GRAPHQ-LM: SCALABLE GRAPH REPRESENTATION FOR LARGE LANGUAGE MODELS VIA RESIDUAL VECTOR QUANTIZATION

Anonymous authors

000

001

002

004

006

012 013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

033

037

040

041

042

043

044

046

047

048

050 051

052

Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable proficiency in diverse language-centric tasks, yet their application to structured graph data presents unique challenges, particularly in efficiently tokenizing graph elements. While graphs offer powerful structural representations, existing methods for interfacing them with LLMs, such as creating distinct token embeddings for every node, face significant scalability limitations: the input vocabulary for the LLM grows linearly with the number of nodes, hindering applicability to large-scale graphs. Drawing inspiration from vector quantization's success in compressing information in domains like audio and vision, we introduce a novel approach to represent graph node features for LLMs. Our method, GraphQ-LM, employs Residual Vector Quantization (RVQ) to encode continuous node features into a compact sequence of discrete tokens derived from fixed-size codebooks. These "graph tokens," representing structural feature information, are seamlessly integrated with textual attributes of nodes and their neighborhoods, forming a rich, multimodal input for the LLM. By aligning the codebook's embedding dimension with that of the LLM and jointly training the RVQ module with the LLM, we learn graphaware representations optimized for downstream tasks like node classification. Extensive experiments demonstrate that GraphQ-LM not only achieves state-ofthe-art performance but, crucially, offers a scale-free tokenization strategy.

1 Introduction

Graph Neural Networks (GNNs) have emerged as a pivotal technology in machine learning for structured data, experiencing significant evolution from early message-passing frameworks—such as Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017), ChebNet (Defferrard et al., 2016), and GraphSAGE (Hamilton et al., 2017)—to models that integrate powerful attention mechanisms, like Graph Attention Networks (GAT) (Veličković et al., 2018). This evolution has culminated in advanced Graph Transformers(Yun et al., 2019; Ying et al., 2021; Yang et al., 2021; Chen et al., 2022; 2023) as shown in Figure 1 (a), which demonstrate exceptional capabilities in learning rich node representations by aggregating information from local neighborhoods, often employing transformer encoders to discern intricate structural dependencies critical for downstream tasks such as node classification or link prediction. However, a substantial portion of valuable information often remains underutilized—the rich semantic contents embedded within the nodes themselves. For example, in prevalent benchmarks like ogbn-arxiv and ogbn-products from the Open Graph Benchmark (OGB) (Hu et al., 2020), the former consists of nodes representing scientific papers with titles and abstracts, whereas the latter comprises large-scale e-commerce graphs with nodes representing products characterized by textual descriptions and names. This discrepancy naturally leads to a critical question: How can we effectively leverage this inherent semantic and textual information within graph structures to enhance performance on downstream tasks?

The remarkable advancements in Large Language Models (LLMs) (Vaswani et al., 2017; Brown et al., 2020; Kaplan et al., 2020; Touvron et al., 2023b; Team et al., 2023) have unveiled new frontiers for integrating rich textual data with structured representations. Their profound ability to understand and generate human language offers a promising avenue to imbue GNNs with semantic awareness. A

Figure 1: Overview of GraphQ-LM and comparison with prior approaches. (a) Graph Transformers model structure but underuse node text. (b) InstructGLM allocates one new token per node, so the LLM vocabulary grows as O(n) and memory scales with graph size. (c) GraphQ-LM encodes continuous features with an encoder and quantizes them into a length-d sequence of shared code indices using residual vector quantization. The same d codebooks are reused for all nodes, giving at most $O(dK) = O(d n^{1/d})$ learned token types instead of O(n) and only a few bytes per node. These feature tokens are interleaved with titles and sampled neighbors to form a compact prompt, preserving semantics while enabling accurate and scalable inference on large graphs.

Table 1: Discrete RVQ tokens preserve accuracy while slashing per-node storage. On ogbn-arxiv, replacing continuous features with depth-4 RVQ codes (d=4) keeps test accuracy on par with or slightly above the original features across GCN, ChebNet, GraphSAGE, and GAT. Bold numbers mark the best per row. This supports our claim that node features can be discretized into short code sequences without loss, using shared codebooks reused for all nodes and requiring only a few bytes per node (4 bytes when $K \le 256$).

Model	Original		Codebook size					
Wiodei	Original	32	64	128	256	512	1024	
GCN (Kipf & Welling, 2017)	71.74 ± 0.30	70.75 ± 0.27	70.72 ± 0.27	$\textbf{71.84} \pm \textbf{0.22}$	71.29 ± 0.16	71.63 ± 0.17	71.61 ± 0.21	
ChebNet (Defferrard et al., 2016)	72.25 ± 0.28	71.67 ± 0.51	72.05 ± 0.37	72.37 ± 0.33	$\textbf{72.39} \pm \textbf{0.29}$	72.20 ± 0.30	72.04 ± 0.33	
GraphSAGE (Hamilton et al., 2017)	71.76 ± 0.39	$\textbf{71.86} \pm \textbf{0.34}$	71.40 ± 0.28	71.55 ± 0.26	71.29 ± 0.21	71.25 ± 0.28	71.67 ± 0.26	
GAT(Veličković et al., 2018)	71.67 ± 0.27	71.56 ± 0.18	71.58 ± 0.33	$\textbf{71.80} \pm \textbf{0.32}$	71.77 ± 0.12	71.54 ± 0.31	71.42 ± 0.45	

natural first thought might be to directly concatenate all semantic information from a node and its neighbors into the LLM's input context. However, integrating extensive neighborhood information leads to excessively long context lengths, making LLM inference computationally expensive and slow, often exceeding the practical context window limitations of most models. Initial explorations, such as InstructGLM (Ye et al., 2024) as shown in Figure 1 (b), have attempted to bridge this gap by treating *each node* in a graph as an individual "*language*" token within the LLM's vocabulary. While this approach demonstrates potential, it introduces a severe scalability bottleneck: **for a graph with one million nodes, the LLM's vocabulary would also need to expand by one million new tokens.** This linear growth in vocabulary size with the number of nodes renders such methods impractical for the increasingly large graphs encountered in real-world applications.

Concurrently, Vector Quantization (VQ) techniques have been extensively and successfully employed in diverse domains like audio (Zeghidour et al., 2021), speech (Van Den Oord et al., 2017), image (Razavi et al., 2019), and video (Yan et al., 2021) as a powerful mechanism for data compression and discrete representation learning. The core idea behind VQ is to map continuous input vectors to a finite set of learned prototype vectors, known as a codebook. Specifically, each continuous latent vector produced by the encoder is quantized by finding its nearest neighbor in the codebook, replacing the original vector with that prototype. This yields a discrete representation that can be stored or transmitted efficiently. Residual Vector Quantization (RVQ) (Zeghidour et al., 2021) further extends this by applying quantization in a staged, residual manner. Instead of quantizing a vector once, RVQ uses multiple codebooks (quantizers); after the first quantization, the residual error is passed to the

next quantizer, allowing for a finer-grained and more accurate discrete representation with a richer effective vocabulary from a combination of smaller codebooks. Despite their proven efficacy in other fields, the exploration of VQ for graph data—particularly for tokenizing node features in large-scale graphs—remains less systematically explored, with only a few emerging efforts (Yang et al., 2023; Kong et al., 2023; Dwivedi et al., 2023). In this vein, we made an intriguing preliminary finding on the ogbn-arxiv dataset, which comprises 169, 343 nodes and 1, 166, 243 edges. As shown in Table 1, we observed that by first encoding raw node features using a RVQ encoder and then feeding these quantized embeddings—instead of the original continuous features—into traditional GNN models (e.g., GCN, ChebNet, GraphSAGE, and GAT), performance on node classification tasks remained on par, or even slightly improved. With four quantizers (d=4) and codebook size 32, RVQ learns 128 shared codes and provides up to 32^4 =1,048,576 signatures, indicating that the compact discrete representation preserves salient features while filtering noise and improving learning.

