5-1.5B-Instruct 0.7617 0.7477 0.7588 0.7649 0.7519 0.7500 0.7303
Qwen2.5-3B-Instruct 0.7676 0.7497 0.7570 0.7678 0.7521 0.7604 0.7641
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Table 8: Test accuracy for different base LLM sizes (Qwen2.5-0.5B-Instruct,
Qwen2.5-1.5B-Instruct, Qwen2.5-3B-Instruct) on Cora with RVQ depth d = 2
and varying codebook size K.

Base LLM K = 32 K = 64 K = 128 K = 256

Qwen2.5-0.5B-Instruct 0.8631 0.8587 0.8528 0.8550
Qwen2.5-1.5B-Instruct 0.8657 0.8686 0.8705 0.8686
Qwen2.5-3B-Instruct 0.8727 0.8694 0.8749 0.8782

Table 9: Test accuracy for different base LLM sizes (Qwen2.5-0.5B-Instruct,
Qwen2.5-1.5B-Instruct, Qwen2.5-3B-Instruct) on PubMed with RVQ depth d = 2
and varying codebook size K.

Base LLM K = 32 K = 64 K = 128 K = 256

Qwen2.5-0.5B-Instruct 0.9436 0.9434 0.9444 0.9429
Qwen2.5-1.5B-Instruct 0.9456 0.9467 0.9468 0.9467
Qwen2.5-3B-Instruct 0.9484 0.9494 0.9502 0.9493
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