This observation—that node features can be effectively compressed into a discrete vocabulary without hampering, and sometimes even benefiting, standard GNN performance—serves as a strong motivation for our work. It suggests a pathway to address the scalability challenges of integrating graph data with LLMs. If node features can be represented by a small, fixed set of discrete tokens, we can potentially create a graph representation that is both rich in information (by including text) and compact enough for LLM processing, thereby unlocking superior scaling ability when dealing with graphs of increasing size and complexity. Therefore, we propose GraphQ-LM as shown in Figure 1 (c), a novel framework designed to tokenize node features from large graphs and seamlessly integrate them with textual node attributes for effective LLM-based inference. Specifically, GraphQ-LM leverages the RVQ encoder to transform the original node features into a sequence of discrete codes, where each code is drawn from one of the multiple fixed-size codebooks within the RVQ. These quantized "graph tokens" are then combined with the original textual descriptions of nodes and their sampled neighborhoods, forming a unified, multimodal input sequence for an LLM. This approach not only preserves crucial structural and feature information but also unlocks the potential for LLMs to perform efficient inference over large-scale graph data in a scalable manner. The efficacy and scalability of GraphQ-LM are starkly highlighted by its performance on the ogbn-arxiv benchmark: our method, using just 4 quantizers with a codebook size of 64 per quantizer (compressing node features to a mere 4 bytes per node), achieves 76.63% accuracy with a small Qwen2.5-1.5B-Instruct (Yang et al., 2024) model. In contrast, InstructGLM (Ye et al., 2024) achieves 75.70% accuracy but requires a significantly larger Llama-7B (Touvron et al., 2023a) model and a staggering 16,384 bytes per node for its token embeddings (totaling approximately 2.6 GB for all nodes). This comparison underscores GraphQ-LM's ability to achieve superior or comparable performance with dramatically reduced computational and storage overhead, demonstrating a critical advancement for practical, large-scale graph-based LLM applications.

Our contributions are summarized as follows:

- We are the first to explore the use of RVQ to encode node features into compact, discrete tokens, enabling scalable graph integration with LLMs and allowing for free scaling with graph size. Specifically, with the base LLM as <code>Qwen2.5-1.5B-Instruct</code>, on <code>Cora</code> and <code>PubMed</code> (less than 20K nodes), <code>GraphQ-LM</code> requires only 1.51 MB and 1.54 MB respectively, compared to 58.2 MB and 345.7 MB for <code>InstructGLM</code>. On <code>ogbn-arxiv</code> (around 170K nodes), <code>GraphQ-LM</code> needs just 2.2 MB versus <code>InstructGLM</code>'s 2,728.7 MB.
- GraphQ-LM creates rich, multimodal LLM inputs by effectively combining learned discrete graph tokens (which capture node features and structural information) with explicit textual attributes (such as titles and abstracts) of the nodes and their surrounding neighborhoods.
- GraphQ-LM adopts a joint training strategy where the RVQ encoder within GraphQ-LM is optimized end-to-end with the LLM, enhancing training efficiency and improving the representativeness of learned tokens.
- GraphQ-LM achieves state-of-the-art or competitive results on node classification benchmarks using significantly smaller LLMs and much more compact node representations, demonstrating superior practical efficiency. Specifically, with <code>Qwen2.5-3B-Instruct</code>, <code>GraphQ-LM</code> achieves 87.82% accuracy on <code>Cora</code> compared to 87.08% with <code>InstructGLM</code> (<code>Llama-7B</code>), 95.02% on <code>PubMed</code> compared to 93.84%, and 76.78% on <code>ogbn-arxiv</code> compared to 75.70%, while requiring substantially less storage for node representations.

2 RELATED WORK

Graph Neural Networks. Graphs, a unique data structure consisting of nodes and edges, have demonstrated expressive power in representing various fields across social science (social networks (Tang & Liu, 2009)), natural science (biology (Fout et al., 2017), chemistry (Duvenaud et al., 2015)), and other areas (Wu et al., 2020; Zhou et al., 2020). To effectively process graph data and capture rich relational information among graph elements, Graph Neural Networks (GNNs) have been developed as the standard deep learning-based methods for operating on graph domains. Early GNNs relied on message-passing frameworks, where nodes iteratively updated by exchanging information with their neighbors, such as Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017), ChebNet (Defferrard et al., 2016), and GraphSAGE (Hamilton et al., 2017). The integration of attention mechanisms, like Graph Attention Networks (GAT) (Veličković et al., 2018), has further enhanced the capabilities of GNNs. This evolution has led to the development of advanced Graph Transformers (Yun et al., 2019; Ying et al., 2021; Yang et al., 2021; Chen et al., 2022; 2023) that can learn rich node representations. In contrast, our work explores the application of Large Language Models (LLMs) to leverage the semantic content embedded within graph nodes, offering a novel perspective on graph analysis.

LLMs on Graphs. Large language models (LLMs) (Vaswani et al., 2017; Brown et al., 2020; Kaplan et al., 2020; Touvron et al., 2023b; Team et al., 2023) have proven effective in scaling and exhibit strong capabilities in addressing natural language processing (NLP) tasks. While LLMs are widely used for processing pure text, there is an increasing number of applications of LLMs on the text data associated with structural information in the form of graphs. (Jin et al., 2024) provides a taxonomy of LLMs on graphs, whereas our paper focuses on utilizing LLMs as predictors (Zeng et al., 2022; Fang et al., 2023; Guo et al., 2023) for text-attributed graphs (Jin et al., 2023a; Yang et al., 2021; Jin et al., 2023b). In this context, LLMs are employed to process nodes or edges enriched with semantic text information to make predictions. However, previous methods, such as InstructGLM (Ye et al., 2024), which treat each node in a graph as an individual language token within the LLM's vocabulary, often encounter scalability issues, rendering them impractical for large graphs. Our approach effectively represents discrete graph tokens with rich textual attributes for LLMs while preserving a scale-free strategy.

Vector Quantization. Vector quantization (VQ) was first introduced in the 1980s as a method to compress data while preserving signal fidelity (Buzo et al., 1980). The traditional VQ approach uses a compact codebook to compress the entire feature space where each vector is approximated by a single code. Subsequent improvements have been made through product quantization (Sabin & Gray, 2003; Jegou et al., 2010) and residual quantization (Juang & Gray, 1982; Martinez et al., 2014), which employ parallel and sequential strategies, respectively. In addition, neural network-based versions, such as VQ-VAE (Van Den Oord et al., 2017), PQ-VAE (Van Balen & Levy, 2019), and RQ-VAE (Lee et al., 2022), have also been developed. These VQ methods have shown remarkable effectiveness across various domains, including audio (Zeghidour et al., 2021), speech (Van Den Oord et al., 2017), image (Razavi et al., 2019), and video (Yan et al., 2021). VOGraph (Yang et al., 2023) introduces a structure-aware tokenizer based on VQ-VAE to encode each node's local substructure into discrete codes, while GOAT (Kong et al., 2023) leverages a codebook of fixed-size centroids to enable scalable global attention through node-to-centroid interactions. In contrast, LargeGT (Dwivedi et al., 2023) employs an approximate global codebook updated via EMA K-Means to efficiently capture and integrate global graph context. Notably, we are the first to investigate the use of Residual Vector Quantization (RVQ) for encoding node features into compact, discrete tokens specifically for integration with LLMs, thereby enabling scalable graph-LLM integration and facilitating free scaling with graph size.

3 GRAPHQ-LM

The challenge of effectively integrating graph-structured data with the advanced capabilities of LLMs necessitates frameworks that are both $representationally\ rich$ and $computationally\ scalable$. Current paradigms often struggle with an O(n) complexity concerning the number of nodes n when incorporating node-specific information into LLMs, posing a significant barrier for large-scale graphs. To address this, we propose GraphQ-LM, an end-to-end framework designed for scalable and effective graph representation learning. The core of GraphQ-LM lies in its ability to tokenize continuous node features into a compact, discrete sequence using Residual Vector Quantization (RVQ). This sequence of quantized tokens, when combined with textual attributes, forms a rich multimodal

input for the LLM, allowing the model to scale efficiently to large graphs while simultaneously harnessing the sophisticated contextual understanding offered by LLMs.

3.1 NOTATION AND HIGH-LEVEL WORKFLOW

216

217

218

219

220

222

223

224 225

226

227

228

229

230

231

232

233

235

236

237 238

239

240 241

242 243

244

245

246 247

248

249

250

251

252

253

254

255

256 257

258

259

260 261 262

263 264

265 266 267

268

269

We primarily focus on the task of node classification on attributed graphs G = (V, E, X, T), where V is the set of nodes, E is the set of edges, $X = \{x_i \in \mathbb{R}^{D_{\text{feat}}} \mid v_i \in V\}$ is the set of raw continuous node features, and $T = \{t_i \mid v_i \in V\}$ represents textual attributes associated with each node (e.g., titles, abstracts). The goal is to predict a label y_i for a given target node v_i .

The GraphQ-LM pipeline comprises three main steps as shown in Figure 1:

- 1. Neighborhood Sampling: Similar to GraphSAGE (Hamilton et al., 2017), a multi-hop neighborhood around the ego node v_i is sampled to gather local context.
- 2. Node Feature Processing: (a) Encode each sampled node feature x_j with an MLP f_{enc} to obtain z_j . (b) Quantize z_j via residual vector quantization into a fixed-length sequence of discrete graph tokens $(e_{j,1}, \ldots, e_{j,d})$, using d codebooks of size K each from the RVQ module.
- 3. Soft Prompting for Classification: Interleave system instructions, node textual attributes, and the graph token sequences of the target and its neighbors into a compact prompt for the LLM, which then predicts the class label.

All components are jointly trained in an end-to-end manner. We next introduce the details of the Residual Vector Quantization in Section 3.2 and the soft prompting in Section 3.3.

3.2 RESIDUAL VECTOR QUANTIZATION OF NODE FEATURES

Let $x \in \mathbb{R}^{D_{\text{feat}}}$ be a raw node feature. An MLP encoder f_{enc} maps it to a latent

$$\mathbf{z}_0 = f_{\text{enc}}(x) \in \mathbb{R}^h,\tag{1}$$

where h equals the LLM's token-embedding dimension.

Multi-stage quantization. RVQ (Zeghidour et al., 2021) maintains d learnable, unit- ℓ_2 codebooks $\{\mathcal{C}^{(1)},\ldots,\mathcal{C}^{(d)}\}, \text{ each } \mathcal{C}^{(q)}=\{\mathbf{e}_1^{(q)},\ldots,\mathbf{e}_K^{(q)}\}\subset \mathbb{R}^h \text{ with } \|\mathbf{e}_k^{(q)}\|_2=1. \text{ At stage } q\ (1\leq q\leq d):$

$$\widehat{\mathbf{r}}_{q-1} = 12 \operatorname{norm}(\mathbf{r}_{q-1}), \qquad \widehat{\mathbf{e}}_k^{(q)} = \mathbf{e}_k^{(q)}, \quad \|\widehat{\mathbf{e}}_k^{(q)}\|_2 = 1, \qquad (2)$$

$$\widehat{\mathbf{r}}_{q-1} = 12 \operatorname{norm}(\mathbf{r}_{q-1}), \qquad \widehat{\mathbf{e}}_k^{(q)} = \mathbf{e}_k^{(q)}, \quad \|\widehat{\mathbf{e}}_k^{(q)}\|_2 = 1, \qquad (2)$$

$$k^{(q)} = \arg \max_k \left\langle \widehat{\mathbf{r}}_{q-1}, \widehat{\mathbf{e}}_k^{(q)} \right\rangle, \qquad \mathbf{q}^{(q)} = \mathbf{e}_{k^{(q)}}^{(q)}, \qquad (3)$$

$$\mathbf{r}_{q} = \mathbf{r}_{q-1} - \operatorname{sg}[\mathbf{q}^{(q)}], \qquad \mathbf{r}_{0} = \mathbf{z}_{0}, \tag{4}$$

where $12\text{norm}(\cdot)$ denotes ℓ_2 -normalization of the residual, and $\text{sg}[\cdot]$ is stop-gradient. Distances are computed via the inner product of normals, equivalent to cosine similarity. Gradients through the discrete choice use the rotation-trick straight-through estimator (Fifty et al., 2024).

The discrete graph-token sequence for node x is $(k^{(1)}, k^{(2)}, \dots, k^{(d)})$. Each index $k^{(q)}$ is treated as a language token in the LLM prompt and is mapped to its code embedding $\mathbf{q}^{(q)}$, which serves as the LLM input embedding. In the worst case with no signature collisions, d codebooks yield K^d distinct signatures, so uniquely encoding n nodes requires $K^d \ge n$, that is $K = n^{1/d}$. The number of learned token types is then $dK = d n^{1/d}$, which is sublinear in n rather than O(n).

Training objective. We optimize two loss terms over a mini-batch of size B and average across the dquantization stages:

$$L_{\text{commit}} = \frac{1}{B d} \sum_{i=1}^{B} \sum_{q=1}^{d} \left\| \mathbf{r}_{i,q-1} - \mathbf{q}_{i}^{(q)} \right\|_{2}^{2},$$
 (5)

$$L_{\text{div}} = \frac{1}{d} \sum_{q=1}^{d} \left(-\sum_{k=1}^{K} \bar{p}_{k}^{(q)} \log(\bar{p}_{k}^{(q)}) \right), \tag{6}$$

where
$$p_{i,k}^{(q)} = \operatorname{softmax} \! \left(\langle \widehat{\mathbf{r}}_{i,q-1}, \mathbf{e}_k^{(q)} \rangle / \tau \right)$$
 and $\bar{p}_k^{(q)} = \frac{1}{B} \sum_{i=1}^B p_{i,k}^{(q)}$.

The commitment loss L_{commit} encourages each encoder residual to remain close to its selected code vector, stabilizing the assignment, while the diversity loss $L_{\rm div}$ maximizes the entropy of the average code-usage distribution to prevent collapse onto a small subset of codes and τ represents the temperature, which is set to 100 consistently across our experiments.

270

271

275

276

277 278 279

280 281 282

284

283

287 288 289

290 291 292

293 295

> 296 297

298 299 300

301 302 303

304 305 306

307 308 309

310 311 312

313 314 315

316 317 318

323

Table 2: Summary of dataset statistics.

Dataset	#Nodes	#Edges	#Features	Feature Extraction	Train/Val/Test	#Classes
Cora	2,708	5,429	1,433	Bag of Words	60%/20%/20% (random)	7
PubMed	19,717	44,338	500	TF-IDF	60%/20%/20% (random)	3
ogbn-arxiv	169,343	1,166,243	128	Skip-gram	54%/18%/28% (official)	40

Thus, the full quantization objective is

$$L_{\text{RVQ}} = \lambda_{\text{c}} L_{\text{commit}} + \lambda_{\text{d}} L_{\text{div}}, \tag{7}$$

with λ_c and λ_d weighting the commitment and diversity terms.

3.3 SOFT PROMPTING FOR LLM CLASSIFICATION

To enable the LLM to perform graph-based inference, we employ a two-part soft prompt that interweaves system instructions with node-specific text and quantized graph feature tokens.

- System prompt: A fixed instruction that defines the LLM's role and task, e.g., "You are an expert classifier for arXiv's Computer Science domain, charged with assigning exactly one of {categories} to a central paper."
- User prompt: A structured mixture of textual attributes and graph tokens for a seed node v_s :
 - (1) **Central node:** Central node: $\langle \text{title}_s \rangle$ ($\langle \text{abstract}_s \rangle$)
 - (2) Neighborhood entries: For each hop $h=1,\ldots,H$, prepend the literal marker "h-hop neighborhood: " and then list each neighbor $v \in \mathcal{N}_h(v_s)$ as $\langle \text{title}_v \rangle \left(k_v^{(1)}, \ldots, k_v^{(d)} \right)$, joined by commas. Here $\{k_v^{(q)}\}\$ is the discrete graph-token index sequence.
 - (3) Token embedding: All natural language tokens (titles, abstracts, markers) are mapped via the LLM's native embedding function $TokenEmb(\cdot)$, whereas each graph-token index $k_v^{(q)}$ is directly substituted with the corresponding quantized embedding $\mathbf{q}_v^{(q)}$ from the RVQ

The final model input is the concatenation of (i) the system-prompt embeddings and (ii) the userprompt embeddings, which the LLM consumes to predict the class label via cross-entropy on the generated label tokens.

3.4 Joint Optimization Strategy

We use LoRA (Hu et al., 2022) for parameter-efficient adaptation of the pre-trained LLM to our graph-augmented prompts. GraphQ-LM is then trained end-to-end by jointly updating the MLP encoder, the RVQ codebooks, and the LoRA adapters of the LLM, while all other LLM parameters (including its input embedding matrix) remain frozen.

The total loss combines a cross-entropy classification term with the quantization regularizers:

$$L_{\text{ce}} = -\log p_{\text{LLM}}(y_s \mid \text{prompt embeddings}), \qquad L_{\text{total}} = L_{\text{ce}} + w_{\text{RVQ}} L_{\text{RVQ}}.$$

where $w_{\rm RVQ}$ balances the influence of the commitment and diversity losses.

By minimizing L_{total} , the encoder, codebooks, and LoRA adapters co-adapt so that the quantized graph tokens become maximally informative for the classification task.

EXPERIMENTS

In this section, we present a systematic evaluation of GraphQ-LM on three standard citation network benchmarks. All experiments are conducted on a single NVIDIA RTX A6000 GPU.

Datasets. We evaluate on three widely used node-classification datasets: ogbn-arxiv from the Open Graph Benchmark (Hu et al., 2020), and the Cora and PubMed citation networks (Yang et al., 2016). In each dataset, nodes represent papers (with title and abstract) and edges denote citation links. Node features are pre-extracted from title and abstract: ogbn-arxiv uses 128-dimensional average Skip-Gram embeddings, Cora uses 1,433-dimensional bag-of-words vectors, and PubMed uses 500-dimensional TF–IDF. Detailed dataset statistics are summarized in Table 2.

Training details. (a) RVQ encoder. Each dataset uses a three-layer MLP with LayerNorm to produce the latent vectors that are fed to the residual VQ module. The commitment, diversity loss weights and

Table 3: Accuracy and node-representation cost on ogbn-arxiv. GNNs appear first, graph transformers next, and LLM-based methods last. GraphQ-LM uses shared RVQ codebooks to tokenize features, which yields higher accuracy than InstructGLM while cutting storage by orders of magnitude. Ablations without RVQ (same backbones, text only) show clear gains from RVQ: +7.93 pp (0.5B), +2.96 pp (1.5B), and +2.86 pp (3B). Bold denotes the best in each LLM backbone.

Model	Base LLM	Acc. (%)	Node Representation Cost
Node2vec (Grover & Leskovec, 2016)	_	70.07 ± 0.13	
GraphSAGE (Hamilton et al., 2017)	-	71.49 ± 0.27	
GCN (Kipf & Welling, 2017)	-	71.74 ± 0.29	
DeeperGCN (Li et al., 2020)	-	71.92 ± 0.16	
SIGN (Frasca et al., 2020)	-	71.95 ± 0.11	
UniMP (Shi et al., 2021)	-	73.11 ± 0.20	82.69 MB
LEGNN (Yu et al., 2022)	-	73.37 ± 0.07	
GAT (Wang et al., 2021)	_	73.66 ± 0.11	
AGDN (Sun et al., 2020)	-	73.75 ± 0.21	
DRGAT (Zhang et al., 2023)	-	74.16 ± 0.07	
RevGAT (Li et al., 2021)	-	74.26 ± 0.17	
CoarFormer (Kuang et al., 2021)	_	71.66 ± 0.24	
GOAT (Kong et al., 2023)	-	72.41 ± 0.40	
SGFormer (Wu et al., 2023)	-	72.63 ± 0.13	82.69 MB
Graphormer (Ying et al., 2021)	-	72.81 ± 0.23	82.09 MB
Polynormer (Deng et al., 2024)	-	73.46 ± 0.16	
E2EG (Dinh et al., 2023)	-	73.62 ± 0.14	
InstructGLM (Ye et al., 2024)	LLaMA-7B	75.70 ± 0.12	2,728.67 MB
GraphQ-LM (w/o RVQ)	Qwen-2.5-0.5B-Instruct	60.70 ± 3.52	-
GraphQ-LM	Qwen-2.5-0.5B-Instruct	68.63 \pm 0.41 (d =2, K =1024)	0.32 MB (Node Tokens) + 7.00 MB (RVQ)
GraphQ-LM (w/o RVQ)	Qwen-2.5-1.5B-Instruct	73.67 ± 0.52	_
GraphQ-LM	Qwen-2.5-1.5B-Instruct	76.63 \pm 0.20 (d =4, K =64)	0.65 MB (Node Tokens) + 1.50 MB (RVQ)
GraphQ-LM (w/o RVQ)	Qwen-2.5-3B-Instruct	73.92 ± 0.63	_
GraphQ-LM	Qwen-2.5-3B-Instruct	76.78 \pm 0.17 (d =2, K =256)	0.32 MB (Node Tokens) + 3.32 MB (RVQ)

the RVQ loss weight are fixed to 1.0, 0.25, and 1.0 respectively. During neighborhood sampling, we consistently draw 20 one-hop, 10 two-hop, and 5 three-hop neighbors for each node. Full soft prompt templates are given in Appendix A. (b) Backbone LLMs. We study three sizes of Qwen-2.5 Instruct as the backbone language model—0.5B, 1.5B, and 3B parameters—to gauge the impact of LLM scale. (c) LoRA fine-tuning. The LLM is adapted with LoRA (Hu et al., 2022) (rank=64, $\alpha=256$), we train for 40 epochs on Cora, 5 epochs on PubMed, and 2 epochs on ogbn-arxiv with batch size as 128, 128, and 256 respectively. All results are obtained over five random seeds, and more details are deferred to Appendix B.

Evaluation metrics. We report (i) *accuracy* (Acc.)—node-classification accuracy on the test set (mean ± std over runs)—and (ii) *Node-Representation Cost* (NRC), i.e., the total number of bytes needed to store all node representations. We assume float32 storage for float numbers, giving 4 bytes per feature dimension. For GraphQ-LM, the cost consists of the bytes required for each node's length-*d* integer token sequence plus the shared parameters of the embeddings of the learnable codebooks from the RVQ.

Baselines. We benchmark GraphQ-LM against strong convolutional GNNs (GAT, DRGAT, RevGAT), transformer-style architectures (Graphormer, GT, NAGphormer, GOAT), and the recent LLM-based InstructGLM. Reported scores are taken from the public leaderboards¹ or from the original papers when not listed.

Main Results. Table 3 reports our performance on ogbn-arxiv, while Table 4 summarizes results on Cora and PubMed. We highlight three key observations: (a) Effectiveness of language-enhanced models. Once textual information is incorporated, LLM-based approaches surpass both traditional GNNs and recent graph transformers. Concretely, GraphQ-LM attains 76.78% accuracy on ogbn-arxiv—about 2.5% higher than the strongest GNN and 3.0% above the best graph transformer. On PubMed we observe a consistent 5% improvement over all these models, and on Cora we can still match those baselines while requiring far smaller cost on node representations. (b) Advantage over InstructGLM with far lower representation cost. Across all three datasets, GraphQ-LM outperforms InstructGLM despite using a much smaller LLM backbone. On ogbn-arxiv, our 1.5B model reaches 76.63% accuracy versus InstructGLM's 75.70% with 7B model. Crucially, our entire graph is stored in just 0.65 MB of integer node tokens plus 1.5 MB for the embedding of the codebooks from the RVQ, whereas InstructGLM requires 2,728.67 MB to keep

¹ogbn-arxiv leaderboard; Cora leaderboard; PubMed leaderboard.

Table 4: Accuracy and node-representation cost on Cora and PubMed. GNNs appear first, graph transformers next, and LLM-based methods last. GraphQ-LM replaces continuous features with shared RVQ codebooks, which yields consistent gains over text-only LLM baselines and reduces storage by orders of magnitude. Ablations without RVQ (same backbones, text only) confirm the contribution of RVQ: on Cora the gains are +3.70 pp (0.5B), +1.96 pp (1.5B), +2.36 pp (3B); on PubMed the gains are +2.91 pp, +2.88 pp, +2.89 pp. Bold numbers indicate the best accuracy within each LLM backbone and dataset.

Method	Base LLM	1	Cora		PubMed
	24.00 222.11	Acc. (%)	Node Representation Cost	Acc. (%)	Node Representation Cost
MixHop (Abu-El-Haija et al., 2019)	-	65.65 ± 1.31		87.04 ± 4.10	
GAT (Veličković et al., 2018)	-	76.70 ± 0.42		83.28 ± 0.12	
GPRGNN (Chien et al., 2021)	-	79.51 ± 0.36		85.07 ± 0.09	
SGC-2 (Wu et al., 2019)	-	85.48 ± 1.48		85.36 ± 0.52	
GraphSAGE (Hamilton et al., 2017)	-	86.58 ± 0.26		86.85 ± 0.11	
GCN (Kipf & Welling, 2017)	-	87.78 ± 0.96	15.84 MB	88.90 ± 0.32	37.61 MB
BernNet (He et al., 2021)	=-	88.52 ± 0.95		88.48 ± 0.41	37.01 MB
FAGCN (Bo et al., 2021)	=-	88.85 ± 1.36		89.98 ± 0.54	
GCNII (Chen et al., 2020)	-	88.98 ± 1.33		89.80 ± 0.30	
RevGAT (Li et al., 2021)	-	89.11 ± 0.00		88.50 ± 0.05	
Snowball-3 (Luan et al., 2019)	-	89.33 ± 1.30		88.80 ± 0.82	
ACM-GCN++ (Luan et al., 2022)	-	89.33 ± 0.81		90.39 ± 0.33	
Graphormer (Ying et al., 2021)	_	80.41 ± 0.30		88.24 ± 1.50	
NAGphormer (Chen et al., 2023)	-	82.10 ± 0.60		89.70 ± 0.19	
GT (Dwivedi & Bresson, 2020)	-	86.42 ± 0.82	15.84 MB	88.75 ± 0.16	37.61 MB
GOAT	-	87.86 ± 1.31	13.84 MB	86.87 ± 0.24	37.01 MB
Polynormer (Deng et al., 2024)	-	88.11 ± 1.08		87.34 ± 0.43	
CoarFormer (Kuang et al., 2021)	_	88.69 ± 0.82		89.75 ± 0.31	
InstructGLM (Ye et al., 2024)	LLaMA-7B	87.08 ± 0.32	58.15 MB	93.84 ± 0.25	345.69 MB
GraphQ-LM (w/o RVQ)	Qwen-2.5-0.5B-Instruct	82.62 ± 1.54	-	91.53 ± 0.49	-
GraphQ-LM	Owen-2.5-0.5B-Instruct	86.31 ± 1.98	0.005 MB (Node Tokens)	$\textbf{94.44} \pm \textbf{0.41}$	0.038 MB (Node Tokens)
•	•	(d=2, K=32)	+ 0.219 MB (RVQ)	(d=2, K=128)	+ 0.875 MB (RVQ)
GraphQ-LM (w/o RVQ)	Qwen-2.5-1.5B-Instruct	85.09 ± 1.01	-	91.80 ± 0.57	-
GraphQ-LM	Qwen-2.5-1.5B-Instruct	87.05 ± 1.01 (d=2, K=128)	0.005 MB (Node Tokens) + 1.500 MB (RVQ)	94.68 ± 0.21 (d=2, K=128)	0.038 MB (Node Tokens) + 1.500 MB (RVQ)
GraphQ-LM (w/o RVO)	Owen-2.5-3B-Instruct	85.46 ± 0.54	- 1200ID (R (Q)	92.13 ± 0.63	- (K, 6)
GraphQ-LM	Qwen-2.5-3B-Instruct	87.82 ± 0.77 (d=2, K=256)	0.005 MB (Node Tokens) + 4.000 MB (RVQ)	95.02 ± 0.22 (d=2, K=128)	0.038 MB (Node Tokens) + 2.000 MB (RVQ)

both the raw features and per-node language embeddings. Similar memory savings accompany our superior accuracy on Cora and PubMed, we typically require less than 1% of InstructGLM's cost while still achieving superior performance. Our tokenization likely improves accuracy through an implicit denoising effect: by preserving only the most salient aspects of the raw features, it filters out irrelevant noise. (c) Scalability of GraphQ-LM. Moving from small graphs (Cora and PubMed; <20 K nodes) to the much larger ogbn-arxiv (170 K nodes), the memory needed for node tokens grows modestly—from <0.1 MB to <0.7 MB—while the RVQ encoder remains under at most 4 MB throughout. These results demonstrate that GraphQ-LM scales gracefully with graph size, delivering strong accuracy without sacrificing efficiency. (d) Contribution of RVQ tokenization. Ablations without RVQ (text only, same backbones) show that RVQ accounts for most of the gains: on ogbn-arxiv the improvements are +7.93 pp for 0.5B, +2.96 pp for 1.5B, and +2.86 pp for 3B; on Cora they are +3.70 pp, +1.96 pp, and +2.36 pp; on PubMed they are +2.91 pp, +2.88 pp, and +2.89 pp. This confirms that discretizing node features into shared codebooks both improves accuracy and enables compact storage.

5 ABLATION STUDIES.

In this section, we examine how the backbone LLM size, the RVQ depth d, and the codebook size K affect classification accuracy.

Backbone LLM Size. Across all three benchmarks, larger LLMs consistently yield higher accuracy. On ogbn-arxiv, accuracy improves from 68.63% with Qwen-2.5-0.5B-Instruct to 76.78% with Qwen-2.5-3B-Instruct. On Cora, it rises from 86.31% to 87.82%, and on PubMed, from 94.44% to 95.02%. This confirms that stronger language backbones enhance our graph-augmented soft prompting. Inference latencies are reported in Appendix B, and more results are shown in Appendix C.

Influence of Depth d. Figure 2 shows accuracy curves for depths $d \in \{2, 3, 4, 5\}$ as the codebook size K varies. Shallow quantization (d=2) underperforms at both very small and very large K, peaking at 76.5% when K=256. Increasing to d=3 yields more robust gains, also reaching 76.5% at K=512. Further depth (d=4) shifts the optimum toward smaller codebooks (K=64), achieving 76.6%, while very deep (d=5) prefers larger K like 2048. In practice, d=3 or 4 offers the best balance between accuracy and efficiency. Detailed statistics are deferred to Appendix C.

Figure 2: Accuracy vs. RVQ capacity on ogbn-arxiv. Varying codebook size K and depth d shows a clear sweet spot: moderate capacity works best. Performance rises from small K then plateaus, with best results around d=4 and K in the 64–512 range. Larger K or deeper d does not yield consistent gains, which supports using compact codebooks for strong accuracy with low storage.

Figure 3: **RVQ** tokens are discriminative and do not collapse. Violin plots of token indices per class for quantizers 1 (top) and 3 (bottom) with d=4, K=64 show class-dependent usage rather than uniform collapse. Early quantizers capture broad groupings and later quantizers refine class-specific patterns, indicating complementary codebooks and label-aligned discrete structure.

Influence of Codebook Size K. Moderate codebook sizes (K=128-512) consistently deliver strong performance for $d \leq 3$. Very small codebooks (K < 64) lack sufficient representational granularity, while extremely large ones (K > 1024) can sparsify assignments or overfit. Deeper RVQ stages $(d \geq 4)$ partially compensate for smaller K via additional residual corrections, but at higher representation cost.

Correlation between graph tokens and class labels. Figure 3 plots the per-class distributions of token indices assigned by quantizers 1 (top) and 3 (bottom) in a RVQ module (d=4, K=64) trained with Qwen-2.5-1.5B-Instruct on the ogbn-arxiv training set. Notice every one of the 64 codebook entries is used in both quantizers, indicating full utilization of the code space. Besides, the kernel density shapes vary significantly across class labels: some classes concentrate on a narrow index range, while others exhibit broader spreads. When we examine the joint index combinations from all quantizers, each class exhibits a distinctive pattern of quantizer assignments—highlighting GraphQ-LM 's ability to produce compact, class-specific representations with strong discriminative power.

DISCUSSION AND LIMITATION.

We have presented GraphQ-LM, a novel framework that scales LLM-based graph learning to large graphs by tokenizing continuous node features into compact discrete codes via Residual Vector Quantization and combining these "graph tokens" with textual attributes in a soft-prompt. Unlike prior methods that suffer an O(n) vocabulary blow-up, GraphQ-LM requires only $O(d\,n^{1/d})$ tokens and a small RVQ encoder, enabling graphs with hundreds of thousands of nodes to be handled by modestly-sized LLMs. Empirically, GraphQ-LM matches or exceeds the accuracy of leading GNNs and graph transformers on ogbn-arxiv, Cora, and PubMed, while reducing node-representation storage from gigabytes to mere megabytes.

Although GraphQ-LM achieves significant storage savings and scales gracefully to large graphs, it is currently trained solely with a classification loss and does not explicitly encourage multi-step reasoning over the graph-token sequence. Developing prompt designs or auxiliary objectives that steer the LLM to integrate structural and semantic cues in a systematic, step-by-step manner remains an important direction. Furthermore, because we rely on full LLM inference, latency is higher than that of lightweight GNNs or graph transformers. Finally, extending GraphQ-LM to other graph tasks—such as link prediction, subgraph classification, or whole-graph property prediction—will require new prompt formats and training strategies, which we leave to future work.

REPRODUCIBILITY STATEMENT

We commit to releasing all training and evaluation code for GraphQ-LM, together with data download scripts, preprocessing, RVQ tokenization, prompt construction, and end-to-end training and inference pipelines. The repository will include the exact hyperparameters and configurations used in the paper, aligned with Sections 3.2, 3.3 and 4, with prompt templates in Appendix A, implementation details in Appendix B, and ablations in Appendix C. We will provide seed control and deterministic flags, and we report mean and standard deviation over five seeds throughout. The release will contain scripts to reproduce all main tables and figures, compute the Node Representation Cost as defined in Section 4, and export checkpoints and logs. We will include environment files and a one-click runner to recreate results on a single NVIDIA RTX A6000 or a compatible GPU. All datasets are public benchmarks.

REFERENCES

- Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional architectures via sparsified neighborhood mixing. In *international conference on machine learning*, pp. 21–29. PMLR, 2019.
- Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph convolutional networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35, pp. 3950–3957, 2021.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
- Andrés Buzo, A Gray, R Gray, and John Markel. Speech coding based upon vector quantization. *IEEE Transactions on Acoustics, Speech, and Signal Processing*, 28(5):562–574, 1980.
- Dexiong Chen, Leslie O'Bray, and Karsten Borgwardt. Structure-aware transformer for graph representation learning. In *International conference on machine learning*, pp. 3469–3489. PMLR, 2022.
- Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer for node classification in large graphs. In *The Eleventh International Conference on Learning Representations*, 2023.
- Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph convolutional networks. In *International conference on machine learning*, pp. 1725–1735. PMLR, 2020.
- Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank graph neural network. In *International Conference on Learning Representations*, 2021.
- Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs with fast localized spectral filtering. *Advances in neural information processing systems*, 29, 2016.
- Chenhui Deng, Zichao Yue, and Zhiru Zhang. Polynormer: Polynomial-expressive graph transformer in linear time. In *The Twelfth International Conference on Learning Representations*, 2024.
- Tu Anh Dinh, Jeroen den Boef, Joran Cornelisse, and Paul Groth. E2eg: End-to-end node classification using graph topology and text-based node attributes. In 2023 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 1084–1091. IEEE, 2023.
- David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular fingerprints. *Advances in neural information processing systems*, 28, 2015.
- Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs. *arXiv preprint arXiv:2012.09699*, 2020.

- Vijay Prakash Dwivedi, Yozen Liu, Anh Tuan Luu, Xavier Bresson, Neil Shah, and Tong Zhao. Graph transformers for large graphs. *arXiv preprint arXiv:2312.11109*, 2023.
 - Yin Fang, Xiaozhuan Liang, Ningyu Zhang, Kangwei Liu, Rui Huang, Zhuo Chen, Xiaohui Fan, and Huajun Chen. Mol-instructions: A large-scale biomolecular instruction dataset for large language models. *arXiv preprint arXiv:2306.08018*, 2023.
 - Christopher Fifty, Ronald G Junkins, Dennis Duan, Aniketh Iyengar, Jerry W Liu, Ehsan Amid, Sebastian Thrun, and Christopher Ré. Restructuring vector quantization with the rotation trick. *arXiv* preprint arXiv:2410.06424, 2024.
 - Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using graph convolutional networks. *Advances in neural information processing systems*, 30, 2017.
 - Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Federico Monti. Sign: Scalable inception graph neural networks. *arXiv preprint arXiv:2004.11198*, 2020.
 - Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In *Proceedings* of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 855–864, 2016.
 - Taicheng Guo, Kehan Guo, Zhengwen Liang, Zhichun Guo, Nitesh V Chawla, Olaf Wiest, Xiangliang Zhang, et al. What indeed can gpt models do in chemistry? a comprehensive benchmark on eight tasks. *arXiv preprint arXiv:2305.18365*, 3, 2023.
 - Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. *Advances in neural information processing systems*, 30, 2017.
 - Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning arbitrary graph spectral filters via bernstein approximation. *Advances in Neural Information Processing Systems*, 34:14239–14251, 2021.
 - Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.
 - Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. *Advances in neural information processing systems*, 33:22118–22133, 2020.
 - Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search. *IEEE transactions on pattern analysis and machine intelligence*, 33(1):117–128, 2010.
 - Bowen Jin, Wentao Zhang, Yu Zhang, Yu Meng, Xinyang Zhang, Qi Zhu, and Jiawei Han. Patton: Language model pretraining on text-rich networks. *arXiv preprint arXiv:2305.12268*, 2023a.
 - Bowen Jin, Yu Zhang, Yu Meng, and Jiawei Han. Edgeformers: Graph-empowered transformers for representation learning on textual-edge networks. *arXiv preprint arXiv:2302.11050*, 2023b.
 - Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. Large language models on graphs: A comprehensive survey. *IEEE Transactions on Knowledge and Data Engineering*, 2024.
 - Biing-Hwang Juang and A Gray. Multiple stage vector quantization for speech coding. In *ICASSP'82*. *IEEE International Conference on Acoustics, Speech, and Signal Processing*, volume 7, pp. 597–600. IEEE, 1982.
 - Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. *arXiv* preprint arXiv:2001.08361, 2020.
 - Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In *International Conference on Learning Representations*, 2017.
 - Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C Bayan Bruss, and Tom Goldstein. Goat: A global transformer on large-scale graphs. In *International Conference on Machine Learning*, pp. 17375–17390. PMLR, 2023.

- Weirui Kuang, WANG Zhen, Yaliang Li, Zhewei Wei, and Bolin Ding. Coarformer: Transformer for large graph via graph coarsening. 2021.
 - Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image generation using residual quantization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 11523–11532, 2022.
 - Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. Deepergen: All you need to train deeper gens. *arXiv preprint arXiv:2006.07739*, 2020.
 - Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training graph neural networks with 1000 layers. In *International conference on machine learning*, pp. 6437–6449. PMLR, 2021.
 - Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and Doina Precup. Break the ceiling: Stronger multiscale deep graph convolutional networks. *Advances in neural information processing systems*, 32, 2019.
 - Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen Chang, and Doina Precup. Revisiting heterophily for graph neural networks. *Advances in neural information processing systems*, 35:1362–1375, 2022.
 - Julieta Martinez, Holger H Hoos, and James J Little. Stacked quantizers for compositional vector compression. *arXiv preprint arXiv:1411.2173*, 2014.
 - Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with vq-vae-2. *Advances in neural information processing systems*, 32, 2019.
 - ML Sabin and R Gray. Product code vector quantizers for waveform and voice coding. *IEEE transactions on acoustics, speech, and signal processing*, 32(3):474–488, 2003.
 - Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked label prediction: Unified message passing model for semi-supervised classification. In *Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence*, pp. 1548–1554. International Joint Conferences on Artificial Intelligence Organization, 2021.
 - Chuxiong Sun, Jie Hu, Hongming Gu, Jinpeng Chen, and Mingchuan Yang. Adaptive graph diffusion networks. *arXiv preprint arXiv:2012.15024*, 2020.
 - Lei Tang and Huan Liu. Relational learning via latent social dimensions. In *Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining*, pp. 817–826, 2009.
 - Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.
 - Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.
 - Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.
 - Jan Van Balen and Mark Levy. Pq-vae: Efficient recommendation using quantized embeddings. In *RecSys (Late-Breaking Results)*, pp. 46–50, 2019.
 - Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in neural information processing systems*, 30, 2017.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.

- Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph attention networks. In *International Conference on Learning Representations*, 2018.
- Yangkun Wang, Jiarui Jin, Weinan Zhang, Yong Yu, Zheng Zhang, and David Wipf. Bag of tricks for node classification with graph neural networks. *arXiv preprint arXiv:2103.13355*, 2021.
- Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying graph convolutional networks. In *International conference on machine learning*, pp. 6861–6871. Pmlr, 2019.
- Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian, and Junchi Yan. Sgformer: Simplifying and empowering transformers for large-graph representations. *Advances in Neural Information Processing Systems*, 36:64753–64773, 2023.
- Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A comprehensive survey on graph neural networks. *IEEE transactions on neural networks and learning systems*, 32(1):4–24, 2020.
- Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation using vq-vae and transformers. *arXiv preprint arXiv:2104.10157*, 2021.
- An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.
- Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal, Amit Singh, Guangzhong Sun, and Xing Xie. Graphformers: Gnn-nested transformers for representation learning on textual graph. Advances in Neural Information Processing Systems, 34:28798–28810, 2021.
- Ling Yang, Ye Tian, Minkai Xu, Zhongyi Liu, Shenda Hong, Wei Qu, Wentao Zhang, Bin Cui, Muhan Zhang, and Jure Leskovec. Vqgraph: Rethinking graph representation space for bridging gnns and mlps. *arXiv* preprint arXiv:2308.02117, 2023.
- Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with graph embeddings. In *International conference on machine learning*, pp. 40–48. PMLR, 2016.
- Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, and Yongfeng Zhang. Language is all a graph needs. In *EACL* (*Findings*), 2024.
- Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-Yan Liu. Do transformers really perform badly for graph representation? *Advances in neural information processing systems*, 34:28877–28888, 2021.
- Le Yu, Leilei Sun, Bowen Du, Tongyu Zhu, and Weifeng Lv. Label-enhanced graph neural network for semi-supervised node classification. *IEEE Transactions on Knowledge and Data Engineering*, 35(11):11529–11540, 2022.
- Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer networks. *Advances in neural information processing systems*, 32, 2019.
- Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi. Sound-stream: An end-to-end neural audio codec. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 30:495–507, 2021.
- Zheni Zeng, Yuan Yao, Zhiyuan Liu, and Maosong Sun. A deep-learning system bridging molecule structure and biomedical text with comprehension comparable to human professionals. *Nature communications*, 13(1):862, 2022.
- Lei Zhang, Xiaodong Yan, Jianshan He, Ruopeng Li, and Wei Chu. Drgcn: Dynamic evolving initial residual for deep graph convolutional networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp. 11254–11261, 2023.

A PROMPTS

In this section, we present the system and user prompts used for different datasets. The system prompts on different datasets are shown below:

System Prompt for ogbn-arxiv

You are an expert classifier for arXiv's Computer Science domain, charged with assigning exactly one of the 40 official CS categories (i.e., algorithm, artificial intelligence, automata, complexity, computation and language, computational engineering, computer vision, control, database, digital library, discrete mathematics, distributed computing, emerging, game, general, geometry, graphics, hardware, human computer interaction, information theory, internet, logic, machine learning, mathematical software, multiagent, multimedia, neural computing, numerical analysis, operating system, other, performance, programming, retrieval, robotics, security, social network, society, software engineering, sound, symbolic) to a central paper. The graph is directed, with edges representing citations. Input is a comma-separated list of nodes, each formatted as Title(feature), where the feature comprises special abstract-feature tokens. Use the titles and feature tokens of the central paper and its multi-hop neighbors to determine the most appropriate category.

System Prompt for Cora

You are an expert classifier for the Cora citation network, charged with assigning exactly one of the seven research-topic labels—case based, genetic algorithms, neural networks, probabilistic methods, reinforcement learning, rule learning, theory—to a central paper. The graph is directed, with edges representing citations. The input is a comma-separated list of nodes, each formatted as Title(feature), where the feature contains special abstract-feature tokens. Use the titles and feature tokens of the central paper and its multi-hop neighbors to determine the most appropriate category.

System Prompt for PubMed

You are an expert biomedical article classifier for the PubMed Diabetes citation network, charged with assigning exactly one of three disease categories—experimental, first, second—to a central article. The graph is directed, with edges representing citations. The input is a comma-separated list of nodes, each formatted as Title(feature), where the feature contains special abstract-feature tokens. Use the titles and feature tokens of the central article and its multi-hop neighbors to determine the most appropriate category.

The corresponding user prompt used across all three datasets is as follows:

```
Central node: <title> (<abstract>)
1-hop neighborhood: <title> (<graph tokens>), <title> (<graph tokens>), ...
2-hop neighborhood: <title> (<graph tokens>), <title> (<graph tokens>), ...
3-hop neighborhood: <title> (<graph tokens>), <title> (<graph tokens>), ...
```

Each line specifies the central node and its multi-hop neighbors, with each node represented by its title and associated graph tokens based on the node features.

B EXPERIMENT DETAILS

We use a consistent learning rate of 1×10^{-4} for all components, including both the encoder and the LoRA adapter, across all datasets and experimental settings. For LoRA, the target modules include q_proj, k_proj, v_proj, o_proj, and lm_head. The AdamW optimizer is employed for all experiments.

 Encoder. For all datasets, we utilize a three-layer multilayer perceptron (MLP) as the encoder, with ReLU activations and LayerNorm for normalization. The input dimension is set to match the number of features in the dataset, while the output dimension is aligned with the language embedding size of the base LLM. For the ogbn-arxiv dataset, the hidden dimensions are set to [256, 512]; for the Cora and PubMed datasets, the hidden dimensions are set to [512, 512].

Inference latency. The inference latency on different datasets with various base LLMs is reported in Table 5. For simplicity, we consistently use RVQ with a depth of 2 and a codebook size of 256 in all the experiments here.

Table 5: Inference latency (ms per query) on different datasets and base LLMs.

Base LLM	ogbn-arxiv	Cora	PubMed
Qwen-2.5-0.5B-Instruct	14.38	7.07	12.55
Qwen-2.5-1.5B-Instruct	39.18	25.38	32.86
Qwen-2.5-3B-Instruct	75.06	47.70	62.30

C ADDITIONAL EXPERIMENTS

In this section, we present detailed statistics for GraphQ-LM under various RVQ configurations, including different values of depth d and codebook size K, as described in Section 5. Specifically, test accuracies for different RVQ settings using <code>Qwen2.5-1.5B-Instruct</code> on the <code>ogbn-arxiv</code> dataset with different depth and codebook size are reported in Table 6.

When consistently using RVQ with depth d=2, the corresponding test accuracies for different LLM sizes and codebook sizes K are shown in Table 7, Table 8, and Table 9 for the <code>ogbn-arxiv</code>, <code>Cora</code>, and <code>PubMed</code> datasets, respectively. Notably, for the <code>ogbn-arxiv</code> dataset, we found that the original LoRA fine-tuning configuration (rank = 64, α = 256) yielded a highest test accuracy of only 68.63%. However, increasing the rank to 256 and α to 1024 improved the highest accuracy to 73.71%. This is likely due to the larger scale of the <code>ogbn-arxiv</code> dataset, which requires more extensive fine-tuning to achieve optimal performance. For consistency and fair comparison, we report all main results in the paper based on the original configuration.

Table 6: Test accuracy for different settings of RVQ (varying depth d and codebook size K) using Qwen2.5-1.5B-Instruct as the base LLM on the ogbn-arxiv dataset.

$\mathbf{Depth}\ d$	K = 32	K = 64	K = 128	K = 256	K = 512	K = 1024	K = 2048
					0.7519		0.7303
					0.7644		0.7490
4	0.7509	0.7663	0.7641	0.7550	0.7512	0.7600	0.7489
5	0.7600	0.7512	0.7564	0.7565	0.7603	0.7597	0.7646

Table 7: Test accuracy for different base LLM sizes (Qwen2.5-0.5B-Instruct, Qwen2.5-1.5B-Instruct, Qwen2.5-3B-Instruct) on ogbn-arxiv with RVQ depth d=2 and varying codebook size K.

Base LLM	K = 32	K = 64	K = 128	K = 256	K = 512	K = 1024	K = 2048
Qwen2.5-0.5B-Instruct	0.6049	0.5803	0.6048	0.6019	0.6801	0.6863	0.6350
Qwen2.5-0.5B-Instruct (lora rank=256, α =1024)	0.6540	0.6816	0.6420	0.7371	0.6967	0.7259	0.7107
Qwen2.5-1.5B-Instruct	0.7617	0.7477	0.7588	0.7649	0.7519	0.7500	0.7303
Qwen2.5-3B-Instruct	0.7676	0.7497	0.7570	0.7678	0.7521	0.7604	0.7641

Table 8: Test accuracy for different base LLM sizes (Qwen2.5-0.5B-Instruct, Qwen2.5-1.5B-Instruct, Qwen2.5-3B-Instruct) on Cora with RVQ depth d=2 and varying codebook size K.

Base LLM	K = 32	K = 64	K = 128	K = 256
Qwen2.5-0.5B-Instruct	0.8631	0.8587	0.8528	0.8550
Qwen2.5-1.5B-Instruct	0.8657	0.8686	0.8705	0.8686
Qwen2.5-3B-Instruct	0.8727	0.8694	0.8749	0.8782

Table 9: Test accuracy for different base LLM sizes (Qwen2.5-0.5B-Instruct, Qwen2.5-1.5B-Instruct, Qwen2.5-3B-Instruct) on PubMed with RVQ depth d=2 and varying codebook size K.

Base LLM	K = 32	K = 64	K = 128	K = 256
Qwen2.5-0.5B-Instruct	0.9436	0.9434	0.9444	0.9429
Qwen2.5-1.5B-Instruct	0.9456	0.9467	0.9468	0.9467
Qwen2.5-3B-Instruct	0.9484	0.9494	0.9502	0.9493